ATTEMPTS TO SOLVE O_2 -CONTAINING VAN DER WAALS INTERACTIONS USING SPFIT AND SPCAT WITH MICROWAVE MEASUREMENT PRECISION: PROBLEMS, PITFALLS, AND SUCCESSES.

FRANK E MARSHALL, NICOLE MOON, AMANDA JO DUERDEN, G. S. GRUBBS II, Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA.

Although there is a vast amount of van der Waals complexes containing small molecular species, there have only been a small number of studies containing an O_2 binding partner. Within this grouping, only five are known to have been attempted using high-resolution microwave techniques with only two- O_2 -HF^a and O_2 -H₂O^b- appearing in the literature. This void is presumably due to the $^3\Sigma$ ground state of O_2 and how this coupling complicates spectral assignment. However, these sorts of couplings determined from high-resolution analysis add rich and important information useful in complex structure determination. Until now, the only analyses of such complexes have been done utilizing Hund's case a symmetric models^c, d or Hund's case b linear Hamiltonians. However, further study either resulted in inaccurate predictions of close transitions (O_2 -H₂O) or difficult adjustments to similar systems due to extra complexity (O_2 -HCl from O_2 -HF). This made a more standardized approach, such as using the ubiquitous program suite of SPFIT/SPCAT by Pickett^e seem like a more flexible solution. However, SPFIT/SPCAT uses a Hund's case b approach which needed to be sorted out and the problems and pitfalls of these analyses will be discussed. This talk will include how to be predictive using O_2 -H₂O and O_2 -HF as examples as well as discuss work currently being pursued on the molecules O_2 -HCl and O_2 -OCS to extend the analyses. Structural parameters from these newly determined parameters and their interpretations will also be discussed.

^aS. Wu, G. Sedo, E. M. Grumstrup, K. R. Leopold, J. Chem. Phys., 127 (2011) 204315-1-204315-11.

^bY. Kasai, E. Dupuy, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, Y. Endo. Atmos. Chem. Phys., 11 (2011) 8607–8612.

^cW. M. Fawzy, J. Mol. Spec., 191 (1998) 68-80.

^dH.-B. Qian, S. J. Low, D. Seccombe, B. Howard, J. Chem. Phys., **107** (1997) 7651-7657.

^eH. M. Pickett, J. Mol. Spec., **148** (1991) 371-377.