SUB-DOPPLER INFRARED SPECTROSCOPY OF JET COOLED CH2Br RADICAL: CH2 STRETCH VIBRATIONS

ANDREW KORTYNA, PRESTON G. SCRAPE, JILA, National Institute of Standards and Technology and Univ. of Colorado, Boulder, CO, USA; DANIEL LESKO, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA; DAVID NESBITT, JILA, National Institute of Standards and Technology and Univ. of Colorado, Boulder, CO, USA.

Bromomethyl radical (CH_2Br) has recently been used as a novel precursor for producing the simplest Criegee intermediates (CH_2OO). With the goal of spectroscopically investigating a Criegee intermediate, we have pursued high resolution characterization of the CH_2Br radical in our slit jet discharge spectrometer. The bromomethyl radical is generated by seeding CH_2Br_2 into a Ne/He/H $_2$ mixture in a pulsed slit discharge. The radical is produced through either electron dissociative attachment to form bromine anions or hydrogen abstraction of bromine, with subsequent cooling in a supersonic expansion to about 15 K. Infrared absorption in the CH_2 symmetric stretch vibrational band is fully resolved at high single-to-noise ratios for both the ^{79}Br and ^{81}Br isotopologues . The sub-Doppler rotational structure is fitted to a rigid-rotor Hamiltonian with spin-rotation coupling, generating principal rotational constants and the spin-orbit coupling tensor for the vibrationally excited state. The results are consistent with a vibrationally averaged planar π -radical with unpaired electron spin density in a partially filled p_{π} -orbital on the central C atom. Relative band intensities in the symmetric and antisymmetric CH_2 stretch manifolds provide further elucidation of the "charge-sloshing" mechanism noted in CH_2F , CH_2Cl , and CH_2I radical species due to vibrationally mediated shifts in electron density along the carbon-halogen bond axis.