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ABSTRACT 

The increasing availability of heterogeneous bridge data from multiple sources opens 

unprecedented opportunities for data analytics to better predict bridge deterioration for supporting 

enhanced bridge maintenance decision making. Such data include structured National Bridge 

Inventory (NBI) and National Bridge Elements (NBE) data, structured traffic and weather data, 

and unstructured textual bridge inspection reports. However, despite the availability of the data, 

existing data-driven prediction methods mostly learn from abstract inventory data (e.g., the NBI 

data which describe bridge conditions by condition ratings) from a single source – missing the 

opportunity of leveraging the wealth of unstructured textual inspection reports and the diverseness 

of the multi-source data for enhanced deterioration prediction. 

To capitalize on this opportunity, a novel bridge data analytics framework is proposed. The 

proposed framework is composed of six primary components: (1) a bridge deterioration knowledge 

ontology for facilitating semantic information and relation extraction from textual bridge 

inspection reports based on content and domain-specific meaning; (2) a semi-supervised machine 

learning-based semantic information extraction method for extracting information entities that 

describe bridge conditions and maintenance actions from the reports; (3) a supervised machine 

learning-based semantic relation extraction method for extracting dependency relations from the 

reports to link the extracted, yet isolated, information entities into concepts and to represent the 

semantically-low concepts in a semantically-rich structured way; (4) an unsupervised machine 

learning-based data linking method for linking the data records that are extracted from the reports 

and refer to the same entity; (5) a hybrid data fusion method for fusing the linked data records into 

a unified representation and for, subsequently, integrating the fused data with the other types of 
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structured data (i.e., NBI and NBE data, as well as traffic and weather data); and (6) a data-driven, 

deep learning-based bridge deterioration prediction method for learning from the integrated bridge 

data to predict the condition ratings of the primary bridge components and to predict the quantities 

of specific bridge element-level deficiencies. 

The performance of the proposed framework was evaluated in predicting the deterioration of the 

state-owned bridges in Washington. It achieved a macro-precision and macro-recall of 89.9% and 

85.8% when predicting the future condition ratings of the primary bridge components (i.e., decks, 

superstructures, and substructures), and achieved a root mean square error, coefficient of variation, 

and coefficient of determination of 1.3, 27.6%, and 0.89, respectively, when predicting the future 

quantities of specific bridge element-level deficiencies. The experimental results demonstrated the 

promise of the proposed framework. 
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CHAPTER 1 - INTRODUCTION 

1.1 Introduction and Motivations 

Bridges play an important role in ensuring the connectivity of transportation systems for providing 

daily mobility to the public. However, the U.S. bridges are in critical conditions and raise safety 

concerns. According to the American Society of Civil Engineers (ASCE)’s Infrastructure Report 

Card, the U.S. bridges received a grade of C+ (mediocre), with 9.1% and 13.6% of the nation’s 

614,387 bridges being structurally deficient and functionally obsolete, respectively (ASCE 2017). 

It is estimated that the average annual failure rate of the nation’s bridges is between 87 and 222, 

with an expected value of 128 (Cook et al. 2013). Bridge failures are in some cases catastrophic 

and pose great threats to the safety of the public. For instance, the collapse of the I-35W Mississippi 

River Bridge – one of about 600 bridge failures that occurred in the U.S. between 1989 and 2013 

– alone killed 13 people and injured 145 in 2007 (NTSB 2008). While bridge agencies are striving 

to improve the conditions of bridges, it is challenging to make cost-effective maintenance 

decisions under the stringent funding constraints. As estimated by the ASCE, in order to eliminate 

the nation’s deficient bridge backlog by 2028, a $20.5 billion annual investment in the construction 

and maintenance of bridges is needed, while only $12.8 billion is being invested currently (ASCE 

2013). Bridge maintenance decision making relies largely on the predicted future conditions of 

bridges and their elements to allocate the limited maintenance funding (Qiao et al. 2016; Zambon 

et al. 2017; Chang et al. 2019). With the increasing availability of data that can capture multiple 

factors related to the deterioration of bridges, there has been many demands for data-driven bridge 

deterioration prediction for supporting cost-effective maintenance decisions (FHWA 2016; 

NASEM 2016). 



 

 

2 

However, the current state-of-the-art data-driven bridge deterioration prediction methods/models 

are limited in this regard. On one hand, with the rapidly-evolving and expanding capabilities in 

data collection, large amounts of heterogeneous bridge data from multiple sources are becoming 

increasingly available. Such data include structured National Bridge Inventory (NBI) data, 

structured National Bridge Elements (NBE) data, and unstructured textual bridge inspection 

reports. In addition, structured traffic and weather data, which are relevant to bridge deterioration, 

are collected by responsible agencies such as the Federal Highway Administration (FHWA) and 

the National Oceanic and Atmospheric Administration (NOAA). On the other hand, despite the 

availability of the data, existing research efforts (e.g., Morcous 2011; Wellalage et al. 2014; Chang 

et al. 2017; Goyal et al. 2017; Lu et al. 2019) mostly focus on using abstract bridge inventory data 

from a single source – such as the NBI data which describe bridge conditions mainly by condition 

ratings – to predict, at a limited performance level, the future condition ratings of bridges. Such 

abstract data, although are very useful and important, are not sufficient, because they lack detailed 

descriptions about bridge conditions and maintenance actions, which limits the ability to learn 

from the history to predict the future deterioration. More specifically, existing data-driven 

methods/models are not capable of: (1) making use of the large amounts of rich data about bridge 

conditions and maintenance actions that are buried in textual inspection reports, which misses the 

opportunity of learning from such rich data for improved performance of bridge deterioration 

prediction (Washer et al. 2014); and (2) utilizing integrated data from multiple sources, which 

limits the capability to consider a diverse set of factors that may affect the deterioration of bridges 

(e.g., maintenance actions taken, material used in maintenance, traffic and weather patterns, etc.) 

and are, hence, important to consider when predicting the deterioration (Brown et al. 2014). 
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To address the aforementioned limitations, a novel bridge data analytics framework is proposed. 

The proposed framework is composed of six primary components, as per Figure 1.1, to allow for 

the extraction, integration, and analysis of both structured and unstructured data from multiple 

sources for enhanced bridge deterioration prediction. Three types of data are utilized in the 

proposed framework, including structured NBI and NBE data, structured traffic and weather data, 

and unstructured textual bridge inspection reports. Accordingly, the thesis research included seven 

primary research tasks: (1) conducting a comprehensive literature review; (2) developing a bridge 

deterioration knowledge ontology for facilitating semantic information and relation extraction 

from textual bridge inspection reports based on content and domain-specific meaning; (3) 

developing a semi-supervised machine learning (ML)-based semantic information extraction 

method and algorithm for extracting information entities that describe bridge conditions and 

maintenance actions from the reports; (4) developing a supervised ML-based semantic relation 

extraction method and algorithm for extracting dependency relations from the reports to link the 

extracted, yet isolated, information entities into concepts and to represent the semantically-low 

concepts in a semantically-rich structured way; (5) developing an unsupervised ML-based data 

linking method and algorithm for linking the data records that are extracted from the reports and 

refer to the same entity (e.g., the same type of deficiency on a bridge element); (6) developing a 

hybrid data fusion method and algorithm for fusing the linked data records into a unified 

representation and for, subsequently, integrating the fused data with the other types of structured 

data (i.e., NBI and NBE data, as well as traffic and weather data); and (7) developing a data-driven, 

deep learning-based bridge deterioration prediction method and algorithm for learning from the 

integrated bridge data to predict the condition ratings of the primary bridge components (i.e., 
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decks, superstructures, and substructures) and to predict the quantities of specific bridge element-

level deficiencies. 

 

Figure 1.1. Proposed bridge data analytics framework. 

1.2 State of the Art and Knowledge Gaps 

1.2.1 State of the Art and Knowledge Gaps in Bridge Domain Ontologies 

Ontology is defined as “an explicit specification of a conceptualization” for formally representing 

knowledge (Gruber 1995). An ontology that semantically represents bridge deterioration 
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knowledge is at the cornerstone of the proposed bridge data analytics framework. It aims to 

facilitate semantic information and relation extraction from textual bridge inspection reports based 

on content and domain-specific meaning. However, there is a lack of ontologies that sufficiently 

represent the knowledge of bridge deterioration for adequately supporting such text analytics. 

Accordingly, three primary knowledge gaps were identified. 

First, existing ontologies provide a limited coverage of the core bridge deterioration knowledge 

aspects that are essential to analyze the semantics of the text to extract the needed information. For 

example, the ontology by El-Diraby and Kashif (2005) only represents the types of bridges without 

representing the deficiency types, which are essential to capture and extract information about how 

a bridge element has been or could be affected by different types of deficiencies. Similarly, the 

ontology by Bień et al. (2007) provides a limited coverage of bridge deficiencies and deficiency 

causes without any coverage of maintenance actions, which are essential to capture and extract 

information regarding how a deficiency has been or could be maintained. 

Second, although existing ontologies can collectively cover the needed bridge deterioration 

knowledge aspects, they together still suffer from: (1) insufficient concept and/or relation coverage 

within each knowledge aspect. For example, the ontology by Kubota and Mikami (2013) only 

moderately covers the bridge element concepts, which limits the ontology’s ability to support the 

extraction of bridge element concepts – especially when extracting agency-developed-elements 

that are defined and customized by different agencies to meet different bridge condition assessment 

needs; and (2) inconsistent and/or informal concept definition, conceptualization, and 

interpretation across the above-mentioned ontologies. For example, “slip” is defined as “the 

difference between the velocities of a solid surface and a fluid on the surface” by TRB (2015). 
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However, it is defined as “a deformation of the structure element caused by shear forces, without 

the deformation of the element cross-section” by Bień et al. (2007). 

Third, existing ontologies are insufficient in capturing the classifications and multimodality views 

of bridge deterioration knowledge for semantically-rich information representation. For example, 

existing ontologies (e.g., Bien et al. 2007; TRB 2015) only model bridge deficiency concepts as a 

set of vocabularies without classifications or only with shallow classifications. Besides, existing 

ontologies (e.g., NCHRP 2011) only capture bridge maintenance action concepts as a list without 

modeling how these concepts could be classified according to different categorization criteria. 

Without in-depth and multi-view classifications, the extracted information from documents are 

semantically limited and may even mislead the representation, interpretation, and utilization of the 

extracted information. For instance, without a deeper classification, these two maintenance action 

concepts – “heat straightening” and “post-tensioning” – would be considered semantically 

equivalent, which could imply that these actions can be applied for a similar maintenance purpose; 

and, without multi-views or relationships, they cannot be represented according to the types of 

needed material, crew, cost, etc., and thus make the information lose important application 

contexts.  

1.2.2 State of the Art and Knowledge Gaps in Information Extraction 

Information extraction (IE), within this thesis, is defined as a named entity recognition and 

classification (NERC) task, which aims to automatically recognize and classify information 

entities into predefined entity classes. There is a body of research efforts – inside and outside of 

the civil engineering domain – that have been undertaken towards extracting information from 

unstructured text. Despite their achievements, existing IE methods are still limited in supporting 
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automated IE from complex, technical text – with highly-varying text patterns – such as that in 

bridge inspection reports. Accordingly, two primary knowledge gaps were identified.  

First, there is a lack of IE methods that can simultaneously reduce human effort and achieve high 

performance when extracting information from highly heterogeneous and complex text. On one 

hand, most of the existing IE methods have taken a rule-based approach or a supervised ML-based 

approach. For example, almost all IE efforts in the construction domain have used rule-based IE 

methods (e.g., Abuzir and Abuzir 2002; Al Qady and Kandil 2010; Zhang and El-Gohary 2013; 

Zhou and El-Gohary 2015). Rule-based and supervised ML-based IE methods might be able to 

address the complexity and variability of text and thus achieve high IE performance by learning 

from a large set of representative examples, but they require a high amount of human effort. This 

is because such IE methods involve a human-intensive process for developing IE rules (in the case 

of rule-based IE) or annotating training examples (in the case of supervised ML-based IE). For 

example, the development of pattern-matching-based rules for the UMass MUC-4 system required 

1,500 human-hours (Lehnert et al. 1991). It is even more challenging and more time-consuming 

to develop a comprehensive set of representative IE rules or annotations for text with highly-

varying text patterns, such as that in bridge inspection reports. The utilization of incomprehensive 

and/or less representative rules or annotations could negatively affect the IE performance. One the 

other hand, although semi-supervised and unsupervised ML approaches offer plausible solutions 

to address this human-intensiveness problem, existing semi-supervised and unsupervised ML-

based IE methods are still limited in extracting information from highly complex and variable text 

with high performance. They either followed a suboptimal algorithm for IE (e.g., Jiao et al. 2006; 

Mann and McCallum 2007; Liao and Veeramachaneni 2009; Liu et al. 2011) or did not explicitly 

capture the dependency structures of the natural language (e.g., Miller et al. 2004; Guo et al. 2009). 
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IE performance could be negatively affected by not explicitly representing and utilizing the 

dependency structures inherent in the natural language (Sutton and McCallum 2006).  

Second, there is a lack of semantic ML-based IE methods. In recent years, a number of efforts 

explored the use of semantics for facilitating various natural language processing (NLP) tasks. For 

example, it was shown that the use of semantics – that are formally and explicitly defined by 

domain ontologies – improves the performance of domain-specific IE (e.g., Soysal et al. 2010; 

Zhang and El-Gohary 2013; Zhou and El-Gohary 2015). This is because formally defined 

semantics can assist in recognizing and extracting target information based on content and domain-

specific meaning. Utilizing semantics for enhancing automated IE is therefore especially important 

for this research, given the complexity and variability of the text in bridge inspection reports. 

However, the utilization of formally defined semantics for supporting IE has been primarily 

studied in rule-based IE methods (e.g., Paassen et al. 2014; Zhang and El-Gohary 2013; Zhou and 

El-Gohary 2015). Most of the existing ML-based IE methods (e.g., Wu and Weld 2010; Qi et al. 

2014) have only focused on representing text with syntactic features and/or less formally defined 

semantic features. The utilization of semantic features in ML-based IE differs from that in rule-

based IE, because semantic features are meant to be interpreted by computers in the ML-based 

case rather than by human (when developing the rules). As such, the use of formally and explicitly 

defined semantics has not been well-explored in facilitating ML-based IE. 

1.2.3 State of the Art and Knowledge Gaps in Relation Extraction 

Relation extraction (RE), within this thesis, is defined as a dependency parsing (DP) task, which 

aims to automatically extract dependency relations between information entities in natural 

language text. There is a body of research efforts that have focused on developing ML-based DP 

models – using different learning techniques and various feature representations – for extracting 
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dependency relations from text. Despite the importance of these efforts, they cannot effectively 

extract dependency relations from highly technical, domain-specific text such as that in bridge 

inspection reports. Accordingly, three primary knowledge gaps were identified.  

First, from an ML-based DP perspective, there is a lack of studies in ensemble learning-based DP 

methods. The majority of such methods (e.g., Yamada and Matsumoto 2003; Zhang and Clark 

2008; Zhang and Nivre 2011; Chen and Manning 2014; Dyer et al. 2015; Cheng et al. 2016; 

Kiperwasser and Goldberg 2016; Hashimoto et al. 2017; Dozat and Manning 2017; Nguyen et al. 

2017; Strubell and McCallum 2017; Dozat and Manning 2018) have focused on learning a single 

classifier to parse text for extracting dependency relations. Although a single classifier trained with 

advanced learning techniques (e.g., support vector machines and neural networks) could perform 

well on nonlinearly-separable instances/configurations, it is not sufficient to separate those with 

even more complex distributions (Sun et al. 2006; Bicke et al. 2007; Haixing et al. 2017) – such 

as the configurations of the text in the bridge reports (especially given that the reports have highly-

varying levels of text characteristics and patterns). There are several efforts (e.g., Sagae and Lavie 

2006; Nivre and McDonald 2008; Attardi and Dell’Orletta 2009; Hall et al. 2010) that proposed 

to integrate DP models at the parser level. For example, Nivre and McDonald (2008) proposed to 

integrate a graph-based parser and a transition-based parser by letting one parser generate features 

for the other one. Such methods are more co-training-based rather than ensemble learning-based. 

To the author’s best knowledge, there is no ensemble learning-based DP method that utilizes a set 

of constituent classifiers to collectively capture the complex distributions of all the configurations 

for improved dependency relation extraction performance. 

Second, from an ensemble learning perspective, there is a lack of studies in sampling training 

instances/configurations in a way that each constituent classifier is trained only with similarly-
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distributed and thus more easily-separable configurations. Existing ensemble learning techniques 

(refer to Section 2.3.3) sample configurations based on simple, presumed distributions, such as the 

uniform distribution or weighted uniform distribution. Sampling configurations in this way cannot 

capture the configuration distribution characteristics of the text in bridge inspection reports, which 

makes it hard to generate meaningful configuration clusters and could thus make the trained 

constituent classifiers limited in collectively and sufficiently capturing the underlying distributions 

of all the configurations. 

Third, from a feature representation perspective, there is a lack of studies that utilized semantic 

text features for facilitating DP. Existing DP methods (e.g., Bansal et al. 2014; Chen and Manning 

2014; Guo et al. 2015) have relied on using distributed representations of syntactic features [e.g., 

words and part-of-speech (POS) features]. Although distributed representations could reveal the 

semantic meanings of the features to some extent, they provide limited semantics about word-to-

word interactions that are important to consider when deciding on how sentences should be parsed. 

Such interactions can be better captured by the semantic features. For example, “maintenance 

material” and “maintenance action” are the semantic features for the words “concrete” and 

“patching”, respectively. Based on the defined semantics – a maintenance material concept 

semantically describes a maintenance action concept – the dependency relation between 

“concrete”, as a modifier word, and “patching”, as a head word, could be correctly parsed and 

extracted. 

1.2.4 State of the Art and Knowledge Gaps in Data Linking 

Data linking, within this thesis, aims to link the data records that are extracted from bridge 

inspection reports and refer to the same entity. A number of research efforts have been undertaken 

towards developing data linking methods. Despite the importance of these efforts, they are still 
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limited in linking data extracted from highly technical, domain-specific documents, such as bridge 

inspection reports. Accordingly, three primary knowledge gaps were identified. 

First, there is a lack of concept similarity assessment methods that are able to assess similarity in 

the absence of both contextual information and taxonomy-based concept mappings. To assess 

concept similarity, existing semantic similarity (SS) scoring functions either require the textual 

contexts of the concepts in a text corpus (e.g., Landauer 1998; Turney 2011), or need to map the 

concepts in comparison to their corresponding concepts in a taxonomy (e.g., Resnik 1995; Leacock 

and Chodorow 1998; Muller et al. 2006). Such prerequisite mapping is a challenge in itself, 

because it requires assessing the similarities between the concepts in the records and the concepts 

in the taxonomy. Zhang-El-Gohary similarity (Zhang and El-Gohary 2016) is the closest one that 

can address this challenge. It utilizes the WordNet taxonomy to calculate term-level SS scores and 

uses a scoring function to aggregate these scores into a concept-level SS score. As a result, only 

term-level mapping is needed. Term-level mapping, compared to concept-level mapping, is much 

more straightforward, because terms can be mapped by exact comparisons after stemming. 

However, this method generates asymmetrical similarities (i.e., the similarity of concept x to 

concept y is not equal to the similarity of y to x), because it compares a term of the first concept to 

all the terms of the second. Despite its success in its intended application, this method is not 

applicable to data linking in which symmetrical similarities are required (Christen 2012). 

Second, there is a lack of record similarity assessment methods that can effectively assess the 

similarities of records when dependencies among attribute similarity assessments exist. These 

dependencies affect how record similarity should be assessed. For instance, in the following 

example, because the bridge element concepts in the two records (“floor beam splice” and “fascia 

stringer”) are already assessed as being different, there is no need to further assess the similarity 



 

 

12 

of the deficiency concepts (“flaking rust”): <floor beam splice, flaking rust> and <fascia stringer, 

flaking rust>. Existing data linking methods, especially clustering-based ones, mostly aggregate 

attribute similarities – either using equal (e.g., Elsner and Schudy 2000; Ng and Cardie 2002; 

Bilenko et al. 2005; Soon et al. 2006; Ailon et al. 2008; Elsner and Charniak 2008; Hassanzadeh 

et al. 2009) or different (e.g., Hassanzadeh et al. 2009; Hassanzadeh and Miller 2009; Haveliwala 

et al. 2009) attribute weights – into an overall similarity score for assessing record similarity, 

without taking such dependencies into account. It has been shown that such assessment methods 

are prone to generate a significant number of falsely-linked records (Ananthakrishna et al. 2002; 

Weis and Naumann 2004). On the other hand, a limited number of studies (e.g., Weis and 

Naumann 2004; Albrecht and Naumann 2008; Puhlmann et al. 2006) relied on general data 

schemas [e.g., Extensible Markup Language (XML) schema] to capture the structure of record 

attributes for assessing record similarity. However, such schemas cannot be used for capturing 

domain-specific dependencies such as those carried in the bridge report records. 

Third, there is a lack of data linking methods that can address transitive closure problems. Existing 

linking methods, especially classification-based ones (e.g., Fellegi and Sunter 1969; Dey et al. 

1998; Cochinwala et al. 2001; Elfeky et al. 2002; Bilenko and Mooney 2003; Christen 2008; Jiang 

et al. 2014), mostly follow the basic principle of the Fellegi-Sunter model. Such methods, thus, 

assume that the transitivity assumption holds: if (Ri, Rj) and (Ri, Rk) are linked respectively, then 

(Rj, Rk) is also linked, where R represents a record. These methods open the door to transitive 

closures, which typically leads to false positives (Elmagarmid et al. 2007; Christen 2012). 

1.2.5 State of the Art and Knowledge Gaps in Data Fusion 

Data fusion, within this thesis, aims to fuse the linked data records into a unified representation. 

The fusion requires two tasks. First, concept names that refer to the same entity, but vary in terms 
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of surface forms and abstraction levels, need to be fused into canonical identifier names. This is 

defined, within this thesis, as a named entity normalization task. Second, the numerical deficiency 

measures of the multiple instances, which are of the same type of deficiency but are at different 

locations of a bridge element, need to be fused into a single representative representation. This is 

defined, within this thesis, as a numerical data fusion task. A number of research efforts have been 

undertaken in the areas of named entity normalization and numerical data fusion. Despite the 

importance of these efforts, they are still limited in fusing data extracted from highly technical, 

domain-specific documents, such as bridge inspection reports. Accordingly, two primary 

knowledge gaps in each of the areas were identified. 

In the area of named entity normalization, there is a lack of normalization methods that do not 

require human involvement in the normalization process. Most of the existing methods heavily 

rely on human-developed dictionaries or training data to normalize concept names (see Section 

2.5.1). However, despite that several guidelines have defined the standard vocabularies used for 

structured bridge data (e.g., FHWA 1995; AASHTO 2010), there are no such guidelines for 

inspectors/writers – who have very different writing styles and specificity levels – to follow when 

choosing the concept names to use in the textual bridge inspection reports. As a result, the concept 

names used in the reports vary, to a high degree, in terms of surface forms and abstraction levels. 

It is challenging to develop/generate normalization dictionaries/data that can representatively and 

comprehensively capture such high-level variations. Second, there is a lack of normalization 

methods that are able to normalize concept names with both types of variations, such as those in 

bridge inspection reports. Most of the existing methods mainly focus on dealing with surface-form 

variations, which are caused by different naming conventions, e.g., acronyms and morphological 

variations. Yet, they are limited in normalizing concept names that also vary in terms of abstraction 
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levels (e.g., “north concrete bridge rail”, a subconcept of “bridge railing”). Balancing the 

abstraction and detailedness of the identifier names is critical to the ML-based bridge deterioration 

prediction model. As the features of the model, abstract identifiers (e.g., using “bridge” as the 

identifier of the aforementioned names) are too frequent in a collection of reports and, thus, lead 

to the loss of distinctive feature patterns. On the other hand, detailed identifiers (e.g., using “north 

concrete bridge rail”) are too rare in the collection and, thus, increase the dimensionality and the 

sparsity of the feature space, which would cause overfitting to a particular feature and therefore 

would undermine the generalizability of the model. 

In the area of numerical data fusion, there is a lack of fusion methods that define the interval-based 

representation of the fused data in an objective way. Interval-based representations are usually 

used in major data fusion frameworks to characterize the uncertainty of the data (Sentz and Ferson 

2002; Torra 2010). However, most of the existing methods (e.g., Zhang et al. 2017; Tian et al. 

2018; He et al. 2018; Wu et al. 2018; Song et al. 2019) define the representation (i.e., defining the 

number of intervals and the size of the interval) in a subjective way. For example, based on 

subjective human judgement, Zhang et al. (2017) defined the representation of the fused building 

settlement data as four equal-size intervals. Subjective judgements are limited in defining the 

optimal number of intervals and the optimal size of the interval, because there is a tradeoff 

relationship between the two. A large number of intervals is preferred to capture more distinctive 

data instances for avoiding underfitting; and, at the same time, a large interval size is preferred to 

retain more data instances within an interval for avoiding overfitting. But, as the number increases, 

the size decreases. Such tradeoff is very difficult to balance using only subjective judgements of 

humans. Second, there is a lack of fusion methods that focus on fusing data that are 

complementary, such as the numerical deficiency measures in inspection reports, each of which 
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partially describes the overall condition of a deficiency. The majority of existing fusion methods 

(e.g., He et al. 2018; Zheng and Deng 2018; Xiao 2019; Mohammadi et al. 2019) focus on fusing 

data that are imprecise, conflicting, and/or multi-modal (Khaleghi et al. 2013), using the fuzzy set 

theory, Dempster-Shafer theory, and/or matrix factorization (Sentz and Ferson 2002; Lahat et al. 

2015). When fusing complementary data (e.g., the deficiency measures), they would result in an 

interval-based representation that can only represent a subset of the data, which are less imprecise 

or conflicting but cannot fully capture the whole condition that the data collectively describe. Thus, 

despite being successful in their intended applications, existing data fusion methods are limited in 

fusing complementary data. 

1.2.6 Sate of the Art and Knowledge Gaps in Data-Driven Bridge Deterioration 

Prediction 

Data-driven bridge deterioration prediction, within this thesis, aims to learn from the integrated 

bridge data from multiple sources for predicting the future condition ratings of the primary bridge 

components and predicting the future quantities of specific bridge element-level deficiencies. A 

number of research efforts have been undertaken in the area of data-driven bridge deterioration 

prediction. Despite the importance of these efforts, they are still limited in supporting such a 

challenging prediction task. Accordingly, two primary knowledge gaps were identified. 

First, there is a lack of methods that capitalize on the wealth of multi-source heterogeneous bridge 

data for enhanced deterioration prediction – that is not only able to predict the condition ratings of 

the primary bridge components with improved performance, but also able to predict the quantities 

of specific bridge element-level deficiencies. With the rapidly-evolving and expanding capabilities 

in data collection, large amounts of heterogeneous bridge data from multiple sources are becoming 

increasingly available, including structured NBI and NBE data, structured traffic and weather data, 
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and unstructured textual bridge inspection reports. Among them, previously-untapped textual 

inspection reports, which include a large amount of rich data/information describing bridge 

conditions and maintenance actions, are key data sources to allow for such enhanced prediction. 

However, despite the availability of such bridge data, existing data-driven prediction methods 

(e.g., Morcous 2011; Wellalage et al. 2014; Chang et al. 2017; Goyal et al. 2017; Lu et al. 2019) 

mostly focus on using abstract bridge inventory data from a single source – such as the NBI data 

which describe bridge conditions mainly by condition ratings – to predict the condition ratings of 

the primary bridge components (i.e., decks, superstructures, and substructures). Yet, due to mainly 

using abstract single-source data, their performance level is limited. Existing methods are, thus, 

limited in making use of the integrated bridge data that are originally in heterogeneous formats 

and from multiple sources – missing the opportunities of leveraging the wealth of textual 

inspection reports and the diverseness of the multi-source data for enhanced deterioration 

prediction. 

Second, there is a lack of bridge deterioration prediction methods that are able to effectively learn 

from highly dimensional and imbalanced bridge data for supporting the prediction. Bridge data, 

especially integrated data from multiple sources, are of high dimensionality. For example, for a 

single bridge in the created dataset (refer to Section 8.2.2.1), its integrated data at a single timestep 

include 12,687 features, with 134, 1,480, 16, 196, and 10,861 features from the NBI data, NBE 

data, traffic data, weather data, and inspection report data, respectively. The high dimensionality 

of bridge data challenges the performance of data-driven methods in effectively predicting the 

deterioration. On the other hand, bridge data are naturally imbalanced; specifically, the numbers 

of bridges in different condition rating categories are imbalanced. For example, as of 2018, 2.5%, 

14.8%, 42.0%, 24.7%, 12.3%, and 3.7% of the decks of the bridges in the U.S. are in the condition 



 

 

17 

rating categories of “excellent”, “very good”, “good”, “satisfactory”, “fair”, and “poor” or below, 

respectively. The imbalance in bridge data negatively affects the ability of data-driven methods to 

effectively capture the distribution characteristics of the data, which would undermine the 

performance of predicting the future condition ratings. However, existing data-driven prediction 

methods (e.g., Huang 2010; Creary and Fang 2015; Contreras-Nieto et al. 2016; Lim and Chi 2019) 

mostly leave these data challenges understudied or even untouched, which limits the ability to 

effectively learn from bridge data, which are highly dimensional and imbalanced. 

1.3 Problem Statement 

There is an emerging opportunity of leveraging machine learning-based data analytics to allow for 

the extraction, integration, and analysis of heterogeneous bridge data from multiple sources, in 

order to better predict bridge deterioration. However, there are two primary challenges to the 

utilization of multi-source heterogeneous bridge data: (1) heterogeneity: the data are structured 

and unstructured; and (2) complexity: the data are highly technical (i.e., having different levels of 

technical detail, text patterns, and text characteristics) and domain-specific, and are highly 

dimensional and imbalanced. There is no existing framework that is capable of dealing with the 

heterogeneity and complexity of the bridge data. In this regard, the following knowledge gaps were 

identified: (1) there is a lack of ontologies that sufficiently represent the knowledge of bridge 

deterioration for adequately supporting information and relation extraction from textual bridge 

inspection reports; (2) there is a lack of information extraction methods and algorithms that are 

able to effectively extract information that describes bridge conditions and maintenance actions 

from highly technical, domain-specific text, such as that in the textual reports; (3) there is a lack 

of relation extraction methods and algorithms that are able to effectively extract dependency 

relations from such text for representing the extracted information in a semantically-rich structured 
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way; (4) there is a lack of data linking methods and algorithms that are able to effectively assess 

the similarities between the data records extracted from the text and link the records without 

forming transitive closures; (5) there is a lack of data fusion methods and algorithms that are able 

to effectively fuse complex concept names (i.e., varying in terms of both surface forms and 

abstraction levels) and effectively fuse complementary numerical data in an objective way; and 

(6) there is a lack of data-driven bridge deterioration prediction methods and algorithms that are 

able to effectively learn from highly dimensional and imbalanced bridge data, which are originally 

in heterogeneous formats and from multiple sources, for better predicting the condition ratings of 

the primary bridge components and the quantities of specific bridge element-level deficiencies. 

1.4 Research Objectives and Questions 

The overall objective of the thesis research is to develop a bridge data analytics framework to 

allow for the extraction, integration, and analysis of multi-source heterogeneous (structured and 

unstructured) data for enhanced bridge deterioration prediction. Accordingly, six specific research 

objectives and outcomes were defined, along with the research questions. 

