
© 2019 Qianyang Peng

EMPIRICALLY REVISITING AND ENHANCING IR-BASED TEST-CASE
PRIORITIZATION

BY

QIANYANG PENG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Advisers:

Professor Darko Marinov
Assistant Professor Lingming Zhang, The University of Texas at Dallas

ABSTRACT

Regression testing is widely used to check code changes during software evolution. How-
ever, regression testing can also incur huge cost since real-world software systems can accu-
mulate huge and time-consuming test suites. Therefore, a large number of approaches have
been proposed to speed up regression testing, including test-case prioritization, regression
test selection, and test-suite minimization/reduction.
Test-case prioritization (TCP) aims to detect regression bugs faster via reordering regres-

sion tests. To date, various TCP techniques have been proposed in the literature, including
both change-aware ones that consider program changes between the old and new versions
for better prioritization and change-unaware ones that simply use the dynamic or static in-
formation from the old version. Although various studies have investigated the effectiveness
of the existing TCP techniques, they suffer from the following threats: (1) they are usually
evaluated on a small dataset; (2) they are usually performed on seeded artificial or real bugs,
and not on real evolution with real bugs; (3) they are usually evaluated using cost-unaware
metrics.
In this work, we study the recent program changes based information retrieval (IR) ap-

proach for TCP, which has been claimed to perform better than state-of-the-art coverage
based techniques but only evaluated on a small dataset by cost-unaware metrics. We re-
duce the threats of and further enhance the prior work by conducting a better evaluation
and proposing potential improvements. To do so, we evaluate the original technique on a
large-scale, real-world software-evolution dataset containing 123 projects and 2,980 program
builds using both cost-aware and cost-unaware metrics under various configurations, and we
design and evaluate several hybrid techniques combining the IR features and historical test
execution times and failure frequencies.
As a result, we confirm the effectiveness of program changes based IR approach for TCP

and find an ideal configuration to maximize the effectiveness. Also, we successfully improve
the performance of the original technique with our hybrid techniques. Moreover, we show
that flaky tests have a substantial impact on the program changes based TCP techniques.

ii

To my parents and my fiancée, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to first thank my adviser Professor Darko Marinov. He encouraged and
supported me to discover the research topic I am interested in so that during this year I
could consistently work on what I really love. He kept guiding and encouraging me through
my whole research process. I will never forget the late nights he and his student, August Shi,
spent with me working on improving my research skills. He also has a very broad knowledge
and quickly answered any tricky questions I had and solved many problems I ran into, thus
greatly boosting the efficiency of my research work.
I would like to thank my co-adviser Assistant Professor Lingming Zhang from The Uni-

versity of Texas at Dallas. His area of study exactly matches my research interest, and he
therefore gave me precious advices about how to turn my interest into a research work that
could contribute the most to the research area. He also helped a lot with the feedback on
this thesis.
I would like to thank the organizations that gave financial supports to me and the people

who helped me with my thesis. My research assistantships were funded by the research
grant from Huawei. My teaching assistantships were funded by University of Illinois Urbana-
Champaign. NSF grants paid for the people who helped me with my work, including CCF-
1421503, CCF-1763788, and CCF-1763906.
I would also like to express my gratitude to one of Professor Marinov’s senior Ph.D.

students, August Shi. He offered a lot of help including helping me to form my research
idea, reviewing and revising my thesis, and answering my detailed technical questions.
Finally, I would like to thank Professor Marinov’s Ph.D. students, Wing Lam and Owolabi

Legunsen. They gave me very helpful suggestions regarding my thesis work.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 INFORMATION RETRIEVAL (IR) TECHNIQUES 4
2.1 Data Objects and Query Construction . 4
2.2 Retrieval Models . 6

CHAPTER 3 DATA COLLECTION . 10
3.1 Project Selection . 10
3.2 Build Collection . 11
3.3 Log Analysis . 13
3.4 Flaky Test Collection . 14

CHAPTER 4 EXPERIMENT SETUP . 17
4.1 Problem Formulation . 17
4.2 Research Questions . 17
4.3 Evaluation Metrics . 18
4.4 Failure-to-Fault Mapping . 19
4.5 Tie Breaking . 19

CHAPTER 5 EMPIRICAL EVALUATION . 20
5.1 RQ1: IR Configurations . 20
5.2 RQ2: Evaluation by Project . 23
5.3 RQ3: Hybrid Techniques . 25
5.4 RQ4: Failure-to-Fault Mapping . 29
5.5 RQ5: Flaky Tests . 30

CHAPTER 6 THREATS TO VALIDITY . 31
6.1 Threats to Internal Validity . 31
6.2 Threats to External Validity . 31

CHAPTER 7 RELATED WORK . 32

CHAPTER 8 CONCLUSIONS . 34

REFERENCES . 35

v

LIST OF TABLES

3.1 Number of Travis builds and number of jobs (program builds) for each project 16

5.1 Comparing different preprocessing approaches 20
5.2 Comparing different context of code . 21
5.3 Comparing different retrieval models . 22
5.4 Comparing IR-based technique and quickest test first technique 25
5.5 Comparing cost-only technique and cost-cognizant IR technique 26
5.6 Comparing history-based technique, cost-cognizant history based tech-

nique, and three factor hybrid technique . 26
5.7 Statistic tests on different techniques . 28
5.8 Impact of different failure-to-Fault mappings 29

vi

LIST OF FIGURES

5.1 IR technique evaluation by each project . 23
5.2 Comparing different techniques on flaky/non-flaky tests 30

vii

CHAPTER 1: INTRODUCTION

Regression testing is widely used to check code changes during software evolution [1].
However, regression testing can also incur huge cost since real-world software systems can
accumulate huge and time-consuming test suites. For example, the Google engineers have
witnessed a quadratic increase on their daily regression testing costs due to the linear in-
crease in both the test-suite execution time and the number of software revisions; Google
reports running over 150 million test executions every day, consuming substantial machine
resources [2]. Therefore, a large number of approaches have been proposed to speed up re-
gression testing, including test-case prioritization [3, 4, 5], regression test selection [6, 7, 8, 9],
and test-suite minimization/reduction [10, 11, 12]. Yoo and Harman presented a thorough
survey of regression testing techniques [13].
Test-case prioritization (TCP) aims to detect regression bugs faster by reordering regres-

sion tests [14]. To date, various techniques have been proposed in the literature, including
both change-aware and change-unaware techniques. Change-unaware techniques simply use
the dynamic or static information from the old version to perform TCP. For example, the
total technique simply sorts all the tests in the descending order of the number of their cov-
ered program elements (e.g., methods or statements), while improved additional technique
sorts the execution order of tests based on the number of their covered elements that are
uncovered by already prioritized tests [15]. In contrast, change-aware techniques consider
program changes between the old and new versions for even better prioritization. For exam-
ple, the recent change-aware technique based on information retrieval (IR) [4] reduces the
problem of TCP into the traditional IR problem—the program changes between revisions
are treated as the query, while the tests are treated as the data objects. Then, the tests
that are textually more related to the program changes are executed earlier for faster bug
detection.
Although various studies have investigated the effectiveness of the existing TCP tech-

niques, they suffer from the following threats. First, they are usually performed on seeded
artificial bugs or seeded real bugs, and not on real-world software evolution with real test
failures. For example, Luo et al. [16] empirically revisited TCP techniques on both artificial
bugs via mutation and real bugs from Defects4J [17]. However, even Defects4J bugs are
not representative of real regression bugs since Defects4J bugs are isolated bugs while real
regression bugs often come with other benign changes. Second, the existing TCP techniques
are usually evaluated using cost-unaware metrics, such as the Average Percentage of Faults
Detected (APFD) [14]. Even state-of-the-art IR-based change-aware TCP technique was

1

also evaluated using only APFD [4, 18]. Last but not least, flaky tests have been demon-
strated to be prevalent in practice [19], while to our knowledge none of the existing studies
for TCP considered the impacts of flaky tests.
In this work, we focus on the change-based, IR TCP technique (hereinafter called the

“IR-based TCP technique”). As is introduced above, it uses IR approach to calculate
the textual similarities between the program changes and test cases, then prioritizes test
cases by the descending order of the similarities. We focus on the this specific technique
because it has been shown to outperform state-of-the-art change-unaware total and addi-
tional techniques [4], and is an lightweight static technique thus easy to be evaluated on
a large dataset. In our new evaluation we aim to reduce the threats of the prior studies,
and to further enhance the technique by discovering more configurations and hybridizing IR
features with historical test execution times and failure frequencies to make it perform even
better.
To perform the study, we constructed a large-scale, real-world, software-evolution dataset

including 123 projects and 2,980 program builds with real test failures. Then, we evaluate
the studied technique with various different configurations on our dataset using both cost-
aware and cost-unaware metrics. After that, we propose and evaluate the hybrid techniques
related to our focused technique. Lastly, we study the impacts of flaky tests.
In summary, this thesis makes the following contributions:

• Dataset: We constructed a real-world, large-scale, software-evolution dataset with
2,042 Travis builds, 2,980 program builds (a Travis build could consist of multiple pro-
gram builds), and 6,618 real test failures from 123 open-source Java projects. For each
program build, our dataset has the source code, program changes, and the test exe-
cution information (the pass/fail outcome and the test execution time), which suffices
for evaluating TCP techniques.

• Evaluation: We evaluated a wide range of configurations of IR-based TCP technique
on our dataset using both cost-unaware and cost-aware metrics. We are the first
to evaluate IR-based TCP technique with cost-aware metric, and we are the first to
evaluate hybrid techniques of IR. To the best of our knowledge, we are also the first
to study the impacts of flaky tests on TCP.

• Outcome: Our study reveals various practical guidelines for future TCP studies, in-
cluding: (1) it is important to have a large-scale dataset for studying TCP; (2) there
could be a huge bias when using cost-unaware metric for TCP on real-world software
evolution; and (3) flaky tests have a substantial impact on the change-based techniques.

2

Besides the guiding outcomes, we also found an ideal configuration for IR-based TCP
technique, and discovered hybrid techniques based on IR that significantly outperform
the original IR-based TCP technique.

3

CHAPTER 2: INFORMATION RETRIEVAL (IR) TECHNIQUES

IR-based TCP technique was first proposed and evaluated by Saha et al. [4]. As the main
purpose of our thesis is to better evaluate and enhance their technique, here we introduce
the technique they propose with more details. Typically, an IR-based technique implements
an IR system, which aims to trace and recover specific information from stored data, usually
based on the textual similarities. Saha et al. reduce a TCP problem into an IR problem by
first ranking the test cases (classes or methods) by the similarity scores between each test
case and the modified code, and then using the ranking of the scores as the executing order
of test cases. The assumption is that the test case that have a higher textual similarity with
the modified code are more related to the program changes, thus having a higher chance to
reveal the regression bugs between code versions early.

