THE REACTION OF CH₂OO WITH HNO₃ INVESTIGATED WITH A STEP-SCAN FTIR SPECTROMETER

CHEN-AN CHUNG, CHO-WEI HSU, YUAN-PERN LEE, Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan.

Carbonyl oxides, which are known as Criegee intermediates, are important intermediates produced in ozonolysis of unsaturated hydrocarbons.^a Criegee intermediates react readily with other atmospheric species such as HNO_3 , SO_2 , $(H_2O)_2$ and HCOOH, leading to production of OH, aerosols and organic acids in the atmosphere. The reaction coefficient between CH_2OO and HNO_3 was reported to be 5.4×10^{-10} cm³ molecule⁻¹ s⁻¹ at 298 K. ^b Theoretical calculations also predict a similar rate coefficient for $CH_2OO + HNO_3$, the reaction goes through a barrierless path to form nitrooxymethyl hydroperoxide (NMHP, NO_3CH_2OOH). Besides, due to large exothermicity(-184.9 kJ mol⁻¹), internally excited NMHP might decompose further to CH_2ONO_3 and OH.^c

In this work, we utilized a step-scan FTIR coupled with a multipass White cell to record time-resolved IR absorption spectra of the reactants and products during the reaction of CH_2OO with HNO_3 in a flow system with total pressure about 10 Torr. CH_2OO was produced from the reaction of $CH_2I + O_2$; CH_2I was produced from photolysis of CH_2I_2 at 308 nm.^d The IR absorption spectra were recorded at instrumental resolution 0.3 cm⁻¹. Newly observed bands at 825, 967, 1053, 1294, 1348, 1424, 1686 and 3587 cm⁻¹can be assigned to NMHP. The observed wavenumbers and relative intensities agree with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3LYP/aug-cc-pVTZ method. In addition, we also observed several bands with clear rotational structure, which can be assigned to the absorption of NO_2 , H_2CO and HO_2 . Observation of these species indicates that another decomposition route for excited NMHP might exist. Furthermore, absorption bands of unternally excited HNO_3 was also observed at low pressure, indicating that decomposition of pre-reaction complex can excite HNO_3 . By probing the formation of NMHP and NO_2 , the rate coefficient of this reaction was determined to be $(5.3\pm0.8)\times10^{-10}$ cm³ molecule⁻¹ s⁻¹.

^aR. Criegee, Angew. Chem. Int. Edit. 14, 745 (1975).

^bE. S. Foreman, K. M. Kapnas and C. Murray, Angew. Chem. Int. Edit. 55, 10419 (2016).

 $^{^{}c}\text{P.}$ Raghunath, Y. P. Lee and M. C. Lin, J. Phys. Chem. A 121, 3871 (2017).

^dO. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Science 335, 204 (2012).