(1) Objective #1: Develop a bridge deterioration knowledge ontology for facilitating semantic 

information and relation extraction from textual bridge inspection reports based on content and 

domain-specific meaning. 

Research Questions: What are the concepts that need to be represented in the ontology to 

sufficiently cover the subject domain of knowledge (i.e., bridge deterioration knowledge) in 

terms of breadth, depth, classifications, and multimodality views? What are the concepts that 

need to be represented in the ontology to adequately support the subject application (i.e., 

semantic information and relation extraction from the reports)?  
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Outcome: An ontology that sufficiently represents the knowledge of bridge deterioration for 

adequately supporting semantic information and relation extraction from textual bridge 

inspection reports. 

(2) Objective #2: Develop an ML-based semantic information extraction method for extracting 

information entities that describe bridge conditions and maintenance actions from textual 

bridge inspection reports. 

Research Questions: What is the target information that needs to be extracted to capture the 

necessary information about bridge conditions and maintenance actions for supporting bridge 

deterioration prediction? What are the necessary features to represent the highly technical, 

domain-specific text in bridge inspection reports for information extraction? How to use the 

semantics of the ontology to conduct information extraction with high performance? How to 

develop information extraction algorithms that require as less human-annotation effort as 

possible, while achieving high performance (at least 85% in both precision and recall) – given 

the varied patterns and characteristics of the text? 

Outcome: An ML-based semantic information extraction method and algorithm for 

automatically extracting information entities that describe bridge conditions and maintenance 

actions from textual bridge inspection reports. 

(3) Objective #3: Develop an ML-based semantic relation extraction method for extracting 

dependency relations from textual bridge inspection reports for linking the extracted, yet 

isolated, information entities into concepts and representing the semantically-low concepts in 

a semantically-rich structured way. 
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Research Questions: What are the necessary features to capture the interrelationships between 

the information entities for relation extraction? How to use the semantics of the ontology to 

conduct relation extraction with high performance? How to develop relation extraction 

algorithms that are able to capture the complex distributions of all the configurations? How to 

develop relation extraction algorithms that are able to sample similarly-distributed and thus 

more easily-separable configurations into the same cluster? How to develop relation extraction 

algorithms that can achieve high performance (at least 80-85% in both precision and recall) 

when representing the extracted information in a semantically-rich structured way? 

Outcome: An ML-based semantic relation extraction method and algorithm for automatically 

extracting dependency relations from the text for representing the extracted information in 

semantically-rich structured way. 

(4) Objective #4: Develop an ML-based data linking method for linking the data records that are 

extracted from textual bridge inspection reports and refer to the same entity.  

Research Questions: How to assess concept similarity in the absence of contextual information 

and taxonomy-based concept mappings? How to assess record similarity in the presence of 

dependencies among attribute (i.e., concept) similarity assessments? How to link the records 

without forming transitive closures for better linking performance? How to develop data 

linking algorithms that can automatically identify the optimal number of target clusters (i.e., 

the number of sets containing the linked records), without manually identifying this number? 

Outcome: An ML-based data linking method and algorithm for linking the data records that 

are extracted from textual bridge inspection reports and refer to the same entity. 
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(5) Objective #5: Develop a hybrid data fusion method for fusing the linked data records into a 

unified representation and for, subsequently, integrating the fused data with the other types of 

structured data (i.e., NBI and NBE data, as well as traffic and weather data). 

Research Questions: How to normalize the multiple concept names that refer to the entity, but 

vary in terms of both surface forms and abstraction levels, into a canonical name with balanced 

abstraction and detailedness? How to develop named entity normalization algorithms that do 

not require established lexicons in dictionaries and human-annotated training data? How to 

fuse numerical data that are complementary, such as the numerical deficiency measures in this 

research (i.e., each of the measures partially describes the overall condition of a deficiency)? 

How to define the interval-based representations of the fused data in an objective way? How 

to integrate the fused data with the other types of structured data (i.e., NBI and NBE data as 

well as traffic and weather data)? 

Outcome: A hybrid data fusion method that includes three algorithms: (1) a named entity 

normalization algorithm for fusing the multiple concept names, (2) a numerical data fusion 

algorithm for fusing the multiple deficiency measures, and (3) a data integration algorithm for 

integrating the fused data with the other types of structured bridge data. 

(6) Objective #6: Develop a data-driven, deep learning-based bridge deterioration prediction 

method for learning from the integrated bridge data (outcome of Objective #5) to predict the 

condition ratings of the primary bridge components (i.e., decks, superstructures, and 

substructures) and to predict the quantities of specific bridge element-level deficiencies.  

Research Questions: How to develop prediction algorithms that are able to effectively learn 

from highly dimensional and sparse data, such as the integrated bridge data? How to develop 
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prediction algorithms that are able to effectively address the imbalance in data, such as the 

class imbalance in the integrated bridge data? How to capture the temporal dynamics that 

connect data over time for supporting the prediction? How to use deep learning techniques to 

support such a challenging data-driven prediction task? 

Outcome: A data-driven, deep learning-based bridge deterioration prediction method and 

algorithm for predicting the condition ratings of the primary bridge components (i.e., decks, 

superstructures, and substructures) and for predicting the quantities of specific bridge element-

deficiencies. 

1.5 Research Tasks and Methodology 

The research methodology includes seven primary research tasks, as summarized in Figure 1.2. A 

detailed introduction to each task and the corresponding research methodology is presented in the 

following subsections.  
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Figure 1.2. Research tasks and methodology. 

1.5.1 Research Task #1 – Literature Review 

The literature review covered six primary domains: semantic modeling and ontology, information 

extraction, relation extraction, data linking, data fusion, and data-driven bridge deterioration 

prediction. The following list summarizes the topics covered in each domain. 
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• Semantic modeling and ontology: the literature review focused on: (1) ontology development 

methodologies, and (2) existing semantic models and ontologies in the construction and civil 

infrastructure domain (with a focus on those related to bridge deterioration knowledge). 

• Information extraction: the literature review focused on existing research and methods for 

information extraction in both the computer science and the construction and civil 

infrastructure domains. Specifically, the literature review covered: (1) existing rule-based 

information extraction methods and algorithms, (2) existing ML-based information extraction 

methods and algorithms (including supervised, semi-supervised, and unsupervised learning 

algorithms for information extraction), and (3) semantic similarity measures for assessing the 

similarities between terms/words (including corpus-based and knowledge-based semantic 

similarity measures). 

• Relation extraction: the literature review focused on existing research and methods for relation 

extraction (i.e., dependency relation extraction, also known as dependency parsing) in both the 

computer science and the construction and civil infrastructure domains. Specifically, the 

literature review covered: (1) the transition-based dependency parsing model, (2) existing ML-

based dependency parsing methods and algorithms (with a focus on neural network-based 

methods/algorithms, which are the current state of the art in the area of dependency parsing), 

and (3) existing ensemble machine learning methods. 

• Data linking: the literature review focused on existing research and methods for data linking 

in both the computer science and the construction and civil infrastructure domains. 

Specifically, the literature review covered: (1) existing ML-based data linking methods and 

algorithms (including classification-based and clustering-based linking methods/algorithms), 
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(2) existing term similarity assessment functions, (3) existing concept similarity assessment 

functions, and (4) existing spectral clustering methods. 

• Data fusion: the literature review focused on two areas: named entity normalization and 

numerical data fusion. In the area of named entity normalization, the literature review covered: 

(1) existing dictionary-based named entity normalization methods and algorithms, and (2) 

existing ML-based named entity normalization methods and algorithms. In the area of 

numerical data fusion, the literature review covered: (1) the commonly-used descriptive 

statistics in data fusion, and (2) existing data fusion theories and their applications. 

• Data-driven bridge deterioration prediction: the literature review focused on existing research 

and methods in the areas of data-driven bridge deterioration prediction and machine learning 

(with a focus on deep learning). Specifically, the literature review covered: (1) existing data-

driven bridge deterioration methods and algorithms (including deterministic, stochastic, and 

artificial intelligence-based prediction methods/models), (2) existing deep learning methods 

and algorithms (with a focus on recurrent neural networks), (3) existing manifold learning 

methods and algorithms, and (4) existing methods and algorithms for addressing data 

imbalance. 

1.5.2 Research Task #2 – Semantic Data Modeling and Ontology Development  

This research task aimed to develop a bridge deterioration knowledge ontology (namely, 

BridgeOnto) for facilitating semantic information and relation extraction from textual bridge 

inspection reports. This research task included two primary subtasks. 
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1.5.2.1 Subtask #2.1 – BridgeOnto Development and Coding 

This subtask aimed to develop a domain-specific, unambiguous, and formalized representation of 

bridge deterioration knowledge, and to code it in Web Ontology Language (OWL) format. 

Benchmarking the ontology development methodology by El-Gohary and El-Diraby (2010), the 

development of the BridgeOnto included the following seven primary steps:  

1. Domain, purpose, intended users, and scope definition: These fundamental scope descriptions 

were defined (as per Table 3.1) and utilized as guidance throughout the BridgeOnto 

development process. 

2. Competency questions (CQs) development: A competency question (CQ) is expressed in the 

form of a natural language sentence that shows a pattern for a type of questions that an ontology 

must be able to answer (Fox and Gruninger 1998). CQs serve as functional requirements to 

ontologies. A set CQs for formulating the functional requirements to the BridgeOnto were 

developed and are discussed in Section 3.2.1. 

3. Concept hierarchy construction: A concept hierarchy was constructed using two main iterative 

steps: (1) extracting key concepts from concept sources (the identified concept sources are 

explained in more detail in Section 3.1.2), and (2) organizing the extracted concepts into a 

concept hierarchy. The main concepts of the ontology were defined based on an analysis of a 

sample of bridge inspection reports, from both bridge engineering and NLP perspectives, in 

order to facilitate information and relation extraction from bridge inspection reports. At the 

highest level of abstraction, the BridgeOnto represents bridge deterioration knowledge by five 

main concepts: bridge element, deficiency, deficiency cause, maintenance action, and their 

related attributes (e.g., maintenance material, numerical measure, numerical measure unit, 

categorical quantity measure, categorical severity measure, and date). A combination of top-
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down and bottom-up hierarchy construction approaches were used to avoid the inclusion of 

unnecessarily too detailed specific concepts and/or less-meaningful high-level concepts. The 

top-down approach first defines the most general concepts and then specifies their 

subconcepts; whereas, the bottom-up approach begins with defining the most specific concepts 

and then groups them into high-level concepts (Noy and McGuinness 2001). 

4. Multimodality modeling: The concept hierarchy was reclassified based on different modality 

views for representing the polymorphic and multifaceted nature of bridge deterioration 

knowledge. Different modality views are shown Section 3.1.2. 

5. Relation modeling: Three major types of relations were captured: (1) “is-a” relationship to 

characterize sub-superordinate relationships, (2) “is-part-of” relationship to decompose 

concepts into their constituent parts, and (3) cross-concept relationship to establish non-

hierarchical relationships with semantic meanings between concepts. 

6. Ontology capturing: Ontology capturing was conducted to define the formal terms of the 

concepts and relations.  

7. Ontology coding: The BridgeOnto was coded using Protégé 3.4.5 (Protégé 2016). Protégé is 

an off-the-shelf ontology editor that supports coding ontology in OWL format. The coding 

included the following two main steps: (1) representing and coding the concepts as Protégé-

OWL classes and using superclass-subclass relations to represent the hierarchical “is-a” 

relationships; and (2) representing and coding the relations using Protégé-OWL “extension 

property restrictions” and “necessary conditions”. 

1.5.2.2 Subtask #2.2 – BridgeOnto Evaluation 

This subtask aimed to evaluate the developed ontology. The evaluation included verification and 

validation (Gómez-Pérez et al. 2006). Verification aimed to ensure that the ontology was 
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constructed correctly and consistently towards implementing the ontology requirements. The 

verification process included two main components: (1) answering CQs: verifying that the 

ontology meets its functional requirements, and (2) automated consistency and redundancy 

checking: verifying the freeness of the ontology from such errors. Validation aimed to evaluate the 

capability of the ontology in modeling the real-world that it tries to model. Validation is an 

important ontology quality assessment procedure that aims to assure the correctness of the 

knowledge encoded in an ontology (Vrandečić 2009). The ontology was validated using two 

techniques: (1) human expert validation: assessing how well the ontology meets the following 

criteria based on domain expert opinion: clarity, representation, coverage, conciseness, 

navigational ease, and extendibility; and (2) application-oriented validation: applying the ontology 

in a real-life application scenario (i.e., information and relation extraction from textual bridge 

inspection reports – as per Research Tasks #3 and #4) to evaluate its performance in its intended 

use. 

1.5.3 Research Task #3 – Semantic Information Extraction 

This research task aimed to develop an ML-based, semantic information extraction (IE) method 

and algorithm for extracting information entities that describe bridge conditions and maintenance 

actions from textual bridge inspection reports. This research task included two primary subtasks. 

1.5.3.1 Subtask #3.1 – Information Extraction Method Development 

IE, within this thesis, is defined as a named entity recognition and classification (NERC) problem. 

NERC aims to automatically recognize and classify information entities into predefined entity 

classes. As explained in Section 1.5.2.1, the entity classes were predefined based on the analyses 

of sample bridge inspection reports, from both bridge engineering and NLP perspectives. The 
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defined entity classes include: bridge element, deficiency, deficiency cause, maintenance action, 

maintenance material, numerical measure, numerical measure unit, categorical quantity measure, 

categorical severity measure, date, and other. This subtask focused on developing an ontology-

based, semi-supervised conditional random fields (CRF)-based information extraction method and 

algorithm for extracting information entities of these entity classes from the inspection reports. It 

was composed of four main steps: 

1. Baseline algorithm selection: In selecting the baseline algorithm(s), a number of existing rule-

based and ML-based IE methods and algorithms were reviewed and analyzed (see Sections 

1.2.2 and 1.5.1). Based on the review and analysis, the supervised CRF algorithm was selected 

as the baseline algorithm, because of its state-of-the-art IE/NERC performance. The baseline 

algorithm was also used to benchmark the performance of the proposed IE algorithm. 

2. IE algorithm development: An ontology-based, semi-supervised CRF-based IE algorithm was 

developed. In developing the algorithm, a number of existing semi-supervised ML methods 

and algorithms were reviewed and analyzed (see Sections 1.2.2 and 1.5.1). Based on the review 

and analysis, the IE algorithm was developed under the semi-supervised learning cluster 

assumption: if two data points lay in the same cluster, they are likely to have a similar class 

label. This assumption was followed because it is the underlying assumption of most existing 

semi-supervised ML approaches. 

3. Semantic feature representation: A semantic feature representation was developed to represent 

words in sentences for facilitating information extraction. In developing the semantic feature 

representation, existing feature representations for supporting IE were reviewed and analyzed 

(see Section 1.2.2). The semantic feature representation was then developed to include both 

syntactic features (i.e., lexical forms, stems, and POS tags of words) and semantic features 
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(i.e., semantic classes of words extracted based on the ontology developed as per Research 

Task #2). The semantic feature representation was used by the IE algorithm to learn how to 

extract information and to measure semantic similarities between labeled and unlabeled words.  

4. Semantic similarity measurement: A semantic similarity (SS) measure was developed to derive 

the most likely entity class sequences for unlabeled data/sentences, so that the developed semi-

supervised IE algorithm can learn from both labeled and unlabeled data. In developing the SS 

measure, existing semantic similarity measures were reviewed and analyzed (see Section 

1.5.1). A heterogeneous information network meta-path-based SS measure was then 

developed, because it allows for capturing both corpus-based and knowledge-based semantic 

similarities between information entities (i.e., words). Capturing both types of similarities is 

essential for an accurate similarity measuring. 

1.5.3.2 Subtask #3.2 – Information Extraction Method Evaluation 

This subtask aimed to evaluate the performance of the developed IE methods and algorithms (both 

the proposed and the baseline). Evaluating the performance aimed to compare the algorithm-

generated extraction results against the gold standard using evaluation metrics. Precision and recall 

were selected as the primary evaluation metrics. Precision is the percentage of the total number of 

correctly-extracted information entities out of the total number of all extracted entities. Recall is 

the percentage of the total number of correctly-extracted entities out of the total number of entities 

that should be extracted. F-1 measure, as the weighted harmonic mean of recall and precision, was 

also selected. Because the proposed IE method deals with a multi-class classification problem 

where each information entity could be labeled with one of the eleven defined entity classes, 

average precision, recall, and F-1 measure were also used as evaluation metrics, which are the 

arithmetic means of precisions, recalls, and F-1 measures over all the entity classes. The details of 
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method implementation, including dataset preparation, are presented in Section 4.2.2. The 

evaluation results are presented and discussed in Section 4.3. 

1.5.4 Research Task #4 – Semantic Relation Extraction 

This research task aimed to develop an ML-based, semantic relation extraction (RE) method and 

algorithm for extracting dependency relations from textual bridge inspection reports to link the 

extracted, yet isolated, information entities into concepts and to represent the semantically-low 

concepts in a semantically-rich structured way. This research task included two primary subtasks. 

1.5.4.1 Subtask #4.1 – Relation Extraction Method Development 

RE, within this thesis, is defined as a dependency parsing (DP) problem. DP aims to recognize and 

extract word-to-word dependency relations from the text for linking words (i.e., information 

entities extracted as per Research Task #3) into concepts and for representing the semantically-

low concepts in a semantically-rich structured way. This subtask focused on developing a semantic 

neural network ensemble (NNE)-based DP method and algorithm for automatically extracting 

dependency relations from the text. It was composed of four main steps: 

1. Baseline algorithm selection: In selecting the baseline algorithms, existing rule-based and ML-

based DP methods and algorithms were reviewed and analyzed (see Sections 1.2.3 and 1.5.1). 

Based on the review and analysis, three DP algorithms were selected as the baselines for 

benchmarking and evaluating the performance of the proposed algorithm, including semantic 

single classifier-based algorithms that use a single neural network (NN) or a single support 

vector machine (SVM) classifier and a semantic stacked generalization-based algorithm that 

use cross-validation partitioning for sampling the configurations.  
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2. DP algorithm development: In developing the DP algorithm, existing ensemble learning and 

dependency parsing methods and algorithms were reviewed and analyzed (see Sections 1.2.3 

and 1.5.1). Based on the review and analysis, NN-based and SVM-based DP algorithms were 

selected as the bases for developing the proposed semantic NNE-based DP algorithm. The NN 

algorithm was used for developing constituent classifiers for the proposed algorithm. The SVM 

algorithm was used for developing a combiner classifier for the proposed algorithm.  

3. Semantic distributed feature representation: In developing the semantic distributed feature 

representation, existing feature representations for supporting DP were reviewed and analyzed 

(see Section 1.2.3). A new semantic distributed feature representation, which uses 

configuration-based features, syntactic and semantic text features, and distributed feature 

representation, was then developed for representing the configurations. Configurations in the 

semantic distributed feature representations were used by the DP algorithms (the proposed and 

the baseline) to learn how to extract dependency relations. 

4. Similarity-based sampling: In developing the sampling algorithm, the characteristics of the 

configuration distributions were analyzed, and existing ensemble learning methods and 

algorithms were reviewed and analyzed (see Sections 1.2.3 and 1.5.1). A similarity-based 

sampling algorithm was then developed to sample configurations into configuration clusters 

(defined based on the characteristics of the configuration distributions and are further 

explained in Section 5.2.1.2) in a way that a cluster only contains similarly-distributed and thus 

more easily-separable configurations. The similarities between the configurations and the 

transition centers were used to sample configurations into the clusters. 
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1.5.4.2 Subtask #4.2 – Relation Extraction Method Evaluation 

This subtask aimed to evaluate the performance of the developed relation extraction/DP methods 

and algorithms (both the proposed and the baseline). The evaluation included algorithm validation 

and testing. Algorithm validation was conducted, using the configurations, to: (1) select the 

hyperparameter values for the classifiers, (2) select the feature representation, and (3) compare the 

performance of the proposed DP algorithm to those of the three baselines. The selection and 

comparison were conducted based on configuration-based accuracy, which is the ratio of the 

number of correctly-classified configurations to the total number of configurations. Algorithm 

testing was conducted, using the testing sentences, to evaluate the performance of the proposed 

DP algorithm (with the selected hyperparameters and feature representation) in extracting 

dependency relations from bridge inspection reports for representing the extracted information in 

a semantically-rich structured way. The performance was measured in terms of precision, recall, 

and F-1 measure, at both the semantic information element (SIE) and semantic information set 

(SIS) levels. Precision is the ratio of the number of correctly-extracted SIEs/SISs to the total 

number of extracted SIEs/SISs. Recall is the ratio of the number of correctly-extracted SIEs/SISs 

to the total number of SIEs/SISs that should be extracted. F-1 measure is the weighted harmonic 

mean of precision and recall. A threefold cross-validation was performed to evaluate the 

generalizability of the algorithm. The confidence intervals of the mean values for these measures 

were also calculated to evaluate the sensitivity of the performance results. These evaluation metrics 

were calculated by comparing the algorithm-predicted extractions with the gold standard 

annotations. The details of method implementation, including dataset preparation, are presented in 

Section 5.2.2. The evaluation results are presented and discussed in Section 5.3. 
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1.5.5 Research Task #5 – Unsupervised Data Linking 

This research task aimed to develop an ML-based data linking method and algorithm for linking 

data records that are extracted from textual bridge inspection reports and refer to the same entity. 

This research task included two primary subtasks. 

1.5.5.1 Subtask #5.1 – Data Linking Method Development 

Data linking, within this thesis, aims to link the data records that are extracted from the reports and 

refer to the same entity. For example, the following two records were extracted from the same 

bridge inspection report (LaDOTD 2008) and refer to the same entity (i.e., the crack on the girder 

web): <box girders webs, crack, several> and <longitudinal steel box girder webs, cracks, many>. 

This subtask focused on developing a spectral clustering (SC)-based data linking method and 

algorithm for linking the data records. It was composed of four main steps:  

1. Development of concept similarity assessment method: A new concept similarity (CS) 

assessment method was developed, which assesses the similarities between concepts based on 

the similarity degrees of their terms, without the need for pre-existing context information or 

taxonomy-based concept mappings. In developing the method, three alternative CS scoring 

functions were developed and tested. The most suitable function was selected based on the 

testing results. 

2. Development of record similarity assessment method: A new sequential record similarity 

assessment method was developed, which breaks down the record-level similarity assessment 

task into sequences of attribute-level tasks based on similarity assessment dependencies. 

Similarity assessment dependencies indicate that: (1) the record similarity assessment should 

be conducted as sequences of attribute similarity assessment tasks, where the similarities of 
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object concepts should be assessed prior to assessing the similarities of property concepts; and 

(2) the similarities of object concepts decide if there is a need to further assess the similarities 

of property concepts. For example, because the bridge element (object) concepts in the two 

records are already assessed as being different, there is no need to further assess the similarity 

of the deficiency (property) concepts: <floor beam splice, flaking rust> and <fascia stringer, 

flaking rust>. Accordingly, three types of similarity assessment dependencies for the bridge 

report record similarity assessment were defined: element-deficiency, element-deficiency 

cause, and element-maintenance action. The method was evaluated based on its effectiveness 

in supporting the linking. 

3. Selection of data linking method: SC was selected for linking the records at each attribute level 

for five main reasons. First, data linking can be naturally formulated as a graph-partitioning 

task, where same/similar records (as vertices) are partitioned into the same subgraph and are 

thus linked (as edges). Second, SC does not make a strong assumption on the shapes of target 

clusters (Long et al. 2006; Zhang et al. 2008). This is much desired because records do not 

necessarily lie in disjoint convex sets. Third, it embeds high-dimensional data into a linear, 

low-dimensional space by representing the 𝑛 × 𝑛  Laplacian matrix using an 𝑛 × 𝑘  matrix 

(where 𝑘 ≪ 𝑛). The resulting matrix contains only a few leading eigenvectors of the Laplacian 

matrix (Chan et al. 1994; Doyle et al. 2008), and thus avoids the curse of dimensionality (Doyle 

et al. 2008). Because of the linearity, the clustering results are always at global maxima. Fourth, 

previous studies have shown that it outperforms “traditional” clustering methods, such as k-

means and single linkage (Long et al. 2006; Zhang et al. 2008). Fifth, it can be easily 

implemented, because its eigen-decomposition process can be solved efficiently by standard 

linear algebra methods (Zhang et al. 2008; Lei and Rinaldo 2015). 
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4. Development of improved SC-based data linking method: An improved SC-based data linking 

method was proposed, which uses iterative bi-partitioning to automatically identify the optimal 

number of target classes (the number of sets containing linked records). The original SC 

method requires manually defining this number (Meila 2016), which is challenging because 

the number varies across datasets (e.g., across different bridge inspection reports) and the true 

number for each dataset is unknown (if without human-annotated gold standards). In addition 

to this improvement, the use of unsupervised pre-classification prior to the clustering – to break 

down a similarity graph into several small ones – was tested to evaluate if the size reduction 

of the graph would improve the clustering performance. Both, the pre-classification and the 

iterative bi-partitioning, were evaluated based on their effectiveness in supporting the linking. 

1.5.5.2 Subtask #5.2 – Data Linking Method Evaluation 

This subtask aimed to evaluate the performance of the developed data linking methods and 

algorithms (both the proposed and its variations). The linking results were compared to those in 

the gold standard, and were evaluated based on example-based precision, recall, and F-1 measure. 

Using the example-based measures, the data linking performance was calculated for each record 

in a report, and the overall performance was obtained by calculating the mean performance over 

all the records in the report. The example-based precision is the average of the ratio of the number 

of correctly-linked records to the total number of linked records across all the records extracted in 

a report. The example-based recall is the average of the ratio of the number of correctly-linked 

records to the total number of records that should be linked across all the records extracted in a 

report. The example-based F-1 measure is the weighted harmonic mean of the example-based 

precision and recall. The details of method implementation, including dataset preparation, are 
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presented in Sections 6.2.2 and 6.3. The evaluation results are presented and discussed in Section 

6.3. 

1.5.6 Research Task #6 – Hybrid Data Fusion 

This research task aimed to develop a hybrid data fusion method and algorithm for fusing the 

linked data records into a unified representation and for, subsequently, integrating the fused data 

with the other types of structured data (i.e., NBI and NBE data, as well as traffic and weather data). 

This research task included two primary subtasks. 

1.5.6.1 Subtask #6.1 – Data Fusion Method Development 

Data fusion, within this thesis, aims to fuse the linked data records (extracted from bridge 

inspection reports as per Research Tasks #3 and #4, and linked as per Research Task #5) into a 

unified representation and to integrate the fused data with the other types of structured data. This 

subtask focused on developing hybrid data fusion method and algorithms. The developed method 

includes three algorithms: a named entity normalization (NEN) algorithm for fusing concept 

names, a numerical data fusion algorithm for fusing numerical deficiency measures, and a data 

integration algorithm for integrating the fused report data with the other types of structured data 

(i.e., NBI and NBE data as well as traffic and weather data). It was composed of three main steps:  

1. NEN algorithm development: In developing the NEN algorithm, existing NEN methods and 

algorithms were reviewed and analyzed (see Sections 1.2.5 and 1.5.1). An unsupervised NEN 

algorithm was then developed to include a concept ranking function and a concept selection 

rule for normalizing concept names. The ranking function considers the corpus statistic score, 

term-position score, and term-sequence score of a candidate identifier concept name to 

calculate its ranking score. Ranking functions with different combinations of the three types of 
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scores were also developed and tested. The most suitable function was selected based on the 

testing results. The selection rule considers both the corpus statistics and the lexical patterns 

of concept names to select a final candidate identifier name from the top-raking names. 

Different combinations of two hyperparameters, which are used by the rule to balance the 

abstraction and detailedness of the identifier concept names, were tested. The combination with 

the optimal hyperparameter values was selected based on the testing results. 

2.  Numerical data fusion algorithm development: In developing the fusion algorithm, existing 

numerical data fusion theories, methods, and algorithms were reviewed and analyzed (see 

Sections 1.2.5 and 1.5.1). Based on the review and analysis, the fusion algorithm was then 

developed to use interval-based representations for representing the fused data, because they 

can account for the uncertainty in data and can avoid the exaggerated impact of minor 

fluctuations in continuous data on the machine learning-based prediction models. It was 

developed to use information entropy as the main fusion criterion for fusing the data which are 

complementary, because information entropy can quantify how well an interval-based 

representation can represent such data. 

3. Data integration algorithm development: In developing the integration algorithm, the 

characteristics of the bridge data (i.e., NBI, NBE, traffic, weather, and fused report data) were 

analyzed, and the main integration criteria were then identified. Based on the analysis and the 

identified integration criteria, the integration algorithm was then developed to integrate the 

fused report data with the structured NBI and NBE data based on the structure identification 

number, and to, subsequently, integrate these data with structured traffic and weather data 

based on the spatial distances between bridges and traffic/weather monitoring stations. The 

detailed implementation of the integration is further explained in Section 8.2.2.2. 
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1.5.6.2 Subtask #6.2 – Data Fusion Method Evaluation 

This subtask aimed to evaluate the performance of the developed data fusion methods and 

algorithms (both the proposed and its variations). Only the normalization and fusion algorithms 

need to be evaluated. The integration algorithm does not require evaluation, because the integration 

is a straightforward and error-free process. The evaluation included method verification and 

validation. Method verification aimed to evaluate the correctness of the fusion method. The NEN 

algorithms (the proposed and its variations) were verified based on accuracy, which is the number 

of correct identifier concept names out of the total number of identifier concept names. The 

developed entropy-based fusion algorithm was verified based on information entropy, which is 

equal to zero if the algorithm can stably fuse the same set of data instances into the same interval 

in a simulation run; otherwise, it increases from zero. Method validation aimed to evaluate the 

performance of the fusion method in supporting its intended use – fusing data extracted from 

bridge inspection reports for supporting bridge deterioration prediction (i.e., predicting the future 

condition ratings of decks, superstructures, and substructures). Two main types of prediction 

models were developed: using fused data and using unfused data. The performances of the 

prediction models developed using the fused data were compared to the performances of the 

models developed using the unfused data, in order to evaluate the performance of the fusion 

method. The performance results were compared based on average accuracy, which is the average 

of the ratio of the number of correctly-predicted condition ratings to the total number of ratings 

per condition rating category. The details of method implementation, including dataset 

preparation, are presented in Section 7.2.2. The evaluation results are presented and discussed in 

Section 7.3. 
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1.5.7 Research Task #7 – Data-Driven Bridge Deterioration Prediction  

This research task aimed to develop a data-driven, deep learning-based bridge deterioration 

prediction method and algorithm for learning from integrated bridge data to predict the condition 

ratings of the primary bridge components (i.e., decks, superstructures, and substructures) and to 

predict the quantities of specific bridge element-level deficiencies. This research task included two 

primary subtasks. 

1.5.7.1 Subtask #7.1 – Data-Driven Bridge Deterioration Prediction Method Development 

This subtask focused on developing a data-driven, deep learning-based prediction method and 

algorithm that is able to learn from the integrated bridge data, which are highly dimensional and 

imbalanced, for predicting the condition ratings of bridges and the quantities of specific bridge 

element-level deficiencies. It was composed of four main steps: 

1. Selecting and extending the method for dealing with data dimensionality: In selecting the 

method for extension, existing manifold learning (also known as dimensionality reduction) 

methods and algorithms were reviewed and analyzed (see Sections 1.2.6 and 1.5.1). Based on 

the review and analysis, the isometric feature mapping (Isomap) algorithm (Tenenbaum et al. 

