ROTATIONAL SPECTROSCOPY OF SYN AND ANTI-CLINAL PENTA-3,4-DIENENITRILE FROM 130-375 GHz

VANESSA L. ORR, BRIAN J. ESSELMAN, ANDREW N OWEN, SAMUEL M. KOUGIAS, R. CLAUDE WOODS, ROBERT J. McMAHON, Department of Chemistry, University of Wisconsin, Madison, WI, USA.

Penta-3,4-dienenitrile, (P34DN, $\rm H_2C=C=CHCH_2CN$), is an intriguing target for detection in the interstellar medium and the atmosphere of Titan because of its structural similarity to known interstellar molecules and because it is a constitutional isomer of the simple aromatic compound, pyridine (c-C₅H₅N). P34DN has recently been synthesized in our group and its millimeter-wave spectrum has been collected from ~130-375 GHz. Computational studies reveal that P34DN has two stable conformers linked by the internal rotation of the $-CH_2CN$ group and separated by <1 kcal/mol. The internal rotation is the lowest fundamental, ν_{27} , in both conformers. Over 800 distinct rotational transitions of the ground vibrational state of the syn conformer (C_s , $\mu_a = 1.7$ D, $\mu_b = 3.1$ D, CCSD(T)/cc-pVTZ) have been least-squares fit to a single-state centrifugally distorted rotor model using Kisiel's ASFIT, and analysis of this ground state is ongoing.

The *anti-clinal* conformer of P34DN has C_1 symmetry ($\mu_a=3.4$ D, $\mu_b=1.9$ D, $\mu_c=0.6$ D, CCSD(T)/cc-pVTZ). Rotational transitions for the ground state and the vibrational states ν_{27} , $2\nu_{27}$, $3\nu_{27}$, and $4\nu_{27}$ have been identified. Clear evidence of strong Coriolis coupling between the ground state and ν_{27} ($\sim 52~cm^{-1}$) has been observed, primarily between K=18 of the ground state and K=14 of the excited state. Coupling is also observed between the $\nu=1$ and $\nu=2$ of $\nu=27$. This presentation will discuss the current analysis of the coupling between the ground state and $\nu=27$ v = 1 and the current status of their coupled least-squares fit using Pickett's SPFIT program.