AN INFRARED PHOTODISSOCIATION SPECTROSCOPIC AND THEORETICAL STUDY OF $M(CO)_{6,7,8}^+$ (M = Ti, Zr, Hf)

SHUJUN LEI, JIAYE JIN, MINGFEI ZHOU, Fudan University, Department of Chemistry, Shanghai, China.

Spectroscopic and theoretical study of extreme coordinated metal carbonyl complexes has been a subject of intensive studies.^a $M(CO)_n^+$ (M = Ti, Zr, Hf) ions were produced by ablating a metal target in a pulse of CO seeded helium, and further studied by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching region. $Ti(CO)_6^+$ is formed as dominant species in the mass spectrum, while $M(CO)_{6,7,8}^+$ ions are of the most abundant species in the mass spectra for zirconium and hafnium. The infrared spectra of $M(CO)_6^+$ (M = Ti, Zr, Hf) show good agreement with previous reports.^b $M(CO)_7^+$ (M = Zr, Hf) ions only dissociate under focused laser irradiation and have one broad band, indicating strongly coordinated complexes. $M(CO)_8^+$ (M = Zr, Hf) complexes can fragment by one CO molecule in unfocused light, and each exhibits an infrared band centered at 2084 cm⁻¹(Zr) and 2072 cm⁻¹(Hf). Theoretical calculations indicate that the $M(CO)_7^+$ (M = Zr, Hf) complexes are at doublet ground states with C_{2v} symmetry. The $M(CO)_8^+$ (M = Zr, Hf) complexes are identified as 19-electron octacarbonyls. Each of them has D_4 symmetry (distorted cubic geometry) and a doublet ground state. The results extend the knowledge of extreme coordinated carbonyl complexes to Group 4 metals, and provide insights into the ion growth mechanisms in the gas phase.

^aZhou, M. F.; Frenking, G. Angew. Chem. Int. Ed. 2018, 57(21), 6236-6241; Science, 2018, 361(6405), 912-916.

^bDuncan, M. A. J. Phys. Chem. A, 2013, 117(46), 11695–11703.