2000) was selected for embedding the high-dimensional and sparse bridge data into a low-

dimensional dense space. Because the Isomap algorithm requires assessing the distances 

between data instances (which, in this research, include both numerical and categorical 

features), a revised Euclidean distance was proposed to allow for the distance assessment of 

the data instances with the mixed types of features. 

2. Recurrent neural network (RNN) development: An RNN architecture was developed to learn 

from the embedded bridge data from past years to predict the conditions of bridges and their 
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elements in the next year. In developing the architecture, three main criteria were followed: (1) 

the ability of the architecture to capture the temporal dynamics that connect data over time, (2) 

the ability of the architecture to capture the dimensionality and the nonlinearity of data, and 

(3) the computational efficiency of the architecture. An RNN architecture, which includes an 

input layer, a recurrent layer, a pooling layer, a set of nonlinear dense layers, and an output 

layer, was then developed. 

3. Selecting and extending the method for dealing with data imbalance: In selecting the method 

for extension, existing data sampling and cost-sensitive learning methods and algorithms were 

reviewed and analyzed (see Sections 1.2.6 and 1.5.1). Based on the review and analysis, the 

cost-sensitive learning approach was selected, because it does not increase or decrease the size 

of a dataset, which helps avoid overfitting and the loss of important data instances. The binary 

focal loss function, which is used for conducting cost-sensitive learning, was selected because 

it uses a modulating factor to directly adjust the learning cost. Since predicting the condition 

ratings of bridges is a multi-class classification problem, the binary focal loss function was 

extended into a multi-class focal loss function. 

4. Bridge deterioration prediction algorithm development: A deep learning-based bridge 

deterioration prediction algorithm was developed. It combines the Isomap algorithm, the RNN 

architecture, and the multi-class focal loss function to predict bridge deterioration. Two 

baseline algorithms were also developed to benchmark the performance of the proposed 

algorithm in predicting the condition ratings. The first baseline learned from the integrated 

multi-source bridge data, using the RNN architecture, but with the cross-entropy loss function. 

Unlike the multi-class focal loss function used in the proposed algorithm, the cross-entropy 

loss function treats the cost of misclassifications in the minority classes and the cost of 
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misclassifications in the majority classes equally and, hence, does not address the imbalance 

in the data. The second baseline is same as the first (i.e., used the RNN architecture with the 

cross-entropy loss), but only learned from the NBI data. The second baseline algorithm is 

similar to existing data-driven bridge deterioration prediction methods/algorithms, which 

mostly focus on learning from single-source bridge inventory data (e.g., NBI data or similar 

inventory data collected by different countries), without addressing data imbalance. Only the 

proposed algorithm was used for predicting the quantities of deficiencies for two main reasons. 

First, to the author’s best knowledge, there is no existing data-driven prediction 

method/algorithm that is able to predict the detailed quantity of a specific bridge element-level 

deficiency, which provides no benchmark for direct comparison. Second, learning from NBI 

data solely is not applicable in this case, since they do not include such detailed data about 

bridge element-level deficiencies. 

1.5.7.2 Subtask #7.2 – Data-Driven Bridge Deterioration Prediction Method Evaluation 

This subtask aimed to evaluate the performance of the developed bridge deterioration prediction 

methods and algorithms (both the proposed and the baseline). The following two metrics were 

used for evaluating the performance of predicting the condition ratings: macro-precision and 

macro-recall. Macro-precision and macro-recall measure the overall performance using the mean 

of the precision and recall for each condition rating category, respectively. Precision is the ratio of 

the number of correctly-predicted condition ratings to the total number of predicted ratings for a 

category. Recall is the ratio of the number of correctly-predicted condition ratings to the total 

number of ratings that should be predicted for a category. The following three metrics were used 

for evaluating the performance of predicting the deficiency quantities: root mean square error 

(RMSE), coefficient of variation (CV), and coefficient of determination (R2). RMSE measures, on 
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average, how concentrated the predicted data are around the line that best fits the actual data. CV 

measures the extent to which the overall prediction error varies with respect to the mean of the 

actual data. R2 measures the percentage of the variance of the actual data explained by the 

prediction model. The details of method implementation, including dataset preparation, are 

presented in Section 8.2.2. The evaluation results are presented and discussed in Section 8.3. 

1.6 Contribution to the Body of Knowledge 

1.6.1 Intellectual Merit 

This thesis research offers a novel bridge data analytics framework to allow for the extraction, 

integration, and analysis of both structured and unstructured data from multiple sources for 

enhanced bridge deterioration prediction. It contributes to the body of knowledge in seven primary 

ways. 

• First, this research offers a new bridge deterioration knowledge ontology. The ontology 

advances the knowledge modeling efforts in the bridge domain by sufficiently capturing the 

bridge deterioration knowledge (about bridge element, deficiency, deficiency cause, 

maintenance action, and their related attributes) in terms of breadth, depth, classifications, and 

multimodality views. The ontology has shown effectiveness in adequately supporting semantic 

information and relation extraction from bridge inspection reports and, hence, is expected to 

be able to support similar text analytics tasks in the bridge domain. 

• Second, this research offers a new ontology-based, semi-supervised conditional random fields-

based information extraction method for extracting information that describes bridge 

conditions and maintenance actions from bridge inspection reports. The method offers a way 

for semantically and simultaneously capturing the dependency structures as well as the 
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distributions of a small set of fixed labeled data and a large set of unlabeled data in a semi-

supervised yet concave objective function for machine learning. Its capability of dynamically 

adapting itself to unseen instances by further learning from the unlabeled data and its concavity 

nature allow the needed information extraction to be conducted effectively and in an efficient 

way that requires less human effort. 

• Third, this research offers a new semantic neural network ensemble-based relation extraction 

method for extracting dependency relations from bridge inspection reports to represent the 

unstructured text in a semantically-rich structured way. The method offers a new way for 

ensemble learning, which allows each of the multiple constituent neural network classifiers to 

only learn from similarly-distributed and thus more easily-separable data instances (sampled 

by the proposed similarity-based sampling method), in order to better capture the complex 

distributions of all the data instances collectively for supporting more effective ensemble 

learning. This new ensemble learning approach, compared to the traditional approaches that 

use simple, presumed distributions for data sampling, allows the extraction of dependency 

relations from highly technical, domain-specific text (such as that in textual inspection reports) 

to be conducted more effectively. 

• Fourth, this research offers a new unsupervised data linking method for linking data records 

that are extracted from the reports and refer to the same entity. The method leverages improved 

spectral clustering to analyze the similarities between data instances for effectively linking data 

in a completely unsupervised manner, without human involvement. It offers new knowledge 

on how to assess concept similarity in the absence of both contextual information and 

taxonomy-based concept mappings, how to assess record similarity in the presence of 

dependencies among attribute similarity assessments, how to automatically identify the 
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optimal number of target class without using a manually identified number, and how to conduct 

data linking in an unsupervised way without forming transitive closures. 

• Fifth, this research offers a new hybrid data fusion method for fusing the linked data extracted 

from bridge inspection reports into a unified representation. The named entity normalization 

algorithm of the method uses corpus statistics and lexical patterns to fuse concept names, which 

offers new knowledge on how to fuse complex concept names that vary in terms of both surface 

forms and abstraction levels into identifier concept names that balance the abstraction and 

detailedness, without human involvement. The numerical data fusion algorithm of the method 

uses data discretization and information entropy to fuse numerical deficiency measures into a 

single representative representation, which offers new knowledge on how to fuse 

complementary data in an objective way. 

• Sixth, this research offers a new deep learning-based prediction method for learning from 

integrated bridge data from multiple sources for enhanced bridge deterioration prediction. The 

proposed method uses a number of machine (deep) learning techniques to support such a 

challenging prediction task, including deep learning, manifold learning, and cost-sensitive 

learning. It, thus, offers new knowledge on how to effectively learn from data that are highly 

dimensional and imbalanced for better predicting bridge deterioration. 

• Seventh, this research offers a novel bridge data analytics framework, which allows for using 

multi-source heterogeneous data for enhanced bridge deterioration prediction – that is not only 

able to predict the condition ratings of bridges with improved performance, but also able to 

predict the quantities of specific bridge element-level deficiencies. On one hand, this research 

goes beyond the current state of the art in data analytics, where data in heterogeneous formats 

(i.e., structured and unstructured) are mostly analyzed separately. On the other hand, it goes 
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beyond the current state of the art in data-driven bridge deterioration prediction, where existing 

methods mostly use abstract bridge inventory data to predict – at a limited performance level 

– the condition ratings of bridges. 

More detailed discussions of the intellectual merit of each of the aforementioned methods and 

contribution to the body of knowledge are provided in Chapter 9. 

1.6.2 Broader Impacts 

The research outcomes could bring the following significant benefits to the society at large: 

• Promoting the use of unstructured textual data in the bridge domain: Unstructured textual 

bridge data, such as bridge inspection reports, include a large amount of detailed information 

describing bridge conditions and maintenance actions – much beyond what can be found in 

structured bridge data, such as the NBI data. Yet, due the challenges in analyzing textual data, 

the wealth of unstructured textual bridge data is not being fully harnessed. Using the proposed 

information and relation extraction methods, data users in the bridge domain (e.g., maintenance 

decision makers) could gain improved access to the rich data/information buried in these 

unstructured data sources. One important benefit of using textual bridge data, which has been 

demonstrated in this research, lies in extracting information from bridge inspection reports and 

using it in machine learning for improved performance of bridge deterioration prediction. 

Many more benefits can be expected when these methods are applied to other types of textual 

data for supporting data-driven applications in the bridge domain (e.g., extracting information 

from maintenance reports for learning cost-effective maintenance strategies). 

• Enabling integrative analysis of both structured and unstructured data in the bridge domain: A 

large amount of structured and unstructured data are becoming increasingly available in the 
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bridge domain. However, these bridge data are being used separately. The utilization of the 

proposed data linking and fusion methods offers opportunities to using structured and 

unstructured bridge data in integration. The benefit of the integrative use of such data has been 

manifested in this research in improving the performance of data-driven bridge deterioration 

prediction. Potential broader benefits are expected, if the methods are applied to integrating all 

types of data in the domain (e.g., not only integrating NBI data with textual data, but also with 

health monitoring data, inspection images, etc.). In that case, we could have a unified 

representation of all the heterogeneous data that covers various aspects of the nation’s bridge 

assets (e.g., bridge condition, serviceability, functionality, etc.) – fully unleashing the power 

of the data to facilitate bridge asset management. 

• Enabling safer, efficient, and cost-effective maintenance of bridges: U.S. bridges only received 

a grade of C+ (mediocre); 9.1% of the nation’s bridges are structurally deficient and 13.6% of 

them are functionally obsolete (ASCE 2017). It is estimated that the average annual failure rate 

of the nation’s bridges is between 87 and 222, with an expected value of 128 (Cook et al. 2013). 

In order to eliminate the nation’s deficient bridge backlog by 2028, a $20.5 billion annual 

investment in the construction and maintenance of bridges is needed, while only $12.8 billion 

is being invested currently (ASCE 2013). The proposed framework, through the extraction, 

integration, and analysis of both structured and unstructured bridge data from multiple sources, 

allows decision makers in bridge management to better predict the future deterioration of 

bridges – offering future opportunities to better understand where to make the best maintenance 

investments and why those decisions are made, resulting in decisions that are both safe and 

cost-effective. 
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• Supporting data analytics applications in the construction and civil infrastructure domain: One 

direct benefit of the proposed data analytics framework lies in offering new knowledge on how 

structured and unstructured data can be analyzed in integration for improving the performance 

of data-driven applications. Such knowledge could be directly transferred to supporting the 

development of data analytics methods for enhancing deterioration prediction and maintenance 

decision making for other types of infrastructure (e.g., highway and dam). In that case, the new 

knowledge offered by this research would benefit the society in better restoring our 

deteriorating infrastructures. On the other hand, the proposed data analytics framework could 

be extended to support data analytics for many other applications and purposes in the broader 

construction and civil infrastructure domain, such as analyzing construction daily reports for 

supporting predictive project control, analyzing social networking service data for supporting 

smart community development, etc.  
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CHAPTER 2 - LITERATURE REVIEW 

This chapter presents a summary of literature review on semantic modeling and ontology, 

information extraction, relation extraction, data linking, data fusion, and data-driven bridge 

deterioration prediction. 

2.1 Semantic Modeling and Ontology 

2.1.1 Ontology Development Methodologies 

Several ontology development methodologies have been well-established within the ontological 

engineering domain, such as the Toronto Virtual Enterprise (TOVE) Methodology (Fox and 

Gruninger 1998), SENSUS (Swartout et al. 1996), Methontology (Fernández-López et al. 1997), 

On-To-Knowledge Methodology (Fensel et al. 2000), and Ontology Development 101 (Noy and 

McGuinness 2001). Within the civil infrastructure and construction domain, the most notable 

ontology development methodologies include the methodology by El-Gohary and El-Diraby 

(2010). The ontology development activities of the above-mentioned methodologies can be 

generalized into to a process, including: (1) specification, (2) conceptualization, (3) formalization, 

and (4) implementation (Cristani and Cuel 2005; Sure et al. 2006). 

2.1.2 Coverage of Bridge Deterioration Knowledge in Existing Ontologies 

Ontologies have been widely developed and applied for knowledge sharing and reuse (Fensel et 

al. 2000). From an ontology specification perspective, ontologies can be classified into two 

categories: lightweight and heavyweight (Wong et al. 2012). Lightweight ontologies are presented 

as glossaries, thesaurus, or taxonomies in which knowledge is represented by a set of controlled 

vocabularies with or without taxonomy and partonomy structures. Heavyweight ontologies make 

further efforts towards representing knowledge with richer and more formal relationships and 
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axioms defined for controlled vocabularies. Following this classification, the review of ontologies 

that are pertinent to bridge deterioration knowledge is presented in Table 2.1. Kubota and Mikami 

(2013), Ulieru and Madani (2006), and Halfawy et al. (2005) proposed ontologies that focus on 

supporting highway bridge design, monitoring, and maintenance. Bień et al. (2007) developed a 

railway bridge degradation mechanism ontology. El-Diraby and Osman (2011), Osman and El-

Diraby (2006), and El-Diraby and Kashif (2005) focused on modeling the design and construction 

knowledge within the civil infrastructure domain. El-Gohary and El-Diraby (2010) presented a 

domain ontology for processes in the civil infrastructure and construction domain. 

BuildingSMART (2014) developed an IFC-Bridge, as an extension to the industry foundation class 

(IFC), for representing knowledge about bridge elements. Along with the abovementioned 

heavyweight ontologies, many organizations have also developed and are maintaining several 

lightweight ontologies, such as the AASHTO Transportation Glossary (AASHTO 2009) and the 

Transportation Research Thesaurus (TRB 2015). 

Table 2.1. Review of relevant ontologies in the construction and civil infrastructure domain. 

Sources 

Bridge deterioration knowledge concept 

Bridge element 

concept 

Bridge deficiency 

concept 

Bridge deficiency 

cause concept 

Bridge maintenance 

action concept 

H
ea

v
y

w
ei

g
h

t 

BuildingSMART (2013) XX O O O 

Kubota and Mikami (2013) X O O O 

El-Diraby and Osman (2011) O O O O 

El-Gohary and El-Diraby (2010) O O O O 

Bien et al. (2007) O X X O 

Ulieru and Madani (2006) X X O O 

Osman and El-Diraby (2006) O O O O 

El-Diraby and Kashif (2005) X O O O 

Halfawy et al. (2005) XX O O O 

L
ig

h
tw

ei
g

h
t AASHTO (2009) X X O O 

NCHRP (2011) O O O XX 

BTS (2015) O O O O 

TRB (2015) X X X O 

O = Not cover; X = Rarely cover; XX = Moderately cover. 
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2.2 Information Extraction 

Information extraction (IE) is an automatic process that aims to recognize and extract information 

of a particular class of entities, relations, or events from natural language text (Hobbs and Riloff 

2010; Wimalasuriya and Dou 2010). Existing IE methods can be classified into two primary 

categories: rule-based methods and ML-based methods (Hobbs and Riloff 2010; Sarawagi 2008; 

Wimalasuriya and Dou 2010).  

2.2.1 Rule-Based Information Extraction 

Rule-based IE methods rely on hand-crafted pattern-matching-based rules for guiding the 

recognition and extraction of target information from unstructured textual data (Nadeau and Sekine 

2007; Sarawagi 2008). The pattern-matching-based rules are constructed with syntactic and/or 

semantic features of text. Outside of the construction domain, many rule-based IE techniques have 

been proposed (e.g., Appelt et al. 1993; Corro and Gemulla 2013; Elsebai et al. 2009; Fader et al. 

2011; Lehnert et al. 1991; Xu et al. 2010). In the construction domain, a limited number of research 

efforts have focused on developing rule-based IE methods to support various domain-specific 

tasks. For example, Zhang and El-Gohary (2015) and Zhou and El-Gohary (2015) developed 

pattern-matching-based rules with both syntactic and semantic features to extract building 

regulatory information for automated compliance checking. Al Qady and Kandil (2010) developed 

IE rules with syntactic features to extract concepts from construction contracts. 

2.2.2 Machine Learning-Based Information Extraction 

ML-based IE methods utilize ML algorithms to automate the rule induction process for IE from 

text (Nadeau and Sekine 2007; Sarawagi 2008). ML-based IE methods differ from each other 
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primarily based on the types of ML algorithms used. ML-based IE methods are supervised, semi-

supervised, or unsupervised. 

2.2.2.1 Supervised Machine Learning-Based Information Extraction 

Supervised ML-based IE methods learn from a large set of independent and identically distributed 

labeled data to recognize and extract information from unlabeled data. A number of supervised 

ML algorithms have been proposed to support IE, including decision trees (Sekine et al. 1998), 

support vector machines (Isozaki and Kazawa 2002), structural support vector machines (Tang et 

al. 2012), hidden Markov models (Bikel et al. 1997), maximum-entropy Markov models 

(Borthwick et al. 1998), and conditional random fields (CRF) (Lafferty et al. 2001). Among these 

IE methods, CRF has been widely recognized for supporting IE. This is because: (1) CRF is a 

graphical model that offers a natural formalism for representing the dependency structures of 

natural language (Sutton and McCallum 2006); (2) CRF is a discriminative model that captures 

conditional probabilities to allow for the exploration of a rich set of interdependent features (Sutton 

and McCallum 2006); and (3) CRF models conditional probabilities globally to prevent the label 

bias issues (Lafferty et al. 2001). 

2.2.2.2 Semi-Supervised Machine Learning-Based Information Extraction 

Semi-supervised ML-based IE methods learn from both labeled and unlabeled data to extract 

information from unlabeled data. Existing semi-supervised ML-based IE methods have been 

proposed using bootstrapping strategy (e.g., Jiang and Zhai 2007; Liao and Veeramachaneni 2009; 

Liu et al. 2011; Wu et al. 2009), information-theoretic regularization (e.g., Jiao et al. 2006; Mann 

and McCallum 2007), or robust representations of unlabeled data as inputs (e.g., Guo et al. 2009; 

Miller et al. 2004). The bootstrapping strategy relies on an iterative process of adding confidently 

extracted unlabeled data and re-training a ML model based on the new dataset (Liu et al. 2011). 
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Thus, it might be prone to noises and requires heuristic determination of stopping criteria (Kuksa 

and Qi 2010). Information-theoretic regularization aims to regularize learning functions of labeled 

data through minimizing the entropy of unlabeled data. The regularization process results in a non-

concave objective function (Jiao et al. 2006). Concavity is especially important for ML-based IE; 

otherwise, IE performance could be negatively affected by suboptimal initializations and only 

reaching to local maxima. Robust representations of unlabeled data are achieved under the cluster 

assumption, which assumes that if two data points lay in the same cluster, they are likely to have 

a similar class label (Mann and McCallum 2007). Utilizing the cluster assumption has been proved 

to be an effective way for developing semi-supervised ML-based IE methods (e.g., Chen and Wang 

2011; Mallapragada et al. 2009). 

2.2.2.3 Unsupervised Machine Learning-Based Information Extraction 

Unsupervised ML-based IE methods learn how each of the unlabeled data should be labeled 

without learning from labeled data. In the absence of labeled data, some unsupervised ML-based 

IE methods attempted to group similar entities into a cluster merely based on similarities measured 

from unlabeled text (e.g., Alfonseca and Manandhar 2002; Etzioni et al. 2005; Nadeau et al. 2006; 

Shinyama and Sekine 2004). Others also proposed to utilize topic modeling methods, such as 

probabilistic latent semantic indexing (Hofmann 1999) and latent Dirichlet allocation (Blei et al. 

2003), in order to dynamically cluster similar entities (Guo et al. 2009). Because of the existence 

of statistical dependencies between entities in natural language (Sutton and McCallum 2006), 

without formally representing and utilizing such dependencies revealed by labeled data, 

unsupervised ML-based IE methods might be inclined to generate incoherent clusters (Chen 2016). 
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2.2.3 Semantic Similarity Measures 

In the natural language processing (NLP) community, many semantic similarity (SS) measures 

have been proposed to measure similarities between language units. SS measures can be 

categorized into: corpus-based and knowledge-based. Corpus-based SS measures, also known as 

distributional SS measures, quantify the degree of semantic similarity between language units 

based on their co-occurrences and their linguistic contexts derived from corpus (Harispe et al. 

2015; Mihalcea et al. 2006). Existing corpus-based approaches include pointwise mutual 

information (PMI) (Turney 2001) and latent semantic analysis (LSA) (Landauer et al. 1998), which 

measure SS between language units in their lexical forms. Corpus-based similarity measuring 

performance has been improved by also considering the corresponding stems and part-of-speech 

(POS) tags of information units, in addition to their lexical forms, and by conducting stop-word 

removal (Harispe et al. 2015; Xie and Liu 2008). Knowledge-based SS measures quantify the 

degree of semantic similarity between language units according to formal expressions of 

knowledge, which explicitly define how the information units in comparison must be understood 

(Harispe et al. 2015; Mihalcea et al. 2006). Knowledge-based SS measures strongly depend on 

ontologies as knowledge sources (Harispe et al. 2015). Existing knowledge-based approaches 

include shortest-path approach (Leacock and Chodorow 1998), random-walk approach (Muller et 

al. 2006), depth-based approach (Wu and Palmer 1994), feature-based approach (Bulskov et al. 

2002), and information content approach (Resnik 1995), etc. 

2.3 Relation Extraction 

2.3.1 Transition-Based Dependency Parsing Model 

Dependency parsing (DP) performs a grammatical structure analysis of a sentence to extract 

dependency relations between “head” words and their corresponding “modifier” words (Buchholz 
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and Marsi 2006; Chen and Zhang 2015). Existing DP models can be categorized into: graph-based 

and transition-based (McDonald and Nivre 2007). A graph-based model treats DP as a searching 

task in which subgraphs are factored, so that the model can search over the space of valid subgraphs 

to generate the most-likely dependency graph (Chen and Zhang 2015; Nivre and McDonald 2008) 

(a set of dependency relations for a sentence). A transition-based model treats DP as a classification 

task, in which a set of configurations generated from an initial configuration are sequentially 

classified into transition types (indicating word-to-word dependency relations) for extracting 

dependency relations in a sentence (Chen and Manning 2014; Nivre and McDonald 2008). 

Transition-based DP models have gained considerable popularity because of their computational 

efficiency and accurate performance (Chen and Manning 2014; Dyer et al. 2015; Weiss et al. 2015; 

Choi and McCallum 2013).  

The transition-based DP approach was introduced by Nivre (2003). As illustrated in Table 2.2, in 

the transition-based DP model, a configuration, 𝑪 =  (𝝈, 𝜷, 𝑨), is composed of a stack (𝝈), a 

buffer (𝜷), and a set of dependency arcs/relations (𝑨). The stack, 𝝈 =  [𝜎𝑖 , … 𝜎2, 𝜎1], where 𝑖 ≥ 0, 

is a data structure that stores partially-parsed words of an input sentence. The buffer, 𝜷 =

[𝛽1, 𝛽2… , 𝛽𝑗], where 𝑗 ≥ 0, is a data structure that stores the words of the sentence that need to 

be parsed. The set 𝑨  is a data structure that stores word pairs that have been parsed with 

dependency relations. The initial configuration of the input sentence is defined as 𝑪 =

 (𝝈 = [𝑅𝑜𝑜𝑡], 𝜷 = [𝛽1,  𝛽2… , 𝛽𝑛], 𝑨 = ∅), where 𝑅𝑜𝑜𝑡 is a dummy node at the highest level of a 

dependency graph and 𝛽1,  𝛽2… , 𝛽𝑛 correspond to the words of the sentence (where 𝑛 is the length 

of the sentence). The terminal configuration of the sentence is defined as 𝑪 =  (𝝈 = [𝑅𝑜𝑜𝑡], 𝜷 =

∅, 𝑨) , where 𝑨  contains the parsed dependency relations of the sentence. From the initial 

configuration, the transition-based model predicts a transition type for the current configuration 
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and generates the next configuration based on the current configuration and the predicted transition 

type. This process repeats until some terminal configuration has been reached, where the sentence 

has been completely parsed. Three transition types are defined in the transition-based DP model, 

including: 

• Shift: moving 𝛽1 from the buffer 𝜷 to the stack 𝝈, if |𝜷| ≥ 1. 

• Left-arc: adding an arc between 𝜎1 and 𝜎2, where 𝜎1 is a head word and 𝜎2 is a modifier word, 

and removing 𝜎2 from the stack 𝝈, if |𝝈| ≥ 2. 

• Right-arc: adding an arc between 𝜎1 and 𝜎2, where 𝜎2 is a head word and 𝜎1 is a modifier word, 

and removing 𝜎1 from the stack 𝝈, if |𝝈| ≥ 2. 

Table 2.2. Example of a transition-based dependency parsing model. 

Transitiona Stack Buffer 
Arc  

(head, modifier) 
 [Root]      [The bottom chord connection of truss has severe crevice corrosion]   

S [Root The]      [bottom chord connection of truss has severe crevice corrosion]   

S [Root The bottom]      [chord connection of truss has severe crevice corrosion]   

S [Root The bottom chord]      [connection of truss has severe crevice corrosion]   

S [Root The bottom chord connection]      [of truss has severe crevice corrosion]   

L [Root The bottom connection]      [of truss has severe crevice corrosion] (connection, chord) 

L [Root The connection]      [of truss has severe crevice corrosion] (connection, bottom) 

L [Root connection]      [of truss has severe crevice corrosion] (connection, The) 

S [Root connection of]      [truss has severe crevice corrosion]   

S [Root connection of truss]      [has severe crevice corrosion]   

L [Root connection truss]      [has severe crevice corrosion] (truss, of) 

R [Root connection]      [has severe crevice corrosion] (connection, truss) 

S [Root connection has]      [severe crevice corrosion]   

L [Root has]      [severe crevice corrosion] (has, connection) 

S [Root has severe]      [crevice corrosion]   

S [Root has severe crevice]      [corrosion]   

S [Root has severe crevice corrosion]      [ ]   

L [Root has severe corrosion]      [ ] (corrosion, crevice) 

L [Root has corrosion]      [ ] (corrosion, severe) 

R [Root has]      [ ] (has, corrosion) 

R [Root]      [ ] (Root, has) 
a S = shift; L = left arch; R = right arch.  

2.3.2 Machine Learning-Based Dependency Parsing Methods 

Early DP research efforts (e.g., Kurohashi and Nagao 1994; Tapanainen and Järvinen 1997; 

Oflazer 2003; Elworthy 2000) have focused on developing rule-based DP methods. Rule-based 

DP methods utilize manually-developed parsing rules to extract dependency relations. More 
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recently, machine learning-based DP methods have been proposed for automatically classifying 

configurations into transition types for dependency relation extraction. Some of these efforts have 

focused on developing probabilistic models (e.g., Eisner 1996; Collins 2003; Samuelsson 2000; 

Wang and Harper 2004), while others have proposed discriminative approaches with support 

vector machines (e.g., Kudo and Matsumoto 2003; Yamada and Matsumoto 2003), beam search-

based perceptron (e.g., Zhang and Clark 2008; Zhang Nivre 2011), dynamic programming-based 

perceptron (e.g., Huang and Sagae 2010), or neural networks (e.g., Henderson 2004; Mayberry 

and Miikkulainen 2005). 

In recent years, there has been an increasing number of research efforts focusing on NN-based DP 

methods (e.g., Chen and Manning 2014; Dyer et al. 2015; Weiss et al. 2015; Alberti et al. 2015; 

Zhou et al. 2015; Yazdani and Henderson 2015; Cheng et al. 2016; Kiperwasser and Goldberg 

2016; Kuncoro et al. 2017; Hashinmoto et al. 2017; Dozat and Manning 2017; Nguyen et al. 2017; 

Strubell and McCallum 2017; Babbar and Schölkopf 2017). Neural networks have gained 

popularity in the area of DP for two main reasons. First, as opposed to conventional machine 

learning-based DP methods (which rely heavily on hand-crafted indicator features), NN-based DP 

methods can automatically learn the most-useful feature conjunctions and high-order features, 

which helps avoid feature sparsity and incompleteness issues (Chen and Manning 2014; Pei et al. 

2015). Second, DP can benefit from neural networks by learning from NN-based distributed 

feature representations. Distributed feature representations (also known as word embedding) 

transform text features [e.g., words and part-of-speech (POS) tags] into real-valued, continuous, 

and dense vectors, and embed semantically-similar features nearby each other in the vector space 

(Mikolov et al. 2013). Such representations result in a compact dense feature space, which leads 

to more efficient, compact, and accurate classifier learning (Chen and Manning 2014). Recent 
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efforts (e.g., Chen and Manning 2014; Bansal et al. 2014; Guo et al. 2015) have demonstrated that, 

compared to learning from traditional one-hot feature representations, learning from NN-based 

distributed feature representations can improve DP performance. 

Chen and Manning (2014) is one the first efforts that incorporated neural networks and deep 

learning into a transition-based DP model (Dozat and Manning 207). They developed a simple, 

yet relatively accurate and computationally efficient, three-layer feedforward NN architecture for 

supporting general-domain DP applications. Many NN-based DP methods that used more complex 

NN architectures have since been developed to further improve the parsing accuracy, such as the 

recurrent neural network (Kuncoro et al. 2017), the long short-term memory (LSTM) (Kiperwasser 

and Goldberg 2016), and the bi-LSTM with deep biaffine attention (Dozat and Manning 2017). 

Compared to the three-layer feedforward NN architecture, these complex architectures were able 

to marginally improve the parsing accuracy, but at the expense of computational efficiency (see 

Chen and Manning 2014; Dozat and Manning 2017). 

2.3.3 Ensemble Machine Learning Methods 

Ensemble machine learning is a learning paradigm that utilizes multiple classifiers to obtain 

improved performance (reduced variability and increased generalization) that cannot be obtained 

by any of the constituent classifiers alone (Zhang and Ma 2012; Sun 2013). The most well-

established and prominent ensemble learning algorithms include bagging, boosting, stacked 

generalization, and mixture of experts (Zhang and Ma 2012; Xu et al. 2013). Bagging trains each 

of the multiple classifiers with a certain percent of instances that are randomly drawn with 

replacement from the entire training set (Breiman 1996). Boosting sequentially trains a set of 

classifiers, each of which focuses on learning from the instances that were misclassified by its 

preceding classifier (Schapire 1990). Adaptive boosting, also referred to as AdaBoost, is a widely 
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known boosting algorithm. It sequentially trains a set of classifiers, during which the initial 

classifier is trained with instances sampled based on a uniform distribution and each of the 

subsequent classifiers is trained with instances sampled according to a weighted distribution, 

where the weight is updated based on the distribution and training errors of its preceding classifier 

(Freund and Schapire 1995). Stacked generalization first trains a set of tier-1 classifiers with 

training instances sampled using cross-validation partitioning, and then trains a tier-2 combiner 

classifier using the outputs of the tier-1 classifiers as input (Wolper 1992). The combiner classifier 

aims to learn the misclassification and/or classification patterns to correct the misclassifications 

generated by the tier-1 classifiers. A mixture of experts trains a set of classifiers (experts) and a 

gating network that allocates an individual instance to one or several classifiers (Jacobs et al. 

