
Automated Testing of Refactoring Engines

Brett Daniel Danny Dig Kely Garcia Darko Marinov
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{bdaniel3, dig, kgarcia2, marinov}@cs.uiuc.edu

ABSTRACT
Refactorings are behavior-preserving program transforma-
tions that improve the design of a program. Refactoring
engines are tools that automate the application of refactor-
ings: first the user chooses a refactoring to apply, then the
engine checks if the change is safe, and if so, transforms
the program. Refactoring engines are a key component of
modern IDEs, and programmers rely on them to perform
refactorings. A fault in the refactoring engine can have se-
vere consequences as it can erroneously change large bodies
of source code and lead to strenuous debugging sessions.

We present a technique for automated testing of refac-
toring engines. Test inputs for refactoring engines are pro-
grams. The core of our technique is a framework for iterative
generation of structurally complex test inputs. We instan-
tiate the framework to generate abstract syntax trees that
represent Java programs. We also create several kinds of
oracles to automatically check that the refactoring engine
transformed the generated program correctly. We have ap-
plied our technique to testing Eclipse and NetBeans, two
popular open-source IDEs for Java, and we have exposed
new faults in both: 9 faults in Eclipse and 10 faults in Net-
Beans.

1. INTRODUCTION
Refactoring [8] is a disciplined technique of applying behavior-

preserving transformations to a program with the intent of
improving its design. Examples of refactorings include re-
naming a program element to better convey its meaning, re-
placing field references with calls to accessor methods, split-
ting large classes, moving methods to different classes, or
extracting duplicated code into a new method. Each refac-
toring has a name, a set of preconditions, and a set of specific
transformations to perform [22]. Refactoring engines are
tools that automate applications of refactoring. The pro-
grammer need only select which refactoring to apply, and
the engine automatically checks the preconditions, which
often requires nontrivial program analysis. If the precondi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

tions are satisfied, the engine applies the transformations,
possibly changing many locations in the program.

Refactoring is becoming increasingly popular as evidenced
by the inclusion of refactoring engines in modern IDEs such
as Eclipse [5] or NetBeans [21] for Java. Refactoring is also
a key practice of agile software development methodologies,
such as eXtreme Programming [2], whose success prompts
even more developers to use refactoring engines on a regular
basis. Indeed, the common wisdom views refactoring engines
as one of the safest tools used to refactor a program [9].

It is important that refactoring engines be reliable—a
fault in a refactoring engine can silently introduce faults in
the refactored program and lead to nightmarish debugging
sessions. If the refactored program does not compile, the
refactoring can be easily undone. However, if the refactoring
engine erroneously changes the semantics of the refactored
program, the situation is similar to encountering a fault in
a compiler: the unlucky programmers usually assume that
their program is at fault and spend hours or days debugging
before determining that the tool is at fault.

Since refactoring engines must be reliable and are very
complex, refactoring engine developers have invested heavily
in testing. For example, Eclipse version 3.2 has over 2,600
refactoring unit tests (publicly available from the Eclipse
CVS repository). Conventionally, testing a refactoring en-
gine involves creating input programs by hand along with
their expected outputs, each of which is either a refactored
program or an expected precondition failure. The testers
then execute these tests automatically with a tool such as
JUnit [10]. Writing such tests manually is tedious and re-
sults in incomplete test suites, potentially leaving many hid-
den faults in refactoring engines.

We present an approach that automates testing of refac-
toring engines. The core of our approach is ASTGen, a
framework for automated generation of input programs. AST-
Gen allows developers to write imperative generators whose
executions produce input programs. More precisely, AST-
Gen offers a library of generic, reusable, and composable
generators that produce abstract syntax trees (ASTs). With
ASTGen, a developer can generate more tests and focus
more on the creative aspects of testing than when with man-
ual generation. Instead of manually writing input programs,
a developer writes a generator whose execution produces
thousands of programs with structural properties that are
relevant for the specific refactoring being tested. For ex-
ample, to test the RenameField refactoring, the generated
program should contain a class that declares a field. Our
generators systematically produce a large number of pro-

grams that satisfy such constraints.
ASTGen follows the bounded-exhaustive approach [3, 13,

26] for exhaustively testing all inputs within the given bound.
This approach covers all “corner cases” within the given
bound. In contrast, manual testing requires knowledge of
the corner cases and manually-written tests covering each.
Bounded-exhaustive testing has never been used for test in-
puts as complex as Java programs, and the approach of im-
perative generators introduced in this paper differs from pre-
vious approaches using declarative generators. We discuss
related work in Section 7.

An important problem in automated generation of test
inputs is automated checking of outputs, also known as the
oracle problem. Our approach uses a variety of oracles. The
simplest oracles check that the refactoring engine does not
crash (that is, does not throw an uncaught exception) and
that the refactored program compiles. More advanced ora-
cles take into account the semantics of refactoring and check
specific properties such as invertibilty: renaming an entity
from A to B and then back from B to A should produce
the same starting input program. We also check structural
properties: moving an entity should indeed create the en-
tity in the new location. Finally, we use differential test-
ing [20,26] in which one implementation serves as the oracle
for another implementation. Specifically, we run the same
input programs on Eclipse and NetBeans and compare their
refactored outputs or precondition violations. Section 5.1
presents our oracles in detail.

This paper makes the following contributions:

Framework for imperative generators: We present a novel
framework for generation of structurally complex test
inputs. Our framework uses imperative generators that
specify how the inputs should be generated. Previous
work [3, 12, 13, 17, 18, 26] has used declarative genera-
tors that describe what the inputs look like and thus
require potentially expensive search to generate the
actual inputs.

Instantiation for generating ASTs: We instantiate the
general framework to generate abstract syntax trees
(ASTs) representing Java programs. Our instantia-
tion provides basic generators that echo the structure
of simple ASTs as well as more complex generators
that generate entire programs used as test inputs for
refactoring engines.