2.1 DATA OBJECTS AND QUERY CONSTRUCTION

There are three key parts for an IR system: the collection of data objects, the query, and
the retrieval model. In the change-based TCP, the data objects are constructed from the test
cases and the query is constructed from the program changes between two code versions. In
this section we discuss the data preprocessing techniques used to construct the data objects
and the query.
In the prior work of Saha et al., they discuss and evaluate several possible combinations

for the configurations of the data objects and query construction, including whether to use
structured documents, whether to do AST parsing, whether to use compact queries, and
whether at method level or class level to construct the data objects. Their result shows
that different configurations perform pretty closely, so we are not going to evaluate all their
configurations in our work. Our evaluation is only at the class level, and we do not construct
structured documents or compact queries.
To see whether our result is consistent with the prior work, our evaluation still considers

the impact of doing AST parsing. Also, we add two more configuration evaluations including
the impact of tokenization, and the impact of the context of change added into the query.

2.1.1 Construction of Data Objects

In our IR system, data objects are constructed from the string representation of test files,
and the preprocessing step is to process the raw strings of the files into tokens. In natural

4

language processing, token is a sequence of characters acted as a useful semantic unit for
processing. In our case, for example, a variable could be a token. We consider four different
approaches to process the test files.
The most naive approach we consider is to use the white space tokenizer that breaks text

into tokens separated by any whitespace character. We denote this approach as Low. The
advantage of this approach is that it is easy to implement and oblivious to the programming
language that the code files are written in. However, the disadvantage of this approach may
include: (1) the approach does not filter out meaningless terms for IR such as Java keywords
(e.g. if, else and return), operators, numbers and open source licenses, and (2) this approach
fails to detect the similarities between the variable names that are partially but not exactly
the same, e.g. setWeight and getweight.
A optimization for the naive Low approach is to use a special code tokenizer to tokenize

the source code and we denote this approach as Lowtoken. Lowtoken improves upon Low by
introducing a code tokenizer that (1) filters out all the numbers and operators, (2) segments
the long variables by non-alphabetical characters in between and by the camel-case heuristics,
and (3) turn all upper case letters to lower case letters. With the help of code tokenizer,
Lowtoken does not have most defects of Low. However, it still does not filter out some
meaningless terms for IR, such as Java keywords and open source licenses.
The third approach is based on the assumption that identifiers are particularly important

terms for information retrieval because developers use their own natural language terms
to name them [4]. Therefore, we build an abstract syntax tree (AST) from each code file
and extract the identifiers from it. We denote this approach as High. After extracting the
identifiers from the source code, we could also apply the same code tokenizer as Lowtoken

to create finer grained tokens. We denote this approach, which is our last approach, as
Hightoken.

2.1.2 Construction of Queries

For IR-based TCP, we construct the query using the program changes between two repos-
itory versions. We only consider the textual part of program changes and ignore any non-
textual files, such as images and binary files.
Similar to the construction of data objects, we could also apply one of Low, Lowtoken,

High, and Hightoken as the preprocessing approach for the query. For each type of data
object construction, we apply the same corresponding preprocessing approach, e.g., if using
Hightoken for data objects, we use Hightoken for the query as well. Unfortunately, we cannot
collect identifiers related to exact program changes directly when doing High or Hightoken,

5

because most code parsers can only parse structurally complete code, not partial snippets
from the diff. Instead, we collect identifiers of code contexts with three steps. In the first
step, we parse the code in the new version and record the line number of every identifier in
the code. In the second step, we generate the unified diff file and record the changed line
numbers in the new version of code. Lastly, we collect the identifiers that are at the line
numbers flagged as modified in the diff file.
Another important part of constructing the query is whether to include the context of

change or not. By context, we mean the lines of code around the exact changed lines
between two code versions.
In one extreme case, the context can be the whole changed file. With the whole changed

file, the query will include any potentially related information within the same file. However,
using the whole file as context would generate a very long query. Furthermore, using the
entire file can be imprecise by providing too much information not related to the actual
changes.
In the other extreme case, the context could be empty, so the query is just the changed

lines of code. The query in this case is the shortest and more related to the exact changes.
However, without any context, there might be no enough information in the query and the
IR technique would report low-quality ranking results. Specifically, such a short query may
result in more frequent ties in the similarity score between the query and multiple data
objects.
The alternative approach is to include a certain number of lines of context into the query,

and hopefully it would absorb both the advantage of both the “whole file as context” and
“no context” approach. In our evaluation, we evaluate the impact of including 1 line, 3 lines
and 5 lines of context into the query.

2.2 RETRIEVAL MODELS

Retrieval model is the last key part of an IR system. It takes the data objects and the
query as input, and generates a ranking to data objects as the output. Finally, the ranking
of data objects will become the prioritized order of test cases. All retrieval models we use are
bag-of-words models [20], which means the order of words in a data object does not matter.
Bag-of-words models has two major advantages: (1) when multiple files are modified and
need to be merged into one query, the order of the files do not matter because the result would
be the same, and (2) it simplifies the code representation and reduces the dimensionality of
data.
We evaluate four retrieval models: Tf-idf, BM25, LSI and LDA. The first two models

6

are commonly used unsupervised IR models, and the last two models are two simple topic
models. The prior work [4] introduced all these 4 models, but only the BM25 model is used
in their evaluation. Here we evaluate all these 4 models because we want to see how they
perform and compare exactly when doing IR-based TCP.

• Tf-idf

Tf-idf [21] is a bag-of-words based text vectorization algorithm. Given the vector
representations of the data objects, we do the data object ranking based on the vector
distances between the data objects’ vectors and the query. We use the TfidfVectorizer
from scikit-learn [22] to implement the Tf-idf model used in our evaluation.

The idea of Tf-idf model is to use a combination of term frequencies and inverse
document frequencies to compute the weight of every term in the data objects. The
more frequent words are given higher weight by the term frequency score, while more
common words are given lower weights by the inverse document frequency score.

The training phase of the Tf-idf model is to calculate the term weight of every word in
the data objects. In the dataset each data object is represented by an array of size N ,
in which N is the number of different distinct terms in the whole dataset. The weight
of term ti will be stored as the ith element of the array of each data object.

For a term t and a data object d, the weight of term t in data object d is defined as
Equation 2.1:

tf -idf (t, d) = tf(t, d)× idf(t) (2.1)

In our evaluation, the term frequency tf is the count of the term t in data object d,
while the inverse document frequency idf is computed as shown in Equation 2.2:

idf(t) = log(
1 + nd

1 + df(t)
+ 1) (2.2)

in which nd is the total number of data objects, and df(t) is the number of data objects
that contain term t.

Finally, we normalize the tf-idf vector by the l2 norm, defined by Equation 2.3:

7

vnorm =
v√

v12 + v22 + ...+ vn2
(2.3)

In our evaluation, the similarity score between a data object vector and the query
vector is computed by the cosine similarity defined by Equation 2.4:

s(~d, ~q) =
N∑
i=1

tf(ti, d)× tf(ti, q)× idf(ti)
2 (2.4)

We do test-case prioritization by sorting the test classes in a descending order of their
cosine similarity scores to the query, and this retrieval model is denoted as Tf-idf.

• BM25

The BM25 [23] model, also known as Okapi BM25, is another successful retrieval
model [24]. Compared to the Tf-idf model, it takes the data object lengths into con-
sideration, such that shorter data objects are given higher rankings. Moreover, unlike
the traditional Tf-idf model which requires us to compute the cosine similarity scores
to do the ranking after feature extraction, BM25 itself is designed to be a ranking
algorithm that aims to directly compute the scores to be used in ranking.

In our evaluation, we use the gensim [25] implementation of BM25. Given the query q

as a sequence of words [t1, t2, . . . , tm] (ti and tj could be the same words but at different
positions), the similarity score between a data object d and q is computed as Equation
2.5:

s(d, q) =
m∑
i=1

idf(ti) ·
tf(ti, d) · (k1 + 1)

tf(ti, d) + k1 · (1− b+ b · |d|
avgdl

)
(2.5)

In this equation, |d| is the length of data object d, while avgdl is the average length of
all data objects in the dataset. The inverse document frequency idf(t) is computed as
Equation 2.6:

idf(t) = log(
nd − df(t) + 0.5

df(t) + 0.5
) (2.6)

8

where nd is the total number of data objects, and df(t) is the number of data objects
that contain term t.

In the equation, k1 and b are two configurable parameters. k1 is a positive tuning
parameter that controls the data object term frequency scaling, and b controls the
scaling of data object length. Usually, k1 is chosen from range [1.2, 2.0] and b is 0.75.
In our evaluation, k1 is 1.5, which is the default value provided by gensim.

We sort the test classes in a descending order of their BM25 scores, and this retrieval
model is denoted as BM25.

• LSI and LDA

LSI [26] and LDA [27] are two classic unsupervised bag-of-words topic models. As a
topic model, the representation of a data object is a vector of topics rather than a
vector of tokens. This mathematical embedding model will transfer the data objects
from a very high dimensional vector space with one dimension per word into a vector
space with a much lower dimension. With a vector of topics for each data object, we
can calculate the similarity scores and rank the data objects.

We use the gensim implementation of LSI and LDA, and we use cosine similarity to
calculate vector similarities to compute the ranking. These two retrieval models are
denoted as LSI and LDA.

9

CHAPTER 3: DATA COLLECTION

3.1 PROJECT SELECTION

To evaluate how various TCP techniques prioritize failed tests, we need a real, large, and
inclusive dataset of projects that have real test failures. Our project collection phase consists
of three steps.
In the first step, we collect a list of projects by querying the GitHub search API. We

require the primary programming language of projects to be Java and the last updated date
to be after 2018-10-01. We only choose projects with recent updates because we prefer active
projects. In the query we rank projects by the number of stars given to the project because
high-starred project are more likely to be of higher quality and are likely to be more popular
and relevant to others. To bypass the GitHub limitation on the number of returned items
in each single query, we segment our query by the project creation date from 2010 to 2019
and choose 1,000 projects from each query. In this step we collect 10,000 projects.
In the second step, we select projects that have a Travis build history publicly accessible

from Travis CI, a continuous-integration service widely popular among GitHub projects [28,
29]. The Travis build history includes the logs for each Travis build and a link to the
program changes on GitHub that triggered the build. We select only the projects that have
a .travis.yml file in their root directory. Also we require the project to have the active

field set to True in the project’s corresponding Travis CI setup. We end up with 2,181
projects after this step.
In the last step, we select projects that have analyzable logs to identify the Fully Qualified

Names (FQNs) and the execution times of all tests. We choose projects that build with
Maven (as identified by having a pom.xml file in the root of the directory) because it produces
a more verbose output than Ant and Gradle, two other popular Java build tools. However,
even if a project builds with Maven, it is challenging to parse the test FQNs and times,
e.g., when the tests are wrapped in test suites, the test output is silenced, or the build log
itself is broken or lost. We choose projects that have more than 30% of the builds in their
build history that are analyzable (how they are analyzed in described in section 3.3), thus
selecting 123 projects for our evaluation.