1991). The outputs of the selected classifier(s) are then combined through a linear rule to yield a 

final classification decision for the instance. 

2.4 Data Linking 

Data linking aims to identify the records – which could be syntactically same, similar, or different 

– in the same or different data sources that refer to the same entity (i.e., that carries same/similar 

semantic meaning) (Singla and Domingos 2006; Elmagarmid et al. 2007). Existing data linking 

methods can be classified into two categories: classification-based and clustering-based. 

2.4.1 Machin Learning-Based Data Linking Methods 

2.4.1.1 Classification-Based Data Linking Methods 

Classification-based methods consider data linking as a binary classification task, which aims to 

classify the attribute similarity vectors of record pairs into “match” and “non-match” (Christen 

2012; Singla and Domingos 2006), where a “match” means that the records should be linked. The 
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linking methods in this category follow the fundamental principle of the Fellegi-Sunter 

probabilistic model: record pairs are assumed to be independent and identically distributed, and 

linking decisions are made independently for each pair (Fellegi and Sunter 1969). The model 

estimates the m- and u-probabilities (the attribute agreement weights for matches and non-

matches) based on training data (i.e., record pairs). For classification, these probabilities are 

aggregated based on the attribute agreement conditions of the record pair. Besides this probabilistic 

method, many rule-, distance-, and machine learning (ML)-based linking methods have also been 

developed. Rule-based methods rely on human-developed classification rules to classify record 

pairs. For example, in Jiang et al. (2014), a set of rules were developed to link bibliographic data. 

Distance-based methods compute a distance between a pair of records and compare the distance 

with a pre-defined threshold value to decide if they are a match or not. For example, in Dey et al. 

(1998), a weighted distance-based linking method was developed, where attribute weights were 

solicited from users. ML-based methods learn attribute weights from training examples to capture 

the linking patterns for classifying record pairs (Christen 2012). A number of supervised ML 

classification algorithms have been utilized in this regard, including decision trees (Cochinwala et 

al. 2001; Elfeky et al. 2002), support vector machines (Bilenko and Mooney 2003; Christen 2008), 

conditional random fields (Gupta and Sarawagi 2009), nearest neighbors (Christen 2008; He et al. 

2010), logistic regression (Christen 2008), and random forest (Kejriwal and Miranker 2015). 

2.4.1.2 Clustering-Based Data Linking Methods 

Clustering-based methods consider data linking as a clustering task, which aims to cluster the 

records that refer to the same entity into the same cluster (Christen 2012). A number of studies 

have utilized different clustering algorithms for linking records. For example, a hierarchical 

clustering algorithm was utilized in (Bilenko et al. 2005) to link online product information. 
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Correlation clustering algorithms were utilized in many studies (e.g., Soon et al. 2006; Ng and 

Cardie 2002; Ailon et al. 2008; Elsner and Charniak 2008; Elsner et al. 2000) for supporting 

various data linking applications. In Hassanzadeh et al. (2009), a number of commonly-used 

clustering algorithms were implemented, including single-pass clustering algorithms, star 

clustering, Ricochet family of algorithms, cut clustering, articulation point clustering, Markov 

clustering, and correlation clustering. Some studies also used clustering algorithms as a post-

processing step after classification to deal with transitive closure problems. In these studies, 

records are represented in graphs, where nodes represent the records and edges represent the links 

between them. An edge exists between two records, only if they were identified as a match in the 

classification step. Clustering algorithms, such as CENTER (Haveliwala et al. 2009) and MERGE-

CENTER (Hassanzadeh and Miller 2009), are then utilized to partition the graphs into subgraphs 

to correct the incorrectly-linked records. 

2.4.2 Term Similarity Assessment 

Term similarity (TS) scoring functions measure to what degree two terms are similar. The 

commonly-used TS scoring functions are based on either exact comparisons, distances (including 

edit-, bag-, compression-, syllable alignment-, Jaro-, and Winkler-distances), longest common 

substrings/sequences, or N-grams. The exact comparison function considers two terms as being 

similar only if they are exactly the same; otherwise, they are considered completely different. The 

edit-distance functions, including the Levenshtein (Levenshtein 1966) and Smith-Waterman 

(Smith and Waterman 1981) edit distances, measure the similarity between two terms based on 

the minimum number of edit operations (e.g., insertion, deletion, and substitution) needed to 

convert one term into the other. The bag-distance function measures the similarity between two 

terms based on the maximum number of distinct letters in them (Bartolini et al. 2002). The 
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compression-distance function is based on the Kolmogorov complexity theory, under which two 

terms are similar if one can be significantly compressed given the information of the other 

(Cilibrasi and Vitányi 2005). The syllable alignment-distance function transforms terms into 

sequences of syllables based on a set of transformation rules, and measures the similarity between 

two terms by computing the edit distance between their syllable sequences (Gong and Chan 2006). 

The longest common substring (LCS) function measures the similarity based on the length of the 

LCS (the largest number of the same and consecutive letters) in the two terms (Friedman and Sideli 

1992). The longest common subsequence (sequence matching) function measures the similarity 

based on the length of the longest common subsequence (the largest number of the same but not 

necessarily consecutive letters) in the terms (Bergroth et al. 2000). A variation of the LCS function, 

the ontology LCS function (which was initially used for ontology alignment), also considers the 

effect of different substrings on similarity assessment (Stoilos et al. 2005). The N-gram function 

measures the similarity based on the number of common N-grams (e.g., unigrams, bigrams, and 

trigrams) in the two terms (Christen 2012; Singla and Domingos 2006; Dey et al. 1998). Variations 

of the N-gram function include the skip-bigram function (Keskustalo et al. 2003), which considers 

non-adjacent letters as bigrams, and the positional N-gram function (Keskustalo et al. 2003), which 

additionally considers the positions of the N-grams. The Jaro-distance function combines the N-

gram and edit-distance functions to measure term similarities (Winker and Thibaudeau 1991). The 

Winkler-distance function (Winkler and Thibaudeau 1991) is similar to the Jaro function, but also 

considers the effect of common prefixes. For more detailed explanations of these functions, 

including their equations, the readers are referred to (Christen 2012) and (Elmagarmid et al. 2007). 
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2.4.3 Concept Similarity Assessment 

Concept similarity (CS) scoring functions measure to what degree two concepts are similar. Many 

semantic similarity (SS) indicators have been developed in this regard, including corpus-based and 

knowledge-based indicators. Corpus-based SS indicators assess the similarities between concepts 

based on their cooccurrence rates and their linguistic contexts derived from a text corpus (Harispe 

et al. 2015; Mihalcea et al. 2006). These indicators require that the concepts should have contextual 

information (e.g., the preceding and succeeding terms in which the concepts in comparison are 

embedded). Existing corpus-based indicators include pointwise mutual information (PMI) (Turney 

2001) and latent semantic analysis (LSA) (Landauer et al. 1998). Knowledge-based SS indicators 

assess concept similarities based on the formal expressions of knowledge that explicitly define 

how the concepts in comparison must be understood (Harispe et al. 2015; Mihalcea et al. 2006). 

These indicators strongly depend on ontologies as knowledge sources (Harispe et al. 2015). They 

require the concepts to be mapped to an ontology taxonomy prior to similarity assessment. Existing 

knowledge-based indicators include the shortest path similarity (Leacock and Chodorow 1998), 

the random walk similarity (Muller et al. 2006), and the information content-based similarity 

(Resnik 1995). 

2.4.4 Spectral Clustering Methods 

Spectral clustering (SC) is a family of the graph partitioning theory-based methods. It aims to find 

a set of optimal cuts to partition a similarity graph into subgraphs, such that the edges in the same 

subgraph have higher weights and the edges in different subgraphs have lower weights (Meila 

2016; Long et al. 2006; Von Luxburg 2007). In SC, data points 𝑉 =  {1, … , 𝑛} are represented in 

a similarity graph, 𝐺 = (𝑉, 𝐸), where 𝑉𝑖 is a vertex (data point) and 𝐸𝑖𝑗 is an edge between 𝑉𝑖 and 

𝑉𝑗. The graph is undirected and weighted, where each edge carries a symmetric, non-negative 
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similarity 𝑆𝑖𝑗 (the similarity between the vertices at the two sides of an edge). Then, SC performs 

eigen-decomposition on a Laplacian matrix 𝐿  (a square matrix representing the graph, whose 

elements are derived from an affinity matrix, 𝐴, that is same as 𝑆), and clusters the data points 

based on a new matrix that is constructed by the first few leading eigenvectors of 𝐿 (Lei and 

Rinaldo 2015). The most-commonly used SC methods include unnormalized (Mohar 1997), 

normalized (Shi and Malik 2000), and Ng-Jordan-Weiss (NJW) normalized SC (Ng et al. 2002). 

These methods differ from each other mainly in terms of the graph Laplacian (how to derive 𝐿 

from 𝐴): some used an unnormalized graph Laplacian (i.e., 𝐿 = 𝐷 − 𝐴 , where 𝐷  is a degree 

matrix) or computed generalized eigenvectors from an unnormalized graph Laplacian, while others 

used a normalized graph Laplacian (i.e., 𝐿 = 𝐼 − 𝐷−1 2⁄ 𝐴𝐷−1 2⁄ , where 𝐼 is an identity matrix) 

(Von Luxburg 2007). For a more detailed review of spectral clustering, the readers are referred to 

Von Luxburg (2007). 

2.5 Data Fusion 

2.5.1 Named Entity Normalization 

Named entity normalization transforms named entities (i.e., concept names) that refer to the same 

entity into a canonical identifier name (Liu et al. 2012). Existing normalization methods are 

dictionary-based or machine learning-based, and mainly focus on dealing with the surface-form 

variations in concept names. 

2.5.1.1 Dictionary-Based Named Entity Normalization 

Dictionary-based methods rely on established lexicons in domain-specific dictionaries or domain-

general knowledge bases (especially Wikipedia) to fuse concept names. The lexicons are used as 

a look-up source of identifier names. To find an identifier from the lexicons, corpus-based (e.g., 
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pointwise mutual information) or knowledge-based (e.g., Jiang-Conrath similarity by Jiang and 

Conrath 1997) concept similarity assessment methods are used to assess the similarity between a 

concept name and an identifier. In existing research efforts, domain-specific dictionaries have been 

utilized for fusing species and organism names (e.g., Pafilis et al. 2013), disease names (e.g., Wei 

et al. 2016), and biomedical names (e.g., Lee et al. 2016). Wikipedia has been used for supporting 

named entity normalization-related applications, such as text annotation (e.g., Mihalcea and 

Csomai 2007), knowledge base construction (e.g., Alhelbawy and Gaizauska 2014), and question 

answering (e.g., Wang et al. 2017). 

2.5.1.2 Machine Learning-Based Named Entity Normalization 

Machine learning-based methods use machine learning algorithms to learn how to fuse concept 

names. A number of supervised algorithms have been used for developing normalization models, 

including support vector machines (e.g., Magdy et al. 2007), generalized perceptron (e.g., Wagner 

and Foster 2015), random forests (e.g., Jin 2015), conditional random fields (e.g., Akhtar et al. 

2015), feed-forward neural networks (e.g., Leeman et al. 2015), long short-term memory recurrent 

neural networks (e.g., Han et al. 2019), and Siamese recurrent neural networks (e.g., Fakhraei and 

Ambite 2018). Some of these models directly predict identifier concept names (e.g., Leeman et al. 

2015), and some predict the edit operations (e.g., insert, replace, and delete) needed to convert 

concept names into their identifiers (e.g., Han et al. 2019). In either case, human-annotated data 

are required. Because of the challenges in annotating data, several unsupervised normalization 

methods have been developed (e.g., Yang and Eisenstein 2013; Tahmasebi et al. 2019). Although 

unsupervised methods do not require annotated data, they need a set of target identifiers as input, 

in order to compute the similarities between concept names and identifiers (which makes them 

resemble dictionary-based methods). 



 

 

67 

2.5.2 Numerical Data Fusion 

Numerical data fusion transforms numerical data (e.g., numerical deficiency measures) – either 

from a single source or different sources and/or at different time points – into a unified 

representation (Boström et al. 2007). Existing methods mainly use descriptive statistics or fusion 

theories to conduct data fusion. 

2.5.2.1 Descriptive Statistics 

Descriptive statistics quantitatively describe the features of a set of data (Mann 1995). The 

commonly-used descriptive statistics in data fusion include the measures of data central tendency 

and the measures of data variation. Central tendency measures include arithmetic mean, 

Bonferroni mean, geometric mean, harmonic mean, Heronian mean, power mean, median, and 

mode. Variation measures include coefficient of variation, mean absolution deviation, range, 

standard deviation, and variance. For a detailed description of these measures, the readers are 

referred to Mendenhall and Sincich (2016). Although descriptive statistics are simple, they have 

been used in some data fusion applications and achieved certain levels of success. For example, 

using a set of descriptive statistics, Wimmer et al. (2008) fused audio and video features for 

emotion recognition; Zhang (2015) fused water-depth data and bathymetry data for creating 

benthic habitat maps; and Varga et al. (2018) fused pixel-level normalized difference vegetation 

indexes across time for land cover analysis. 

2.5.2.2 Data Fusion Theory 

Several data fusion theories have been developed, including the Dempster-Shafer theory (Shafer 

1976), fuzzy set theory (Zadeh 1965), possibility theory (Zadeh 1978), and rough set theory 

(Pawlak 1992). The Dempster-Shafer theory assigns a belief mass to a fused value (which could 
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be a single number, interval, or set) based on the strength of the evidence supporting this value. In 

the presence of evidence from multiple sources, it uses a joint belief mass function to fuse the 

belief masses, where the function considers both the agreement and conflict levels of the evidence. 

It selects the fused value that has the largest belief mass to represent data from multiple sources. 

The fuzzy set theory is a theoretical reasoning scheme, which uses the partial set memberships of 

data to allow for imprecise, rather than crisp, reasoning (Khaleghi et al. 2013). The memberships 

of imprecise data to a fused value are quantified using a membership function (e.g., piecewise 

linear functions and Gaussian distribution function), and are then fused using an aggregation 

function (e.g., averaging, conjunctive, and disjunctive functions). The fused value that has the 

highest aggregated membership degree is used to represent imprecise data from multiple sources. 

The possibility theory, as an extension of the fuzzy set theory, was developed to further deal with 

incomplete data using possibility and necessity measures, which quantify the plausibility and the 

certainty of a fused value given incomplete data, respectively (Destercke et al. 2009). The rough 

set theory could be applied for data fusion by using lower and upper approximations to find a fused 

value that has the highest approximation accuracy for representing data from multiple sources. 

Despite being theoretically-applicable, this theory has been rarely used in data fusion (Khaleghi et 

al. 2013). 

2.6 Data-Driven Bridge Deterioration Prediction 

2.6.1 Data-Driven Bridge Deterioration Prediction Methods 

Existing data-driven bridge deterioration prediction methods/models can be classified into three 

categories: deterministic, stochastic, and artificial intelligence (AI)-based (Morcous et al. 2002). 

Deterministic methods/models use a mathematical formulation to capture the relationship between 

the conditions of bridges and the factors that affect the deterioration of bridges for predicting the 
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future bridge conditions (Morcous et al. 2002). Most of the existing deterministic models were 

developed using regression techniques. For example, to predict the condition ratings of the primary 

bridge components (i.e., decks, superstructures, and substructures), Hatami and Morcous (2011) 

developed a nonlinear regression model using the NBI data from the Nebraska Department of 

Transportation (DOT); Chang et al. (2017) developed a logistic regression model with the least 

absolute shrinkage and selection operator (LASSO) using the NBI data from the Wyoming DOT; 

Goyal et al. (2017) developed a proportional hazards regression model using the NBI data from 

the North Carolina DOT; and Lu et al. (2019) developed an ordinal logistic regression model using 

the NBI data from the North Dakota DOT. 

Stochastic methods/models use one or more random variables to capture the uncertainty and 

randomness of the deterioration process of bridges for predicting the future bridge conditions 

(Morcous et al. 2002). The majority of the existing stochastic models were developed using the 

Markov-chain process. For example, Morcous (2006) developed a first-order Markov-chain model 

using the deck condition rating data from the Ministère des Transports du Québec (MTQ) to predict 

the future ratings of decks. Wellalage et al. (2014) developed a Metropolis-Hasting algorithm-

based Markov-chain model using the timber deck condition rating data from the state of Victoria 

of Australia to predict the future ratings of timber decks. Fang and Sun (2018) developed a Weibull 

distribution-based semi-Markov model using the bridge inventory data from the City of Shanghai 

to predict the condition ratings of bridges. Abdelkader et al. (2019) developed a semi-Markov 

model using the concrete deck condition rating data from the Quebec Province of Canada to predict 

the ratings of concrete decks. 

AI-based methods/models use computational intelligence (particularly machine learning) to learn 

from bridge data to predict the future conditions of bridges. For example, Huang (2010) used 
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backpropagation-based multilayer perceptron neural networks to learn from the bridge inventory 

data from the Wisconsin DOT to predict the condition ratings of decks. Creary and Fang (2015) 

used artificial neural networks (ANNs) to learn from the NBI data from the Connecticut DOT to 

predict the condition ratings of the primary bridge components. Contreras-Nieto et al. (2016) used 

ANNs to learn from the NBI data from the Oklahoma DOT to predict the condition ratings of the 

superstructures of steel and prestressed concrete bridges. Lim and Chi (2019) used the extreme 

gradient boosting algorithm to learn from the bridge inventory data provided by the Korean Bridge 

Management System to predict the condition ratings of deck damages. 

2.6.2 Recurrent Neural Network 

A recurrent neural network (RNN) is a type of artificial neural network, which extends the standard 

feed-forward neural network to allow for the modeling of sequential data. For a timestep in a 

sequence, an RNN updates its hidden state at the timestep based on the current input and the 

previous hidden states, and makes a prediction for the input based on the updated state (Sutskever 

et al. 2011). A standard RNN is mathematically formalized as follows (Graves et al. 2013): for 𝑥𝑡 

in an input sequence 𝐱 = (𝑥1, 𝑥2, ⋯ 𝑥𝑡), the network computes its corresponding hidden state as 

ℎ𝑡 = ℋ(𝑊𝑥ℎ𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) and its output as 𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦, where 𝑊, 𝑏, and ℋ denote 

weight matrices, a bias vector, and a hidden layer activation function, respectively. The current 

hidden state depends on its previous states such that these hidden states collectively serve as the 

memory of the network, which allows the network to capture the temporal dynamics that connect 

data over time for performing sequential prediction (Che et al. 2017). The standard RNN, in 

practice, is very insufficient in learning long-range dependencies with gradient descent, because 

the learning error vanishes as it gets propagated back to the network (Hochreiter 1998; Trinh et al. 

2018). Two prominent variations of the standard RNN, which incorporate gating mechanisms, 
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have been developed to address the vanishing gradient problem: long short-term memory RNN 

(Hochreiter and Schmidhuber 1997) and gated recurrent unit RNN (Cho et al. 2014). Despite being 

able to capture long-range dependencies, these variants are more computationally-intensive 

compared to the standard RNN (Chiu and Nichols 2016; Li et al. 2019). Therefore, when dealing 

with short sequences that have short-range dependencies, the standard RNN is effective enough in 

terms of both computational efficiency and performance (Tang et al. 2019). 

2.6.3 Manifold Learning 

It is challenging for machine learning to analyze high-dimensional data efficiently. Such data are 

assumed to lie on or near a low-dimensional manifold (i.e., subspace) embedded within a high-

dimensional space (Zhu et al. 2018). Manifold learning, also known as dimensionality reduction, 

aims to discover such a manifold for embedding high-dimensional data, which are usually sparse 

at the same time, into a low-dimensional dense space (Costa and Hero 2004). Prominent manifold 

learning methods include principal component analysis (Jain and Dubes 1998), multidimensional 

scaling (Cox and Cox 2000), isometric feature mapping (Tenenbaum et al. 2000), locally linear 

embedding (Roweis and Saul 2000), and Laplacian eigenmaps (Belkin and Niyogi 2002). Principal 

component analysis conducts orthogonal transformation to project high-dimensional data into a 

low-dimensional orthonormal space that maximizes the variance of the data. Multidimensional 

scaling aims to find a low-dimensional space, such that the Euclidean distance matrix of the 

embedded data in this space is similar to the matrix of the original data in the high-dimensional 

space. These two methods assume that the manifold is linear. Isometric feature mapping, which is 

a nonlinear generalization of the multidimensional scaling method, uses the geodesic distance 

(instead of the Euclidean distance) to capture the nonlinearity of the manifold. Locally linear 

embedding assumes that a nonlinear manifold is locally linear and, thus, represents each data 
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instance in a high-dimensional space using the weighted linear combination of its neighbors. It 

embeds the data into a low-dimensional nonlinear manifold that preserves the weights (Sual et al. 

2006). Laplacian eigenmaps is closely related to locally linear embedding as they share the same 

objective function (Ghodsi 2006), but differs from it mainly in terms of how to compute the 

weights. Laplacian eigenmaps computes the weights based on the distance between two data 

instances (i.e., 𝑊𝑖𝑗 = 𝑒−‖𝑥𝑖−𝑥𝑗‖
2
𝑠⁄ , where 𝑥𝑖 and 𝑥𝑗 are data instances in a high-dimensional space, 

𝑊𝑖𝑗  is the weight between them, and 𝑠 is a free parameter), whereas locally linear embedding 

computes the weights based on how well they can reconstruct a data instance from its neighbors 

(Ghodsi 2006). 

2.6.4 Data Imbalance 

A dataset is imbalanced if the number of data instances in one class is greater than that in another 

class (Longadge and Dongre 2013). Data imbalance negatively affects the performance of standard 

machine learning algorithms. These algorithms usually assume that the class distributions of data 

are balanced and/or the costs of misclassifications are equal (He and Garcia 2008). Therefore, 

when learning from imbalanced data, they cannot properly capture the distribution characteristics 

of the data and would lead to “imbalanced” performance – the performance of the majority classes 

is high, and the performance of the minority classes is very low (Ganganwar 2012). Two main 

approaches have been developed to address the negative impacts caused by data imbalance: data 

sampling and cost-sensitive learning. To balance a dataset, data sampling over-samples the dataset 

by increasing the number of instances in the minority classes or under-samples the dataset by 

decreasing the number of instances in the majority classes. The commonly-used over-sampling 

techniques include random over-sampling, synthetic minority over-sampling technique (SMOTE) 

(Chawla 2002), borderline-SMOTE (Han et al. 2005), and adaptive synthetic sampling (He et al. 
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2008). Over-sampling replicates data instances and, hence, it would largely decrease the 

computational efficiency of a learning algorithm and would make the algorithm overfitted 

(Ganganwar 2012). The commonly-used under-sampling techniques include random under-

sampling, one-sided selection (Kubat and Matwin 1997), neighborhood cleaning rule (Jorma 

2001), and condensed nearest neighbor rule (Batista et al. 2004). Under-sampling discards data 

instances that could be important in the model learning process, which would undermine the 

overall performance of a machine learning algorithm (Ganganwar 2012). Cost-sensitive learning 

deals with data imbalance by taking the costs of misclassifications into consideration. The 

underlying principle of cost-sensitive learning is that: the cost of incorrectly classifying instances 

in the minority classes is much higher than the cost of incorrectly classifying instances in the 

majority classes (He and Garcia 2008). The most common practice of implementing cost-sensitive 

learning is to introduce a weighting factor to the loss function of a machine learning classifier (Lin 

et al. 2017), so that the factor can regulate the costs of misclassifications in the aforementioned 

way to make a learning algorithm focus on learning from instances in the minority class to improve 

the performance. 
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CHAPTER 3 – SEMANTIC DATA MODELING AND ONTOLOGY DEVELOPMENT 

This chapter presents the proposed bridge deterioration knowledge ontology (BridgeOnto). The 

BridgeOnto development, coding, and evaluation (Research Task #2) are presented in this chapter. 

The application-oriented validation of the ontology – evaluating the ontology in supporting 

information and relation extraction from textual bridge inspection reports – was conducted as a 

part of Research Task #3 in Chapter 4 and Research Task #4 in Chapter 5; and is presented in these 

chapters. 

3.1 BridgeOnto Development and Coding 

3.1.1 BridgeOnto Development and Evaluation Methodology 

The ontology development methodology by El-Gohary and El-Diraby (2010) was benchmarked. 

The BridgeOnto development methodology is summarized as follows: 

• Domain, purpose, intended users, and scope definition: These fundamental scope descriptions 

were defined (as per Table 3.1) and utilized as guidance throughout the BridgeOnto 

development process. 

•  Competency questions (CQs) development: A competency question (CQ) is expressed in the 

form of a natural language sentence that shows a pattern for a type of questions that an ontology 

must be able to answer (Fox and Gruninger 1998). CQs serve as functional requirements to 

ontologies. A set CQs for formulating the functional requirements to the BridgeOnto were 

developed and are discussed in Section 3.2.1.  

• Concept hierarchy construction: A concept hierarchy was constructed using two main iterative 

steps: (1) extracting key concepts from identified concept sources, and (2) organizing the 

extracted concepts into a concept hierarchy. The key concepts were identified, extracted, and 
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defined based on a comprehensive review of concept sources. Table 3.2 shows a partial list of 

the concept sources and their concept coverage distributions. A combination of top-down and 

bottom-up hierarchy construction approaches were used to avoid the inclusion of unnecessarily 

too detailed specific concepts and/or less-meaningful high-level concepts. The top-down 

approach first defines the most general concepts and then specifies their subconcepts; whereas, 

the bottom-up approach begins with defining the most specific concepts and then groups them 

into high-level concepts (Noy and McGuinness 2001). 

• Multimodality modeling: The concept hierarchy was reclassified based on different modality 

views for representing the polymorphic and multifaceted nature of bridge deterioration 

knowledge. Different modality views are shown Section 3.1.2. 

• Relation modeling: Three major types of relations were captured: (1) “is-a” relationship to 

characterize sub-superordinate relationships, (2) “is-part-of” relationship to decompose 

concepts into their constituent parts, and (3) cross-concept relationship to establish non-

hierarchical relationships with semantic meanings between concepts. 

• Ontology capturing: Ontology capturing involves conceptualization. The BridgeOnto 

conceptualization identified formal domain terms for representing the concepts and relations 

constructed and modeled in the previous steps. The conceptualization of the BridgeOnto is 

presented in Section 3.1.2.  

• Ontology coding: The ontology was coded in Web Ontology Language (OWL) using Protégé 

3.4.5 (Protégé 2016). The coding details are discussed in Section 3.1.3. 

• Ontological model evaluation: The BridgeOnto was verified by answering CQs and conducting 

automated consistency and redundancy checking. It was validated using human expert 

interviews and application-based validation. The verification and expert interview validation 
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processes and results are presented in Section 3.2. The application-based validation – 

evaluating the ontology in supporting information and relation extraction from textual bridge 

inspection reports was conducted as a part of Research Task #3 in Chapter 4 and Research 

Task #4 in Chapter 5. 

Table 3.1. Domain, purpose, intended users, and scope definition. 
BridgeOnto 

attribute 
Definition 

Domain 
• Bridge deterioration knowledge generated during bridge inspection and maintenance 

processes 

Purpose 

• Presenting a domain-specific, unambiguous, and formalized representation of bridge 

deterioration knowledge 

• Providing a semantic model that facilitates the recognition, extraction, and representation 

of key data and information (i.e., the data and information defined by bridge deterioration 

knowledge) from unstructured textual bridge inspection reports 

Intended users 
• Bridge domain information users (e.g., bridge engineers, bridge owners, bridge project 

managers, bridge inspectors, bridge maintenance workers, software developers for bridge 

management systems, consultants, and regulators) 

Scope 

• Covering knowledge about bridge elements 

• Covering knowledge about bridge deficiencies 

• Covering knowledge about bridge deficiency causes 

• Covering knowledge about bridge maintenance actions 

• Covering knowledge about bridge deterioration mechanism as reflected by the above-

mentioned knowledge context dimensions 
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Table 3.2. Concepts and corresponding concept sources. 

Source 

BridgeOnto main concepts 

Bridge 

Element 

Bridge Deficiency a Bridge Deficiency Cause b 

Bridge 

Maintenance 

Action c 

D1 D2 D3 D4 D5 C1 C2 C3 C4 C5 M1 M2 M3 

FHWA 1995 X O O O O O O O O O O O O O 

FHWA 2012 XX XX XX XX XX XX X X X X X O O O 

AAHSTO 2002 X X X X X O O O O O O O O O 

AASHTO 2010 XX XX XX XX XX XX O O O O O O O O 

State DOTs* XXX XXX XXX XXX XXX XXX XX XX XX XX XX O O O 

USACE 1995 O XXX O O O O XX O O O O XX O O 

Bien et al. 2007 O X X X X X X X X X X O O O 

Woodson 2009 O XX O O O O XX O O O O XX O O 

Delatte 2009 O X O O O O XX O O O O XX O O 

Hobbs 2011 O X O O O O XX O O O O X O O 

PCA 2002 O X O O O O XX O O O O O O O 

ACI 2002 O O O O O O O O O O O XX O O 

ASCE 2001 O XX XX XX XX XX O O O O O O O O 

Bijen 2003 O X X X X O X X X X O X X X 

Gimmer 1984 O O O O XX O O O O X O O O O 

AASHTO 2007 X X X X X X X X X X X XX XX XX 

State DOTs** X X X X X X X X X X X XXX XXX XXX 

O = Not cover; X = Rarely cover; XX = Moderately cover; XXX = Cover; 

a: The index follows the index in the Figure 3.3; 

b: The index follows the index in the Figure 3.4; 

c: The index follows the index in the Figure 3.5; 

*: The bridge inspection manuals from state DOTs, including Alabama DOT, California DOT, Delaware DOT, District of 

Columbia DOT, Hawaii DOT, Illinois DOT, Indiana DOT, Louisiana DOT, Minnesota DOT, New York DOT, Ohio DOT, 

Oregon DOT, Virginia DOT, and Washington DOT; 

**: The bridge maintenance manuals from state DOTs, including Alabama DOT, Alaska DOT, California DOT, Delaware DOT, 

Georgia DOT, Indiana DOT, Iowa DOT, Kentucky DOT, Michigan DOT, Ohio DOT, Utah DOT, and Washington DOT. 
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3.1.2 Proposed Bridge Deterioration Knowledge Ontology – BridgeOnto 

The BridgeOnto aims to provide a domain-specific, unambiguous, and formalized representation 

of bridge deterioration knowledge. It consists of concepts and inter-concept relations. Concepts 

represent the “things” that describe bridge deterioration knowledge. Relations define the inter-

links between concepts to reflect how they interact.  

3.1.2.1 Main BridgeOnto Model 

The main BridgeOnto model, which represents the most abstract concepts of the BridgeOnto, is 

shown in Figure 3.1. At the highest level of abstraction, a “bridge” is composed of a “bridge 

element”, is affected by a “bridge deficiency” that is caused by a “bridge deficiency cause” and 

that is maintained by a “bridge maintenance action”, and has a “bridge attribute”. A “bridge 

deficiency cause” shows existence at the “bridge”. A “bridge attribute” could be a “bridge element 

attribute”, a “bridge process attribute”, or a “bridge deficiency attribute”. A “bridge element 

attribute” characterizes a “bridge element”; a “bridge process attribute” defines the context 

dimensions (e.g., inspection/maintenance date and methods) in which a “bridge deficiency” and/or 

a “bridge maintenance action” exists; and a “bridge deficiency attribute” defines the attributes, 

including quantity, severity, and onset date, etc., of a “bridge deficiency”. 