Evaluation: We have used our framework to test several
refactorings in Eclipse and NetBeans, two popular open-
source IDEs for Java. We have implemented automatic
execution of refactoring engines on the input programs
that our generators produce. We have also imple-
mented several oracles to verify that refactorings com-
plete as expected. Our experiments have discovered 9
new faults in Eclipse and 10 new faults in NetBeans.
We have reported these faults in the bug-tracking sys-
tems of both IDEs.

Our results, including the bugs reported, and our AST-
Gen code are available for public download from http:

//mir.cs.uiuc.edu/astgen.

2. TESTING ENCAPSULATE FIELD
We use the EncapsulateField refactoring as our running

example throughout this paper. This refactoring replaces all

// before refactoring
class A {

public int f;
void m(int i) {

f = i * f;

}
}

// after refactoring
class A {

private int f;
void m(int i) {

setF(i * getF());

}

public void setF(int f) {
this.f = f;

}
public int getF() {

return this.f;

}
}

Figure 1: Example EncapsulateField refactoring

references to a field with accesses through setter and getter
methods. The EncapsulateField refactoring takes as input
the name of the field to encapsulate and the names of the
new getter and setter methods. More precisely, it:

• creates a public getter method that returns the field’s
value

• creates a public setter method that updates the field’s
value to a given parameter’s value

• replaces all field reads with calls to the getter method

• replaces all field writes with calls to the setter method

• changes the field’s access modifier to private.

The EncapsulateField refactoring checks several precon-
ditions: that the code does not already contain accessor
methods and that the accessors are applicable to the expres-
sions in which the field appears, among other more complex
checks.

Figure 1 shows a sample program before and after encap-
sulating the field f into the getF and setF methods.

Our framework allows the tester to write generators that
can exhaustively generate programs containing field refer-
ences. In particular, the tester can write a generator that
produces many inputs, each of which is a class that contains
a field and a method that references the field in all kinds
of interesting expressions, as defined by the tester. In other
words, the tester has intuition for which programs to gener-
ate, but it is quite tedious to manually write input programs
that cover all kinds of field references. Section 4.2.1 de-
scribes how to write this generator, effectively codifying the
intuition into automatic generation. This generator is not
only useful for testing EncapsulateField but also reusable
for testing other refactorings that operate on fields such as
RenameField and PushDownField.

This generator produces, among others, the program in
Figure 2 that reveals a fault in NetBeans. In this case,
the parentheses around the field reference cause the refac-
toring engine to leave the field reference unencapsulated.
Our Differential Oracle (Section 5.1) quickly catches this
fault since NetBeans and Eclipse produce different refac-
tored code. Note that the “refactored” code from NetBeans
compiles, so a simple oracle would not catch the fault. This
omission could cause problems if the developer wishes to add
logic to the accessor methods. The unencapsulated field ref-
erence would not trigger this additional logic.

Another useful generator is one that generates two classes,
say A and B, such that A and B exhibit all possible relation-
ships involving class inheritance, class name reference, or

// before refactoring
class A {

int f;
void m(){

(new A().f) = 0;

}
}

// after refactoring
class A {

private int f;
void m(){

(new A().f) = 0;

}

...getF...

...setF...

}

Figure 2: EncapsulateField bug in NetBeans

class A {

class B extends A {
void m(A a) {}

}
}

Figure 3: Two classes in an inheritance, inner class,

and method parameter type relationship

containment (i.e., inner or local class). This generates many
pairs of classes, including the pair in Figure 3 that illustrates
all three relationship types: inheritance, inner class, and
name reference via method parameter. One can reuse this
generator to test several types of refactorings that depend
on class name or location, including RenameClass, Member-
ToTop, and PushDownField.

The true power of our framework appears when building
more complex generators from simpler ones. The previous
two generators can be composed into a third generator that
generates even more expressive programs in which one class
declares a field and the other references it in some way. This
generator outputs the program in Figure 4 that reveals a bug
in Eclipse. In this case, the refactoring engine mistakenly
identifies the super.f expression as a field read. The Does-
NotCompile oracle quickly determines this is a bug.

We will return to these three generators in Section 4. They
are particularly important because in concert they found the
majority of the faults we report in Section 6.

3. FRAMEWORK
Before we describe how we generate abstract syntax trees

for testing refactoring engines, it is necessary to briefly de-
scribe why we chose our iterative approach to test data gen-
eration and explain some of the generation tools that we
built.

3.1 Why Iterative & Imperative Generation?
ASTGen is an imperative, iterative, bounded-exhaustive

test data generation toolkit. It is imperative in that it falls
on the tester to define how input data is built; iterative in
that it generates inputs lazily, one at a time; and bounded-
exhaustive in that it will systematically explore the entire
combinatorial space of a given set of generators.

This approach has the following benefits:

Easy to understand: Testers intuitively grasp the idea of
looping over a set of generated inputs. It is a natural
extension to the hand-written tests that testers are
used to writing.

Easy to compose: Testers can combine generators to cre-
ate complex data or to tailor data generation to a par-
ticular testing domain. Our framework is abstract and

// before refactoring
class A {

int f;
}

class B extends A {
void m() {

super.f = 0;
}

}

// after refactoring
class A {

private int f;
...setF...
...getF...

}

class B extends A {
void m() {

getF() = 0;
}

}

Figure 4: EncapsulateField bug in Eclipse due to

super access

generic, allowing testers to combine generators in an
arbitrary fashion.

Scales well with data size: Testers can build very large
and complex data structures with a small number of
generators.

Scales well with amount of data: Since data is gener-
ated lazily, there is no overhead related “pre-generation”
or to storing a large number of inputs.