10

3.2 BUILD COLLECTION

Travis CI enables developers to define a “Build Matrix” in the configuration file. In the
build matrix developers can define a group of different language-and-environment combina-
tions, and each language-and-environment combination will be executed separately as a job.
The execution results of all jobs will be integrated together to generate the execution result
of the build. In this thesis, we refer to “Travis job” as “program build” because without
context “job” is a pretty vague term and “program build” makes this term more precise and
easier to understand.
If Travis CI is enabled in a GitHub repository, it will monitor the actions in the repository

and trigger an automatic Travis build whenever there is a GitHub Push or Pull Request.
During every program build, the tests for the code are executed and any failure in test will
cause the build to fail. After each Travis build, Travis CI generates a Travis build log and
updates the build history for the project. We collect and process the Travis build log details
in the build history for our TCP evaluation.
We mainly care about the following attributes in a Travis build log:

• event_type: The type of the event that triggers a Travis build. The event can be
automatically triggered from a GitHub “push” or “pull_request”, or manually triggered
using corresponding Travis API.

• state and previous_state: State is the current status of a Travis build. For a Travis
build that has finished, the state can be “passed”, “failed” or “errored”. If the event_type
for the build is push, then the previous_state property is copied from the last build on
the same branch. If the event_type of the build is pull_request, then the property is
copied from the last build on the branch that the pull request is being merged into.

• commit : The value corresponding to this attribute is a dictionary containing several
related attributes about the commit associated with the Travis build. The attributes
needed in our analysis are the SHA and compare_url. SHA is a hash identifier of the
commit, with which we can download the whole project zip at that specific commit
from GitHub. compare_url is the url to the page on GitHub showing the program
changes between the previous version and the current version.

• jobs : A Travis build contains one or multiple jobs (program builds). Jobs are executed
in parallel and the state of a Travis build is decided by the state of the jobs in it
altogether. We could download the detailed job logs from Travis server given the job
ID, and we use the job logs to extract the test FQNs, test outcomes, and test execution
times.

11

Example 3.1 shows what a common Travis build log looks like. From the log we know
that this Travis build is from a repository called “airlift”, and is triggered from a GitHub
pull request. The build is failed but the prior build right before it was passed, therefore
regressions are likely to be introduced after the last program change. We could get a zip
file of the repository snapshot at the build time using the SHA of the commit, and get the
program changes between two versions using the compare_url of the commit. This Travis
build contains exactly one job (program build), and we can use the @href url of it to retrieve
more detailed information about the program build.

{

"id": 196380882,

"state": "failed",

"event_type": "pull_request",

"previous_state": "passed",

...

"repository": {

...

"name": "airlift",

"slug": "airlift/airlift"

},

"commit": {

...

"sha": "7b18a62e23d49e760a79925c30d460375153a8fb",

"compare_url": "https://github.com/airlift/airlift/pull/493",

"committed_at": "2017-01-29T18:12:18Z"

},

"jobs": [

{

"@type": "job",

"@href": "/job/196380883",

"@representation": "minimal",

"id": 196380883

}

],

...

}

Example 3.1: A Typical Travis Build Log

For each of the 123 projects, we collect the builds that satisfy the two requirements listed
below:

12

1. The “previous_state” attribute should be “passed”, and the “state” attribute should be
“failed”.

2. In the program changes list there should be at least one Java code file that was modified
by querying the compare_url.

For each program build, we collect the following data for our experiment:

• Build Profile: The repository name, Travis build ID and job (program build) ID.

• A list of changed files between the two code versions. For each changed file, we have
(1) the new content and (2) the difference between the new content and old content.

• The program build log file at the current version and at the prior version. In next
section we will discuss how we use these files in detail.

3.3 LOG ANALYSIS

For each program build, we collect its log files both at the current version and at the prior
version. By analyzing the log files we want to extract the list of tests including the test FQNs,
test outcomes, and test execution times. We just need the log file at the current version
to evalate the pure IR techniques. However, when we implement the hybrid techniques, we
need the log file at the prior version to get the execution times as an estimation of test costs.
It is more real and convincing than just using the execution times at the current version,
which are impossible to retrieve in practice before test cases are executed.
In our work we do a class level TCP, so all the information we collect is at a class level. In

Section 3.1 we have declared that all our projects are built with Maven, so we use the Maven
log syntax to analyze the log files. To get a list of executed test classes, we match each line
of the program build log and find the lines that match the pattern starting with “Running
” and followed by the FQN of the test class. We use the FQN of a test class to find the file
for it, thus getting its contents from the zip snapshot. When there is a “$” separating the
class FQN and the name of its inner class, we take the part before “$”, essentially merging
each inner test class with its outer class.
For the execution times, we match the pattern “Time elapsed: (.*? s)” in the lines following

the execution of each test, obtaining a float number in seconds representing the time spent
on each test. To make the evaluation more realistic, we add a small overhead to the time
of each test class as the time overhead to switch between test classes. To get an accurate
estimation of this overhead, we created a experimental maven project and monitored on

13

Travis the time spent on switching between classes. As a result, we add 0.0058 seconds to
the execution time of each test class.
Sometimes there is no time recorded for a test execution because of some special con-

figuration or the log being incomplete. To keep our experiments precise, we only keep the
program builds that have all their tests mapped to a time at the current version. Note that
We do not require every test class at the previous version to have a time mainly because
there could be newly added tests, so the prior test time for a test class could be None. In
this case, we assign an after overhead time 0.0029 seconds as the prior time such test class.
This time assignment is the general overhead divided by 2 and gives unseen test classes a
higher prioriy in cost-cognizant techniques.
The extraction of test failures is challenging because of the format in which JUnit and

Surefire print failures. We use an open-source tool TravisTorrent [30], which provides a
group of log parsing tools for Maven, Gradle and Ant. Using the tool we parse the test
method FQNs of failed tests from the logs, and we map each failed test method FQN to its
test class. The principle of log analysis script is to match the string pattern starting with
“Failed tests:” or “Tests in error:” in the build log to find the method names that failed or
errored during the program build.
Instead of extending our method to make it work for all the cases, we just select the

program builds that are fully analyzable and discard the program builds we cannot analyze.
We find 2,980 well formatted analyzable program builds from 2,042 Travis builds across 123
projects. The number of Travis builds and the number of program builds for each project
are shown in Table 3.1.

3.4 FLAKY TEST COLLECTION

Not all test failures are due to the latest program changes; some test failures are due to
the so-called flaky tests that can non-deterministically pass or fail even for the same code
under test [19]. However, this effect could be substantial, especially for program changes
based TCP techniques. If a test failure is due to flakiness, the test may have nothing to do
with the recent change, and a program changes based TCP technique may (rightfully) rank
such a test lower. However, if purely measuring TCP effectiveness based on test failures,
such a ranking could lead the TCP technique being considered worse than it should. To
study this effect, we build a dataset that splits test failures into two groups: those definitely
due to flaky tests and those likely due to real regressions introduced by program changes.
Identifying whether a test failure is due to a flaky test or not is challenging and would in

the limit require extensive manual effort [31]. We use an automated approach by re-running

14

the commits for the program builds with failed tests exactly six times and checking what
tests failed. A test that passes and fails in different reruns of the same commit is flaky (by
definition). A test that fails in all reruns is likely (but not definitely) a real failure indicating
a regression introduced by the program changes.
From our set of 2,980 program builds, we select 252 program builds that contain exactly

one test failure and the with a build time of less than five minutes. For each of these
builds, we rerun on Travis with exactly the same configuration six times and record whether
that single failure re-occurred or not. We find 29 builds with definitely flaky tests and 223
builds with likely real failures. Note that having a consistent failure in six reruns does not
necessarily mean the test is non-flaky.

15

ID Name #Builds #Jobs ID Name #Builds #Jobs
P01 apache/incubator-dubbo 50 82 P02 alibaba/fastjson 46 46
P03 alibaba/druid 5 5 P04 ctripcorp/apollo 31 31
P05 eclipse-vertx/vert.x 25 95 P06 perwendel/spark 9 9
P07 xetorthio/jedis 45 67 P08 apache/incubator-druid 48 93
P09 google/auto 11 13 P10 jhy/jsoup 9 25
P11 apache/rocketmq 44 49 P12 vipshop/vjtools 14 21
P13 hs-web/hsweb-framework 25 25 P14 weibocom/motan 24 24
P15 square/moshi 4 5 P16 google/closure-compiler 31 38
P17 elasticjob/elastic-job-lite 44 86 P18 google/error-prone 18 26
P19 joelittlejohn/jsonschema2pojo 7 9 P20 apache/zeppelin 30 37
P21 Angel-ML/angel 6 6 P22 rest-assured/rest-assured 7 7
P23 socketio/socket.io-client-java 4 4 P24 spring-projects/spring-security-oauth 15 27
P25 keycloak/keycloak 42 52 P26 abel533/Mapper 10 12
P27 aws/aws-sdk-java 42 56 P28 cglib/cglib 1 1
P29 apache/incubator-dubbo-spring-boot-

project
9 20 P30 alipay/sofa-rpc 39 72

P31 apache/incubator-pinot 46 52 P32 JanusGraph/janusgraph 31 144
P33 FasterXML/jackson-databind 24 44 P34 qos-ch/logback 1 1
P35 tcurdt/jdeb 4 4 P36 pholser/junit-quickcheck 3 3
P37 FasterXML/jackson-dataformat-xml 4 7 P38 basho/riak-java-client 17 39
P39 fakereplace/fakereplace 2 2 P40 JSQLParser/JSqlParser 16 34
P41 AxonFramework/AxonFramework 48 48 P42 internetarchive/heritrix3 9 15
P43 DiUS/java-faker 12 16 P44 zeroturnaround/zt-zip 2 3
P45 spring-projects/spring-data-mongodb 38 41 P46 spring-projects/spring-data-redis 30 41
P47 mitreid-connect/OpenID-Connect-