Following the Nation Bridge Inspection Standards (NBIS), a “bridge” is “a structure including 

supports erected over a depression or an obstruction, such as water, highway, or railway, and 

having a track or passageway for carrying traffic or other moving loads, and having an opening 

measured along the center of the roadway of more than 20 feet between undercopings of abutments 

or spring lines of arches, or extreme ends of openings for multiple boxes; it may also include 

multiple pipes, where the clear distance between openings is less than half of the smaller 
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contiguous opening ” (NBIS 2004). A “bridge element” is a bridge primary structural component 

or a bridge secondary component, which includes a set of elements that are made of the same type 

of material to form identifiable and performance-similar portions of a bridge and is commonly 

encountered in bridge inspection and maintenance to determine the overall condition and safety of 

a bridge (AASHTO 2010; FHWA 2012; NCHRP 2014). Bridge primary structural components 

are bridge elements designed to resist flexure and distribute both primary live loads and dead loads. 

Bridge secondary components are bridge elements that do not carry calculated live loads. A 

“bridge deficiency” is a defect that makes a bridge element to fail meet quality requirements and 

therefore makes a bridge less capable or less desirable to use (AASHTO 2009; FHWA 2012). A 

“bridge deficiency cause” is the presence of a certain reaction or phenomena that leads to a 

deficiency on a bridge structure (e.g., an Alkali-Silica reaction that causes cracking or scaling in 

concrete bridge elements). A “bridge maintenance action” is an act performed to care for and 

maintain a bridge and its associated features as nearly as possible to their current, as-constructed, 

or subsequently improved conditions, so it substantially retains its original use and function 

(AASHTO 2007; AASHTO 2011; Rogers 2006; WiSDOT 2015). The subconcept hierarchies of 

the most abstract concepts of the BridgeOnto are presented and discussed in more details in the 

following subsections. 
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Figure 3.1. Main BridgeOnto model. 

3.1.2.2 Bridge Element Hierarchy  

The knowledge about bridge elements is an important component of bridge deterioration 

knowledge, because (1) recently-developed bridge inspection practices have emphasized on 

reliability-based inspection strategies at the element level (Washer et al. 2014), and (2) recent 

efforts for developing a uniform bridge maintenance actions database system have stressed on 

reporting and interpreting bridge maintenance actions at the element level (NCHRP 2011). Driven 

by such needs, the commonly-used bridge elements have evolved from the Nation Bridge 

Inventory System (NBIS) elements, to the AASHTO Commonly Recognized (CoRe) Structural 

Elements, and to the most recent National Bridge Elements (NBE), Bridge Management Elements 

(BME), and Agency Developed Elements. To support the extraction of information from textual 

reports that are guided by the abovementioned bridge element systems, the BridgeOnto should 

capture the key bridge element concepts defined by these systems integrally, in order to ensure 

sufficient coverage, classification, and applicability of the bridge element hierarchy. Figure 3.2 

shows a partial view of the bridge element hierarchy. A partial list of the concepts with their 

corresponding sources is shown in Table 3.2. 
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Figure 3.2. Bridge element hierarchy (partial). 

In the BridgeOnto, the bridge element hierarchy (including both taxonomy and partonomy) defines 

the types and parts of bridge elements. At the highest level of abstraction, a “bridge element” could 

be a “deck”, a “substructure”, a “superstructure”, a “drainage system”, or a “protective system”. 

A “deck” is a bridge subsystem that transfers loads to other bridge components (i.e., bridge 

superstructure) and provides a smooth and safe riding surface to traffics. A “superstructure” is a 

bridge subsystem that transmits loads directly to bridge substructures. A “substructure” is a bridge 

subsystem that supports a bridge “superstructure” by transmitting loads into ground. A “drainage 

system” is a bridge subsystem that removes water from bridge structures. A “protective system” 
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is also a bridge subsystem that precludes undesirable matters (e.g., moisture and deicing 

chemicals) from entering bridge structures. Capturing both the width and the depth of bridge 

element concepts is important, because it allows for representing bridge deterioration knowledge 

in different perspectives. For example, deterioration mechanisms of different parts of bridge 

elements (e.g., deck and wearing surface) and of different types of a bridge element (e.g., concrete 

wearing surface and timber wearing surface) present more views of deterioration knowledge that 

cannot be presented by a bridge element hierarchy that only captures either width or depth. 

3.1.2.3 Bridge Deficiency Hierarchy  

Figure 3.3 shows a partial view of the bridge deficiency hierarchy. A partial list of the concepts 

with their corresponding sources is shown in Table 3.2. In the BridgeOnto, the upper-level 

classification of the bridge deficiency hierarchy is based on the most common bridge materials. 

This is because material is a major factor that affects the structural performance of bridges and 

decides the types of deficiencies they can be affected with (Farhey 2014). According to the (FHWA 

2015), approximately 66%, 30%, and 3% of the nation’s bridges are constructed with concrete, 

steel, and timber, respectively. Masonry, although is rarely used in modern bridge constructions, 

is used in many old stone bridges that are still in service and require inspections and maintenances 

(FHWA 2012). Fiber reinforced polymer is gaining popularity in bridge construction and 

maintenance (Cerullo 2013). Based on this classification criterion, a “bridge deficiency” could be 

a “concrete bridge element deficiency”, “fiber reinforced polymer bridge element deficiency”, a 

“masonry bridge element deficiency”, a “steel bridge element deficiency”, or a “timber bridge 

element deficiency”. 
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Figure 3.3. Bridge deficiency hierarchy (partial). 

Seven primary types of subconcepts under this highest-level classification are defined based on 

the visual appearances of deficiencies. Visual inspection (VI) is a predominant nondestructive 

evaluation technique for bridge inspection (FHWA 2001), during which bridge inspectors are 

responsible to identify bridge deficiencies visually (FHWA 2012). Textual bridge reports 

document and reflect inspected bridge deficiency findings on a visual-appearance base. Therefore, 
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the BridgeOnto should capture bridge deficiency concepts in a way that is consistent with how 

they were documented, in order to be sufficient in applicability. As such, the seven primary types 

of subconcepts are presented as follows: 

• Discontinuity: Discontinuity is defined as the non-designed separation in the continuity of 

structural materials. For example, under the “bridge concrete deficiency” concept, a “concrete 

discontinuity” could be a “cracking”, a “delamination”, or a “honeycombing”, etc. Similarly, 

under the “bridge timber deficiency” concept, a “timber discontinuity” could be a “timber 

check”, “timber shake”, or a “timber split”, etc. The subconcepts of discontinuity are same in 

terms of visual appearance, because they all manifest as separations on bridge elements with 

visible linear fractures or fissures in various directions. 

• Disintegration: Disintegration is defined as the gradual and continuing removal/loss of small 

particles or fragments from bridge structure surfaces. A “concrete disintegration” could be 

manifested as a “chalking”, a “scaling”, a “spalling”, or an “erosion damage”, etc. The visual 

appearances of such deficiencies are powdered structure surfaces, polished structure surfaces, 

or holes on structure surfaces that expose the structure inner layers (e.g., reinforcement in 

concrete). 

• Surface contamination: Surface contamination is defined as the precipitation of undesired dirty 

and/or colored substances on structure surfaces through pores or openings. Surface 

contamination is commonly found on concrete and masonry bridge elements. For example, a 

“concrete surface contamination” could be an “efflorescence”, a “rust staining”, or an 

“incrustation”, etc. Surface contamination deficiencies often indicate more complex 

deteriorations of bridge elements. For example, the “efflorescence” – white surface deposits – 

may suggest the chloride contamination of concrete elements. The “rust staining” – red or 
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orange surface coats – may indicate the corrosion of the internal reinforcement of reinforced 

concrete elements. 

• Coating failure: Coating failure, as the name indicates, is the failure of a bridge element 

protective system. The coating of bridge elements is visually easy to be identified; hence, the 

coating failures are visually-distinctive compared to other deficiencies. Some coating failures, 

such as “wrinkling” (i.e., unsmooth and crinkled paint surface), result from construction errors 

(e.g., excessive paint). Some coating failures, such as “saponification” (i.e., soft residue caused 

by chemical reactions between concrete surface and paint), are induced by improper selection 

of coating materials (e.g., oil-based paint for coating concrete). And, other coating failures, 

such as “coating erosion” (i.e., gradual removal of coating substances from element surfaces), 

are resulted from physical abrasions from the service environment (e.g., rain, hail or traffics 

abrasions). 

• Deformation: Deformation is defined as the elastic or inelastic distortion of a bridge element. 

The deformation is visually identified as an out-of-shape configuration in a bridge element, 

compared to as-designed or as-constructed configurations. For example, a “steel deformation” 

could be a “bending”, a “bulking”, a “twisting”, or a “faulting” due to repeated bending, 

compressive, torsional, or shear forces; or could be a “rutting” or a “surface depression” 

resulting from traffic loads. 

• Deflection: Deflection is defined as the movement of bridge elements under loads. Deflection 

deficiencies manifest themselves as displacement or misalignment of bridge elements. For 

example, a “timber deflection” could be a “vertical timber deflection”, a “lateral timber 

deflection”, or a “rotation timber deflection” according to the direction to which a bridge 

element moves. 
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• Corrosion: Corrosion is defined as the destruction of metals from a refined form to a more 

stable form through oxidation. A rusting metal surface is the most prominent visual indicator 

of corrosion. In the BridgeOnto, a “corrosion” could be a “bacteriological corrosion” due to 

the existence of various organisms, a “stay current corrosion” due to electricity from 

surrounding structures, or a “pack rust” due to mating metal surfaces, etc. 

3.1.2.4 Bridge Deficiency Cause Hierarchy 

In the BridgeOnto, multimodality views for the bridge deficiency cause hierarchy are presented. 

Different modality views for the bridge deficiency cause hierarchy intend to capture its importance 

in bridge deterioration knowledge modeling, because (1) proper bridge inspection practices require 

the understanding, identification, and recording of the causes of bridge deficiencies (FHWA 2012); 

and (2) permanent and reliable bridge maintenance actions require the treatment of the root-causes 

of the deficiencies (AASHTO 2007). Figure 3.4 presents a partial view of the main modality view, 

and Figure 3.5 shows partial views of the secondary modalities. A partial list of the concepts with 

their corresponding sources is shown in Table 3.2. 
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Figure 3.4. Bridge deficiency cause hierarchy (partial). 

3.1.2.4.1 Main Modality View 

In the main modality view, bridge deficiency cause concepts are classified based on primary bridge 

materials, including concrete, steel, timber, masonry, and fiber reinforced polymer, because 

different types of material exhibit different properties that make them show varying levels of 

resistance to certain deficiency causes. As a result, some deficiency causes are considered as 

critical inducing factors to a particular type of bridge element material, while not to others. For 

example, concrete, which often contains highly alkaline cement, can quickly deteriorate as the PH 

of chemical agents it is exposed to decreases from 6.5 (PCA 2016). Also, hydraulic cement 

concrete can hardly resist a chemical agent with a PH of 3 or lower (PCA 2016). However, 

plywood, as a type of timber material, has better resistance to chemical agents. It was shown that 

plywood can barely be affected when exposed to a chemical reagent whose PH is between 2 and 

10 (APA 2016). In such case, acid attack is a critical concrete bridge element deficiency cause, but 
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not (in most cases) a timber bridge element deficiency cause. To this end, in the main modality 

view, five main subconcepts of “bridge deficiency cause” are defined: 

• Concrete bridge element deficiency causes: The majority of bridge concrete deficiencies are 

caused by “accidental loading”, “concrete chemical attack”, “concrete construction error”, and 

other related causes from concrete element service environments such as “moisture”, “freeze-

thaw”, and “temperature change”. An “accidental loading” characterizes massive forces that 

are applied to concrete elements for a short duration, such as forces due to earthquake and 

hurricane impacts and vehicle collisions to the concrete bridge elements. A “concrete chemical 

attack” is one the most predominate causes of concrete bridge elements, because concrete is a 

highly alkaline material that shows lower resistance to acid attacks, alkali-silica reactions, and 

aggressive-water (i.e., water with dissolved mineral concentrations) attacks, etc. A “concrete 

construction error”, although may not directly contribute to the failure of bridge elements, 

could negatively affect concrete properties (e.g., strength and elasticity) and thus open chances 

for concrete deficiencies. 

• Steel bridge element deficiency causes: The main types of bridge steel deficiency causes are 

“accidental loading”, “corrosive matter”, and “steel construction error”. The accidental loading 

share exactly same characteristics as that causing deficiencies in other types of bridge material. 

The most recognizable deficiency of steel – corrosion – is caused by the exposure of 

unprotected or even protected steel material to corrosive matters. “Corrosive matters” are those 

substances or living things that contribute to or expedite the corrosion of steel. For example, 

excessive moisture, oxygen, and/or deicing chemicals can form a corrosion cell that contributes 

to steel corrosion; and, bacteria and/or organism found in swaps or stagnant water can 

accelerate steel corrosion by producing sulfides at steel surfaces. “Steel construction errors”, 
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including poor welds, poor fabricated detail quality, and excessive paint, can negatively affect 

the steel bridge elements’ strengths and resistances to corrosion and thus lead to deficiencies. 

• Timber bridge element deficiency causes: The most dominant causes of bridge timber 

deficiencies are “accidental loading”, “fire”, “insect”, and “fungi”. Fire consumes timber 

bridge elements at an extremely high rate (i.e., 0.05 inches per minute at the first 30 minutes), 

and thus could contribute to timber deficiencies (e.g., loss of section that reduces the loading-

carrying capacity of timber elements) or even total consumption of a timber bridge. Because 

of the organic nature of timber, insects (e.g., termite and/or carpenter ant) could consume 

timber elements for shelters or foods, which would result in hollowed inside of timber elements 

and thus reduce the sections of timber elements. Fungi consumes timber in a similar fashion 

as insects. As reported, only “timber destructive fungi” (e.g., brown and white fungi) lead to 

timber deficiencies; while other types of fungi (e.g., mold and soft fungi) generally are not 

considered as destructive to timber. 

• Fiber reinforced polymer and masonry bridge element deficiency causes: The main causes of 

bridge fiber reinforced polymer deficiencies include “extensive UV radiation” and “heat 

exposure”. Bridge masonry deficiencies could be induced by causes, such as “frost-freeze”, 

“marine growth”, and/or “plant growth”, etc. Detailed classifications of fiber reinforced 

polymer and masonry bridge element deficiency causes are presented in Figure 3.4. 
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Figure 3.5. Bridge deficiency cause secondary modality view (partial). 

3.1.2.4.2 Secondary Modality Views 

The secondary modality views intend to represent bridge deficiency cause concepts from multiple 

perspectives for facilitating semantically-meaningful representations of the extracted information 

for supporting bridge performance understanding. All bridge deficiency cause concepts are 

reclassified based on: (1) the nature of the deficiency cause, and (2) the phase of the deficiency 

cause. The nature of deficiency cause is an intrinsic feature that characterizes a bridge deficiency 

cause. The phase of the deficiency cause characterizes bridge deficiency causes according to the 

different phases of a bridge’s life cycle.  
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First, the “nature of deficiency cause” modality view classifies all bridge deficiency cause concepts 

into physical, chemical, and/or biological causes. A “physical bridge deficiency cause” is a cause 

that is characterized or produced by the forces and operational rules of physics, which could be an 

“accidental loading”, a “fire”, a “freeze-thaw”, a “freeze-frost”, a “moisture”, or an “overloading”. 

A “chemical bridge deficiency cause” is a cause that is related to or produced by chemical 

reactions, which could be a “chemical attack”, an “alkali-silica reaction”, or an “alkali attack”. A 

“biological bridge deficiency cause” is a cause that is related to or produced by living organisms 

or living processes, which could be a “bacteria”, “fungi”, “insect”, or “plant growth”, etc. Second, 

the “phase of deficiency cause” modality view categorizes all bridge deficiency cause concepts 

into a “design phase bridge deficiency design cause” (e.g., “inadequate structural design” and 

“poor design detail”), a “construction phase bridge deficiency design cause” (e.g., “improper 

consolidation” and “improper tooling”), or an “operation phase bridge deficiency design cause” 

(e.g., “frequent truck traffic” and “weathering”).  

3.1.2.5 Bridge Maintenance Action Hierarchy 

In the BridgeOnto, multimodality views for the bridge maintenance action hierarchy are presented. 

Different modality views of this hierarchy intend to capture the importance and context 

sensitiveness of bridge maintenance actions in bridge deterioration knowledge modeling. 

According to the AASHTO (2007), a “bridge maintenance action” could be a “corrective bridge 

maintenance action” or a “preventive bridge maintenance action”. A corrective bridge 

maintenance action is directed at repairing and/or replacing deteriorated bridge elements to reach 

their as-constructed or improved condition. A preventive bridge maintenance action is directed at 

preforming activities that will preserve bridge elements in their current or as-constructed condition 

and forestalling bridge deficiency developments. The classification of preventive bridge 
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maintenance action concepts is shown in Figure 3.6. The main and secondary modality views for 

corrective bridge maintenance action concepts are shown in Figure 3.6 and Figure 3.7. A partial 

list of the concepts with their corresponding sources is shown in Table 3.2. 

 

Figure 3.6. Bridge maintenance action hierarchy (partial). 

3.1.2.5.1 Main Modality View 

The subconcepts of the corrective bridge maintenance action hierarchy are further classified based 

on the most common bridge materials (i.e., concrete, steel, and timber, which collectively compose 

approximately 99% of the nation’s bridges). In Figure 3.6, a “corrective bridge maintenance 

action” could be a “concrete bridge element corrective maintenance action”, a “steel bridge 

element corrective maintenance action”, or a “timber bridge element corrective maintenance 

action”. For each type of corrective maintenance action, three primary subconcepts are defined: 
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• Partial replacement: the corrective bridge maintenance action that involves the partial removal 

of deteriorated sections from a bridge element and the partial placement of new sections. 

• Total replacement: the corrective bridge maintenance action that involves the entire removal 

and replacement of a deteriorated bridge element whose deteriorated sections are typically over 

50% of the entire bridge element. 

• Repair: the corrective bridge maintenance action that does not involve replacement of bridge 

element section; instead, it utilizes different techniques to strength or restore a deteriorated 

bridge element.   

For repair action, three main subconcepts are defined: 

• Concrete bridge element repair: Concrete bridge element repair involves repairing concrete 

cracking to preclude moisture and chemicals entering the bridge elements (e.g., “additional 

reinforcement”, “stitching”, or “polymer injection”), repairing section loss to restore the load-

carrying capacities of structural elements (e.g., “patching” or “jacketing”), and repairing 

prestress loss to rehabilitate the as-designed dynamic state of stress (e.g., “post-tensioning”, or 

“reconnecting tendons with cable splicing”), etc. 

• Steel bridge element repair: Steel bridge element repair involves repairing steel fatigue 

cracking to avoid sudden and catastrophic failure of steel elements (e.g., “crack arresting 

hole”), strengthening steel elements to recover or improve their load-carrying capacity (e.g., 

“welding plate” or “bolting channel”), and straightening deformed steel elements to address 

damage from impacts or collisions (e.g., “heat straightening” or “introduction of composite 

action”), etc. 

• Timber bridge element repair: Because timber bridge elements are easy and economical to be 

maintained by replacement, timber repair mainly focuses on cracking arresting actions (e.g., 
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“clamping”, “scabbing augmentation”, or “splicing augmentation”) when a timber replacement 

is unfeasible. 

3.1.2.5.2 Secondary Modality Views 

Figure 3.7 shows a partial view for the secondary modality views of the physical bridge 

maintenance action hierarchy. The bridge maintenance knowledge is multifaceted and context 

sensitive, because it involves complex decision making to select the most reliable physical 

maintenance actions under various context constrains, such as maintenance cost, availability of 

crew, material, and equipment, and type of bridge element, etc. To facilitate the representation of 

bridge maintenance knowledge, multiple secondary modality views for the physical bridge 

maintenance actions are defined, based on: agency, environmental restriction, maintenance bridge 

element, practice attribute, and implementation context. 

 

Figure 3.7. Bridge maintenance action secondary modality view (partial). 

As presented in Figure 3.7, an “agency” is defined as a group or an organization that leads 

corrective maintenance actions, which could be a “federal agency”, a “local agency”, or a 

“contracted maintenance provider”. An “environmental restriction” refers to an environmental 

regulation that could affect the feasibility of a corrective bridge maintenance action, which could 
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include the Comprehensive Environmental Response, Compensation, and Liability Act 

(CERCLA), the Clean Air Act (CAA), the Clean Water Act (CWA), or the National Environmental 

Policy Act (NEPA), etc. An environmental restriction could affect the applicability of specific 

maintenance actions, and thus could determine the different classifications of maintenance actions 

based on restrictions. For example, maintenance actions involving air blasting are subject to the 

CAA airborne lead emission requirement. A “maintenance bridge element” refers to the bridge 

elements that characterize different corrective bridge maintenance actions, which could be a 

“deck”, a “beam”, a “truss”, an “above-water substructure”, an “under-water substructure”, or a 

“pile”, etc. Based on the “maintenance bridge element” modality view, a corrective bridge 

maintenance action could be characterized accordingly as a “deck corrective bridge maintenance 

action”, an “above-water substructure corrective bridge maintenance action”, or an “under-water 

corrective bridge maintenance action”, etc. A “practice attribute” refers to a property or 

characteristic that defines or describes a physical bridge maintenance action. The practice attribute 

modality emphasizes six attributes that are critical in selecting suitable corrective bridge 

maintenance actions: cost, duration, level of difficulty, equipment requirement, crew requirement, 

and material requirement. The six attributes correspond to the “bridge maintenance process 

attributes” defined in the bridge attribute hierarchy. To characterize each of these six attributes, 

three scales are defined: low, medium, and high. For example, a corrective bridge maintenance 

action could be classified as a low-material-requirement action, a medium-material-requirement 

action, or a high-material-requirement action. The “implementation context” refers to the 

circumstance in which a corrective bridge maintenance action is being implemented, which could 

be a “traffic condition”, an “on-site soil type”, or a “contract type”, etc. For example, a corrective 
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bridge maintenance action could be classified as an open-to-pedestrian-traffic action, an open-to-

vehicular-traffic action, or a closed-to-vehicular-traffic action. 

3.1.2.6 Bridge Attribute Hierarchy  

A bridge attribute is defined as a characteristic (e.g., a bridge element material or a bridge 

inspection method) that describes a “thing” (e.g., a bridge element or a bridge deficiency). In the 

BridgeOnto, a “bridge attribute”, as shown in Figure 3.8, is described by three subconcepts: 

• Bridge element attribute: A “bridge element attribute” is identified as a “bridge element 

material” (e.g., concrete or steel) or a “bridge element configuration” (i.e., the constructed 

shape of a bridge element).  

• Bridge process attribute: A “bridge process attribute” could be a “bridge inspection process 

attribute” or a “bridge maintenance process attribute”. A “bridge inspection process attribute” 

describes the contextual characteristics of a “bridge deficiency” in two primary dimensions – 

a “bridge inspection date” and a “bridge inspection method”. The “bridge inspect date” reflects 

the deficiency discovery date in order to capture how a bridge deficiency is propagating over 

time; and, the “bridge inspection method” affects the confidence levels of a recorded 

deficiency measurement. For example, deficiency measurement information from physical 

inspection methods is generally more accurate than that from visual inspection methods. The 

“bridge maintenance process attribute” represents the contextual characteristics of a “bridge 

maintenance action” in eight primary dimensions, as shown in Figure 3.8. The “bridge 

maintenance material” is one of the most important contextual dimensions in defining a 

maintenance action, because it could be positively or negatively affect the performance of an 

action. For example, asphalt material for concrete deck patching is considered as a temporary 

repair rather than a permanent one. In order to describe this important knowledge about how a 
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deficiency is maintained, it is necessary to model the different types of materials that are 

commonly used in bridge maintenance practices. In the BridgeOnto, a “bridge maintenance 

material” could be a “sealant” (e.g., siloxane or methyl methacrylate), a “cementitious 

material” (e.g., silica fume concrete or fiber reinforced concrete), a “paint” (e.g., epoxy paint 

or zinc-rich primer), or a “wood preservative” (e.g., alkaline copper quaternary or oxine 

copper), etc. 

• Bridge deficiency attribute: A “bridge deficiency attribute” could be a “bridge deficiency onset 

date” or a “bridge deficiency measurement”. The “deficiency onset date” could be same or 

different from the bridge inspection date, depending on how bridge inspectors record them. 

The “bridge deficiency measurement” could be a “numerical geometry measurement” 

associated with a “numerical geometry measurement unit” (e.g., the numerical measurement 

of length in inch), a “categorical severity measurement”, or a “categorical quantity 

measurement”. These measurements do not mutually exclude each other, because they define 

orthogonal measurement dimensions of a deficiency. 

 

Figure 3.8. Bridge attribute hierarchy (partial). 
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3.1.3 BridgeOnto Coding 

The BridgeOnto was coded using Protégé 3.4.5 (Protégé 2016). Protégé is an off-the-shelf 

ontology editor that supports coding ontology in the Web Ontology Language (OWL) format. The 

BridgeOnto coding included the following two main steps. First, the concepts were represented as 

Protégé-OWL classes and the taxonomy of the concepts was captured and coded into a superclass-

subclass hierarchy. Second, the relations between the concepts were represented and coded using 

Protégé-OWL “extension property restrictions” and “necessary conditions”. 

3.2 BridgeOnto Evaluation 

The evaluation of the BridgeOnto included two primary steps: verification and validation. 

Ontology verification aimed to ensure that the ontology was constructed correctly and consistently 

towards implementing its defined requirements, which included ensuring that the ontology 

satisfies its functional requirements and ensuring that the ontology is free of redundancy and 

inconsistency errors. Ontology validation aimed to evaluate the capability of the ontology in 

modeling the real-world that it tries to model. The BridgeOnto verification and validation methods 

included: (1) answering CQs, (2) automated consistency and redundancy checking, (3) expert 

interviews, and (4) application-oriented validation. These methods, collectively, intended to 

evaluate whether or not the BridgeOnto meets the following criteria (Gómez-Pérez et al. 2006; 

Gruber 1995; Vrandečić 2009). The methods and the corresponding criteria are presented in Table 

3.3. 

• Clarity: Does the terms in the BridgeOnto communicate the intended meaning of the concepts 

and relations clearly? 

• Representation: How representative are the concepts of the BridgeOnto? 
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• Coverage: Does the BridgeOnto cover the main concepts and relationships in its domain of 

interest? 

• Conciseness: Is the BridgeOnto free of unnecessary and redundant concepts and relationships? 

• Consistency: Are the representations of the BridgeOnto consistent? 

• Navigational Ease: Is the BridgeOnto easy to navigate? 

• Extendibility: Does the BridgeOnto support the extension to cover other domains of interest 

(i.e., inclusion of additional concepts and relationships to extend its domain of interest)? 

• Applicability: How applicable can the BridgeOnto be in specific application scenarios or user 

cases?  

Table 3.3. BridgeOnto evaluation methods and evaluation criteria. 

Evaluation method 
Criterion 
1 2 3 4 5 6 7 8 

Answering competency questions O X O O O O O O 

Automated consistency and redundancy checking O O O X X O O O 

Expert interview X X X X O X X O 

Application-oriented validation O O O O O X O X 

1 – 8: Clarity, representation, coverage, conciseness, consistency, navigational ease, extendibility, applicability; X = 

Evaluate; O = Do not evaluate. 

3.2.1 BridgeOnto Verification 

3.2.1.1 Answering Competency Questions 

CQs have been commonly utilized as guidance to develop an ontology and/or as functional 

requirements to verify an ontology. An example of a CQ used in the BridgeOnto verification 

process is “what are the deficiency types that a timber deck could have?” The ability of the 

ontology to answer all CQs was checked. It was shown that the BridgeOnto is able to answer all 

CQs. 
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3.2.1.2 Automated Consistency and Redundancy Checking 

The ontology was automatically checked for consistency and redundancy errors using the Pellet 

1.5.2 Reasoner in Protégé 3.4.5 (Protégé 2016). The defined concepts and relationships of the 

BridgeOnto passed the consistency and redundancy checks. 

3.2.2 BridgeOnto Validation: Expert Interview Validation  

Benchmarking the methodology by El-Gohary and El-Diraby (2010), human expert interviews 

were conducted to solicit expert feedback about the capability of the BridgeOnto in modeling 

bridge deterioration knowledge. A purposive sampling method was used to select the expert 

interview participants. Purposive sampling is a non-probabilistic sampling method that is 

especially effective when a certain type of participants such as knowledgeable experts need to be 

recruited for a study (Tongco 2007). The underlying philosophy of purposive sampling is that 

participants are selected based on a set of predetermined criteria meeting a particular research 

objective (Guest et al. 2006). Therefore, to select participants for the expert interviews, three 

criteria were defined: (1) familiarity with the bridge domain, (2) in-depth understanding of bridge 

deterioration mechanisms and bridge maintenance practices, and (3) awareness of 

information/knowledge modeling. Based on these criteria, a total of eight expert participants from 

both academia and industry were selected. They have an average of 17.6 years of experience in 

bridge-related areas, including bridge design, inspection, and maintenance, bridge and structural 

engineering, and structure repairing and retrofitting. The details of the background of the experts 

are summarized in Table 3.4. 
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Table 3.4. Expert interview participant background. 

Respondent Field of experience 
Years of 

experience 

Organization 

type 

1 Highway bridge design and bridge inspection 4 Industrial 

2 
Bridge design, bridge inspection contract, and bridge 

inspection training 
43 Industrial 

3 Bridge maintenance 29 Industrial 

4 Bridge inspection 3 Industrial 

5 Structural engineering 30 Academic 

6 
Bridge engineering and construction engineering and 

management 
10 Academic 

7 Structure repairing and retrofitting 2 Academic 

8 Bridge engineering and structure retrofitting 20 Academic 

 

Each expert interview session was comprised of three parts: (1) a brief introduction to the purpose 

and scope of the research, the high-level concepts of the BridgeOnto, and the application scenario 

of the ontology; (2) a detailed introduction to the ontology (including concepts and relationships) 

using the ontology tree presentation by Protégé 3.4.5 (Protégé 2016). In this part, the participant 

could also navigate through the ontology tree himself/herself; and (3) a structured survey of the 

participant’s opinion using a questionnaire. The survey aimed to solicit expert feedback on the 

following main ontology evaluation criteria: clarity, representation, coverage, conciseness, 

navigational ease, and extendibility. 

The questionnaire is composed of the following eight sections: 

1. Participant information: This section aimed to solicit some background information about the 

participants, including organization, position, year of experience, and contact information. 

2.  Background and familiarity with survey scope: This section aimed to confirm that the 

participants meet the aforementioned participant selection criteria. In this section, the 

participant’s level of familiarity with bridge deterioration mechanisms and bridge 
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inspection/maintenance practices and level of awareness of information/knowledge modeling 

were assessed by two direct questions. 

3. Need for the BridgeOnto: This section aimed to solicit expert opinion on the need for bridge 

document analytics and the need for bridge deterioration knowledge modeling for supporting 

such analytics by two direct questions. 

4. Term clarify: This section aimed assess the clarity of the terms in effectively communicating 

the intended meaning of the concepts. In this section, participants evaluated the term clarity of 

a set of randomly pre-selected concepts. 