Catches corner cases: Bounded-exhaustive testing will cover
all inputs within a given bound, including those that
random testing [16] may miss or that testers are un-
aware of.

Since we wrote ASTGen in Java [11], testers do not have
to learn any new languages or syntax, and they have the full
power of a general-purpose language at their disposal.

Intuitively, we can view the generators as synchronous
electronic circuits that generate program elements instead
of electronic signals. The same way that a circuit designer
combines primitive circuits to create more complex ones, a
tester combines more primitive generators to generate more
complex data. This analogy goes much further. The ba-
sic building blocks of circuits are sequential elements that
store the state and combinatorial elements that combine the
signals. Generators also consist of sequential components
that store the generation state and combinatorial compo-
nents that build larger data structures from smaller data
structures. Testers combine the combinatorial parts to pass
information from one to the other and to compute the final
value.

The separation of sequential and combinatorial parts has
several desirable properties. First, this separation is a fa-
miliar concept from circuit design and is used almost exclu-
sively since asynchronous circuits are harder to design and
test. Second, it makes connecting generators simpler since it
decouples generator iteration from data composition. This
means that generators can change their state in any order,
and only after all generators have computed their values does
the parent generator combine the values together. Finally,
this decoupling also makes developing components easier:
it simplifies the class interface and allows one to test data
composition separately from generator iteration.

Because a generator cannot access any data other than
that which is already stored in its internal state, one can
consider data composition in terms of higher-order func-
tions. This means, for example, that the generator that
builds the super.f expression in Figure 4 cannot be “passed”
the name of the field it is referencing. Instead, this generator

effectively produces a program with “holes”, and other gen-
erators then supply “plugs” that fill these “holes”, creating
complete program elements. We will return to higher-order
generation in Section 4.2.

3.2 Iterative Generation Tools
We define an iterative generator as one that outputs a

new generated value every time next is called. The basic
interface looks like the following:

interface IGenerator<T> implements Iterable<T> {

boolean hasNext();
boolean isReset();

T next();
T current();
Iterator<T> iterator();

}

Since generators implement the java.lang.Iterable inter-
face by declaring the Iterator<T> iterator() method, it is
very easy to loop over all generated values [7].

IGenerator<T> valueGen = ...;

for (T value : valueGen) {
doSomething(value);

}

We have built several supporting tools that implement
and act upon the IGenerator interface. The simplest is called
Literal, and it produces a single value.

Literal<String> stringLiteral = new Literal<String>("foo");
Literal<Integer> intLiteral = new Literal<Integer>(1);

The next generator is called Chain. It is a generator that
when given values or other generators, produces all values
in order.

Chain<String> chain1 = new Chain<String>("a", "b", "c");

Chain<String> chain2 = new Chain<String>();

chain2.add("d");
chain2.add(chain1);

chain2.add(new Literal<String>("e"));

for (String s : chain2) {
System.out.print(s + " ");

}

// Outputs: d a b c e

These simple generators are useful, but their true power
appears when they are linked together. An abstract gen-
erator called CompositeGenerator encapsulates this task. It
represents a generator with any number of child generators.
When iterated, it iterates its children.

abstract class CompositeGenerator<T>

implements IGenerator<T> {

abstract List<IGenerator> getChildren();
abstract T generateCurrent();

boolean hasNext() {
return childrenCanIterate();

}
T next() {

invokeNextOnChildren();
return generateCurrent();

}

void reset() {
resetChildren();

}
...

}

Say we have a data structure representing a simple pair
of values.

class Pair<L, R> {
L left;
R right;

Pair(L left, R right) {...}

}

Using CompositeGenerator, we can build a simple PairGenerator

that will generate the Cartesian product of two generators.
This generator illustrates the separation between data com-
position, which occurs in in generateCurrent() and generator
iteration which is inherited from CompositeGenerator.next().

class PairGenerator<L, R>
extends CompositeGenerator<Pair<L, R>> {

IGenerator<L> leftGen;

IGenerator<R> rightGen;

... constructors and accessors ...

List<IGenerator> getChildren() {

return Arrays.asList(
leftGen,

rightGen);
}

Pair<L, R> generateCurrent() {
return new Pair<L, R>(

leftGen.current(),
rightGen.current());

}
}

Now that we have defined PairGenerator, we can use it
by passing the appropriate generators to its constructor or
accessors.

Chain<String> chain1 = new Chain<String>("a", "b");

Chain<Integer> chain2 = new Chain<Integer>(1, 2, 3);
PairGenerator<String, Integer> pairGen =

new PairGenerator<String, Integer>(chain1, chain2);

for (Pair<String, Integer> pair : pairGen) {

System.out.print(pair);
}
// Outputs: [a,1] [a,2] [a,3] [b,1] [b,2] [b,3]

As we shall demonstrate, these simple generators are well-
suited to creating abstract syntax trees as well as more com-
plex structures.

4. INSTANTIATION FOR ASTS
We next illustrate how ASTGen can be used to test refac-

toring engines by generating abstract syntax trees of increas-
ing complexity. First we show how a simple syntax element
can be implemented as a tree of generators. Then, we will
discuss the implementation of more complex abstract syn-
tax tree generators such as those described in our running
example from Section 2.

4.1 A Simple AST Generator
Figure 5 shows an AST node representing a much-simplified

field declaration. It has three other AST nodes as children.
It is common for simple generators to mirror the struc-
ture of their corresponding data structure. In this case,
FieldDeclarationGenerator, shown in Figure 6 contains a
child generator for each AST node in FieldDeclaration.

class FieldDeclaration {
Modifier modifier;

Type type;
Identifier identifier;

... constructors and accessors ...
}

Figure 5: Field declaration data structure

class FieldDeclarationGenerator
extends CompositeGenerator<FieldDeclaration> {

IGenerator<Modifier> modifierGen;
IGenerator<Type> typeGen;
IGenerator<Identifier> identiferGen;

... constructors and accessors ...