Java-Spring-Server
5 5 P48 resteasy/Resteasy 45 101

P49 killme2008/aviator 4 4 P50 floodlight/floodlight 20 20
P51 gresrun/jesque 5 9 P52 opensagres/xdocreport 6 6
P53 onelogin/java-saml 2 4 P54 spring-projects/spring-data-cassandra 21 40
P55 ModeShape/modeshape 7 7 P56 LiveRamp/hank 7 7
P57 dooApp/FXForm2 10 10 P58 ocpsoft/rewrite 9 42
P59 demoiselle/framework 6 6 P60 apache/commons-compress 2 4
P61 shrinkwrap/resolver 2 3 P62 searchbox-io/Jest 13 13
P63 scobal/seyren 6 6 P64 pf4j/pf4j 6 13
P65 ebean-orm/ebean 31 44 P66 winder/Universal-G-Code-Sender 11 11
P67 magefree/mage 43 43 P68 openmrs/openmrs-core 48 48
P69 SpigotMC/BungeeCord 1 1 P70 junkdog/artemis-odb 12 12
P71 jenkinsci/java-client-api 3 3 P72 lukas-krecan/JsonUnit 22 57
P73 mjiderhamn/classloader-leak-

prevention
1 1 P74 doanduyhai/Achilles 3 3

P75 st-js/st-js 11 11 P76 RoaringBitmap/RoaringBitmap 20 44
P77 graphhopper/jsprit 7 20 P78 prometheus/client_java 21 21
P79 alexxiyang/shiro-redis 8 8 P80 ff4j/ff4j 9 9
P81 awslabs/amazon-kinesis-client 17 28 P82 protegeproject/protege 3 3
P83 redpen-cc/redpen 12 16 P84 wmixvideo/nfe 20 20
P85 yegor256/rultor 13 13 P86 codelibs/fess 25 45
P87 undera/jmeter-plugins 10 10 P88 flaxsearch/luwak 3 3
P89 jaeksoft/opensearchserver 6 6 P90 sismics/reader 7 7
P91 mp911de/logstash-gelf 3 6 P92 teamed/qulice 6 12
P93 RIPE-NCC/whois 5 5 P94 jcabi/jcabi-github 4 4
P95 rapidoid/rapidoid 15 15 P96 pippo-java/pippo 11 11
P97 vert-x3/vertx-web 6 8 P98 sakaiproject/sakai 39 39
P99 yandex-qatools/postgresql-embedded 2 2 P100 rickfast/consul-client 9 9
P101 HubSpot/jinjava 7 7 P102 davidmoten/rxjava-extras 8 12
P103 gchq/Gaffer 24 41 P104 orbit/orbit 5 5
P105 zendesk/maxwell 7 27 P106 bootique/bootique 5 5
P107 eclipse/paho.mqtt.java 20 20 P108 apache/systemml 6 6
P109 amzn/ion-java 5 11 P110 stanford-futuredata/macrobase 16 16
P111 debezium/debezium 43 61 P112 jtablesaw/tablesaw 34 34
P113 vipshop/Saturn 30 42 P114 networknt/light-4j 25 25
P115 twitter/GraphJet 13 13 P116 alibaba/jetcache 4 4
P117 RipMeApp/ripme 44 74 P118 apache/servicecomb-java-chassis 49 49
P119 rhwayfun/spring-boot-learning-

examples
4 4 P120 apache/servicecomb-pack 24 35

P121 alipay/sofa-bolt 10 20 P122 getheimdall/heimdall 15 15
P123 zhang-rf/mybatis-boost 19 19

Table 3.1: Number of Travis builds and number of jobs (program builds) for each project

16

CHAPTER 4: EXPERIMENT SETUP

4.1 PROBLEM FORMULATION

In this sections we summarize the information we collected, and introduce whether they
are used to do TCP or just used to compute the evaluation metrics. Also, we introduce the
symbols needed when defining the evaluation metrics.
Given a build with n test classes and p modified files, we collect the following information

of the program build to construct and evaluate the IR-based TCP techniques:

1. Program changes, represented by the changed files, between the current program build
and the previous one: Cf = {Cf1, Cf2, ..., Cfp}

2. Program changes, represented by the different lines in each changed file, between the
current program build and the previous one: Cd = {Cd1, Cd2, ..., Cdp}

3. Test classes in the current program build: T = {T1, T2, ..., Tn}

4. Time spent on executing each test in the previous program build: t′(Ti) = t′i, t
′
i ∈

{float,None}

5. Number of historical failures for each test in the current program build: hf(Ti) =

hfi, hfi ∈ {int}

6. Test execution outcome (failed or not) for each test class: f(Ti) = fi, fi ∈ {True, False}

7. Time spent on executing each test in the current build: t(Ti) = ti, ti ∈ {float}

Among the information collected, (1) (2) (3) are used to construct the query and data
objects of IR-based TCP techniques, (4) is used to construct the cost-based techniques, (5)
is used to construct the historical failure-based techniques, and (6) (7) are used to evaluate
the techniques.

4.2 RESEARCH QUESTIONS

This study aims at answering the following research questions:

• RQ1: How do different information retrieval configurations impact IR-based TCP
techniques in real software evolution?

17

• RQ2: How do IR-based TCP techniques perform on different builds and on different
projects when measured by cost-unaware and cost-aware metrics?

• RQ3: How can we further enhance IR-based TCP techniques?

• RQ4: How do different failure-to-Fault mappings impact the evaluation of TCP?

• RQ5: How do flaky tests impact TCP in real software evolution?

4.3 EVALUATION METRICS

We use two metrics Average Percentage Faults Detected (APFD) and Average Percentage
of Fault Detected per Cost (APFDc) to evaluate the TCP effectiveness.

4.3.1 Average Percentage Faults Detected (APFD)

Average Percentage Faults Detected (APFD) [14] is a widely used cost-unaware metric to
measure TCP effectiveness:

APFD = 1−
∑m

i=1 TFi

n×m
+

1

2n
(4.1)

In the formula, n is the number of test cases and m is the number of failed tests. TFi is
the ranking of the ith failed test in the prioritized test suite.

4.3.2 Average Percentage of Fault Detected per Cost (APFDc)

Average Percentage of Fault Detected per Cost (APFDc) is a variant of APFD that aims
to take into consideration the different fault severities and the costs of test executions [32,
33]. Usually it is difficult to retrieve the fault severities and the accurate cost, so typically
researchers use a simplified version of APFDc that only takes into consideration the test
execution time [34, 35]. Our evaluation utilizes this simplified version of APFDc in our
evaluation:

APFDc =

∑m
i=1(

∑n
j=TFi

tj − 1
2
tTFi

)∑n
j=1 tj ×m

(4.2)

18

In the formula, n, m, and TFi have the same meanings as in the formula for APFD, while
tj represents the execution time of the jth test.

4.4 FAILURE-TO-FAULT MAPPING

Note that in prior work APFD and APFDc are defined with respect to the number of faults
as opposed to failed tests. Prior work was evaluated using seeded faults and mutants, with
an exact mapping from test failures to faults in the code. However, in our evaluation, we
only have information concerning which tests failed, and we do not have an exact mapping
from failures to faults. Potentially, a single failed test can map to multiple faults in the code,
and conversely multiple failed tests can all be mapped to a single fault.
In our evaluation, we first assume that each single failed test maps to a single distinct

fault. Unless explicitly declared, our evaluation will use these metrics with that assumption.
In Section 5.4, we conduct most of our experiments again with a new mapping that all
failures maps to the same fault, in order to see whether our conclusions are generalizable to
different failure-to-Fault mappings.

4.5 TIE BREAKING

When multiple test classes share the same score or award value, this means the TCP
technique considers them equally good. However, the tests still need to be ordered in some
way. In our evaluation the equally good test classes are ordered deterministically in the
order they appear in the program build log at the current version. That is to say, our TCP
technique won’t swap the order of two test classes if they are considered equally good by the
technique, and the two test classes will be executed in the order as if no TCP technique is
applied.

19

CHAPTER 5: EMPIRICAL EVALUATION

5.1 RQ1: IR CONFIGURATIONS

This RQ aims to find the best configuration combination for IR-based TCP technique;
the best configuration will be utilized as the default implementation of the IR-based TCP
technique for the later RQs. For the comparison between different configurations, we use
APFD as the evaluation metric. The IR-based techniques are cost-unaware, so APFD would
better reflect the ranking quality of different IR-based techniques.
As described in Section 2, there are three main parts we need to determine when imple-

menting an IR-based TCP technique: (1) the preprocessing for data objects and queries,
(2) the context of the program changes to construct the query, and (3) the retrieval model.
These three parts are evaluated in RQ1.1, 1.2 and 1.3, respectively.

5.1.1 RQ1.1: Code Preprocessing

As discussed in section 2.1, there are four different approaches in terms of code preprocess-
ing: Low, Lowtoken, High, and Hightoken. We apply these four preprocessing approaches to
the test classes and program changes of our dataset to see the prioritization results. While
the code preprocessing approach is the variable, we set the other variables as invariants.
That is, the retrieval model is set as BM25, which is the retrieval model utilized in prior
work [4], and the context of change is set as the whole changed file.

Method APFD Time on IR Avg. v-size
mean median mean median data query

Low 0.696 0.757 1.294 0.127 10419 3309
Lowtoken 0.755 0.849 2.194 0.326 1753 928
High 0.737 0.831 0.198 0.044 3056 677

Hightoken 0.752 0.844 0.558 0.160 1011 358

Table 5.1: Comparing different preprocessing approaches

The evaluation result is shown in Table 5.1.1. The table shows the information retrieval
effectiveness represented in APFD, the time spent on running the information retrieval
phase, and the mean vocabulary size representing the number of distinct terms in the data
objects and in the query. We highlight the best configuration in gray for each metric, so the
highlighted boxes have either the highest mean or median APFD, the shortest time, or the
shortest vocabulary length.

20

From the table we have the following observations. First, code tokenization is an effective
approach to reduce the vocabulary length. To illustrate, in the data objects, tokenization
reduces the vocabulary size of raw source code by 83.2% and reduces the vocabulary size
of extracted identifiers by 66.9%. Second, the configurations utilizing code tokenization
usually take longer to run because the time complexity of the BM25 technique is linear to
the number of words in the query (Section 2.2). That is, although code tokenization will
reduce the vocabulary size, it will make the data objects and query longer by splitting long
variable names into shorter terms. Third, doing AST parsing makes the information retrieval
technique more time and space efficient. Finally, Lowtoken, High, and Hightoken lead to
similar APFD scores, while Low has clear inferior results than the other three configurations.
We use the Hightoken configuration as our default data preprocessing strategy in the

following evaluation, as it is just slightly (at most 0.005) worse than the best configuration
for APFD, but is the most time and space efficient strategy among the four.

5.1.2 RQ1.2: Context of Change

The second variable that we can control when implementing IR techniques is how many
lines of the context of changes should be included into the query. We describe how we get
this controlled in Section 2.1.2.
One interesting observation is that when the changes between the previous and current

commit is small, the IR scores for data objects tend to be identical (usually 0), so the
prioritization barely changes the ordering of the tests from the original order. Such similarity
ties are very common when we include no context of code into the query. Ideally, the
configuration concerning context should lead to high APFD scores with a low rate of ties.