5. Classification: This section aimed to evaluate the abstraction and categorization effectiveness 

of the classifications. In this section, the participants were requested to rate their levels of 

agreement with the hierarchical paths of a set of concepts. 

6. Navigational ease: In this section, participants were requested to navigate through the ontology 

to find a set of randomly-selected concepts in the taxonomy, and then rate the level of ease to 

find each concept. 

7. Conciseness and extendibility: This section asked participant whether they found unnecessary 

or redundant concepts and whether they think the BridgeOnto can be extended to other civil 

infrastructure subdomains. 

8. Overall assessment: This section aimed to seek an overall assessment of the BridgeOnto 

through six direct questions about the clarity, representation, coverage, conciseness, 

navigational ease, and classification of the ontology. 

 The interview results for Sections 2-8 of the questionnaire are summarized in Table 3.5, where 

the responses to the conciseness and extendibility criteria were recorded using a binary scale (with 

1 and 0 standing for “yes” and “no”, respectively) and the responses to the other criteria were 
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recorded using a six-point Likert scale (with 1 and 6 standing for the most and the least favorable, 

respectively). Overall, the participants collectively “agree” with the classification of the 

BridgeOnto, and found the ontology “very ease” to navigate, the concepts “familiar”, “very 

representative”, and “very concise”, and the terms “effectively” communicating the intended 

meaning of the concepts. The participants also collectively indicated that the concepts and relations 

of the BridgeOnto “cover” the bridge deterioration knowledge aspects. The overall opinion of the 

participant also indicate that the BridgeOnto can be extended to other civil infrastructure 

subdomains, such as highway and roadway maintenance, building maintenance, dam structure 

maintenance, etc. 
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Table 3.5. Summary of expert interview results. 

Section Question Mean Median 
Standard 

deviation 

Interpretation 

of result (based 

on median) 

2a 

  

  

Background and familiarity 

How familiar are you with bridge deterioration 

mechanisms and bridge inspection/maintenance 

practices? 

2.13 2.00 0.64 Familiar 

To what extent are you aware of 

information/knowledge modeling? 
2.75 3.00 0.71 

Somewhat 

aware 

3a 

  

  

Need for bridge document analytics and bridge deterioration knowledge modeling 

Do you think bridge document analytics are 

important to bridge management? 
1.50 1.00 0.53 Very important 

Do you think bridge deterioration knowledge 

modeling is important to the success of bridge 

document analytics? 

1.75 2.00 0.71 Important 

4a Term clarity 1.92 2.00 0.90 Clear 

5a Classification 1.75 2.00 0.69 Agree 

6a Navigational ease 1.48 1.00 0.91 Very easy 

7b 

  

  

  

Conciseness and extendibility 

Do you find any unnecessary or useless 

concepts? 
0.00 0.00 0.00 No 

Do you find any redundant concepts? 0.13 0.00 0.35 No 

Do you think the BridgeOnto could be extended 

to represent the knowledge of other civil 

infrastructure sub-domains? 

0.75 1.00 0.46 Yes 

8a 

 

 

 

 

 

  

Overall assessment 

Do you agree with the main classification of the 

BridgeOnto? 
1.75 2.00 0.71 Agree 

How easy was it to navigate through the 

BridgeOnto? 
1.50 1.00 0.76 Very easy 

How familiar are the concepts of the 

BridgeOnto? 
2.25 2.00 1.04 Familiar 

How representative are the concepts of the 

BridgeOnto? 
1.63 1.00 0.74 

Very 

representative 

what do you think of the conciseness of the 

BridgeOnto? 
1.63 1.00 0.74 Very Concise 

How effectively do you think the terms used in 

the BridgeOnto communicate the intended 

meaning? 

2.00 2.00 0.76 Effectively 

Overall, do you think the BridgeOnto cover the 

main concepts and relations of the defined bridge 

deterioration knowledge aspects? 

1.75 2.00 0.71 Complete 

a Six-point Likert scale; 
b Binary scale. 
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CHAPTER 4 – SEMANTIC INFORMATION EXTRACTION 

This chapter presents the proposed information extraction method for extracting information about 

bridge conditions and maintenance actions from textual bridge inspection reports. The method 

development and evaluation (Research Task #3) are presented in this chapter. 

4.1 Comparison to the State of the Art 

Automated IE from bridge inspection reports – compared to other IE efforts such as IE from 

building codes (e.g., Zhang and El-Gohary 2013) and social media (e.g., Ritter et al. 2012) – is 

challenging because of two main reasons. First, bridge inspection reports are highly variable in 

terms of text characteristics and patterns, because they are typically written by many different 

writers/inspectors from various local, state, and federal agencies. Existing rule-based (e.g., Appelt 

et al. 1993; Elsebai et al. 2009; Lehnert et al. 1991; Riloff 1993; Xu et al. 2010) and supervised 

machine learning (ML)-based (Li et al. 2013) IE methods would, thus, require an unaffordable 

amount of human effort for developing a comprehensive set of representative pattern-matching-

based rules or annotated training data, in order to capture the variability in text patterns. Second, 

on one hand, bridge inspection reports exhibit domain-specific uniqueness that involves complex 

concept identification and relationship association (i.e., identifying complex technical concepts 

about bridge elements, deficiencies, and maintenance actions, etc., and their associated relations). 

On the other hand, because of the technical criticality of the extracted data/information, a high 

performance in both precision and recall is required for the automated IE from bridge inspection 

reports. Existing semi-supervised ML-based (e.g., Guo et al. 2009; Jiang and Zhai 2007; Liao and 

Veeramachaneni 2009; Liu et al. 2011) and unsupervised ML-based (e.g., Alfonseca and 

Manandhar 2002; Etzioni et al. 2005; Nadeau et al. 2006; Shinyama and Sekine 2004) IE methods 

cannot deal such complexities and variabilities with a high precision and recall performance.  
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4.2 Information Extraction Method Development 

4.2.1 Proposed Information Extraction Method 

To address the above-mentioned knowledge gaps, a new ontology-based, semi-supervised 

conditional random fields (CRF)-based information extraction (IE) method is proposed. The 

proposed IE method allows for capturing the dependency structures as well as the distributions of 

both labeled and unlabeled data simultaneously in a concave machine-learning function. It, thus, 

dynamically adapts itself to unseen instances by further learning from a large number of unlabeled 

data – in addition to learning from a small set of fixed labeled data – to save human effort and 

achieve a high IE performance. The problem of extracting information from bridge inspection 

reports is defined as an automated named entity recognition and classification (NERC) task. In this 

thesis, the NERC task aims to automatically recognize and classify information units (i.e., named 

entities) into predefined entity classes. As explained in Section 1.5.2.1, the entity classes were 

predefined based on the analyses of sample bridge inspection reports, from both bridge engineering 

and NLP perspectives. The defined entity classes (i.e., target information types) include: bridge 

element, deficiency, deficiency cause, maintenance action, maintenance material, numerical 

measure, numerical measure unit, categorical quantity measure, categorical severity measure, date, 

and other. 

The proposed IE method is novel in the following primary ways:  

1. Capturing the dependency structures as well as the distributions of a small set of fixed labeled 

data and a large set of unlabeled data simultaneously in a semi-supervised CRF-based machine-

learning function. Two types of dependency structures of the data are explicitly defined and 

represented: the dependencies between entity classes and the dependencies between entities 
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(i.e., a word such as “deck”) and their classes (i.e., its corresponding class such as “bridge 

element”). The distributions of the data are captured under the semi-supervised learning cluster 

assumption to enable the utilization of a large set of unlabeled data with their derived entity 

class sequences, in order to dynamically adapt to unseen instances. Modeled in this way, the 

proposed method is expected to save human-annotation effort and achieve high recall and 

precision. 

2.  Formulating the NERC task into a concave semi-supervised machine-learning function. The 

proposed function is composed of two primary components, one for labeled data and one for 

unlabeled data, that both follow the exponential family distribution in logarithmic space. 

Because the log-likelihood of exponential families is strictly concave, the linear combination 

of two such distributions also holds for concavity. The concavity of the proposed method is 

extremely important to avoid suboptimal initializations and converging at local maxima, which 

would otherwise negatively affect IE performance.  

3. Utilizing formally defined semantics for assisting IE. The semantics defined by the BridgeOnto 

ontology (presented in Chapter 3), are utilized to facilitate IE from bridge inspection reports 

based on content and domain-specific meaning. Each word in the reports is compared to the 

concepts in the BridgeOnto, and is mapped to the highest-level classification of a concept if 

the concept contains the word. In this way, the words are semantically represented to avoid 

ambiguities of word senses, thereby improving IE performance. 

Figure 4.1 depicts the high-level algorithm for the proposed IE method. In the following 

subsections, the proposed IE method and its core components are presented in more detail.  
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Figure 4.1. High-level algorithm for the proposed IE method. 

4.2.1.1 Proposed Information Extraction Model 

The proposed ontology-based, semi-supervised CRF-based IE model is the backbone of the 

proposed IE method. In this chapter, a dataset is defined as 𝐷 = 𝐿 ∪ 𝑈, where 𝐷 consists of 𝑙 

labeled data, 𝐿 =  {(𝐱𝑖, 𝐲𝑖)}𝑖=1
𝑙 , and 𝑢 unlabeled data, 𝑈 = {(𝐱𝑖)}𝑖=𝑙+1

𝑙+𝑢 . 𝐿 is intended to be a fixed 

(i.e., same set used for all IE tasks) labeled dataset, containing labeled sentences from a selected 

training text/report, for training the proposed algorithm. 𝑈 is an unlabeled dataset, containing 

unlabeled sentences from the report from which information needs to be extracted, which is used 

to dynamically adapt the algorithm to the unseen instances (i.e., to the unseen text from which the 

information needs to be extracted during an IE task). The unlabeled dataset, thus, varies from an 
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IE task to another. 𝐱𝑖 denotes the 𝑖𝑡ℎ structured observation (i.e., a preprocessed natural language 

sentence in its feature representation). 𝐲𝑖  denotes the 𝑖𝑡ℎ  structured output (i.e., a sequence of 

entity classes each of which corresponds to a token in the 𝐱𝑖). The goal of the proposed IE model 

is to learn from both labeled and unlabeled data to fine-tune the model weights (i.e., 𝜆𝑘 ) for 

maximizing ∑ log 𝑃(𝐲𝑖|𝐱𝑖)
𝑙+𝑢
𝑖=1 , such that the learned model can predict a structured output 𝐲𝑖 

(𝑙 + 1 ≤ 𝑖 ≤ 𝑙 + 𝑢) for each unlabeled data accurately. log 𝑃(𝐲𝑖|𝐱𝑖), as defined by supervised 

CRF (Lafferty et al. 2001), is the conditional probability of 𝐲𝑖  given 𝐱𝑖  in logarithmic space. 

Supervised CRF only aims to maximize ∑ log 𝑃(𝐲𝑖|𝐱𝑖)
𝑙
𝑖=1  with 𝐿 , without considering the 

dependency structures and distributions of 𝑈. The proposed IE model is built on supervised CRF, 

but makes significant improvements so as to – in addition to learning from a small set of fixed 

labeled data – dynamically adapt itself to unseen instances by further learning from a large 

collection of unlabeled data, to reduce human effort and achieve a high IE performance. The 

proposed semi-supervised CRF model is defined in Eq. (4.1) as follows: 

∑ 𝑙𝑜𝑔𝑃(𝐲𝑖|𝐱𝑖)
𝑙+𝑢

𝑖=1
= 𝐿𝐼 + 𝑈𝐼 − 𝛾∑𝜆𝑘

2

𝐾

𝑘=1

                                                                                        (4.1) 

In Eq. (4.1), the labeled item (i.e., 𝐿𝐼) is the mathematical representation of supervised linear-chain 

CRF for labeled data (Lafferty et al. 2001). The supervised linear-chain CRF model, which is a 

special case to the general supervised CRF, assumes that the entity class of the current token 

depends on the features defined by the current token and its preceding entity class. The labeled 

item in Eq. (4.1) is defined in Eq. (4.2), where 𝑙  denotes the number of labeled data (i.e., 

preprocessed natural language sentences in feature representations), 𝑇 denotes the length of the 

 𝑖𝑡ℎ (1 ≤ 𝑖 ≤ 𝑙) labeled data, and 𝐾 denotes the number of feature functions. 𝑓𝑘(𝐲𝑖
𝑡, 𝐲𝑖

𝑡−1, 𝑟,𝑚) in 
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Eq. (4.2) is the  𝑘𝑡ℎ feature function with a model weight of 𝜆𝑘. A detailed introduction to the 

feature function is presented in Section 4.2.1.2. 

𝐿𝐼 =∑∑∑𝜆𝑘𝑓𝑘(𝒚𝑖
𝑡, 𝒚𝑖

𝑡−1, 𝑟,𝑚)

𝐾

𝑘=1

𝑇

𝑡=1

𝑙

𝑖=1

−∑𝑙𝑜𝑔 𝑍(𝐱𝑖)

𝑙

𝑖=1

                                                                     (4.2) 

In Eq. (4.1), the unlabeled item (i.e., 𝑈𝐼) is the mathematical representation of the proposed semi-

supervised linear-chain CRF for unlabeled data. This item serves as an adjustment item to the 

supervised item (i.e., 𝐿𝐼). The unlabeled item is proposed under the semi-supervised learning 

cluster assumption, which states that if two data points lay in the same cluster, then they are likely 

to have a similar class label (Mann and McCallum 2007). In the absence of labeled entity classes 

for unlabeled data, this item tries to (1) derive entity class sequences for each unlabeled data based 

on the entity class sequences of its similar data that were labeled, and (2) learn from unlabeled data 

and their derived entity class sequences to dynamically adjust the proposed IE model, such that to 

adapt itself to unseen instances. To achieve these goals, the unlabeled item is mathematically 

defined in Eq. (4.3), where 𝑢 denotes the number of unlabeled data (i.e., preprocessed natural 

language sentences in feature representations), 𝑁 denotes the number of the most similar entity 

class sequences (i.e., derived entity class sequences, �̃�𝑖) for the  𝑖𝑡ℎ (𝑙 + 1 ≤ 𝑖 ≤ 𝑙 + 𝑢) unlabeled 

data, and 𝐺 denotes a heterogeneous information network constructed for computing token-to-

token semantic similarities between labeled and unlabeled tokens. 𝑃(�̃�𝑖,𝑛|𝐱𝑖, 𝐺)  denotes the 

likelihood of the  𝑛𝑡ℎ derived entity class sequences given 𝐱𝑖 (𝑙 + 1 ≤ 𝑖 ≤ 𝑙 + 𝑢) and 𝐺, and is 

used to parameterize the importance of each derived entity class sequence according to its 

similarity degree. Other parameters in Eq. (4.3) follow those defined in Eq. (4.2). The methods 

used for constructing the heterogeneous information network, for computing semantic similarities 
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to derive �̃�𝑖 (𝑙 + 1 ≤ 𝑖 ≤ 𝑙 + 𝑢), and for computing 𝑃(�̃�𝑖,𝑛|𝐱𝑖, 𝐺) (𝑙 + 1 ≤ 𝑖 ≤ 𝑙 + 𝑢) are further 

introduced in Section 4.2.1.3.  

𝑈𝐼 = { ∑ ∑𝑃(�̃�𝑖,𝑛|𝒙𝑖 , 𝐺)∑∑𝜆𝑘𝑓𝑘(�̃�𝑖,𝑛
𝑡 , �̃�𝑖,𝑛

𝑡−1, 𝑟,𝑚)

𝐾

𝑘=1

𝑇

𝑡=1

𝑁

𝑛=1

𝑙+𝑢

𝑖=𝑙+1

} − ∑ log𝑍(𝐱𝑖)

𝑙+𝑢

𝑖=𝑙+1

                        (4.3) 

In Eqs. (4.2) and (4.3), ∑ log 𝑍(𝐱𝑖)
𝑙
𝑖=1  and ∑ log 𝑍(𝐱𝑖)

𝑙+𝑢
𝑖=𝑙+1  are normalization constants in 

logarithmic space to the 𝐿𝐼 and 𝑈𝐼, respectively. The normalization constant is the sum of all 

possible entity class sequences (i.e., 𝐲𝑖
′) for a given 𝐱𝑖 (1 ≤ 𝑖 ≤ 𝑙 + 𝑢). It is needed to guarantee 

that the ∑ 𝑃(𝐲𝑖|𝐱𝑖)𝐲𝑖
′  (1 ≤ 𝑖 ≤ 𝑙 + 𝑢) equals to one. The normalization constant 𝑍(𝐱𝑖) is defined 

in Eq. (4.4), where 𝐲𝑖
′ denotes all possible entity class sequences for a given 𝐱𝑖 (1 ≤ 𝑖 ≤ 𝑙 + 𝑢). 

Other parameters in Eq. (4.4) follow those defined in Eqs. (4.2) and (4.3). 

𝑍(𝐱𝑖) =∑ 𝑒𝑥𝑝(∑∑𝜆𝑘𝑓𝑘(𝐲𝑖
𝑡, 𝐲𝑖

𝑡−1, 𝑟,𝑚)

𝐾

𝑘=1

𝑇

𝑡=1

)
𝐲𝑖
′

                                                                            (4.4) 

In Eq. (4.1), 𝛾 is a regularization item weight that penalizes each model weight (i.e., 𝜆𝑘) to control 

the degree of overfitting or underfitting. 𝛾, thus, needs to be fine-tuned to avoid overfitting or 

underfitting. The empirical results on fine-tuning 𝛾 are presented in Section 4.3.2.4. 

4.2.1.2 Features and Feature Function 

The proposed IE method models a set of interdependent text features for facilitating IE from bridge 

inspection reports. A new feature representation is proposed, with both syntaxes and formally 

defined semantics in a context window of size one, to represent each token in a sentence. The 

context window is constructed with the features of the current token, as well as the features of the 

preceding and succeeding tokens. It intends to provide information on how the current token 
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should be interpreted and classified based on the features of the surrounding tokens, not only those 

of the current token. As shown in Figure 4.2, the proposed feature representation is a 1 × 36 

feature vector, including both syntactic and semantic features. The syntactic features include 

original tokens, stems, and part-of-speech (POS) tags. A stem is the root form of a token without 

inflectional and derivational suffixes and affixes. For example, “paint” is the stem of “repainted”. 

A POS tag describes the syntactic word class (also referred as lexical category) of a token based 

on its context in a sentence. In this thesis, the syntactic word classes by the Penn Treebank were 

used (Marcus et al. 1993), which include determiner, adjective, noun, and verb, etc. The semantic 

features were recognized and extracted based on the BridgeOnto (developed as per Research Task 

#2, in Chapter 3) by comparing the token’s stem to the stem(s) of each concept in the ontology.  

 

Figure 4.2. Proposed feature representation. 

A feature function is an indicator function that indicates whether or not the current token (i.e., 𝐱𝑖
𝑡) 

can be labeled with the current entity class (i.e., 𝐲𝑖
𝑡 ). Formally, a feature function [i.e., 

𝑓𝑘(𝐲𝑖
𝑡, 𝐲𝑖

𝑡−1, 𝑟,𝑚)] is defined with an input template that contains: the entity classes of the current 

token and the preceding token (i.e., 𝐲𝑖
𝑡 and 𝐲𝑖

𝑡−1), a feature (i.e., 𝑟) from the defined feature space, 

and the position (i.e., 𝑚) of the current token’s feature vector. If the current token carries the exact 

feature at the exact position in its feature vector as defined in the input template, and its preceding 

token has an entity class as defined in the input template, a feature function returns 1; otherwise, 

it returns 0. The returned value of 1 indicates that the current token could be labeled with the 

current entity class based on this feature function. An example of a feature function is presented 
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in Eq. (4.5), where “ET” denotes the entity class for “bridge element”, and “NN” denotes the POS 

tag feature for “noun”. Given this feature function, a token could be labeled as “ET”, if its 

preceding token’s entity class is “ET” and this token’s 15th feature is “NN”.  

𝑓1(𝒚𝑖
𝑡="ET", 𝒚𝑖

𝑡−1="ET", "NN",15) = {1  𝑖𝑓 𝑡ℎ𝑒 𝑡
𝑡ℎ  𝑡𝑜𝑘𝑒𝑛 𝑐𝑎𝑟𝑟𝑖𝑒𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                      (4.5) 

Because of its rich features and multiple entity classes, the proposed IE model utilizes a set of 

feature functions to collectively determine the confidence level of a token being labeled with a 

specific entity class. The number of feature functions [i.e., 𝐾 in Eq. (4.1)] is determined by the 

number of entity classes and the number of distinctive features in the defined feature space. Thus, 

the number of feature functions 𝐾 = |𝑒𝑛𝑡𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠|2 × |𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑖𝑣𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒| . In addition, 

because certain feature and entity class combinations are more informative, each feature function 

𝑓𝑘 is parameterized by a model weight 𝜆𝑘. 

4.2.1.3 Semantic Similarity Measure 

A semantic similarity (SS) measure is needed to derive the most likely entity class sequences [i.e., 

�̃� in Eq. (4.3)] for unlabeled data. Then, the proposed IE model can learn from both labeled and 

unlabeled data (with derived entity class sequences) for a high IE performance. The most likely 

entity class sequences for unlabeled data are derived based on the entity classes of labeled data 

that are semantically similar to unlabeled data. In this thesis, it is required that the SS measure: (1) 

considers both types of SS, corpus-based SS (i.e., similarity degree of a token pair based on the 

distributions of their syntactic features in the dataset) and knowledge-based SS (i.e., similarity 

degree of a token pair based on the distributions of their semantic features in the dataset); (2) 

considers intra-class concepts as being semantically identical (e.g., “deck” and “truss” are 

semantically same under the “bridge element” entity class); and (3) captures the context in which 
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the subject token exists (i.e., considering the semantics defined by the preceding and succeeding 

tokens of the subject token) to represent and capture the polymorphic meanings of natural language 

(e.g., “deck” in “concrete deck overlay” and in “asphalt decking repair”). According to these 

requirements, following Sun et al. (2011), this thesis first applies the PathSim in a heterogeneous 

information network to compute token-to-token semantic similarities (SSs). Then, this thesis 

proposes to linearly combine different types of token-to-token SSs that are defined by the meta-

paths. Finally, the thesis proposes to recover the top 𝑁  similar entity class sequences and to 

compute the normalized likelihood [i.e., 𝑃(�̃�𝑖,𝑛|𝐱𝑖, 𝐺)] for each derived entity class sequence, by 

assuming independencies between tokens in each unlabeled data/sentence. 

The PathSim is an SS measure that captures to what degree two objects (e.g., a pair of tokens in 

reports) are similar, based on the number of connections between them under a user-defined meta-

path in a defined heterogeneous information network. A heterogeneous information network (i.e., 

𝐺) is a logical network that defines multiple-typed objects and typed relations between typed 

objects (Sun and Han 2012). The meta-path is a composite relation in a 𝐺 defined by a user that 

indicates how two objects can be connected. In this research, the PathSim is selected because: (1) 

it allows to jointly measure corpus-based and knowledge-based semantic similarities; (2) it is based 

on user-defined meta-paths that can define how intra-class concepts should be interpreted; (3) it 

supports the representation of semantic similarities defined by contexts to capture the meaning of 

text in bridge inspection reports; and (4) it is not biased to information units with high occurrence 

rates, which allows for capturing semantically-similar “peers” (Sun et al. 2011). Given 𝐺 and a 

meta-path (i.e., 𝑃), the sematic similarity between two tokens, 𝑤1 and 𝑤2, can be computed as Eq. 

(4.6) (Sun et al. 2011): 
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𝑆(𝑤1, 𝑤2) =
2 × |{𝑃𝑤1↝𝑤2: 𝑃𝑤1↝𝑤2 ∈ 𝑃}|

|{𝑃𝑤1↝𝑤1: 𝑃𝑤1↝𝑤1 ∈ 𝑃}| + |{𝑃𝑤2↝𝑤2: 𝑃𝑤2↝𝑤2 ∈ 𝑃}|
                                                 (4.6) 

In Eq. (4.6), 𝑃𝑤1↝𝑤2 is a path instance between 𝑤1 and 𝑤2 under the defined meta-path 𝑃. Given 

a meta-path 𝑃, the number of path instances between 𝑤1 and 𝑤2 is normalized by the total number 

of path instances between 𝑤1 and 𝑤1 and between 𝑤2 and 𝑤2. The normalization is intended to 

avoid biases towards tokens with high occurrence rates and to find semantic “peer” tokens. 

This thesis proposes to represent the typed objects as a set of preceding tokens, current tokens, 

succeeding tokens, stems, POS tags, and highest-level concepts in the BridgeOnto. Also, the thesis 

proposes two basic types of meta-paths, which include: (1) 𝑡𝑜𝑘𝑒𝑛 → 𝑠𝑡𝑒𝑚 → 𝑃𝑂𝑆 , and (2) 

𝑡𝑜𝑘𝑒𝑛 → 𝑠𝑡𝑒𝑚 → 𝑂𝑛𝑡𝑜 . In these two meta-paths, 𝑃𝑂𝑆  denotes a POS tag, 𝑂𝑛𝑡𝑜  denotes a 

highest-level concept in the BridgeOnto, and 𝑡𝑜𝑘𝑒𝑛 could be a current token or the preceding 

token or the succeeding token of the current token. Therefore, in the proposed IE model, there are 

six meta-paths in total to collectively determine token-to-token semantic similarities. Examples of 

the constructed heterogeneous information network and the defined meta-paths are shown in 

Figure 4.3.  

 

Figure 4.3. Constructed heterogeneous information network (a), and defined meta-paths (b) and 

(c). 
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The thesis proposes to linearly combine the six meta-paths, as per Eq. (4.7), to compute a final SS 

measure for each token pair in the dataset. In Eq. (4.7), 𝑃𝑇, 𝐶𝑇, and 𝑆𝑇 denote meta-paths for 

preceding, current, and succeeding tokens, respectively. For each meta-path 𝑃 in {𝑃𝑇, 𝐶𝑇, 𝑆𝑇}, 

both 𝑃𝑂𝑆-based and 𝑂𝑛𝑡𝑜-based meta-paths are considered to compute the SS between 𝑤1 and 

𝑤2 . For example, 𝑆(𝑃𝑇,𝑃𝑂𝑆)(𝑤1, 𝑤2)  denotes the SS between 𝑤1  and 𝑤2  under the 

𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑡𝑜𝑘𝑒𝑛 → 𝑠𝑡𝑒𝑚 → 𝑃𝑂𝑆 meta-path. In Eq. (4.7), 𝜇  controls how much to value the 

𝑃𝑂𝑆-based or 𝑂𝑛𝑡𝑜-based meta-path and 𝜈𝑃 controls how much to value the meta-paths based on 

token positions (i.e., preceding, current, and succeeding), where 𝜈𝑃𝑇 + 𝜈𝐶𝑇 + 𝜈𝑆𝑇 = 1. The best 

values for 𝜇 and 𝜈𝑃 were empirically studied. The experimental results are presented in Sections 

4.3.2.1 and 4.3.2.2. 

𝑆(𝑤1, 𝑤2) = ∑ 𝜈𝑃{𝜇 × 𝑆(𝑃,𝑃𝑂𝑆)(𝑤1, 𝑤2) + (1 − 𝜇) × 𝑆(𝑃,𝑂𝑛𝑡𝑜)(𝑤1, 𝑤2)}

𝑃∈{𝑃𝑇,𝐶𝑇,𝑆𝑇}

                   (4.7) 

The proposed IE model derives an entity class sequence for an unlabeled data/sentence by finding 

the most similar token that was labeled for each token in the unlabeled data/sentence. Then, the 

entity classes of all the identified and similar tokens that were labeled are sequentially combined 

to recover an entity class sequence for the unlabeled data. To derive the 𝑛𝑡ℎ entity class sequences, 

the 𝑛𝑡ℎ  similar tokens that were labeled and their corresponding entity classes are then used. 

Although this derivation process assumes independencies between tokens in a sentence, the 

dependencies in derived entity class sequences are captured because the proposed SS measure, as 

per Eq. (4.7), already considers dependencies between adjacent tokens. The effect of the number 

of similar sequences (i.e., 𝑁) on the performance of IE was studied. The experimental results are 

presented in Section 4.3.2.3. This thesis proposes to normalize the likelihood of a derived entity 

class sequence for a given unlabeled data/sentence by Eq. (4.8), where 𝑇 is the length of 𝐱𝑖, 𝑁 is 
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the number of most similar label sequence(s), and 𝑆𝑛(𝑤𝑡, ) is the computed semantic similarity 

degree between the 𝑡𝑡ℎ token in 𝐱𝑖 and its 𝑛𝑡ℎ similar token that was labeled. 

 𝑃(�̃�𝑖,𝑛|𝐱𝑖, 𝐺) = ∏ 𝑆𝑛(𝑤𝑡, )
𝑇
𝑡=1 ∑ ∏ 𝑆𝑛(𝑤𝑡, )

𝑇
𝑡=1

𝑁
𝑛=1⁄                                                                         (4.8) 

4.2.2 Implementation of the Proposed Method 

The following hypothesis was defined: the proposed IE method can achieve the goal of extracting 

information about existing conditions and performed maintenance actions from bridge inspection 

reports with reduced human effort as well as a high precision and recall performance, compared 

to traditional supervised CRF-based IE (the baseline). In order to test this hypothesis, the proposed 

IE method was implemented and tested in extracting information from 11 bridge inspection reports 

collected from different state DOTs. The implementation of the proposed IE method is composed 

of four primary components: data preparation, semi-supervised CRF modeling, training, and 

evaluation. Figure 4.4 provides an overview of the implementation. A step-by-step illustration for 

the application of the proposed IE methodology is presented in Figure 4.5. 

 

Figure 4.4. Overview of the implementation of the proposed IE method. 
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Figure 4.5. An illustrative example for the application of the proposed IE method. 

4.2.2.1 Data Preparation 

Data preparation aims to (1) create a dataset with annotations for training and evaluation, (2) 

preprocess the raw text into a format that is ready for further analysis, and (3) extract the features 

for representing the preprocessed text. Data preparation, thus, includes three subtasks: dataset 

creation, text preprocessing, and feature extraction. 
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4.2.2.1.1 Dataset Creation 

Dataset creation includes dataset selection and human annotation. Dataset selection aims to select 

two datasets: a labeled dataset (i.e., 𝐿 defined in Section 4.2.1.1) for training and an unlabeled 

dataset (i.e., 𝑈 defined in Section 4.2.1.1) for extraction and/or evaluation purposes. This thesis 

proposes to empirically define the best size of labeled data – for the domain text – for achieving 

an optimal IE performance. The empirical results are presented and discussed in Section 4.3.2.5. 

Human annotation was conducted by human annotators to mark-up the entire labeled dataset (for 

training) and the unlabeled dataset (for evaluation) with gold standard labels. The gold standard 

labels are indicating the true entity class that a token should be classified into. It should be pointed 

out that the unlabeled data were annotated in this research for evaluation purposes only; in the real-

world use of the proposed IE algorithm, users only need to use the small size of fixed 

labeled/annotated data (i.e., no additional annotations are required). If users want to adapt the 

proposed algorithm for other types of text and/or for extracting different entities, they would need 

to develop a small number of fixed annotations based on their different text/entities, and they may 

annotate another set of unlabeled data for evaluation, if they would like to further test and evaluate 

the adapted algorithm.  