List<IGenerator> getChildren() {
return Arrays.asList(

modifierGen,
typeGen,

identifierGen);
}

FieldDeclaration generateCurrent() {
FieldDeclaration generated = new FieldDeclaration();

generated.setModifier(modifierGen.current());
generated.setType(typeGen.current());

generated.setIdentifier(identifierGen.current());
return generated;

}

}

Figure 6: Field declaration generator

To use the generator, one can initialize it by setting each
child generator to a Chain of values as illustrated in Fig-
ure 7. For simplicity, we show the Java syntax elements (i.e.
public, int) as if they were defined as variables, rather than
showing the code used to build their Java AST nodes.

FieldDeclarationGenerator illustrates several concepts in-
tegral to our generation implementation. First, it shows
how data composition is separate from generator iteration.
The child generators are iterated by the ChildIterator re-
turned from getChildIterator while the data composition
takes place in generateCurrent.

Second, it illustrates the flexibility of generators.
FieldDeclarationGenerator’s child generators are all IGenerators,
allowing one to substitute any generator that generates the
correct type. Unlike grammars which remain static once
written, this genericity allows generators to be reused in
many contexts. One need simply initialize the appropriate

IGenerator<Modifier> modifierGen =

new Chain<Modifier>(public, private);
IGenerator<Type> typeGen =

new Chain<Type>(int, boolean);

IGenerator<Identifier> identifierGen =
new Chain<Identifier>(someField, anotherField);

FieldDeclarationGenerator fieldDeclGen =
new FieldDeclarationGenerator(

modifierGen,
typeGen,
identifierGen);

Figure 7: Pseudocode for initializing FieldDeclara-

tionGenerator

children.
We have implemented basic generators for 29 common

Java syntax elements. These generators encapsulate ab-
stract syntax tree generation and thus increase reusability
in that one does not need to define Chains of values ev-
erywhere. For example, in Figure 7, we could have used
ModifierGenerator rather than a chain of values. Also, many
of the AST generators perform much more complex genera-
tion such as that described in the following sections.

4.2 Complex AST Generators
We have shown that our iterative approach can easily

generate simple syntax elements represented as AST nodes.
Next we shall discuss the three complex generators from our
running example.

4.2.1 Field Reference Generator
The FieldReferenceGenerator generates a class containing

a field and a method that references the field in many pos-
sible ways. It produces several thousand programs, one of
which is similar to Figure 2.

It is composed of the following five child generators:

• An IGenerator<FieldDeclaration> (such as a
FieldDeclarationGenerator from Figure 6), provided by
the caller. In the example, this generator generated
the int f; declaration.

• A FieldReferenceExpressionGenerator that uses the field
name from the field declaration to build an expression
that references the field. This expression can be the
name of the field, this.f, A.this.f, or, as in Figure 6,
new A().f.

• A ParenthesizingExpressionGenerator returns an ex-
pression that either echoes the expression explicitly or
parenthesizes it. In the example, the generator has
parenthesized the referencing expression yielding (new

A().f).

• A NestedExpressionGenerator that nests the parenthe-
sized expression in one of the many possible expres-
sions applicable to the field’s type. In the example,
the generated expressions is the assignment expres-
sion: (new A().f) = 0. However, since the field has
type int, other applicable expressions include the bi-
nary arithmetic operators, unary operators, and many
others.

• A ExpressionInStatementGenerator that nests the full
expression in one of many types of statements. In the
example, the statement simply contains the expression
itself, but it can also generate other control flow or
looping statements.

It is interesting to note that the NestedExpressionGenerator

can accept another NestedExpressionGenerator, allowing one
to create expressions nested within each other to an arbi-
trary depth. Indeed, the initial design for the
FieldReferenceGenerator included a NestedExpressionGenerator

in place of the ParenthesizingExpressionGenerator, but we
found that the resulting combinatorial explosion increased
generation time substantially and did not yield any new bugs
not already found by simply parenthesizing the expression.
This sidebar is interesting because it illustrates how a tester

// Get child generators’ values (order does not matter)
FieldDeclaration fieldDecl =

fieldDeclGen.current();
FieldReferenceExpressionMethObj fieldRefExprMO =

fieldRefExprGen.current();

ParenthesizingExpressionMethObj parenExprMO =
parenExprGen.current();

NestedExpressionMethObj nestedExprMO =
nestedExprGen.current();

ExpressionInStatementMethObj exprInStmtMO =

exprInStmtGen.current();

// Fill "holes" in ASTs (order matters)
Expression fieldRefExpr = fieldRefExprMO.fill(fieldDecl);

Expression parenExpr = parenExprMO.fill(fieldRefExpr);
Expression nestedExpr = nestedExprMO.fill(parenExpr);
Statement exprInStmt = exprInStmtMO.fill(nestedExpr);

// Build AST to return

MethodDeclaration methodDecl = makeMethod("m");
methodDecl.addStatement(exprInStmt);

TypeDeclaration typeDecl = makeClass("A");
typeDecl.addField(fieldDecl);

typeDecl.addMethod(methodDecl);

Figure 8: FieldReferenceGenerator generation

can tailor generators such that they produce data applicable
to a particular test target.

At first glance, it would appear that the five child gener-
ators must be iterated in order since “later” generators de-
pend on the data generated by “earlier” ones. However this
is not the case since iteration and generation are decoupled.
How then, for example, does the NestedExpressionGenerator

use the parenthesized expression generated by
ParenthesizingExpressionGenerator? The answer is that all
the generators except the initial IGenerator<FieldDeclaration>
generate higher-order “Method Objects” that represent ASTs
with “holes”.

