PURE ROTATIONAL SPECTRUM OF CN+

<u>SVEN THORWIRTH</u>, PHILLIP SCHREIER, THOMAS SALOMON, STEPHAN SCHLEMMER, OSKAR ASVANY, *I. Physikalisches Institut, Universität zu Köln, Köln, Germany*.

The pure rotational spectrum of the elusive CN^+ cation has been observed for the first time using the cryogenic ion trap apparatus Coltrap by applying an action spectroscopy scheme. For the $^{12}C^{14}N^+$ species, the three lowest rotational transitions have been observed each of which exhibits hyperfine structure from the presence of the ^{14}N nucleus. The rare $^{12}C^{15}N^+$ isotopolog has been studied up to the J=4-3 transition. The observations conclusively confirm CN^+ to occupy a $^{1}\Sigma^+$ electronic ground state. Given the ubiquity of the CN radical in space, CN^+ is an appealing candidate for future radio astronomical searches.