4.2.2.1.2 Text Preprocessing 

Text preprocessing, also known as text normalization, is a process that converts raw text into a 

format that is ready for further analysis. Following the standard procedure (Manning and Schütze 

1999), the following text preprocessing steps were conducted in this research: tokenization, 

sentence splitting, and morphological analysis. Tokenization breaks a continuous raw text into a 

sequence of tokens that include words, digits, punctuations, and whitespaces. Sentence splitting 

splits the tokenized text into grammar-meaningful sentences by detecting sentence boundaries (i.e., 
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sentence-ending characters, such as periods, question marks, etc.). Morphological analysis aims to 

analyze how a given token is formed based on morphological derivation and inflection and to map 

the token into its root form. Morphological analysis is needed when mapping a token in text to its 

corresponding concept in the BridgeOnto for creating semantic features. It was achieved by 

stemming that removes the suffixes and derivational affixes of a given token to form its stem.  

4.2.2.1.3 Feature Extraction 

Figure 4.2 shows the proposed feature representation for representing each token in a sentence. In 

this feature representation, the stem features were analyzed and extracted by the Lancaster 

stemmer on natural language toolkit (NLTK) (Bird et al. 2009). The POS tags were analyzed and 

extracted by the NLTK POS tagger (Bird et al. 2009). The semantic features were recognized and 

extracted based on the BridgeOnto (presented in Chapter 3) by comparing the token’s stem to the 

stem(s) of each concept in the ontology. 

4.2.2.2 Proposed Semi-Supervised Conditional Random Fields Modeling 

The proposed ontology-based, semi-supervised CRF-based IE model is the backbone of the 

proposed IE method. During the semi-supervised CRF modeling process, with the created datasets, 

the entity class sequences of the unlabeled data were first derived based on the entity classes of 

their semantically-similar data that were labeled. The semantic similarities between labeled and 

unlabeled data were assessed using Eq. (4.7). Then, the normalized likelihood of each derived 

entity class sequence was computed using Eq. (4.8). Finally, the labeled data in feature 

representations with their gold standard entity class sequences and the unlabeled data in feature 

representations with their derived entity class sequences were modeled using Eq. (4.1). 
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4.2.2.3 Semi-Supervised Conditional Random Fields Training 

The training process of the proposed IE method aims to fine-tune the model weight vector 𝜃 =

{𝜆𝑘}𝑘=1
𝐾 , so as to maximize the conditional log-likelihood [i.e., ∑ log𝑃(𝐲𝑖|𝐱𝑖; 𝜃)

𝑙+𝑢
𝑖=1 ]. Because of 

the concavity of the proposed IE model, the training process is guaranteed to reach to a global 

maximum. In this research, numerical optimization was utilized to fine-tune this weight vector 

because the conditional log-likelihood cannot be maximized in a closed form (Sutton and 

McCallum 2006). There are many existing methods for solving this numerical-optimization task, 

including limited-memory BFGS (Liu and Nocedal 1989), stochastic-gradient descent (Shalev-

Shwartz et al. 2011), and average perceptron (Collins 2002), etc. 

In this research, the limited-memory BFGS (Liu and Nocedal 1989) was followed for training the 

proposed IE model. The limited-memory BFGS was selected for four primary reasons: (1) it has 

been proved to be superior at training L2-regularized log-linear models (i.e., the proposed IE model 

is one of such models) (Malouf 2002); (2) it is computationally efficient with a limited requirement 

of computer memory; (3) it does not require heuristically determining the learning rate and the 

iteration number; and (4) it has high stability (Ngiam et al. 2011). 

4.2.2.4 Semi-Supervised Conditional Random Fields Evaluation 

The evaluation of the proposed IE method includes two primary components: inference and 

evaluation. The inference is a process of predicting a structured output (i.e., an entity class 

sequence) for an unlabeled data/sentence based on the trained model. The evaluation aims to 

compare the prediction results against the gold standard using evaluation metrics. 



 

 

122 

4.2.2.4.1 Inference 

The proposed IE model follows the first-order Markov assumption (i.e., the current entity class 

depends on the current token and its preceding entity class). This property allows the proposed IE 

method to use dynamic programming (DP) algorithms to infer structured outputs efficiently. In 

this thesis, the Viterbi algorithm (Forney 1973) was applied to solve the inference task. This is 

because the Viterbi algorithm has been widely recognized and successfully applied to many similar 

supervised ML-based IE tasks. For a given sequence of observations (i.e., tokens in a sentence), 

each observation could be labeled with any hidden states (i.e., unobserved entity classes). The 

Viterbi algorithm travels through all the paths constructed by the different combinations of the 

sequential hidden states to find the most likely entity class sequence for the sentence. For more 

detailed information on the Viterbi algorithm, the readers are referred to Forney (1973). 

4.2.2.4.2 Evaluation  

To evaluate the performance of the proposed IE method, the precision and recall were selected as 

the primary evaluation metrics. Precision, as defined in Eq. (4.9) (Olson and Delen 2008), is the 

percentage of the total number of correctly extracted entities out of the total number of all extracted 

entities. Recall, as defined in Eq. (4.10) (Olson and Delen 2008), is the percentage of the total 

number of correctly extracted entities out of the total number of entities that should be extracted. 

The F-1 measure, as defined in Eq. (4.11) (Olson and Delen 2008), is the weighted harmonic mean 

of recall and precision. Because the proposed IE method deals with a multi-class classification 

problem where each token could be labeled with one of the eleven defined entity classes, the 

average precision, recall, and F-1 measure was also defined as the arithmetic means of precisions, 

recalls, and F-1 measures over all the entity classes. These evaluation metrics were calculated by 

comparing the predicted structured outputs with the gold standard annotations. The process for 
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creating gold standard annotations is presented in Section 4.3.1. The evaluation results are 

presented and discussed in Section 4.3.2. 

𝑃 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠
                                                                             (4.9) 

𝑅 =
number o𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
                                                                (4.10) 

𝐹-1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × (𝑃 × 𝑅) (𝑃 + 𝑅)⁄                                                                                             (4.11) 

4.3 Information Extraction Method Evaluation 

In this research, six primary experiments were conducted to fine-tune the key parameters of the 

proposed semi-supervised IE algorithm, and to evaluate its performance in supporting automated 

IE from bridge inspection reports. The first five experiments were conducted to identify the best 

parameters for: (1) weighting the proposed meta-paths to measure token-to-token sematic 

similarities, (2) selecting the best number of semantically similar neighbors (i.e., labeled tokens), 

(3) selecting the best regularization item weight to prevent overfitting or underfitting, and (4) 

selecting the best size of labeled data (i.e., number of sentences from the selected training 

text/report) to create the fixed labeled dataset (i.e., 𝐿  defined in Section 4.2.1.1). The sixth 

experiment was conducted with the fine-tuned parameters to evaluate the precision and recall of 

the proposed IE algorithm. These six experiments were conducted following the high-level 

algorithm shown in Figure 4.1 and the implementation procedure shown in Figure 4.4. The 

experimental setup, experimental results, and final performance of the proposed IE algorithm are 

summarized and discussed in the following subsections. 
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4.3.1 Experimental Setup 

In this research, two datasets were developed: a training and development dataset and a testing 

dataset. The 2006 I-35W Mississippi River Bridge inspection report was selected for creating the 

training and development dataset. The report was selected, because this bridge experienced a 

catastrophic collapse in 2007. The report, thus, contains valuable and representative information 

on various types of deficiencies, maintenance actions, and their related attributes, which would 

help in training the algorithm and fine-tuning its parameters. Second, 11 other bridge inspection 

reports from different state DOTs were selected for creating the testing dataset. The 11 reports are 

considered to be representative because they (1) record bridge conditions at different years by 

different state DOTs, (2) are for different types of bridges, and (3) exhibit domain-specific 

complexities with varying text patterns that range from simple to complex ones. A total of 1,866 

sentences were randomly collected from these 11 reports. The information about these reports and 

sentences is presented in Table 4.1. 

A manual annotation process was then followed to create the gold standard entity class sequences 

for training and testing purposes. The goal of the annotation is to assign each token in a sentence 

to a true entity class by human annotators. The defined entity classes (i.e., target information types) 

include: bridge element (ET), deficiency (DY), deficiency cause (DC), maintenance action (MA), 

maintenance material (MM), numerical measure (NM), numerical measure unit (NU), categorical 

quantity measure (QM), categorical severity measure (SM), date (DT), and other (OT). The 

collected sentences were separately annotated by five human annotators, who are researchers with 

background in both civil engineering and NLP. Discrepancies across these five annotation sets 

were, then, discussed to achieve consensus. Table 4.2 shows example sentences with gold standard 

annotations. 



 

 

125 

Table 4.1. Characteristics of the datasets. 

Report 

no. 
Reported bridge State 

Year 

of 

report 

Sentence length* 
Number 

of 

sentences 

in report  Max. Min. Avg. 

1 I-35W Bridge MN 2006 48 3 17 619 

2 

Natchaug River Chaplin 

Bridge CT 2009 68 5 17 112 

3 Sherman Minton Bridge IN 2007 44 5 20 178 

4 Hale Boggs Memorial Bridge LA 2008 55 5 20 255 

5 Heron Truss Bridge MT 2011 72 6 19 287 

6 Portsmouth Memorial Bridge NH 2009 51 6 18 261 

7 Wellwood Avenue Bridge NY 2015 59 4 14 180 

8 Union Street Railroad Bridge OR 2005 64 3 21 178 

9 South Park Bridge WA 2009 42 4 16 138 

10 Lower Trento Bridge NJ 2015 46 7 18 58 

11 Raft Island Bridge WA 2011 42 6 18 100 

12 Capitola Crossing Deck Truss CA 2012 56 3 18 119 

* Sentence length is measured by the number of tokens. 

Table 4.2. Example sentences with gold standard annotations. 

Original sentence Annotated sentence 

The one-half inch thick, oil and stone surface 

treatment, over two inches of bituminous 

materials, over a corrugated steel deck, still 

shows full width transverse cracking, open a 

maximum of one inch, mainly in the areas of 

the deck, adjacent to the pier. 

The/OT one-half/NM inch/NU thick/NU ,/OT oil/MM and/OT 

stone/MM surface/MA treatment/MA ,/OT over/OT two/NM 

inches/NU of/OT bituminous/ET materials/OT ,/OT over/OT 

a/OT corrugated/ET steel/ET deck/ET ,/ET still/OT shows/OT 

full/SM width/SM transverse/DY cracking/DY ,/OT open/OT 

a/OT maximum/OT of/OT one/NM inch/NU ,/OT mainly/OT 

in/OT the/OT areas/OT of/OT the/OT deck/ET ,/OT 

adjacent/OT to/OT the/OT pier/ET ./OT 

All the expansion bearings exhibit surface 

corrosion with no significant section loss. 

All/QM the/OT expansion/ET bearings/ET exhibit/OT 

surface/DY corrosion/DY with/OT no/OT significant/SM 

section/DY loss/DY ./OT 

  

4.3.2 Experimental Results and Discussion 

4.3.2.1 Knowledge-Based Versus Corpus-Based Semantic Similarity Weight 

As mentioned in Section 4.2.1.3, a semantic similarity (SS) measure – including corpus-based and 

knowledge-based SS indicators – was proposed, as per Eq. (4.7), to measure token-to-token 

semantic similarities. A set of experiments were conducted to study how different weight 

combinations [i.e., 𝜇 in Eq. (4.7)] of these two types of indicators could affect the IE performance, 
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so that an optimal weight can be determined and applied for improved performance. A total of 11 

controlled experiments were conducted, with the knowledge-based SS weights ranging from 0.0 

to 1.0 and with the corpus-based weights ranging from 1.0 to 0.0. The step size for 

increasing/decreasing the weights is 0.1. The experimental results, in terms of average precision 

and recall improvements, are shown in Figure 4.6. The average precision/recall improvement is 

the average precision/recall of the current experiment (i.e., weight combination) minus the 

minimum average precision/recall among all the controlled experiments.  

 

Figure 4.6. Performance of different knowledge-based SS indicator weights. 

The experimental results indicate that incorporating domain semantics in semantic similarity 

assessment can improve the IE performance. As shown in Figure 4.6, increasing the knowledge-

based SS weight can increase average precision and recall. For example, the proposed IE algorithm 

achieved the least satisfactory performance with a 0.0 knowledge-based SS weight, and increasing 

this weight to 0.9 improved the average precision and recall by 50.5% and 45.2%, respectively. 

Although increasing the knowledge-based SS weight could improve performance, the optimal IE 

performance cannot be achieved if semantic features are utilized solely. For example, when the 

knowledge-based SS was weighted by 1.0, the average precision and recall dropped by 9.4% and 
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3.1%, respectively, compared to the best performance (shown with a 0.9 knowledge-based SS 

weight). The corpus-based SS indicator can help when the semantic features cannot differentiate 

the meaning of a token and thus fail to assess similarity. For example, in the BridgeOnto, the token 

“concrete” could be treated as a bridge element entity (e.g., “concrete deck”) or as a maintenance 

material entity (e.g., “patched with concrete”). In such situation (although it is relatively rare), the 

corpus-based SS indicator can be decisive, because the token “concrete” has different POS tags in 

these two cases (i.e., adjective versus noun).  

Figure 4.6 also shows that the proposed IE algorithm is not very sensitive to minor changes in the 

weights (within 0.1 to 0.9) of both SS indicators. For example, increasing the knowledge-based 

SS weight from 0.6 to 0.9 did not affect the average precision and recall; however, both averages 

were improved by around 10% when this weight was increased from 0.1 to 0.9. According to the 

experimental results and the analysis above, it was concluded that the optimal knowledge-based 

SS weight is between 0.6 and 0.9 and the optimal corpus-based SS weight is between 0.1 and 0.4 

accordingly. 

4.3.2.2 Context Window Weight 

As mentioned in Section 4.2.1.3, the proposed SS measure, as per Eq. (4.7), also considers the 

contexts of the current tokens to help with assessing their semantic similarities. The proposed SS 

measure assumes that the SS indicators between the preceding tokens and between the succeeding 

tokens are equally important. A set of experiments were conducted to study how to weight the SS 

indicators [i.e., 𝜈𝑃 in Eq. (4.7)] for the current tokens and for their contexts, in order to collectively 

determine the SS degree between current tokens for an optimal IE performance. A total of 11 

controlled experiments were conducted with the weights for the SS indicator of the current tokens 

ranging from 0.0 to 0.1 (with a step size of 0.1) and with the weights for the SS indicators of the 
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contexts ranging from 0.0 to 0.5 (with a step size of 0.05). The experimental results, in terms of 

average precision and recall improvements, are shown in Figure 4.7.  

 

Figure 4.7. Performance of different current-token SS indicator weights. 

The experimental results suggest that the semantic similarity of current tokens is important to 

determine the overall token-to-token SS degree. As seen in Figure 4.7, increasing the current-token 

SS weight leads to the improvement of average precision and recall. For example, when this weight 

was set to 0.0, the average precision and recall improved by 22.7% and 7.6%, respectively; but, 

when this weight was 0.9, the average precision and recall improved by 45.7% and 36.0%. 

However, overall token-to-token SS could not be purely decided by current tokens. For example, 

when the current-token SS weight went up to 1.0, the average precision and recall dropped to the 

least satisfactory performance, which is even worse than the performance without considering 

current-token semantic similarity. This is because, although the meaning of each current token has 

been explicitly defined by the BridgeOnto, the contexts of the current tokens can provide useful 

contextual information that would help when there exist ambiguities in the meanings of current 

tokens. For example, the token “section” could be considered as a bridge deficiency entity (e.g., 

“severe section loss”) or as the “other” entity (e.g., “the section of”). Also, they have a same POS 
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tag of “noun”. In such case, the SS indicators of the contexts could be utilized to assess the 

semantic similarity of “section” in these two phrases accurately, which would then improve the IE 

performance. 

Figure 4.7 indicates that the proposed IE algorithm is also not very sensitive to minor changes in 

the weights (within 0.1 to 0.9) of these SS indicators. For example, increasing the current-token 

SS weight from 0.1 to 0.3 did not cause the average precision and recall to change; but, increasing 

this weight from 0.1 to 0.9 improved these averages by over 10%. It was concluded that the optimal 

weight for the SS indicators of the current tokens ranges from 0.7 to 0.9 and the optimal weight 

for the SS indicators of the contexts ranges from 0.05 to 0.15 accordingly.  

4.3.2.3 Number of Similar Neighbor(s) 

In the proposed IE algorithm, as per Eq. (4.3), the top 𝑁  derived entity class sequences of 

unlabeled data/sentences are used to adapt the algorithm to unseen instances. For each unlabeled 

sentence, providing more (or less) derived entity class sequences to the proposed IE model could 

add more (or less) valuable unseen instances, but could also introduce more (or less) noises. To 

study this tradeoff relationship, 10 controlled experiments were conducted with the number of 

similar neighbor(s) ranging from 1 to 10 (with a step size of 1). The experimental results, in terms 

of average precision and average recall improvements, are shown in Figure 4.8. 

As indicated by Figure 4.8, with the increase of the number of similar neighbor(s) from 1 to 10, 

the average precision improvement dropped from 26.4% to 0.0%, and the average recall 

improvement decreased from 20.2% to 0.0%. Although there exist some outliers (e.g., the average 

precision improvement at the similar neighbor number of 4), it shows a general trend that 

increasing the number of similar neighbor(s) decreases the average precision and recall 
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performance. This observation indicates that the benefits of adding more unseen instances are 

offset by the noises introduced. Based on the experimental results, it was concluded that the 

optimal number of similar neighbor(s) for the proposed IE algorithm is 1, which suggests to only 

use the most similar entity class sequence for each unlabeled data/sentence. 

 

Figure 4.8. Performance of different number of neighbor(s). 

4.3.2.4 Regularization Item Weight 

In the proposed IE algorithm, the regularization item weight [i.e., 𝛾 in Eq. (4.1)] controls how 

much to penalize each model weight (i.e., 𝜆𝑘) to prevent overfitting or underfitting. Overfitting 

could cause a model to be too tailored to noise. Underfitting would make a model fail to capture 

enough underlying distributions of data. A larger (or smaller) value for 𝛾  is likely to cause 

underfitting (or overfitting). In order to fine-tune this weight, a total of 15 controlled experiments 

were conducted with the weight ranging from 0.2 to 3.0 (with a step size of 0.2). The experimental 

results, in terms of average precision and average recall improvements, are shown in Figure 4.9. 

The experimental results show that an optimal regularization item weight for the proposed IE 

algorithm is 0.4. As shown in Figure 4.9, after 𝛾 = 0.4 , although the average recall keeps 

increasing slowly, the average precision starts to drop rapidly. This could be attributed to that a 
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larger 𝛾 underfitted the proposed IE model. When it gets underfitted, the model cannot sufficiently 

capture relevant relations between input data and target entity classes; it, thus, cannot classify 

entities precisely (i.e., the number of incorrectly extracted entities increases). In such case, the 

chances of correctly classifying less-common entities in the dataset (e.g., maintenance action 

entities) are higher than the chances of correctly classifying commonly-seen entities (e.g., bridge 

element entities). This causes the increase in average recall of less-common entities to be 

somewhat larger than the decrease in that of commonly-seen entities. As a result, the average recall 

could slowly increase as the model gets underfitted and loses precision. 

 

Figure 4.9. Performance of different regularization item weights. 

4.3.2.5 Size of Labeled Data 

A total of 19 controlled experiments were conducted to study the size of the labeled dataset (i.e., 

𝐿 defined in Section 4.2.1.1) and identify the optimal number of the labeled sentences from the I-

35W Bridge 2006 inspection report. The first experiment was conducted with 7 sentences; and, 

the other 18 experiments were conducted with a number of sentences ranging from 35 to 630 (with 
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a step size of 35). The experimental results, in terms of average precision and recall, are shown in 

Figures 4.10 and 4.11, respectively. 

As seen in Figures 4.10 and 4.11, when 175 sentences were used, the proposed IE algorithm 

achieved an average precision and recall of 95.5% and 89.3%, respectively. The traditional 

supervised CRF-based IE (the baseline) only achieved an average precision and recall of 93.7% 

and 70.1%, respectively, at this number; and, 96.2% and 70.5% respectively with 630 sentences. 

Although the baseline with 630 sentences is approximately 0.7% higher than the proposed 

algorithm with 175 sentences in terms of average precision, it is 19.2% lower in terms of average 

recall. This shows that the proposed IE algorithm outperforms the baseline.  

More substantially, as suggested by Figures 4.10 and 4.11, the performances of both algorithms 

tend to converge or to even drop with the increase in the size of labeled data. For example, average 

recalls start to drop after 525 sentences, and average precisions show the trend of converging with 

the increase in size. This could be caused by overfitting to an increasing number of less 

representative labeled data. This indicates that increasing the size of labeled data does not 

necessarily improve performance. The key is to increase the comprehensiveness and 

representativeness of the labeled data, so that an IE algorithm could learn how to deal with different 

extraction cases. However, as discussed, developing such a labeled dataset is rather challenging 

and time-consuming. The proposed IE method, by dynamically adapting to the dependency 

structures and distributions of unlabeled data, offers a promising way to reduce human effort while 

achieving high performance. Based on the results and analysis above, it was concluded that the 

optimal number of labeled data/sentences from the I-35W Bridge 2006 inspection report is 175.  
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Figure 4.10. Average precision of the proposed and baseline IE algorithms with different sizes 

of labeled data. 

 

Figure 4.11. Average recall of the proposed and baseline IE algorithms with different sizes of 

labeled data. 

4.3.2.6 Performance of the Proposed Algorithm 

This section presents the performance of the proposed IE algorithm. The algorithm was tested on 

the 11 reports, as per Table 4.1. A total of 175 labeled sentences were used by the proposed 

algorithm, while a total of 630 labeled sentences were used by the baseline. The parameters that 
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were used during the testing are shown in Table 4.3. The average precision, recall, and F-1 measure 

for each testing report are presented in Table 4.4. The processing time for extracting the 

information was 4 minutes 25 seconds per bridge inspection report, on average, measured on an 

Intel Core i7 2.2GHz CPU with 16GB RAM. 

Table 4.3. Parameters used during evaluation. 

Parameter Parameter value 

Knowledge-based semantic similarity weight 0.9 

Corpus-based semantic similarity weight 0.1 

Current token semantic similarity weight  0.9 

Preceding token semantic similarity weight 0.05 

Succeeding token semantic similarity weight 0.05 

Number of similar neighbor 1 

Regularization item weight 0.4 

Number of labeled sentences (baseline IE) 630 

Number of labeled sentences (proposed IE) 175 

 

Table 4.4 Evaluation results*. 

Report 
Proposed IE Baseline IE 

P R F-1 P R F-1 

1 91.3% 81.6% 86.2% 84.8% 83.4% 84.1% 

2 97.7% 78.2% 86.9% 89.3% 72.7% 80.1% 

3 96.7% 91.6% 94.1% 89.9% 86.7% 88.2% 

4 92.3% 85.3% 88.7% 88.8% 80.6% 84.5% 

5 86.0% 77.3% 81.4% 85.5% 80.7% 83.1% 

6 91.1% 87.4% 89.2% 89.0% 82.1% 85.4% 

7 96.8% 96.3% 96.6% 73.2% 85.4% 78.8% 

8 96.5% 88.8% 92.5% 85.8% 80.4% 83.0% 

9 95.3% 93.9% 94.6% 91.2% 81.0% 85.8% 

10 98.8% 96.9% 97.8% 85.5% 79.1% 82.2% 

11 92.8% 87.0% 89.8% 80.8% 76.4% 78.5% 

Mean 94.1% 87.7% 90.7% 85.8% 80.8% 83.1% 

Standard deviation 0.038 0.068 0.049 0.051 0.039 0.030 

Coefficient of variance 0.040 0.077 0.054 0.060 0.048 0.036 

*P, R, and F-1 stands for average precision, recall, and F-1 measure, respectively. 

As shown in Table 4.4, the proposed algorithm and baseline algorithm achieved an average 

precision, recall, and F-1 measure of 94.1%, 87.7%, and 90.7%, and 85.8%, 80.8%, and 83.1%, 

respectively. The standard deviation (SD) of the average precision of the proposed algorithm is 



 

 

135 

lower (SD = 0.038) than that of the baseline (SD = 0.051), which indicates that the average 

precision performance of the proposed algorithm is more stable across different reports. The SDs 

of the recall and F-1 measure of the proposed algorithm (SD = 0.068 and SD = 0.049, respectively) 

are, however, higher than those of the baseline (SD = 0.039 and SD = 0.030, respectively). This 

could be caused by the random noises in some reports (such as Report 5) that affected the 

distributions of unlabeled data. Overall, the proposed IE algorithm outperforms the baseline: it 

achieves higher average precision, recall, and F-1 measure (8.3%, 6.9%, and 7.6% improvements, 

respectively), with a lower SD for precision. Also, the coefficient of variances of the average 

precision, recall, and F-1 measure are all under 1.0, which indicates that the performance of the 

proposed algorithm is stable across different reports. 

The confusion matrix in Figure 4.12 shows the number of entities that were extracted from the 11 

reports using the proposed algorithm, as well as the number of gold standard annotations, for each 

entity class. Figure 4.12 shows that the proposed algorithm has a relatively lower precision for the 

maintenance action (MA) and maintenance material (MM) entity classes. The proposed algorithm 

mistakenly extracted 53 and 14 “other” entities as MA entities (total extracted MA entities=349) 

and MM entities (total extracted MM entities=69), respectively. This could be attributed to the 

data imbalance issue. In the 11 reports, the number of MM and MA entities (306 entities and 56 

entities, respectively) are smaller, compared to the number of bridge element (4,341 entities) and 

deficiency (1,619 entities) entities. The imbalance in entity number causes the algorithm to focus 

on minimizing classification errors for the entities with a larger number, while insufficiently 

considering the errors for the entities with a smaller number. In addition, noises could also 

negatively affect the algorithm, which results in incorrectly extracted entities. For example, the 

phrase “drilling of possible stress relief holes” contains noises (i.e., “of possible”) that break a 
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semantically-meaningful maintenance action concept (i.e., “drilling stress relief holes”) into two 

parts. Because the proposed IE algorithm considers the contexts of tokens, the recognition and 

extraction of the subject tokens (i.e., “stress relief holes”) could be affected by such noises. 

 

Figure 4.12. Confusion matrix for all extracted and gold standard entities from the 11 reports. 

Figure 4.12 also shows that the deficiency cause (DC), MM, and categorical severity measure 

(SM) entity classes have relatively lower recall performance. For example, 41 out of the 150 DC 

entities were not recognized (i.e., extracted as “other”). This is mainly caused by out-of-vocabulary 

tokens and ambiguities. For example, the token “frozen” should be extracted as a DC entity. 

However, because the BridgeOnto does not define this token in its deficiency cause hierarchy, the 

token “frozen” was treated as an out-of-vocabulary token without corresponding semantic features 

and was thus incorrectly extracted as “other”. Also, ambiguities in the meanings of the concepts 
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in the BridgeOnto challenge the algorithm in successfully recognizing and extracting information. 

For example, according to the BridgeOnto, the token “extensive” could be considered as a concept 

in the SM hierarchy or as a part of the concept “extensive UV radiation” in the deficiency cause 

hierarchy. Entities with conflicting meanings, especially when they have a same POS tag (i.e., 

“adjective” for both “extensive”), add to the challenge of correct entity recognition.  

Overall, the proposed algorithm performs well; on average, it achieved an average precision, recall, 

and F-1 measure of 94.1%, 87.7%, and 90.7% respectively, with a fixed set of 175 labeled 

sentences. 

 

 

 

 

 

 

 

 

 

 



 

 

138 

CHAPTER 5 – SEMANTIC RELATION EXTRACTION 

This chapter presents the proposed relation extraction method for extracting dependency relations 

from textual bridge inspection reports to represent the extracted information (extracted as per 

Research Task #3) in a semantically-rich structured way. The method development and evaluation 

(Research Task #4) are presented in this chapter. 

5.1 Comparison to the State of the Art 

Representing the extracted information in a semantically-rich structured way is a challenging task. 

The words in a sentence are isolated, needing to be linked to form meaningful concepts; and the 

subsequently-linked concepts are semantically-low, needing to be linked to the associated concepts 

to form a semantically-rich structured representation of the information. There is, thus, a need for 

dependency parsing methods to extract dependency relations from the reports, in order to represent 

the information in the reports in a semantically-rich structured way that is ready for data analytics. 

For example, this sentence comes from a bridge inspection report (MnDOT 2006): “overlay has 

some minor spalls and patched areas around the finger joints, and 3,000 LF of transverse cracks”. 

Dependency parsing is needed to extract the dependency relations to link the words “patched” and 

“areas” into the deficiency concept “patched_areas”; and then link “patched_areas” to the bridge 

element concept “overlay”, the categorical severity measure concept “minor”, and the categorical 

quantity measure concept “some” to represent the sentence in a semantically-rich structured way: 

<overlay, patched_areas, minor, some>. Without dependency relations, it would be very 

challenging (if not impossible) to automatically infer from this unstructured sentence which bridge 

element (i.e., “overlay” or “finger_joints”) has which deficiency (i.e., “spall”, “patched_areas”, or 

“transverse_crack”) that is “minor” and “some”.   
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Existing dependency parsing methods are, however, not able to effectively extract dependency 

relations in such highly technical, domain-specific text – such as that in bridge inspection reports 

– for two main reasons. First, the current state-of-the-art dependency parsing methods (e.g., Chen 

and Manning 2014; Dyer et al. 2015; Weiss et al. 2015; Alberti et al. 2015; Zhou et al. 2015; 

Yazdani and Henderson 2015; Cheng et al. 2016; Kiperwasser and Goldberg 2016; Kuncoro et al. 

2017; Hashinmoto et al. 2017; Dozat and Manning 2017; Nguyen et al. 2017; Strubell and 

McCallum 2017; Babbar and Schölkopf 2017) mostly rely on a single machine learning classifier 

to extract dependency relations. A single classifier is not sufficient in capturing the complex 

configuration distributions of the text in the bridge reports, because the reports are written by many 

different writers/inspectors from various agencies and are thus highly-variable in terms of text 

characteristics and patterns. An ensemble of classifiers usually performs better than a single 

classifier (Babbar, R., and Schölkopf 2017; Zhang et al. 2011; Schiele 2002; Dietterich 2000), 

especially when dealing with highly-dimensional data (Pes et al. 2017; Yu et al. 2017) and/or data 

with complex distributions such as imbalanced distributions (Haixiang et al. 2017; Bickel et al. 

2007; Sun et al. 2006). Second, existing dependency parsing methods (e.g., Chen and Manning 

2014; Dyer et al. 2015; Weiss et al. 2015; Alberti et al. 2015; Zhou et al. 2015; Yazdani and 

Henderson 2015; Cheng et al. 2016; Kiperwasser and Goldberg 2016; Kuncoro et al. 2017; 

Hashinmoto et al. 2017; Dozat and Manning 2017; Nguyen et al. 2017; Strubell and McCallum 

2017; Babbar and Schölkopf 2017) typically only use syntactic features for supporting the 

extraction of dependency relations. But, semantic text features are also very important for 

facilitating dependency parsing, because they provide semantics on word-to-word interactions that 

are critical when deciding on how sentences should be parsed. For example, based on the defined 

semantics that a categorical severity measure describes a bridge deficiency, the dependency 
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relation between the concepts “minor” (as a modifier) and “patched_areas” (as a head) can be 

analyzed and extracted correctly. 