Thus, the parent FieldReferenceGenerator generates data
by first retrieving the method objects from each of its child
generators. Then, it fills the “holes” by passing the appro-
priate AST nodes to the method objects. Finally, it builds
the AST that it will return using the ASTs built by the
method objects. The pseudocode for this procedure is listed
in Figure 8.

4.2.2 Class Relationship Generator
The ClassRelationshipGenerator generates combinations

of inheritance, class name reference, or location-based (i.e.
inner or local class) relationships between two generated
classes. When provided literal class generators, this gen-
erator produces several hundred relationship pairs, one of
which is similar to Figure 3.

ClassRelationshipGenerator’s child generators are the fol-
lowing:

• Two IGenerator<TypeDeclaration>s provided by the caller
that generate the classes to be related.

• A InheritanceTypeGenerator determines whether one
class inherits from the other.

• A ClassNameReferenceGenerator similar to the
FieldReferenceGenerator from Section 4.2.1. It gener-
ates many expressions, statements, and declarations
that can contain a reference to the name of a class. In

Figure 3, this generator produced the method declara-
tion with a parameter type A.

• A LocationTypeGenerator determines where one class
is located in relation to the other. In Figure 3, this
generator specified that B is an inner class of A. Other
possible locations are local in which a class is declared
inside a method and separate in which both class are
top-level elements.

• Three DirectionGenerators determine the direction in
which the three relationship types “point”. In Fig-
ure 3, all relationships are in the B-to-A direction: B
inherits from A, B is an inner class of A, and B refer-
ences A through a method parameter.

The InheritanceTypeGenerator, ClassNameReferenceGenerator,
and LocationTypeGenerator all generate higher-order method
objects. These method objects consume the two generated
TypeDeclarations and a generated Direction, and return the
same two TypeDeclarations, related in a particular way. Af-
ter applying all three generated method objects, the pair of
classes is returned to the caller.

Due to their exhaustive nature, generators often produce
programs that do not compile. For example, depending on
the combination of direction and relationship type, certain
generated class relationships may be invalid. The following
code illustrates such a relationship in which B is related to
A by location, but A is related to B by inheritance.

class A extends B {

class B {}
}

We can overcome this problem in three ways. First, we
can filter invalid data by testing the current values of all
child generators. In this example, we can “skip” the gener-
ated value if the LocationGenerator’s current value is “inner”
in the B-to-A direction and the InheritanceTypeGenerator’s
current value is “extends” in the A-to-B direction. Second,
the caller can limit the generation to only those programs ap-
plicable to a particular task. We shall see in the next section
that the DualClassFieldReferenceGenerator generates classes
in all location and inheritance relationships in all directions,
but omits the class name reference relationship because it
is irrelevant to testing field references. Finally, we can dele-
gate to the compiler and skip any generated programs that
do not compile.

4.2.3 Dual-Class Field Reference Generator
The DualClassFieldReferenceGenerator generates all pos-

sible class relationships in which one class declares a field
and the other references it. When supplied the simplest
possible class and field generators, this generator generates
over 14,000 programs, one of which is similar to Figure 4.

This generator combines aspects of the other two com-
plex generators that we have discussed. First, it uses the
ClassRelationshipGenerator to generate the inheritance and
location relationships between the supplied classes. Then,
it uses the SingleClassFieldReference to generate references
to the field. Construction of the AST proceeds analogously
to the previous two cases.

5. TESTING REFACTORINGS USING AST
GENERATORS

We next show how we use our AST generators to test
refactoring engines. First, we describe the oracles that we
use to verify that a refactoring completes correctly on our
generated data. Then, we show how we run generated pro-
grams through the refactoring engines.

5.1 Oracles
An important problem in automated generation of test in-

puts is automated checking of outputs, also known as the or-
acle problem. An ideal oracle for a refactoring engine would
tell whether an automatically generated input program and
its refactored version have the same semantics. Proving that
two programs have the same semantics is generally unde-
cidable [24]. However, given the fact that refactorings are
program transformations with well defined structural prop-
erties, we can still check several useful properties of a refac-
tored program. The following lists the oracles that we have
implemented.

DoesNotCrash Oracle: Our simplest oracle checks that
the refactoring engine does not throw an uncaught excep-
tion. Such an oracle is often used in “smoke testing” as a
sanity check.

DoesNotCompile Oracle: Our next oracle checks if
the refactored program compiles. All input programs are
previously filtered and only the programs that compile are
passed to the refactoring engine. This oracle compiles the
refactored output programs and alerts the tester if there are
compilation errors.

WarningStatus Oracle: Refactoring engines warn the
user when a refactoring might change the semantics of the
program. This oracle checks that the refactoring engine pro-
duces a warning status after the precondition checks. This
oracle is used in conjunction with generators that create pro-
grams which intentionally do not meet the preconditions of
a specific refactoring. For example, we wrote a generator
called MethodWithParameterReference that creates many
methods containing a reference to a parameter. One would
expect that such programs would always fail the RemovePa-
rameter refactoring’s precondition checks.

Inverse Oracle: Refactorings are invertible program trans-
formations. Given any refactoring τ and all programs P that
meet the preconditions of τ , there exists another refactoring
τ
−1, the inverse refactoring, such that:

τ
−1(τ (P)) = P .
Since refactorings make well-defined structural changes,

we can compare the original and doubly-refactored programs
by determining whether their ASTs are isomorphic. We
implemented an AST comparator that normalizes the trees
by sorting the methods and fields by name. With sorted
methods and fields, the problem becomes one of comparing
method bodies and field values. By ignoring whitespace, we
are able to compare ASTs well enough to serve as an oracle.

Custom-Structural Oracle: We have implemented sev-
eral refactoring-specific oracles. Since these oracles are aware
of the structural changes made by their corresponding refac-
torings, they can check that the refactored program exhibits
the expected changes. For example, we can verify that Re-
nameField leaves no occurrences of the old name anywhere
in the AST.