Context APFD # Ties
mean median mean median

0 line 0.697 0.788 35.3 2
1 line 0.703 0.788 30.9 2
3 lines 0.713 0.799 25.8 1
5 lines 0.717 0.802 23.4 1

Whole-file 0.728 0.808 8.0 0

Table 5.2: Comparing different context of code

Table 5.1.2 shows the evaluation results about how different context information influences
the APFD and the number of ties. Prior work [4] uses 0 line of context to construct their
queries without evaluating the impact of it, but interestingly we find it actually performs the

21

worst. Instead, using the whole file has the dominantly best performance in terms of both
the highest APFD and the lowest rate of ties. Also, the less context of change the query has,
the worse the performance of the IR system is. Therefore, we select the whole-file strategy
as the default strategy to construct the queries.

5.1.3 RQ1.3: Retrieval Model

We introduce four different retrieval models in Section 2.2 and in this section we conduct
the evaluation to compare these four models.
To choose an appropriate retrieval model, we do a general evaluation to the overall mean

and median APFD value across all builds of each retrieval models. Besides that, we also
perform a per-project evaluation to see for each retrieval model, the number of projects that
perform the best (having the highest mean APFD) with it.

Retrieval Model APFD # B.Projsmean median
Tf-idf 0.728 0.812 27
BM25 0.752 0.844 75
LSI 0.707 0.775 13
LDA 0.659 0.735 8

Table 5.3: Comparing different retrieval models

Table 5.1.3 shows the comparison between the different retrieval models. Note that in
this table and in the following tables, # B.Projs denotes the number of projects that has
the highest mean metric value under each technique. We can see that the BM25 model has
both the highest mean and median APFD, and over 60% of the projects in our evaluation
have the best results when using BM25. Therefore, BM25 is chosen as the default retrieval
model in the following evaluations.
In summary, we determine the best IR configuration is to use Hightoken to preprocess

data objects and query, use the whole changed file as the context for the query, and use
the BM25 as the retrieval model. We use this configuration as our default configuration
for our remaining evaluation, and we denote our IR-based TCP under this configuration as
TCPIR.

22

5.2 RQ2: EVALUATION BY PROJECT

Our dataset contains 123 projects and 2,980 program builds with real failures and real
execution times. With an evaluation by project with different metrics, we aim to answer
three questions concerning TCP research:

1. How differently does the same TCP technique perform in different versions of the same
project?

2. How differently does the same TCP technique perform in different projects?

3. Does do different TCP techniques compare when evaluated by different metrics?

In Figure 5.1, we show the results in a box plot showing the APFD and APFDc values
for each build, using the TCPIR technique. For all the box plots in this thesis, the small
blue number on the top of every box indicates the number of data points in the group, the
triangle presents the mean value of the data points in the group, and the dash line in the
middle of each box presents the median value of the data points in the group.

Figure 5.1: IR technique evaluation by each project

From the figure we have the following observations. First, the evaluation results for differ-
ent version pairs of each project can differ significantly in terms of all the studied metrics.
For example, the APFD values for project apache/incubator-dubbo range from 0.444 to 0.998.
That is to say, evaluating IR-based TCP technique only on a small number of version pairs
for each project could be easily biased. Second, the evaluation result also differs a lot across
different projects. For example, among projects with more than 20 program builds, the mean

23

APFDc value ranges from 0.246 (xetorthio/jedis) to 0.892 (FasterXML/jackson-databind).
That is to say, evaluating IR-based TCP technique on a small number of projects could
also be easily biased. Third, when evaluating IR-based TCP technique, the projects with
high APFD values also tend to have high APFDc values. However, for most projects, their
APFD values are usually higher than the corresponding APFDc values. The reason is that
the IR-based TCP technique only considers the textual relevance information of the tests
and does not consider the test execution times.
The third question proposed at the concerns the impact of using different metrics in the

evaluation of different TCP techniques. Prior TCP work has shown that the classic TCP
evaluation metric APFD could be very biased and unreal. To be specific, a technique with
high APFD does not necessarily have a high APFDc, thus being not cost-efficient [33, 34].
Chen et al. [34] showed that this simple cost-only technique outperforms three popular TCP
techniques in academia including coverage-based greedy prioritization [36, 37, 18, 38], search-
based prioritization [36, 37] and adaptive random prioritization [39]. However, there has not
been prior work on using cost-aware metrics to evalute change-based IR techniques.
We compare a change-based IR-based TCP technique with a simple cost-only TCP tech-

nique that prioritizes test classes by the ascending order of their execution times in the prior
program build. Ideally, the IR-based TCP technique should perform better than this simple
cost-only technique; otherwise, the IR-based TCP techniques would not be a good choice to
use. In our following evaluation, the cost-only TCP technique will be frequently used in the
comparisons. As this technique runs quickest test first, we denote this technique as QTF.
Table 5.4 shows the results of the comparison between the TCPIR technique with the

QTF technique in terms of the cost-unaware and cost-aware metrics. From the table we
could have the following observations:

1. The cost-unaware metric APFD can severely over-estimate the performance of cost-
unaware techniques and under-estimate the performance of cost-aware techniques. In
our evaluation, if we take the mean APFDc value as the baseline, the mean APFD over-
estimated the performance of TCPIR by 12.9% and under-estimated the performance
of QTF by 50.0%. These results suggest that APFD is biased and should not be used
to evaluate TCP techniques, where cost is an important factor.

2. TCPIR is better than QTF for 49.6% of the projects when evaluated by APFDc. This
percentage is much higher than the percentage 15% reported by prior work [34] when
comparing other state-of-the-art techniques with the cost-only technique. However,
our IR-based TCP is still not better than the naive cost-only technique.

24

Avg. APFD
ID TCPIR QTF ID TCPIR QTF ID TCPIR QTF

P01 0.860 0.351 P02 0.809 0.479 P03 0.174 0.206
P04 0.863 0.366 P05 0.752 0.314 P06 0.811 0.478
P07 0.650 0.401 P08 0.852 0.233 P09 0.814 0.174
P10 0.926 0.324 P11 0.667 0.259 P12 0.794 0.623
P13 0.669 0.488 P14 0.710 0.256 P15 0.900 0.197
P16 0.909 0.268 P17 0.819 0.350 P18 0.783 0.746
P19 0.800 0.303 P20 0.630 0.161 P21 0.738 0.431
P22 0.784 0.256 P23 0.784 0.170 P24 0.675 0.211
P25 0.719 0.501 P26 0.717 0.270 P27 0.750 0.333
P28 0.472 0.314 P29 0.812 0.502 P30 0.914 0.431
P31 0.682 0.408 P32 0.498 0.427 P33 0.898 0.509
P34 0.995 0.053 P35 0.956 0.485 P36 0.744 0.059
P37 0.829 0.631 P38 0.900 0.218 P39 0.770 0.145
P40 0.734 0.237 P41 0.682 0.117 P42 0.794 0.139
P43 0.837 0.734 P44 0.293 0.963 P45 0.739 0.127
P46 0.648 0.349 P47 0.978 0.424 P48 0.699 0.584
P49 0.952 0.383 P50 0.834 0.093 P51 0.829 0.143
P52 0.818 0.287 P53 0.900 0.100 P54 0.559 0.160
P55 0.820 0.117 P56 0.724 0.323 P57 0.935 0.592
P58 0.791 0.129 P59 0.719 0.268 P60 0.811 0.806
P61 0.561 0.220 P62 0.690 0.308 P63 0.781 0.439
P64 0.755 0.479 P65 0.883 0.477 P66 0.807 0.185
P67 0.892 0.165 P68 0.786 0.444 P69 0.423 0.500
P70 0.693 0.721 P71 0.951 0.034 P72 0.584 0.662
P73 0.980 0.260 P74 0.555 0.194 P75 0.778 0.296
P76 0.719 0.573 P77 0.903 0.442 P78 0.649 0.146
P79 0.698 0.469 P80 0.857 0.800 P81 0.871 0.248
P82 0.859 0.612 P83 0.444 0.091 P84 0.880 0.263
P85 0.179 0.175 P86 0.856 0.160 P87 0.921 0.396
P88 0.659 0.961 P89 0.758 0.318 P90 0.698 0.040
P91 0.941 0.792 P92 0.658 0.275 P93 0.989 0.555
P94 0.718 0.076 P95 0.778 0.324 P96 0.608 0.241
P97 0.927 0.217 P98 0.835 0.171 P99 0.265 0.689
P100 0.854 0.351 P101 0.976 0.259 P102 0.971 0.047
P103 0.793 0.484 P104 0.747 0.536 P105 0.956 0.581
P106 0.920 0.639 P107 0.624 0.423 P108 0.700 0.345
P109 0.696 0.318 P110 0.850 0.289 P111 0.916 0.210
P112 0.710 0.405 P113 0.612 0.229 P114 0.857 0.240
P115 0.854 0.247 P116 0.889 0.173 P117 0.638 0.319
P118 0.589 0.113 P119 0.607 0.720 P120 0.891 0.127
P121 0.641 0.218 P122 0.788 0.203 P123 0.520 0.537

#B.P 114 9 Mean 0.759 0.348 Median 0.784 0.314

Avg. APFDc
ID TCPIR QTF ID TCPIR QTF ID TCPIR QTF
P01 0.806 0.921 P02 0.761 0.827 P03 0.296 0.828
P04 0.752 0.730 P05 0.584 0.887 P06 0.742 0.791
P07 0.246 0.867 P08 0.635 0.661 P09 0.721 0.498
P10 0.865 0.651 P11 0.550 0.566 P12 0.620 0.688
P13 0.572 0.723 P14 0.561 0.780 P15 0.715 0.518
P16 0.724 0.677 P17 0.774 0.819 P18 0.680 0.847
P19 0.822 0.748 P20 0.518 0.388 P21 0.631 0.721
P22 0.628 0.692 P23 0.868 0.836 P24 0.668 0.548
P25 0.708 0.665 P26 0.757 0.750 P27 0.600 0.676
P28 0.325 0.778 P29 0.770 0.837 P30 0.839 0.676
P31 0.655 0.500 P32 0.529 0.687 P33 0.892 0.840
P34 0.992 0.563 P35 0.890 0.838 P36 0.606 0.530
P37 0.854 0.800 P38 0.716 0.793 P39 0.671 0.762
P40 0.651 0.861 P41 0.421 0.593 P42 0.643 0.943
P43 0.632 0.897 P44 0.069 0.994 P45 0.601 0.678
P46 0.503 0.768 P47 0.970 0.899 P48 0.650 0.843
P49 0.935 0.890 P50 0.771 0.675 P51 0.526 0.794
P52 0.653 0.531 P53 0.828 0.609 P54 0.513 0.472
P55 0.760 0.732 P56 0.519 0.865 P57 0.896 0.864
P58 0.811 0.463 P59 0.649 0.521 P60 0.754 0.969
P61 0.423 0.515 P62 0.526 0.594 P63 0.721 0.624
P64 0.683 0.829 P65 0.851 0.823 P66 0.682 0.626
P67 0.815 0.429 P68 0.667 0.790 P69 0.549 0.928
P70 0.708 0.629 P71 0.770 0.227 P72 0.388 0.857
P73 0.976 0.422 P74 0.497 0.636 P75 0.618 0.732
P76 0.620 0.840 P77 0.723 0.866 P78 0.610 0.775
P79 0.608 0.729 P80 0.852 0.840 P81 0.435 0.803
P82 0.840 0.830 P83 0.521 0.530 P84 0.937 0.698
P85 0.127 0.563 P86 0.589 0.551 P87 0.902 0.899
P88 0.645 0.990 P89 0.466 0.617 P90 0.568 0.222
P91 0.945 0.952 P92 0.706 0.629 P93 0.991 0.893
P94 0.627 0.188 P95 0.646 0.721 P96 0.733 0.628
P97 0.844 0.873 P98 0.748 0.465 P99 0.085 0.966

