HIGH RESOLUTION SPECTRA OF THE SIMPLEST CRIEGEE INTERMEDIATE $\rm CH_2OO$ BETWEEN 880 AND 932 $\rm cm^{-1}$

<u>PEI-LING LUO</u>, YASUKI ENDO, Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan; YUAN-PERN LEE, Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.

The Criegee intermediates (CI) play critical roles in atmospheric chemistry. CH_2OO is the simplest CI and its characterization is important for investigations of reaction mechanisms and molecular structure. In this work, high-resolution spectra of the OO-stretching (ν_6) mode of CH_2OO in the range of 880–932 cm⁻¹have been recorded using a quantum cascade laser (QCL) system coupled with a multi-pass Herriott cell. The CH_2OO was produced from the reaction of $CH_2I + O_2$ in a flowing mixture of CH_2I_2/O_2 (1/213) at 3.2 Torr upon irradiation at 248 nm with an excimer laser. The spectrum was recorded by step-scanning the QCL with a step size of 0.0016 cm⁻¹; its wavelength was calibrated with a C_2H_4 reference cell and a germanium etalon. Over one thousand lines were assigned and used for fitting of molecular constants of CH_2OO . Furthermore, the rotational perturbations on the high-J levels of $K_a = 3$, $K_a = 6$, and $K_a \ge 11$ were observed.