Differential Oracle: The last oracle we implemented is
used in differential testing [20, 26]. This oracle takes an in-

String fieldName = "f";
FieldDeclarationGenerator fieldDeclGen =

new FieldDeclarationGenerator(fieldName);
IGenerator<Program> testGen = new ...(fieldDeclGen);

for (Program p : testGen) {
if (!p.compiles) {continue;}

Refactoring r = new EncapsulateFieldRefactoring();
r.setTargetField(fieldName);

Program pPrime = r.performRefactoring(p);

checkOracles(pPrime);

}

Figure 9: Pseudocode for testing EncapsulateField

put program and a refactoring, and it feeds this pair to two
refactoring engines, Eclipse and NetBeans. It then takes the
output programs returned by the two engines and checks
whether their ASTs are isomorphic using the AST com-
parator described above. If the two ASTs differ, a human
inspects the two output programs to check whether the dif-
ference is caused by a bug in one of the refactoring engines.
This oracle finds additional bugs that are not found by the
previous oracles. Among others, it found the bug shown in
figure 2.

Behavioral Oracles: In the future, we plan to imple-
ment a new oracle that will automatically generate a test
suite for a given input program by using automated regres-
sion testing techniques [6,27]. It will then compare whether
the behavior of the input program (exercised under the test
suite) is the same as the behavior of the refactored program.

5.2 Running Refactorings
We have described how to compose generators that pro-

duce interesting test data for testing refactorings. Here we
return to our EncapsulateField example to explain how we
test refactorings.

First, we create a FieldDeclarationGenerator initialized
with the name of the field we expect to encapsulate. Then,
we pass this generator to one of the three generators de-
scribed in section 4.2. This generator produces the programs
to refactor.

For each generated program, we first test if it compiles. If
so, then we instantiate a refactoring provided by the IDE,
initialize it with the field name, and invoke the refactoring
engine. This yields a refactored program that we pass to
each of the oracles. Figure 9 lists the pseudocode for this
process.

We implemented a generalization of this process that we
use to test several refactorings described in the next section.
In Eclipse it takes the form of a custom plug-in that uses
the platform’s built-in test harness. In Netbeans, we extend
the existing unit test suite.

6. EVALUATION
Here we evaluate ASTGen’s usefulness as a reusable and

composable test data generation framework. Our goal is to
find and report bugs in refactoring engines using ASTGen.
We tested several refactorings and found 9 bugs in Eclipse
and 10 in Netbeans.

All results and code can be downloaded from [1].

Generation Oracles

R
efa

cto
rin

g

P
rim

a
ry

G
en

era
to

r

T
o
ta

l
G

en
era

ted

T
im

e
[m

in
:sec]

C
o
m

p
ila

b
le

In
p
u
ts

W
a
rn

in
g
S
ta

tu
s

D
o
esN

o
tC

o
m

p
ile

C
u
sto

m
/
In

v
erse

D
iff

eren
tia

l

B
u
g
s

R
e
p
o
r
t
e
d

Ecl NB Ecl NB Ecl NB

Rename(Class) ClassRelationships 108 1:02 88 0 0 0 0 0 0 0 0
Rename(Method) MethodReference 9540 89:12 9540 3816 0 0 0 0 5724 0 0
Rename(Field) FieldReference 3960 28:20 1512 0 0 0 304 0 40 0 1
Rename(Field) DualClassFieldRef. 14850 76:55 3969 0 0 0 0 0 0 0 0

EncapsulateField
ClassArrayField 72 0:45 72 0 0 48 0 0 48 1 0
FieldReference 3960 15:19 1512 0 0 320 432 14 121 4 3

DualClassFieldRef. 14850 41:45 3969 0 0 187 256 100 511 1 2
PushDownField DualClassFieldRef. 4635 10:56 1064 760 380 152 228 0 380 2 2

CS(ChangeReturnType) MethodReference 3816 37:36 3816 1992 - 0 - 0 - 0 -
CS(RemoveParameter) MethodReference 5724 54:29 5724 1908 0 0 0 0 0 0 0
CS(RemoveParameter) MethodParamRef. 1680 7:11 772 772 772 0 0 0 0 0 0

MoveToTop
ClassRelationships 70 0:36 51 0 0 0 2 0 2 0 1
DualClassFieldRef. 6600 29:04 2824 0 0 353 507 0 2824 1 1

Total Bugs: 9 10

Figure 10: Refactorings tested, generation results, oracles, and bugs reported.

CS = ChangeSignature, Ecl = Eclipse, NB = NetBeans.

6.1 Refactorings Tested
We tested the following refactorings:

Rename: Rename a class, method, or field and change all
of its occurrences to reflect the new name.

EncapsulateField: Replace every occurrence of a field with
an accessor method. Its custom-structural oracle checks
that the unencapsulated field appears a maximum of
five times in the refactored program.

PushDownField: Move a field from a superclass to all sub-
classes. Its custom-structural oracle checks that the
field no longer exists in the superclass.

ChangeSignature: Change a method signature by chang-
ing its return type or parameters. Its custom-structural
oracle checks that the method was changed appropri-
ately.

MemberToTop: Move an inner class out of its contain-
ing class. Its custom-structural oracle checks that the
container class no longer contains an inner class.

We chose these refactorings because they are seemingly
simple and demonstrate a variety of refactoring targets. En-
capsulateField and PushDownField each target field declara-
tions; ChangeSignature targets method declarations; Mem-
berToTop targets inner classes; and Rename targets almost
everything.

The first column of Figure 10 lists the specific refactorings
performed. The last two columns lists the number of bugs
reported for each. The table shows that even “trivial” refac-
torings such as Rename are susceptible to bugs. NetBeans
does not support the ChangeReturnType refactoring, so we
have inserted dashes in the appropriate columns.