P100 0.845 0.544 P101 0.971 0.307 P102 0.856 0.429
P103 0.776 0.489 P104 0.712 0.794 P105 0.874 0.857
P106 0.904 0.748 P107 0.566 0.807 P108 0.652 0.868
P109 0.567 0.860 P110 0.759 0.574 P111 0.760 0.660
P112 0.501 0.764 P113 0.537 0.494 P114 0.726 0.572
P115 0.797 0.651 P116 0.785 0.770 P117 0.631 0.729
P118 0.537 0.384 P119 0.516 0.757 P120 0.774 0.280
P121 0.575 0.411 P122 0.611 0.623 P123 0.498 0.778

#B.P 61 62 Mean 0.672 0.696 Median 0.671 0.729

Table 5.4: Comparing IR-based technique and quickest test first technique (#B.P = # B.Projs)

5.3 RQ3: HYBRID TECHNIQUES

5.3.1 RQ3.1: Hybrid Technique Considering Cost

In previous research questions, we derive the conclusion that IR-based TCP technique is
indeed cost-aware effective in doing TCP tasks. Its performance is close to cost-only TCP
technique and is better than some other state-of-the-art cost-unaware TCP techniques.
Prior work [34, 33] has tried to address the cost-inefficiency of traditional coverage based

TCP techniques by implementing hybrid techniques that balance the coverages and the
test times. However, these techniques perform similarly or even worse than the cost-only
technique. Chen et al. [34] showed that for only 54.0% of their studied projects their hy-
brid technique performed better than cost-only technique, and the mean APFDc of hybrid
technique is just 3% better than cost-only technique. The possible reason could be that
traditional TCP techniques tend to put more costly test cases earlier, and this feature is
negatively affecting each other with the cost cognizant feature which tend to put less costly
test cases earlier.

25

Avg. APFDc
ID QTF CCIR ID QTF CCIR ID QTF CCIR ID QTF CCIR ID QTF CCIR ID QTF CCIR
P01 0.921 0.944 P02 0.827 0.898 P03 0.828 0.783 P04 0.730 0.771 P05 0.887 0.884 P06 0.791 0.757
P07 0.867 0.854 P08 0.661 0.701 P09 0.498 0.593 P10 0.651 0.740 P11 0.566 0.610 P12 0.688 0.701
P13 0.723 0.740 P14 0.780 0.796 P15 0.518 0.625 P16 0.677 0.777 P17 0.819 0.844 P18 0.847 0.871
P19 0.748 0.861 P20 0.388 0.407 P21 0.721 0.756 P22 0.692 0.754 P23 0.836 0.844 P24 0.548 0.645
P25 0.665 0.746 P26 0.750 0.802 P27 0.676 0.732 P28 0.778 0.787 P29 0.837 0.851 P30 0.676 0.813
P31 0.500 0.696 P32 0.687 0.662 P33 0.840 0.899 P34 0.563 0.719 P35 0.838 0.853 P36 0.530 0.579
P37 0.800 0.849 P38 0.793 0.843 P39 0.762 0.738 P40 0.861 0.844 P41 0.593 0.594 P42 0.943 0.945
P43 0.897 0.908 P44 0.994 0.994 P45 0.678 0.649 P46 0.768 0.735 P47 0.899 0.950 P48 0.843 0.879
P49 0.890 0.899 P50 0.675 0.708 P51 0.794 0.869 P52 0.531 0.481 P53 0.609 0.609 P54 0.472 0.420
P55 0.732 0.736 P56 0.865 0.857 P57 0.864 0.888 P58 0.463 0.564 P59 0.521 0.682 P60 0.969 0.956
P61 0.515 0.513 P62 0.594 0.561 P63 0.624 0.782 P64 0.829 0.827 P65 0.823 0.900 P66 0.626 0.668
P67 0.429 0.438 P68 0.790 0.858 P69 0.928 0.831 P70 0.629 0.783 P71 0.227 0.320 P72 0.857 0.863
P73 0.422 0.941 P74 0.636 0.606 P75 0.732 0.727 P76 0.840 0.847 P77 0.866 0.916 P78 0.775 0.776
P79 0.729 0.729 P80 0.840 0.863 P81 0.803 0.744 P82 0.830 0.885 P83 0.530 0.486 P84 0.698 0.934
P85 0.563 0.578 P86 0.551 0.568 P87 0.899 0.949 P88 0.990 0.993 P89 0.617 0.540 P90 0.222 0.154
P91 0.952 0.963 P92 0.629 0.680 P93 0.893 0.985 P94 0.188 0.333 P95 0.721 0.730 P96 0.628 0.662
P97 0.873 0.912 P98 0.465 0.524 P99 0.966 0.966 P100 0.544 0.636 P101 0.307 0.860 P102 0.429 0.563

P103 0.489 0.618 P104 0.794 0.858 P105 0.857 0.863 P106 0.748 0.820 P107 0.807 0.809 P108 0.868 0.931
P109 0.860 0.875 P110 0.574 0.779 P111 0.660 0.784 P112 0.764 0.777 P113 0.494 0.514 P114 0.572 0.640
P115 0.651 0.775 P116 0.770 0.746 P117 0.729 0.731 P118 0.384 0.434 P119 0.757 0.904 P120 0.280 0.571
P121 0.411 0.392 P122 0.623 0.681 P123 0.778 0.779

B.Projs 26 94 Mean 0.696 0.744 Median 0.729 0.776

Table 5.5: Comparing cost-only technique and cost-cognizant IR technique

Avg. APFDc
ID HIS CCH CCHIR ID HIS CCH CCHIR ID HIS CCH CCHIR ID HIS CCH CCHIR ID HIS CCH CCHIR

P01 0.566 0.935 0.950 P02 0.563 0.875 0.914 P03 0.825 0.921 0.818 P04 0.508 0.720 0.768 P05 0.912 0.938 0.933
P06 0.763 0.867 0.948 P07 0.843 0.911 0.915 P08 0.674 0.808 0.836 P09 0.676 0.616 0.701 P10 0.421 0.587 0.704
P11 0.669 0.668 0.683 P12 0.451 0.680 0.696 P13 0.582 0.832 0.834 P14 0.579 0.794 0.809 P15 0.329 0.483 0.625
P16 0.629 0.741 0.814 P17 0.396 0.836 0.858 P18 0.618 0.853 0.878 P19 0.398 0.753 0.865 P20 0.675 0.627 0.631
P21 0.740 0.860 0.878 P22 0.631 0.753 0.805 P23 0.776 0.842 0.875 P24 0.742 0.639 0.700 P25 0.734 0.757 0.802
P26 0.407 0.766 0.807 P27 0.553 0.712 0.777 P28 0.281 0.778 0.787 P29 0.494 0.822 0.795 P30 0.749 0.836 0.895
P31 0.614 0.689 0.740 P32 0.555 0.697 0.705 P33 0.563 0.850 0.908 P34 0.803 0.629 0.775 P35 0.632 0.847 0.853
P36 0.369 0.530 0.579 P37 0.122 0.788 0.838 P38 0.606 0.813 0.864 P39 0.113 0.775 0.753 P40 0.547 0.866 0.862
P41 0.700 0.736 0.705 P42 0.568 0.948 0.951 P43 0.761 0.904 0.915 P44 0.571 0.994 0.994 P45 0.691 0.750 0.750
P46 0.547 0.811 0.780 P47 0.710 0.912 0.957 P48 0.763 0.873 0.904 P49 0.454 0.891 0.904 P50 0.701 0.746 0.768
P51 0.588 0.821 0.892 P52 0.325 0.568 0.489 P53 0.479 0.609 0.627 P54 0.613 0.523 0.514 P55 0.233 0.742 0.742
P56 0.635 0.866 0.857 P57 0.529 0.874 0.888 P58 0.854 0.893 0.926 P59 0.343 0.535 0.682 P60 0.669 0.969 0.956
P61 0.364 0.515 0.513 P62 0.616 0.736 0.728 P63 0.670 0.801 0.814 P64 0.425 0.825 0.835 P65 0.603 0.864 0.924
P66 0.304 0.647 0.688 P67 0.781 0.483 0.514 P68 0.562 0.798 0.873 P69 0.207 0.928 0.831 P70 0.771 0.843 0.853
P71 0.432 0.338 0.431 P72 0.529 0.880 0.850 P73 0.080 0.422 0.941 P74 0.118 0.623 0.590 P75 0.671 0.801 0.793
P76 0.526 0.861 0.855 P77 0.490 0.880 0.925 P78 0.644 0.834 0.876 P79 0.381 0.582 0.610 P80 0.391 0.868 0.872
P81 0.262 0.769 0.764 P82 0.475 0.859 0.903 P83 0.663 0.694 0.571 P84 0.690 0.806 0.943 P85 0.995 0.925 0.870
P86 0.547 0.611 0.627 P87 0.557 0.921 0.957 P88 0.730 0.990 0.993 P89 0.319 0.519 0.540 P90 0.745 0.439 0.362
P91 0.565 0.941 0.961 P92 0.568 0.671 0.695 P93 0.215 0.893 0.985 P94 0.755 0.607 0.687 P95 0.539 0.775 0.781
P96 0.394 0.638 0.665 P97 0.536 0.903 0.926 P98 0.623 0.705 0.764 P99 0.035 0.966 0.966 P100 0.529 0.554 0.685

P101 0.693 0.587 0.907 P102 0.923 0.767 0.829 P103 0.706 0.706 0.783 P104 0.575 0.814 0.875 P105 0.502 0.850 0.844
P106 0.595 0.759 0.855 P107 0.729 0.813 0.815 P108 0.662 0.901 0.941 P109 0.419 0.879 0.888 P110 0.532 0.674 0.824
P111 0.556 0.776 0.820 P112 0.456 0.815 0.815 P113 0.606 0.632 0.645 P114 0.497 0.651 0.743 P115 0.720 0.747 0.811
P116 0.473 0.706 0.751 P117 0.576 0.777 0.777 P118 0.582 0.484 0.534 P119 0.110 0.757 0.904 P120 0.765 0.716 0.833
P121 0.866 0.669 0.613 P122 0.382 0.652 0.695 P123 0.310 0.768 0.768

B.P 12 23 86 Mean 0.556 0.758 0.794 Median 0.568 0.776 0.815

Table 5.6: Comparing history-based technique, cost-cognizant history based technique, and three
factor hybrid technique

The change-based IR techniques we focus on studying is totally based on the textual
similarity and is not giving stronger preference to complicated thus costly tests. Therefore,
we could expect that IR techniques could potentially contribute more positively to cost-only
techniques.
In Table 5.5 we show the result of comparing the APFDc of two techniques: The cost-only

technique, also known as the QTF technique introduced in RQ2. And, the cost-cognizant
hybrid technique which computes the award value for each test class by dividing its IR
similarity score iri to the code change by the its execution time t′i in the prior build:

accir(Ti) = iri/t
′
i (5.1)

26

We denote the hybrid technique as CCIR which means “Cost-cognizant Information
Retrieval”. According to Table 5.5 we have the following observations: Firstly, the cost-
cognizant IR technique (hybrid technique) outperforms the cost-only technique for 76.4%
percent of the projects, and this percentage is much higher than 54.0% reported by Chen.
Secondly, the hybrid technique CCIR performs significantly better than both the single factor
technique TCPIR (see RQ2, by 10.7%) and QTF (by 6.9%) from which this hybrid tech-
nique is constructed. In contrast, in Chen’s work their cost-cognizant technique performs
just 3.0% better than cost-only technique.

5.3.2 RQ3.2: Hybrid Technique Considering Cost and Historical Failures

Historical test failures is a important factor that both industry [40, 2] and academia
[41, 42, 43] would usually consider when optimizing software testing. Their consideration is
usually based on the hypothesis that more frequently failed or more recently failed test cases
are more likely to fail again in the future. As we can easily get the historical test failure
frequency from our dataset, in this section we consider further enhance the performance of
our hybrid technique with historical failures introduced into it. That is, we evaluate three
factor hybrid techniques that considers IR scores, prior test times, and historical test failure
frequencies.
We collect the historical failure frequency data for each test class in each program build

by counting the number of times that the specific test class has ever failed before the specific
program build. We define three historical test execution outcome based techniques. First,
we define a TCP technique that directly arranges the test classes by the descending order of
the historical failure frequencies hfi, and denote this approach as HIS.
Second, for a test class Ti, given its historical failure frequency hfi and its prior execution

time t′i, we define a cost-cognizant history based TCP technique that rearranges tests by the
descending order of:

acch(Ti) = hfi/t
′
i (5.2)

We denote this technique as CCH and our expectation is to see that CCH should perform
better than the history only technique HIS and cost-only technique QTF.
Last we define a three factor hybrid technique which introduces IR feature into the cost-

cognizant history based TCP technique. That is, by using the IR score iri for each test class,
we invent a hybrid TCP technique that rearranges tests by the descending order of:

27

acchir(Ti) = (hfi ∗ iri)/t′i (5.3)

We denote this hybrid technique as CCHIR. Our expectation is that this three factor
could outperform all the other techniques evaluated in this research work.
The comparison between HIS, CCHand CCHIRevaluated by APFDc is shown in Table

5.6. First we observe that the history-only technique (HIS) does not have a very good
performance in terms of APFDc, however the cost-cognizant history based technique (CCH)
performs even better than cost-cognizant IR based technique (CCIR in Table 5.5). This
indicates that history information is a very effective factor in doing TCP, however when the
historical test failure frequency is not abundant it is more good choice to hybridizing it with
prior times rather than utilizing it alone. Another interesting observation is that the three
factor hybrid technique combining IR scores, prior execution time and test failure frequency
outperforms any other technique we evaluate in this thesis by at least 4.7% in terms of the
mean averaged APFDc, which means the three factors we consider in the hybrid technique
could enhance each other and form a effective hybrid technique.

5.3.3 RQ3.3: Statistic Test

To see whether there is a significant difference between the distributions of different tech-
niques, we perform a ANOVA test and a Tukey HSD test on the APFDc result on the three
single techniques (TCPIR, HIS, QTF) and three hybrid techniques (CCIR, CCH, CCHIR)
and the result is shown in Table 5.3.3.

Tech Mean Group

CCHIR 0.797 A
CCH 0.771 B
CCIR 0.739 C
QTF 0.697 D

TCPIR 0.653 E
HIS 0.611 F

p-value < 2e-16

Table 5.7: Statistic tests on different techniques

The evaluation result is shown in Table 5.3.3. Notice that the mean value shown for each
technique here is different from the evaluation results by projects because this is the program

28

build level mean rather than a project level mean. The capital letters A-F is the result of
Tukey HSD test and the p-value is the result of ANOVA test. The result shows that there
is a significant different between all these 5 techniques, with CCHIR being the best and HIS
being the worst. Now we are confident to say that our hybrid techniques, especially the
three factor hybrid technique, is a more effective technique to perform TCP comparing to
the other techniques.

5.4 RQ4: FAILURE-TO-FAULT MAPPING

All our evaluation so far is based on the assumption that each failure maps to a distinct
fault. In this section we evaluate again the major research questions by mapping all failures
to the same fault to see whether the conclusions still remain the same. Like the previous
RQs, we calculate the mean and median APFD by program build for Tf-idf, TCPIR, LSI
and LDA, the mean and median average APFD by project for TCPIR and QTF, and the
mean and median average APFDc by project for TCPIR, QTF, CCIR, HIS, CCH, CCHIR
with all failures mapping to the same fault. We compare the results with mapping each
failures to a distinct fault to see if there is a significant difference.

RQ No. One to One All to One

RQ1

APFD mean median mean median
Tf-idf 0.728 0.812 0.771 0.885
BM25 0.752 0.844 0.795 0.913
LSI 0.707 0.775 0.753 0.860
LDA 0.659 0.735 0.713 0.837

RQ2
Avg. APFD mean median mean median

TCPIR 0.759 0.784 0.802 0.830
QTF 0.348 0.314 0.398 0.364

RQ2&3

Avg. APFDc mean median mean median
TCPIR 0.672 0.671 0.727 0.730
QTF 0.696 0.729 0.733 0.778
CCIR 0.744 0.776 0.779 0.804
HIS 0.556 0.568 0.606 0.635
CCH 0.758 0.776 0.793 0.826

CCHIR 0.794 0.815 0.826 0.853

Table 5.8: Impact of different failure-to-Fault mappings

Table 5.4 shows the evaluation results. From the table, although the APFD and APFDc
values are larger when mapping all failures to one fault than when mapping each failure to
distinct faults, different failure-to-Faults mappings lead to similar overall conclusions.

29

5.5 RQ5: FLAKY TESTS

So far, our evaluation assumes that all test failures are deterministic and indicate faults
introduced by the changes in the code, i.e., there are no flaky tests. In this section, we
evaluate the effects of flaky tests using a dataset of 252 builds that contain exactly one test
failure with its flakiness labeled (Section 3.4).

Figure 5.2: Comparing different techniques on flaky/non-flaky tests

For a build in our dataset, if the only failure it contains is flaky, then we call this build
a flaky build. Otherwise, we call it a non-flaky build. Figure 5.2 shows a box plot side-
by-side comparing the APFDc for flaky builds and non-flaky builds under seven major
TCP techniques (four change-based IR techniques: Tf-idf, BM25, LSI, LDA; two change-
unaware techniques QTF, HIS and one hybrid technique CCHIR). We make the following
observations:

1. All change-based IR techniques (Tf-idf, BM25, LSI, LDA) perform better on non-flaky
tests than on flaky tests. As flaky failures are usually introduced into the program
before the last revision [19] while non-flaky failures are more likely to be regressions
introduced by the last change, therefore, change-based techniques are better at prior-
itizing failures that are non-flaky.

2. The QTF technique and HIS technique have a better performance on flaky tests than
on non-flaky tests. This result suggests that in our dataset flaky tests tend to run
faster and are more likely to have failed in the past.

3. Our hybrid technique CCHIR performs the best among the seven techniques on both
flaky tests and non-flaky tests. This result demonstrates the robustness and effective-
ness of our hybrid technique as it is positively influenced by the change-based technique
without suffering from the weaknesses of it.

30

CHAPTER 6: THREATS TO VALIDITY

6.1 THREATS TO INTERNAL VALIDITY

The most important threat to the internal validity of our thesis is that our work is heavily
depending on the third-party libraries and platforms. For example, the previous state of a
build is passed or failed is copied from build log generated by Travis and that needs to be
exactly the state of build at the code version before change. Also, we utilized TravisTorrent
to help us parse build logs and the accuracy of failed test list is directly depending on the
implementation quality of that tool.
Another threat to the internal validity is that we made fake failure-fault mappings in our

evaluation because we cannot retrieve the real mappings between the failures and faults of
the program builds in our dataset. This requires huge human efforts to inspect all the real
code and we cannot afford to do this. Although we used a research question to study the
impact of it, it still does not cover every possible case.

6.2 THREATS TO EXTERNAL VALIDITY

In our dataset the test FQNs, test outcomes and test execution times are extracted from
the maven build logs, so whether we could get a complete and accurate dataset is highly
depending on the completeness and the parsability of log files. Sometimes the maven logs
are messed up because of concurrent tests or some other issues, resulting in a potential test
missing or wrong test-to-time mapping.

31

CHAPTER 7: RELATED WORK

Test-case prioritization (TCP) has been proposed to reduce the time and cost of regression
testing [13]. The idea is to prioritize tests that have a higher likelihood of detecting bugs to
run first. Most prior work have implemented techniques based on test coverage, prioritizing
tests that cover more, and diversity, ordering tests such that similar tests in terms of coverage
are ordered later [36, 37, 18, 38, 39]. However, recent work shows that state-of-the-art
coverage-based techniques are not cost effective at running the tests that detect bugs earlier,
because they tend to execute long-running tests first [34]. To address this problem, one
solution is to make new cost-cognizant coverage based techniques that are aware of both the
coverage and cost of tests [33, 34]. In our work, we propose new hybrid TCP techniques
that combine IR-based TCP techniques with test time and historical failure frequency. We
find that these hybrid techniques perform better, leading to higher APFDc values.
There has been prior work that utilized information retrieval techniques in software test-

ing [44, 45, 4]. Our work is most similar to prior work by Saha et al., who proposed to
prioritize tests using information retrieval techniques, ordering tests based on the similari-
ties between tests and the program changes between two program versions [4]. Using IR to
perform TCP can be effective because it does not require costly static or dynamic analysis
but just needs light-weight textual-based computations. Saha et al. found that their IR-
based TCP technique outperforms the state-of-the-art coverage-based techniques. However,
Saha et al. evaluated their technique on a dataset with only eight projects and 24 version
pairs, which potentially makes their result noninclusive and less generalizable. Also, they
evaluate using APFD, which does not consider the cost of testing and does not reflect the
effectiveness of TCP as well as APFDc. Our work improves upon Saha et al.’s evaluation by
introducing a much larger dataset with real failures and real times, and we utilize APFDc
to evaluate the effectiveness of IR-based TCP techniques.
Recently, several other works have used Travis CI in order to construct a large and real

datasets to evaluate testing techniques [46, 31, 47, 48]. We also collect our dataset from
Travis CI, collecting information from builds that involve real changes from developers and
real test failures. With real failures used in evaluation, our work improves upon evaluation
in other work that relies on mutation testing [41, 34, 49].
There has been much work in the area of flaky tests [19, 31, 50, 51]. In our work, we

evaluate how TCP techniques perform on flaky tests and on non-flaky tests. From our eval-
uation, we find that the change-aware IR-based techniques perform better when considering
only non-flaky test failures. However, we find that our hybrid TCP techniques are quite

32

robust in the fact of flaky tests.