6.2 Generation Evaluation
Section 4.1 describes how one can build a simple genera-

tor that produces AST nodes. This process is very straight-
forward. We asked two colleagues who had no experience
with ASTGen to write a simple AST generator similar to
FieldDeclarationGenerator. It took them each only about
an hour, including the time needed for us to briefly describe
the important classes in the framework.

In addition to a large library of simple AST generators, we
built the following complex generators for testing refactor-
ings. To conserve space, we have omitted the “Generator”
suffix used in previous sections.

ClassRelationship: Generates two classes related in many
ways. See Section 4.2.2.

FieldReference: Generates a class containing a field and
a method that references the field in many ways. See
Section 4.2.1.

DualClassFieldReference: Generates two classes related
in many ways. One class declares a field and the other
references it. See Section 4.2.3.

MethodReference: Generates a class with two methods.
One method calls the other in one of many ways and
may overload the called method by adding or removing
parameters.

MethodParamReference: Generates a method declara-
tion with a parameter referenced in many ways.

ClassArrayField: Generates a class that declares a field
with many different array types. While simpler than
the other generators listed above, it still revealed a bug
in Eclipse.

The second column of Figure 10 lists the generators used
to test each refactoring. By tailoring inputs, we were able
to reuse generators for several refactorings. For example,
DualClassFieldReference was useful for both field- and class-
targeted refactorings and found bugs in both.

The third column lists the total number of programs gen-
erated. The number is very sensitive to the way in which
the tester initializes the generator. For example, a fully-
exhaustive DualClassFieldReferenceGenerator used for En-
capsulateField produces 14,850 programs. In contrast, a
version limited to producing inheritance relationships for
PushDownField yields just 4,635.

Execution time, shown in the fourth column, is calculated
as the time needed to generate and run all tests for a par-
ticular refactoring. Performing the refactoring takes up the
vast majority of the execution time. It takes DualClass-
FieldReference just 13 seconds to generate 14,850 programs
when refactoring execution is omitted. This fact is further
corroborated by the close correspondence between compi-
lable inputs—column 5—and execution time. Our suite
tests compilable inputs at a consistent rate of about 100
per minute.

We ran our tests on a dual-processor 1.8 Ghz Dell D820
laptop with 1 gigabyte of RAM. It took just under seven
hours to run our entire suite in Eclipse. Netbeans took about
four times longer. While this time is not conducive to on-
the-fly development testing, but it is certainly feasible for
an overnight or weekend build process.

MethodReference and MethodParamReference are par-
ticularly interesting for several reasons. First, they cre-
ate their method and parameter references by reusing the
ParenthesizingExpression, NestedExpression, and
ExpressionInStatement generators described in Section 4.2.1.
This demonstrates how one can adapt existing generators for
different tests. Second, it took one of us about two workdays
to write both generators as well as infrastructure needed to
run the four refactorings that they test. Together, they gen-
erate many more tests (20,760 of which 19,852 compile) than
even the most talented tester could produce by hand in the
same amount of time. Finally, by filtering in the manner
described in Section 4.2.2, these generators produced only
compilable inputs for three refactorings. In the other cases
we relied on the compiler so that we did not accidentally
filter valid tests.

6.3 Oracle Evaluation
Columns six through 11 of Figure 10 show the oracles

exercized by each refactoring. The DoesNotCompile oracle
yielded the most bugs in Eclipse while the Differential oracle
found the most in NetBeans. The Custom-Structural oracle
found one bug for EncapsulateField. We have omitted a col-
umn for the DoesNotCrash oracle since neither refactoring
engine crashed.

In all cases, the WarningStatus oracle found only expected
precondition failures, not bugs. Note, for example, that ev-
ery compilable input generated by MethodParamReference
for the RemoveParameter refactoring failed the WarningSta-
tus oracle, just as one would expect. Had any passed, it
would have indicated a bug since one cannot remove a pa-
rameter if it is referenced in the method body. This demon-
strates the usefulness of generating inputs that are known
to fail a particular oracle.

6.4 Bugs Found
The final two columns of Figure 10 show the previously

unreported, unique bugs that ASTGen found: 9 in Eclipse
and 10 in Netbeans. Since our approach is exhaustive, the
oracles report many failures for each unique bug. This means,
for example, that we only reported one unique bug for the 40
variations caught by the Differential oracle for RenameField.

A summary of each bug and links to the Eclipse and Net-
beans bug reports can be found at [1].

7. RELATED WORK
There is a large body of work in the area of test-input

generation. The most related to ours are grammar-based
and bounded-exhaustive testing approaches.

Grammar-based testing [14,15,19,23,25] requires the user
to describe test inputs with a grammar, and the tools then
generate a set of strings that belong to the grammar. In
1972, Purdom [23] pioneered the algortihms for selecting
a minimal set strings that achieve certain coverage criteria
for grammar, e.g., strings that cover all terminals, all non-
terminals, or all productions. More recently, Maurer [19],
Sirer and Bershad [25], and Malloy and Power [15] devel-
oped tools for grammar-based generation that were used to
find faults in several applications. We can view grammar-
based approaches effectively as using first-order functional
programs to specify the generation. The tools interpret
these programs to generate random strings that belong to
the input grammar. Other work by Claessen and Hughes [4]
describes a random, but not grammar-based testing frame-
work for Haskell Programs.

In constrast, the approach of Lammel and Schulte [14]
and our approach systematically generate input data. Even
more importantly, our approach allows the developers to use
the full expressive power of familiar programming language
such as Java to write imperative generators that produce
test inputs. With our approach, the programmers can freely
compose more advanced generators by reusing more basic
generators. Achieving such reusability with grammars is
fairly hard; for example, it is unclear how one could combine
in a grammar-based approach the first two generators from
Section 2 to obtain the third.