33

CHAPTER 8: CONCLUSIONS

We perform an extensive study to evaluate and enhance the recent program change-based,
information-retrieval approach for test-case prioritization on a large-scale dataset with real
test costs and real test failures. The major conclusions of our work include:

1. When evaluating TCP algorithms, it is important to evaluate them on a large-scale
dataset, because the performance of techniques can differ a lot across different projects
and even across different program builds in the same project.

2. IR techniques show a seemingly better performance when evaluated by cost-unaware
metric APFD than by cost-aware metric APFDc, because the IR techniques we eval-
uated are designed to optimize the cost-unaware ranking of data objects ignoring the
time costs of these objects.

3. Different TCP techniques compare differently when evaluated by different metrics.
APFD is a not a very good measurement for real-world TCP whose objective is to
save the time and cost for the developers, and an approach with a higher APFD does
not necessarily offer more time saving.

4. Hybrid techniques, including cost-cognizant IR-based technique, and three factor hy-
brid technique, significantly outperforms the original IR technique when evaluated by
APFDc. That is, the prior test execution times and historical failure frequency could
enhance the original IR-based TCP.

5. Different TCP techniques compare the same under different failure-to-Fault mappings.
That is, failure-to-Fault mapping is not a dominant variable when comparing TCP
techniques.

6. Change-based TCP techniques perform better on non-flaky tests than on flaky tests,
while hybrid techniques perform good on both non-flaky tests and on flaky tests. That
is, change-based TCP is not good at detecting failures that are not caused by the
program changes, while our hybrid techniques do not have the same weakness.

34

REFERENCES

[1] H. K. Leung and L. White, “Insights into regression testing (software testing),” in Pro-
ceedings. Conference on Software Maintenance-1989. IEEE, 1989, pp. 60–69.

[2] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco,
“Taming google-scale continuous testing,” in Proceedings of the 39th International Con-
ference on Software Engineering: Software Engineering in Practice Track. IEEE Press,
2017, pp. 233–242.

[3] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization: A family
of empirical studies,” IEEE transactions on software engineering, vol. 28, no. 2, pp.
159–182, 2002.

[4] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information retrieval approach
for regression test prioritization based on program changes,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE Press, 2015, pp.
268–279.

[5] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky, “Selecting a cost-effective
test case prioritization technique,” Software Quality Journal, vol. 12, no. 3, pp. 185–210,
2004.

[6] G. Rothermel and M. J. Harrold, “Analyzing regression test selection techniques,” IEEE
Transactions on software engineering, vol. 22, no. 8, pp. 529–551, 1996.

[7] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, “An empirical
study of regression test selection techniques,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), vol. 10, no. 2, pp. 184–208, 2001.

[8] O. Legunsen, A. Shi, and D. Marinov, “STARTS: STAtic Regression Test Selection,” in
Automated Software Engineering (ASE), 2017 32nd IEEE/ACM International Confer-
ence on. IEEE, 2017, pp. 949–954.

[9] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight test selection,” in Soft-
ware Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on,
vol. 2. IEEE, 2015, pp. 713–716.

[10] S. Tallam and N. Gupta, “A concept analysis inspired greedy algorithm for test suite
minimization,” ACM SIGSOFT Software Engineering Notes, vol. 31, no. 1, pp. 35–42,
2006.

[11] D. Jeffrey and N. Gupta, “Test suite reduction with selective redundancy,” in 21st IEEE
International Conference on Software Maintenance (ICSM’05). IEEE, 2005, pp. 549–
558.

35

[12] H.-Y. Hsu and A. Orso, “MINTS: A general framework and tool for supporting test-
suite minimization,” in Proceedings of the 31st International Conference on Software
Engineering. IEEE Computer Society, 2009, pp. 419–429.

[13] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization:
a survey,” Software Testing, Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[14] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case prioritization: An em-
pirical study,” in Proceedings IEEE International Conference on Software Maintenance-
1999 (ICSM’99).’Software Maintenance for Business Change’(Cat. No. 99CB36360).
IEEE, 1999, pp. 179–188.

[15] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases for
regression testing,” IEEE Transactions on software engineering, vol. 27, no. 10, pp.
929–948, 2001.

[16] Q. Luo, K. Moran, D. Poshyvanyk, and M. Di Penta, “Assessing test case prioritiza-
tion on real faults and mutants,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2018, pp. 240–251.

[17] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing faults to enable
controlled testing studies for Java programs,” in Proceedings of the 2014 International
Symposium on Software Testing and Analysis. ACM, 2014, pp. 437–440.

[18] Q. Luo, K. Moran, and D. Poshyvanyk, “A large-scale empirical comparison of static
and dynamic test case prioritization techniques,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
2016, pp. 559–570.

[19] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of flaky tests,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 643–653.

[20] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954.

[21] G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,”
Information processing & management, vol. 24, no. 5, pp. 513–523, 1988.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[23] S. E. Robertson, S. Walker, and M. Beaulieu, “Experimentation as a way of life: Okapi
at TREC,” Information processing & management, vol. 36, no. 1, pp. 95–108, 2000.

[24] S. Robertson and H. Zaragoza, “The probabilistic relevance framework: BM25 and
beyond,” Foundations and Trends® in Information Retrieval, vol. 3, no. 4, pp. 333–
389, 2009.

36

[25] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling with Large Cor-
pora,” in Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frame-
works. Valletta, Malta: ELRA, May 2010, http://is.muni.cz/publication/884893/en.
pp. 45–50.

[26] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “In-
dexing by latent semantic analysis,” Journal of the American society for information
science, vol. 41, no. 6, pp. 391–407, 1990.

[27] X. Wei and W. B. Croft, “LDA-based document models for ad-hoc retrieval,” in Pro-
ceedings of the 29th annual international ACM SIGIR conference on Research and de-
velopment in information retrieval. ACM, 2006, pp. 178–185.

[28] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs, and benefits of
continuous integration in open-source projects,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM, 2016, pp. 426–
437.

[29] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-offs in continuous
integration: Assurance, security, and flexibility,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 2017, pp. 197–207.

[30] M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent: Synthesizing Travis CI and
GitHub for Full-Stack Research on Continuous Integration,” in Proceedings of the 14th
working conference on mining software repositories, 2017.

[31] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov, “DeFlaker:
automatically detecting flaky tests,” in Proceedings of the 40th International Conference
on Software Engineering. ACM, 2018, pp. 433–444.

[32] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying test costs and
fault severities into test case prioritization,” in Proceedings of the 23rd International
Conference on Software Engineering. IEEE Computer Society, 2001, pp. 329–338.

[33] A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and S. Elbaum, “Cost-cognizant test
case prioritization,” Technical Report TR-UNL-CSE-2006-0004, University of Nebraska-
Lincoln, Tech. Rep., 2006.

[34] J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and L. Zhang, “Optimizing
test prioritization via test distribution analysis,” in Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2018, pp. 656–667.

[35] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke, “Empirical evaluation of
pareto efficient multi-objective regression test case prioritisation,” in Proceedings of the
2015 International Symposium on Software Testing and Analysis. ACM, 2015, pp.
234–245.

37

[36] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression test case pri-
oritization,” IEEE Transactions on software engineering, vol. 33, no. 4, pp. 225–237,
2007.

[37] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang, “How does regression
test prioritization perform in real-world software evolution?” in 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). IEEE, 2016, pp. 535–546.

[38] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the gap between
the total and additional test-case prioritization strategies,” in Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 2013, pp. 192–201.

[39] B. Jiang, Z. Zhang, W. K. Chan, and T. Tse, “Adaptive random test case prioritization,”
in Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering. IEEE Computer Society, 2009, pp. 233–244.

[40] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive Test Selection,”
arXiv preprint arXiv:1810.05286, 2018.

[41] M. Azizi and H. Do, “ReTEST: A Cost Effective Test Case Selection Technique for Mod-
ern Software Development,” in 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2018, pp. 144–154.

[42] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement learning for auto-
matic test case prioritization and selection in continuous integration,” in Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2017, pp. 12–22.

[43] T. B. Noor and H. Hemmati, “A similarity-based approach for test case prioritization
using historical failure data,” in 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2015, pp. 58–68.

[44] C. D. Nguyen, A. Marchetto, and P. Tonella, “Test case prioritization for audit testing
of evolving web services using information retrieval techniques,” in 2011 IEEE Interna-
tional Conference on Web Services. IEEE, 2011, pp. 636–643.

[45] J.-H. Kwon, I.-Y. Ko, G. Rothermel, and M. Staats, “Test case prioritization based on
information retrieval concepts,” in Software Engineering Conference (APSEC), 2014
21st Asia-Pacific, vol. 1. IEEE, 2014, pp. 19–26.

[46] A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov, “Evaluating test-suite reduc-
tion in real software evolution,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 2018, pp. 84–94.

[47] A. Labuschagne, L. Inozemtseva, and R. Holmes, “Measuring the cost of regression
testing in practice: a study of Java projects using continuous integration,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 821–830.

38

[48] M. Hilton, J. Bell, and D. Marinov, “A large-scale study of test coverage evolution,” in
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 53–63.

[49] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser, “Are mutants
a valid substitute for real faults in software testing?” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
2014, pp. 654–665.

[50] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A Framework for Detecting
and Partially Classifying Flaky Tests,” in Proceedings of the 12th IEEE International
Conference on Sofware Testing, Verification, and Validation. IEEE, 2019, pp. to–
appear.

[51] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting assumptions on determin-
istic implementations of non-deterministic specifications,” in 2016 IEEE International
Conference on Software Testing, Verification and Validation, ICST 2016, Chicago, IL,
USA, April 11-15, 2016. IEEE, 2016, pp. 80–90.

39