Bounded-exhaustive testing [3, 12, 13, 17, 18, 26] is an ap-
proach for testing the programs exhaustively on all inputs
within the given bound. We have previously developed two
approaches, TestEra [18] and Korat [3], that can be in princi-
ple used for bounded-exhaustive generation of complex test
inputs such as Java programs. These two approaches are
declarative: they require the user to specify the constraints
that describe what the test inputs look like (as well as the
bound on the size of test inputs), and the tools then au-
tomatically search the (bounded) input space to generate
all inputs that satisfy the constraints. TestEra requires the
user to specify the constraints in a declarative language,
while Korat requires the users to specify the constraints in
an imperative language, but in both previous approaches,
the user just specifies the constraints. In constrast, the ap-
proach presented in this paper is imperative: the program-
mer specifies how the test generation should proceed. The
imperative approach makes the generation faster since no
search is necessary. Also, the imperative approach gives the
programmer more control over the generation, for exam-
ple over the order of generation. Finally, the two previous

declarative approaches have not been applied to generate in-
puts as complex as Java programs, whereas we have applied
our new imperative approach to generate Java programs to
test refactoring engines in Eclipse and NetBeans.

8. CONCLUSIONS
Refactoring engines have become popular because they al-

low programmers to quickly and (for the most part) safely
change large programs. These tools also influence the cul-
ture of software development; programmers who use refac-
toring engines are more inclined to change large programs.
Despite the high quality and widespread use of existing
refactoring engines, they still contain bugs. Our goal is to
help the developers of refactoring engines to reduce the num-
ber of the bugs.

We have presented a practical approach that automates
testing of refactoring engines. The heart of our approach is
ASTGen, a framework for generating structurally complex
input programs. This framework allows testers to quickly
sketch generators that mirror the ASTs of Java programs.
The generators are easily reusable and composable to gen-
erate programs with arbitrary complexity. Our approach
found 19 previously unreported bugs in Eclipse and Net-
Beans, two of the most popular refactoring engines for Java.

Based on these promising results, we believe that ASTGen
can help in testing a variety of applications that operate on
abstract syntax trees, e.g., compilers, code editors, and pro-
gram optimizers. Also, the ideas behind ASTGen directly
translate to languages other than Java; although we have
presented generation of Java programs, ASTGen could just
as easily generate ASTs trees for other languages.

The reported bugs and the code of ASTGen are available
from its homepage at http://mir.cs.uiuc.edu/astgen.

9. REFERENCES
[1] ASTGen home page. http://mir.cs.uiuc.edu/astgen/.

[2] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2000.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In Proc.
International Symposium on Software Testing and
Analysis (ISSTA), July 2002.

[4] K. Claessen and J. Hughes. Quickcheck: A lightweight
tool for random testing of Haskell programs. In Proc.
Fifth ACM SIGPLAN International Conference on
Functional Programming, 2000.

[5] The Eclipse Foundation. http://www.eclipse.org.

[6] S. G. Elbaum, H. N. Chin, M. B. Dwyer, and
J. Dokulil. Carving differential unit test cases from
system test cases. In FSE’06: Proceedings of the 14th
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 253–264.
ACM, November 2006.

[7] The for-each loop.
http://java.sun.com/j2se/1.5.0/docs/guide/language/foreach.htm.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Existing Code. Adison-Wesley, 1999.

[9] D. Gallardo. Refactoring for everyone, Sept. 2003.

[10] E. Gamma and K. Beck. JUnit, 1997.
http://www.junit.org.

[11] J. Gosling. The Java Language Specification. Sun
Microsystems, 2005.

[12] S. Khurshid. Generating Structurally Complex Tests
from Declarative Constraints. PhD thesis, Dept. of
Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Dec. 2003.

[13] S. Khurshid and D. Marinov. TestEra:
Specification-based testing of Java programs using
SAT. Automated Software Engineering Journal, 2004.

[14] R. Lämmel and W. Schulte. Controllable
combinatorial coverage in grammar-based testing. In
TestCom, pages 19–38, 2006.

[15] B. A. Malloy and J. F. Power. An interpretation of
purdom’s algorithm for automatic generation of test
cases. First Annual International Conference on
Computer and Information Science, 2001.

[16] J. J. Marciniak. Encyclopedia of Software Engineering,
chapter Random Testing, pages 1095–1104.
Wiley-Interscience, 2001.

[17] D. Marinov. Automatic Testing of Software with
Structurally Complex Inputs. PhD thesis, Computer
Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, 2004.

[18] D. Marinov and S. Khurshid. TestEra: A novel
framework for automated testing of Java programs. In
Proc. 16th Conference on Automated Software
Engineering (ASE), San Diego, CA, Nov. 2001.

[19] P. M. Maurer. Generating test data with enhanced
context-free grammars. IEEE Software, 7(4), July
1990.

[20] W. M. McKeeman. Differential testing for software.
Digital Technical Journal, 10(1), 1998.

[21] The Netbeans IDE. http://www.netbeans.org.

[22] W. F. Opdyke. Refactoring object-oriented
frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[23] P. Purdom. A sentence generator for testing parsers.
Behavior and Information Technology, 12(3):366–375,
1972.

[24] H. G. Rice. Classes of recursively enumerable sets and
their decision problems. Transactions of the American
Mathematical Society, 74:358–366, 1953.

[25] E. G. Sirer and B. N. Bershad. Using production
grammars in software testing. In Proc. 2nd conference
on Domain-specific languages, 1999.

[26] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and
D. Jackson. Software assurance by bounded
exhaustive testing. In Proc. International Symposium
on Software Testing and Analysis (ISSTA), 2004.

[27] T. Xie. Augmenting automatically generated unit-test
suites with regression oracle checking. In Proceedings
of the 20th European Conference on Object-Oriented
Programming (ECOOP 2006), pages 380–403, July
2006.