5.2 Relation Extraction Method Development 

5.2.1 Proposed Relation Extraction Method 

To address the aforementioned knowledge gaps, a semantic neural network ensemble (NNE)-

based relation extraction [i.e., dependency parsing (DP)] method is proposed. The proposed 

method is composed of five primary components, as per Figure 5.1: semantic distributed feature 

representation, similarity-based sampling, constituent NN classifier modeling, combiner SVM 

classifier modeling, and dependency relation-based information representation. The proposed 

method is novel in three primary ways. First, it proposes a new feature representation for the 

configurations, which includes both syntactic (words and POS tags) and semantic (the semantic 

classes of words) text features. The semantic features aim to capture the semantics about the word-

to-word interactions for facilitating the extraction of dependency relations. Second, it proposes 

and utilizes a new similarity-based sampling method to capture the distribution characteristics of 

the configurations and sample the similarly-distributed configurations into the same clusters. 

Compared to existing sampling methods used in ensemble learning (see Section 2.3.3), the 

proposed method can better capture how the configurations distribute. It generates more 

meaningful configuration clusters that contain the densely- and sparsely-distributed as well as the 

correctly and incorrectly densely-distributed configurations, which facilitates the classifier 

ensembling and the NNE-based DP. Third, the proposed DP method takes an ensemble learning-

based approach. It uses a set of constituent NN classifiers to collectively capture the complex 

distributions of all the configurations, and utilizes a combiner SVM classifier to capture the 

classification and/or misclassification patterns of the NN classifiers for making final predictions 
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on the transition types. Each of the constituent classifiers only learns from similarly-distributed 

and thus more easily-separable configurations. The ensemble of the classifiers can better capture 

the complex distributions, which are challenging for a single classifier to capture (Haixiang et al. 

2017; Bickel et al. 2007; Sun et al. 2006). 

  

Figure 5.1. Proposed semantic neural network ensemble (NNE)-based dependency parsing (DP) 

method. 

5.2.1.1 Semantic Distributed Feature Representation 

A new semantic distributed feature representation is proposed to represent the configurations. As 

shown in Figure 5.2, it is a multi-level representation. First, the configurations are represented by 
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the configuration-based features. These features are defined according to the positions of the 

elements (words of a sentence) in a configuration (Zhang and Nivre 2011). The configuration-

based features include 14 features: (1) the top three elements of the stack: 𝜎1, 𝜎2, 𝜎3; (2) the top 

three elements of the buffer: 𝛽1, 𝛽2, 𝛽3; (3) the first and second leftmost/rightmost children of the 

first element in the stack: 𝑙𝑐1(𝜎1) , 𝑟𝑐1(𝜎1) , 𝑙𝑐2(𝜎1) , 𝑟𝑐2(𝜎1) ; and (4) the first and second 

leftmost/rightmost children of the second element in the stack: 𝑙𝑐1(𝜎2), 𝑟𝑐1(𝜎2), 𝑙𝑐2(𝜎2), 𝑟𝑐2(𝜎2).  

Second, each of the configuration-based features is represented by syntactic and semantic text 

features. The syntactic features include: (1) words: the original lexical forms of the words; and (2) 

POS tags: the lexical classes of the words, which are defined based on the syntactic structures of 

the sentences. The semantic features are the semantic classes of the words. In this research, to 

capture the semantics about the word-to-word interactions in the text and the information that 

needs to be extracted and represented, the following semantic classes were defined based on an 

analysis of a sample of bridge inspection reports: bridge element (ET), deficiency (DY), deficiency 

cause (DC), numerical measure (NM), numerical measure unit (NU), categorical quantity measure 

(QM), categorical severity measure (SM), maintenance action (MA), maintenance material (MM), 

and date (DT).  

Third, the text features are further represented using distributed feature representations. For 

example, instead of using “noun” as the POS tag for the word “crack”, the NN-based distributed 

feature representation utilizes a vector with a user-defined vector size to represent it numerically. 

Thus, using the proposed feature representation, a configuration is represented by a numeric vector 

of size 2100: 14 configuration-based features, 3 text features for each of the configuration-based 

features, and a vector of size 50 for each of the text features. 
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Figure 5.2. Proposed semantic distributed feature representation. 

5.2.1.2 Similarity-Based Sampling 

The configuration distributions of the text exhibit the following characteristics: (1) a majority of 

the configurations are distributed in a dense area; (2) a minority of them are distributed in a sparse 

area; and (3) in the dense area, the configurations of a gold standard transition (GST) type (“shift”, 

“left-arc”, or “right-arc”) overlap with the configurations of the other GST types. Because of the 

overlapping, some of the configurations distribute relatively far away from the center of their 

corresponding GST type and relatively close to one of the other centers, where a center is the 

arithmetic mean of all the configurations that belong to the same GST type. To capture these 

characteristics in a way that each constituent NN classifier will be trained only with the similarly-

distributed and thus more easily-separable configurations, this thesis proposes to sample the 

configurations into one or two of the following four configuration clusters: 

• C1: This is a majority cluster, which contains the densely-distributed configurations that 

belong to all the GST types and are distributed close to one of the centers, where 𝐶1 = 𝐶3 ∪

𝐶4. 

• C2: This a minority cluster, which contains the sparsely-distributed configurations that belong 

to all the GST types and are distributed far away from all the centers. 
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• C3: This a correct-majority cluster, which contains the densely-distributed configurations that 

belong to all the GST types and are distributed close to the center of their corresponding correct 

GST type, where 𝐶3 ∈ 𝐶1. 

• C4: This an incorrect-majority cluster, which contains the densely-distributed configurations 

that belong to all the GST types and are distributed close to the center of another incorrect 

GST type, where 𝐶4 ∈ 𝐶1. 

The C1 and C2 clusters aim to differentiate the densely-distributed configurations from the 

sparsely-distributed ones. The C3 and C4 clusters aim to differentiate the densely-distributed 

configurations in C1 – differentiating those that distribute close to the center of their correct GST 

type from those that distribute close to the center of an incorrect GST type. 

To sample all the configurations into the aforementioned clusters, a similarity-based sampling 

method is proposed. Similarities between the configurations and their centers are indicative of the 

distribution characteristics. For example, if a configuration is similar to (is close to) the center of 

a GST type, it is sampled into the C1 cluster. However, similarity measured in one feature space 

is insufficient to capture the complex distribution characteristics, because different degrees of 

similarities (measured distances for indicating “being close” or “being far away”) emerge when 

some other features are used for the measurement (Harispe et al. 2015). To deal with this issue, 

this thesis proposes to measure the similarities in seven different feature spaces, and utilize the 

similarities measured in these spaces collectively as a criterion to sample the configurations into 

the defined clusters. These feature spaces are defined in Table 5.1. 
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Table 5.1. The defined feature spaces. 
Feature space Features a 
1 Words 
2 POS tags 
3 Semantic classes 
4 Words + POS tags 
5 Words + semantic classes 
6 POS tags + semantic classes 
7 Words + POS tags + semantic classes 

a All the features are in their distributed representations; POS = part-of-speech. 

The proposed similarity-based sampling method is summarized as follows. First, the centers of the 

configurations of the three GST types are computed in each feature space. A center is computed 

by calculating the arithmetic mean of all the configurations (in the proposed feature representation) 

that belong to the same GST type and are in the same feature space. As a result, a total of 21 centers 

(for 3 GST types and 7 feature spaces) are generated. Second, a configuration gets associated with 

a similarity-based transition (ST) type in each feature space. In a space, the ST type of a 

configuration is the GST type of the center that is most similar to the configuration compared to 

the other two centers, where the similarity degree is computed by the cosine-similarity measure. 

The ST and GST types of a configuration could be same or different, because the configuration 

could be closer to the center of a correct or an incorrect GST type. As a result, a configuration gets 

associated with a total of 7 ST types, one per feature space. Third, the configurations are sampled 

into the above-defined clusters based on Eq. (5.1), where 𝐶𝑀𝑆𝑇 is the count of the majority ST, 

𝑀𝑆𝑇 is the type of the majority ST, and 𝐺𝑆𝑇 is the gold standard transition type. 

For a configuration, Eq. (5.1) works as follows. First, if the CMST of the configuration is greater 

than or equal to the ‘natural threshold’ (i.e., 4 out of 7), the configuration is sampled into the C1 

cluster; otherwise, it is sampled into the C2 cluster. This is because in the former case the majority 

of the STs have reached a consensus, which indicates that the configuration can be confidently 

associated close to one of the centers; while in the latter case no consensus has been made, which 
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indicates that the configuration cannot be confidently associated close to any of the centers. 

Second, if a C1 configuration happens to have an MST type that is same as its GST type, it is 

sampled into the C3 cluster as well; otherwise, it is sampled into the C4 cluster. This is because in 

the former case the majority of the STs are indicating a correct transition type (the GST type of 

the configuration), while in the latter case no correct transition type can be decided based on the 

MST type. 

Cluster =   {

C1
C2

 if CMST ≥ 4;                                  
 if CMST < 4;                                  

C3
C4

if CMST ≥ 4 and MST = GST;
if CMST ≥ 4 and MST ≠ GST.

                                                                        (5.1) 

5.2.1.3 Constituent Neural Network Classifier Modeling 

An NN architecture was modeled and developed for training a set of constituent NN classifiers. It 

is a feedforward neural network that contains an input layer, a hidden layer, and an output layer. 

This NN architecture was chosen for two reasons. First, it can automatically learn the most-useful 

feature conjunctions and high-order features, which helps avoid feature sparsity and 

incompleteness issues (Chen and Manning 2014; Mikolov et al. 2013). Second, it does not use a 

complex neural network topology, which helps balance classification accuracy and computational 

efficiency (Chen and Manning 2014). 

The input layer takes the semantic distributed feature representation of a configuration as input. A 

unit of the input layer takes a value from the representation. Based on the size of the semantic 

feature representation vectors (see Section 5.2.1.1), the input layer has a size of 2100. The hidden 

layer contains a set of hidden units, each of which is fully connected to the input layer. A hidden 

unit takes a value mapped from the input layer. The mapping is conducted by an activation 

function. For instance, using the logistic sigmoid function as an example, a hidden unit has an 
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input value of ℎ𝑖 that is computed by Eq. (5.2) (Zadeh et al. 2010), where 𝑊1 ∈ 𝑅
|𝑋|×|𝐻| is a weight 

matrix, 𝐵1 ∈ 𝑅
|𝐻| is a bias vector, |𝑋| is the size of the input layer, and |𝐻| is the size of the hidden 

layer. In this research, a hidden layer size of 200 (Chen and Manning 2014) was used, and the 

logistic sigmoid function was selected and used based on the experimental results (see Section 

5.3.1). The output layer is a softmax layer added upon the hidden layer and is used to model the 

multi-class probabilities of a configuration being classified into the transition types. The 

probabilities are computed by Eq. (5.3) (Bouchard 2007), where 𝑡𝑗 is the 𝑗𝑡ℎ transition type, 𝑊2 ∈

𝑅|3|×|𝐻| is a weight matrix, and 𝐵2 ∈ 𝑅
|3| is a bias vector. Based on the number of transition types 

in the transition-based DP model, the output layer has a size of 3. For a dataset 𝐷 = {(𝑐𝑘, 𝑡𝑘)}𝑘=1
𝐾 , 

where 𝑐𝑘 is the 𝑘𝑡ℎ configuration and 𝑡𝑘 is its corresponding GST type, the training process of the 

NN architecture aims to minimize the 𝐿2 -regularized cross-entropy loss (maximizing the 

probabilities of the training configurations being classified into their GST types). The loss function 

is defined in Eq. (5.4) (De Boer et al. 2005), where 𝜃 = {𝑊1, 𝐵1,𝑊2, 𝐵2} and 𝜆 is a regularization 

parameter. 

ℎ𝑖 =
1

1 + exp(−𝑊1𝑖𝑋 − 𝐵1𝑖)
, 𝑖 = 1,… , |𝐻|                                                                                       (5.2) 

𝑃𝑡𝑗 =
exp(𝑊2𝑗ℎ + 𝐵2𝑗)

∑ exp (𝑊2𝑗ℎ + 𝐵2𝑗)
𝑗=3
𝑗=1

, 𝑗 = 1, 2, 3                                                                                           (5.3) 

𝐿(𝜃) = −∑log𝑃𝑡𝑘
𝑘

+
𝜆

2
‖𝜃‖2                                                                                                              (5.4) 

5.2.1.4 Combiner Support Vector Machine Classifier Modeling 

A combiner SVM classifier was modeled and developed. It aims to capture the misclassification 

and/or classification patterns of all the constituent NN classifiers, and to make final configuration 
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classification decisions for extracting dependency relations from the text. As shown in Figure 5.1, 

the combiner SVM classifier takes the outputs of the four constituent NN classifiers (three 

probabilities per constituent classifier; see Section 5.2.1.3) as input. Thus, the input of the 

combiner classifier is a probability vector of size 12. Training a classifier in such case is a 

straightforward learning process, because the input contains less features and simple patterns and 

the resulting learning process does not involve extensive feature conjunctions and mappings. SVM 

has shown high performance in such learning tasks (e.g., Priya and Aruna 2012; Shibuya et al. 

2015)), and was therefore chosen for training the combiner classifier. 

5.2.1.5 Dependency Relation-Based Information Representation 

A dependency relation-based information representation method is proposed. It aims to decode the 

extracted word-to-word dependency relations, in order to link the isolated words into semantic 

information elements (SIEs) and to represent the unstructured and semantically-low SIEs into 

semantically-rich structured semantic information sets (SISs). In this research, an SIE is a concept 

that describes bridge conditions and maintenance actions, which could be a bridge element (ET), 

deficiency (DY), deficiency cause (DC), numerical measure (NM), numerical measure unit (NU), 

categorical quantity measure (QM), categorical severity measure (SM), maintenance action (MA), 

maintenance material (MM), or date (DT). An SIS is a semantic information structure that consists 

of SIEs. The SIEs in an SIS must follow an SIE-to-SIE dependency relation type. For example, as 

illustrated in Figure 5.3, the SIEs must follow one of the three SIE-to-SIE dependency relation 

types: (1) the ET-DY dependency relation with the semantics: a “bridge element” is affected by a 

“deficiency” that is inspected at a “date”, that is caused by a “deficiency cause” and is maintained 

by a “maintenance action” using a “maintenance material”, and that has a “numerical measure” 

with a “numerical measure unit”, a “categorical severity measure”, and a “categorical quantity 
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measure”; (2) the ET-DC dependency relation with the semantics: a “bridge element” has a 

“deficiency cause” that is inspected at a “date”; and (3) the ET-MA dependency relation with the 

semantics: a “bridge element” is maintained by a “maintenance action” using a “maintenance 

material” at a “date”. 

 

Figure 5.3. SIE-to-SIE dependency relations defined in semantic information set (SIS). 

The proposed dependency relation-based information representation method, as illustrated in 

Figure 5.4, contains three main steps. First, a sentence is represented with a sequence of words, 

semantic classes, word numbers, and head word numbers. The word and head word numbers 

indicate the extracted word-to-word dependency relations. For example, in Figure 5.4, the head 

word of “chord” is at position 4, which is “connection”. Second, the modifier and the 

corresponding head words, as well as their semantic classes, are combined to form SIEs and the 

semantic classes of the SIEs, respectively. In this step, only the word and the head word numbers 

of the original head words are maintained. For example, in Figure 5.4, the modifier words “bottom” 
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and “chord” were combined with the head word “connection” to form the SIE (i.e., “bottom chord 

connection”) and the semantic class (i.e., “ET”) with the word and head word numbers of 4 and 7, 

respectively. The semantic classes of the SIEs are needed in order to associate the right SIEs into 

the right positions of an SIS, and to break down the SIEs that contain concepts with different 

semantic classes. For example, in Figure 5.4, the phrase “severe crevice corrosion” was further 

broken down into “severe” and “crevice corrosion” SIEs based on their semantic classes (“SM” 

and “DY”, respectively). Third, the extracted SIE-to-SIE dependency relations are checked to 

assess whether they follow the SIE-to-SIE dependency relations as defined in Figure 5.4, so that 

only valid SIEs are added to an SIS. For example, in Figure 5.4, the SIE pair “bottom chord 

connection” and “truss” was excluded because there are no dependency relations defined between 

the two ET SIEs. 

 

Figure 5.4. An example to illustrate the proposed dependecy relation-based information 

representation method. 

Two special cases that include conjunction and negation are also considered in the proposed 

information representation method. First, if one SIE is dependent on the other SIE and they are 

concatenated by a conjunction, they inherit the dependency relations of each other. For example, 

in the following sentence from (WSDOT 2009), “abutment” and “deck” have a dependency 



 

 

151 

relation and are concatenated by a conjunction (i.e., “and”): “Leaching at corner of north abutment 

and bottom of deck.” In this case, “deck” inherits the dependency relations of the “abutment” and 

gets associated with “leaching” as well. Second, if an SIE is concatenated to another SIE by a 

negation, both SIEs (and their associated SIEs) are excluded from an SIS. For example, in the 

following sentence from (Caltrans 2012), “connections” was concatenated with “distress” by a 

negation (i.e., “did not”): “The connections did not appear to be in distress.” In this case, these 

SIEs are excluded from an SIS. To capture conjunctions and negations, two gazetteer lists were 

developed and used. The conjunction gazetteer list includes words/phrases like “and”, “as well 

as”, “along with”, “together with”, etc. The negation gazetteer list includes words/phrases like 

“no”, “not”, “doesn’t”, “isn’t”, etc. 

5.2.2 Implementation of the Proposed Method 

The proposed semantic NNE-based dependency parsing (DP) method was implemented in 

extracting dependency relations from bridge inspection reports for linking the isolated words that 

describe bridge conditions and maintenance actions into SIEs and SISs. The implementation 

included four primary steps: dataset preparation, feature extraction and representation, semantic 

NNE-based DP algorithm training, and evaluation. An overview of the implementation 

methodology is presented in Figure 5.5.  
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Figure 5.5. Overview of the implementation of the proposed semantic neural network ensemble 

(NNE)-based dependency parsing (DP) method. 

5.2.2.1 Dataset Preparation 

Dataset preparation included dataset creation, text preprocessing, and human annotation. A dataset, 

which contains a total of 1,000 sentences that were randomly selected from 10 bridge inspection 

reports, was created. As shown in Table 5.2, the selected reports are from different states, from 

different reporting years, and for different bridge structure types. The sentences were randomly 

selected to avoid introducing bias. To further ensure that the sample (the selected sentences) is 

representative of the population (all the sentences from the 10 reports), the distributions of the 

sentence lengths were compared. As shown in Figure 5.6, the two distributions are quite similar. 

The p-value for the comparison of the distributions is 0.4892 (calculated from the Welch’s unequal 

variance t-test, assuming normal distributions of the sentence lengths), which shows that there is 

no significant difference between the two. These results indicate that the sample is representative. 
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The sentences were further randomly split into three sets at a ratio of 2:1:1 – a training set for 

algorithm training, a validation set for hyperparameter tuning and algorithm validation, and a 

testing set for testing the fine-tuned model. As noted above, 50% of the data were used for training, 

in order to keep the remaining portion of the data for validation and testing. In the initial method 

development efforts, the use of 75% of the data for training was also tested, which only marginally 

changed the parsing performance. This indicates that the increase in the ratio of training data, 

beyond 50%, does not have a substantial impact on the performance results. Table 5.3 shows a set 

of sentence examples. Text preprocessing aimed to transform the raw text (the selected sentences) 

into the format required for dependency relation extraction. Tokenization was used to break down 

a continuous sentence into a sequence of tokens (e.g., words, digits, punctuations, and 

whitespaces). Human annotation aimed to mark up the entire dataset with gold standard 

dependency relations. Following the universal dependencies guideline (Marneffe et al. 2014), the 

sentences were, separately, annotated by three annotators. The three are researchers with 

background in both civil engineering and natural language processing. The final gold standard 

annotation was achieved with full agreement of all the annotators. 

Table 5.2. List of bridge inspection reports. 
No. Reported bridge Structure type State Year  

1 Natchaug River Chaplin Bridge Concrete arch bridge CT 2009  

2 Sherman Minton Bridge Double-deck through arch bridge IN 2007  

3 Hale Boggs Memorial Bridge Cable-stayed bridge LA 2008  

4 Heron Truss Bridge Steel deck truss bridge MT 2011  

5 Portsmouth Memorial Bridge Vertical-lift bridge NH 2009  

6 Wellwood Avenue Bridge Concrete arch bridge NY 2015  

7 Union Street Railroad Bridge Vertical-lift, Pratt through truss bridge OR 2005  

8 South Park Bridge Scherzer rolling lift double-leaf bascule bridge WA 2009  

9 Lower Trenton Bridge Through truss bridge NJ 2015  

10 Capitola Crossing Deck Truss Single-span deck truss bridge CA 2012  
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Table 5.3. Examples of sentences in the bridge inspection reports. 
Report 

no.a 

Sentence 

no. 
Original sentence from bridge inspection report 

1 1 The one-half inch thick, oil and stone surface treatment, over two inches of bituminous 

materials, over a corrugated steel deck, still shows full width transverse cracking, open a 

maximum of one inch, mainly in the areas of the deck, adjacent to the pier. 

1 2 The outside fascia deck edge plates still show light to moderate rusting, along their edges. 

2 3 Several of the anchor bolts for the cross girder bearings on the pier columns exhibit 

deficiencies that include mis-drilled holes, bent anchor bolts, improperly installed anchor 

bolts, and loose nuts. 

2 4 The curb faces on the westbound deck have minor widespread spalling. 

3 5 Throughout the bridge, the bolted field splices for the deck exhibited isolated instances of 

loose bolts, missing nuts, and missing bolts (see photo 15). 

3 6 Rodents, rodent’s dens, and moderate rodent debris were noted in tiers 23-25 of both 

towers. 

4 7 The Pier 1 expansion bearing assemblies exhibited approximately 25 percent loss of 

protective coating with moderate corrosion and negligible loss of section on the exposed 

areas. 

4 8 The timber deck members were coated with creosote and tar. 

5 9 Truss bottom chord members typically have deterioration with section loss at the gusset 

plates and some surface rust throughout webs and top flanges. 

5 10 Minor corrosion and section loss of bottom flange angles. 

6 11 The underside of the cap beam between columns C1 and C2 exhibits 3’ x 20” x 3” deep 

spall with two main rebars exposed and one stirrup exposed, 32” x 16” x 2” deep spall and 

hollow sounding concrete areas 12” x 18”. 

6 12 The joint seal has detached from the joint. 

7 13 The paint system of this section appears to be in fair condition overall, with failure on 

approximately 20 percent of the surface area. 

7 14 Some of the rivet heads in these locations have also suffered some moderate section loss. 

8 15 South abutment settled downward and retaining walls of abutment rotated outward, 

allowing span between abutment and bent 2 to settle as well during earthquake. 

8 16 Large spall 18” x 24” on west wall of north abutment. 

9 17 Several anchor bolts and many keeper plates were noted to be missing at the abutment 

bearings and a steel bolster Girder 2 exhibits section loss. 

9 18 The abutment rocker bearings exhibit pack rust between the masonry plate and the rocker. 

10 19 At connections there was generally minor crevice corrosion between the eyebar heads and 

the pin with an average section loss of approximately 1/8” around the interior 

circumference. 

10 20 Significant section loss to the bottom lacing was found in spots along the top chord. 

a The report number follows that defined in Table 5.2.  
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Figure 5.6. Distributions of the sentence lengths for the selected sentences (sample) and for all 

the sentences in the ten bridge inspection reports (population). 

5.2.2.2 Feature Extraction and Representation 

The training, validation, and testing configurations were first generated from the annotated 

training, validation, and testing sentences, respectively, using the transition-based DP model. The 

configuration-based features were extracted based on the defined element positions at the 

configurations. Second, the syntactic and semantic text features were extracted to represent these 

configuration-based features. The POS tag set from the Penn Treebank was used. The tags were 

analyzed and extracted using the commonly-used natural language tool kit (NLTK) POS tagger 

(Bird et al. 2009). The defined semantic classes were analyzed and extracted using the ontology-

based, semi-supervised conditional random fields-based named entity recognition (NER) method 

(developed as per Research Task #3, in Chapter 4). In this method, the bridge deterioration 

knowledge ontology (developed as per Research Task #2, in Chapter 3), which represents bridge 

deterioration and maintenance knowledge, is used to facilitate the extraction based on content and 

domain-specific meaning. The errors in the semantic classes were manually checked and corrected. 
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Finally, the extracted text features – words, POS tags, and semantic classes – were represented by 

the distributed feature representations with a commonly-used vector size of 50, using the NN-

based hierarchical softmax skip-gram algorithm (Mikolov et al. 2013). This algorithm was selected 

because it achieved the state-of-the-art performance in distributed feature representation and has 

been widely applied for supporting many natural language processing tasks inside (e.g., Zhou and 

El-Gohary 2015) and outside (e.g., Chen and Manning) of the construction domain. 

5.2.2.3 Algorithm Training 

The algorithm training aimed to learn the weight vectors for the constituent NN classifiers and the 

combiner SVM classifier. The training included three main steps. First, all the training 

configurations were sampled into the defined configuration clusters based on Eq. (5.1). Second, 

the four constituent NN classifiers were developed. Each constituent classifier corresponded to a 

cluster and was trained using the configurations and their GSTs of the cluster. To learn the weights 

for the NN classifiers [as per Eq. (5.4)], the backpropagation algorithm (Rumelhard et al. 1986) 

was used. It was selected because it is the workhorse of parameter learning in neural networks. 

Third, a combiner SVM classifier was developed. The combiner classifier was trained using all 

the training configurations and their GSTs. During the training, each of the configurations was 

represented with the probability vector (as per Figure 5.2). To learn the weight vector of the 

combiner SVM classifier, the stochastic gradient descent algorithm was used. This algorithm was 

selected because it has been widely applied in the optimization process of SVM classifier training. 

5.2.2.4 Evaluation 

The evaluation included algorithm validation and testing. Algorithm validation was conducted, 

using the configurations, to: (1) select the hyperparameter values for the classifiers, (2) select the 

feature representation, and (3) compare the performance of the proposed DP algorithm to those of 
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the three baselines – semantic single classifier-based algorithms that used an NN or SVM classifier 

and a semantic stacked generalization-based algorithm that used cross-validation partitioning for 

sampling the configurations. The selection and comparison were conducted based on 

configuration-based accuracy (CA), which is the ratio of the number of correctly-classified 

configurations to the total number of configurations, as per Eq. (5.5). Algorithm testing was 

conducted, using the testing sentences, to evaluate the performance of the proposed DP algorithm 

(with the selected hyperparameters and feature representation) in extracting dependency relations 

from bridge inspection reports for representing the information about bridge conditions and 

maintenance actions in a semantically-rich structured way. The performance was measured in 

terms of precision, recall, and F-1 measure, at both the SIE and SIS levels. Precision, as per Eq. 

(5.6), is the ratio of the number of correctly-extracted SIEs/SISs to the total number of extracted 

SIEs/SISs. Recall, as per Eq. (5.7), is the ratio of the number of correctly-extracted SIEs/SISs to 

the total number of SIEs/SISs that should be extracted. F-1 measure, as per Eq. (5.8) (Olson and 

Delen 2008), is the weighted harmonic mean of precision and recall. A threefold cross-validation 

was performed to evaluate the generalizability of the algorithm. The confidence intervals of the 

mean values for these measures were also calculated to evaluate the sensitivity of the performance 

results. The confidence intervals were calculated using Eq. (5.9) (Brookmeyer and Crowley, 1982), 

where �̅� is the mean, 𝜎 is the standard deviation, 𝑛 is the number of sentences or configurations in 

the validation or testing set, 𝑧∗  is the critical value, and 𝑧∗
𝜎

√𝑛
 is the margin of error. At 95% 

confidence level, 𝑧∗ = 1.96. Because prediction accuracies, precisions, and recalls generally follow 

a normal distribution (Lu et al. 2007; Mirza et al. 2007), such a distribution was assumed and used 

for calculating the confidence intervals. 
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𝐶𝐴 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠
                                                          (5.5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑆𝐼𝐸𝑠(𝑜𝑟 𝑆𝐼𝑆𝑠)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑆𝐼𝐸𝑠 (𝑜𝑟 𝑆𝐼𝑆𝑠)
                                                 (5.6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑆𝐼𝐸(𝑜𝑟 𝑆𝐼𝑆𝑠)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝐼𝐸𝑠 (𝑜𝑟 𝑆𝐼𝑆𝑠) 𝑡ℎ𝑎𝑡 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
                                             (5.7) 

𝐹-1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                         (5.8) 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝐶𝐼) =  (�̅� − 𝑧∗
𝜎

√𝑛
, �̅� + 𝑧∗

𝜎

√𝑛
 )                                                               (5.9) 

5.3 Relation Extraction Method Evaluation 

5.3.1 Hyperparameter Value Selection 

The hyperparameter values for the NN and SVM classifiers were selected. Because the activation 

and the kernel functions are especially important for the constituent NN and the combiner SVM 

classifiers to collectively capture the nonlinearity of the configurations, combinations of the two 

types of functions were tested. Four commonly-used activation functions (identity, Gaussian, 

hyperbolic tan, and logistic sigmoid) and four commonly-used kernel functions (linear, polynomial, 

radial basis function, and sigmoid) were tested, resulting in a total of 16 combinations. The selected 

values are summarized in Table 5.4. 
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Table 5.4. Hyperparameter values of the proposed and the baseline dependency parsing 

algorithms. 
Classifier 

type 

Hyperparameter Value Explanation 

Neural 

network 

classifier 

Number of network layers a 3 This value was selected based on Chen and Manning (2014), 

because it balances classification accuracy and computational 

efficiency. 

Hidden layer size a 200 – c 

Regularization parameter a 10-8 – c 

Activation function Logistic 

sigmoid 

function 

or 

hyperbolic 

tan 

function 

The combination that used the logistic sigmoid activation function 

and the linear kernel function achieved the highest configuration-

based accuracy on both the validation and testing sets, compared 

to the other combinations. The logistic sigmoid function was, thus, 

selected for the constituent neural network classifiers. 

Four commonly-used activation functions, including the logistic 

sigmoid, identity, Gaussian, and hyperbolic tan functions, were 

tested. The hyperbolic tan function was selected over the other 

three for the single neural network classifier, because it achieved 

the highest configuration-based accuracy on both the validation 

and testing sets. 

Support 

vector 

machine 

classifier 

Soft margin constant 200 or 1 A set of values, including 1 and those ranging from 20 to 300 with 

a step size of 20, were tested. A value of 200 for the combiner 

classifier and a value of 1 for the single classifier were selected to 

control the margin of the decision boundaries, because they 

achieved the highest configuration-based accuracy, on the 

respective validation and testing sets. 

Kernel function Linear 

kernel or 

radial 

basis 

function 

kernel 

The combination that used the logistic sigmoid activation function 

and the linear kernel function achieved the highest configuration-

based accuracy on both the validation and testing sets, compared 

to the other combinations. The linear kernel function was, thus, 

selected for the combiner support vector machine classifier. 

Four commonly-used kernels, including the linear, polynomial, 

radial basis function, and sigmoid kernels, were tested. The radial 

basis function kernel was selected over the other three for the 

single support vector machine classifier, because it achieved the 

highest configuration-based accuracy on both the validation and 

testing sets. 

Degree of the polynomial 

kernel b 

2 This value was selected because it is enough to capture the 

nonlinear relationships between features (Ben-Hur and Weston 

2010). 

Coefficient of the 

polynomial and sigmoid 

kernels b 

1 This value was selected, because it balances the influence of 

higher-order terms and that of lower-order terms in the polynomial 

and sigmoid functions and is commonly-used in practice (Ben-Hur 

et al. 2008). 

Gamma of the radial basis 

function, polynomial, and 

sigmoid kernels b 

1/n This value was set to the inverse of the number of features (i.e., n), 

which is the commonly-used value in SVM (Chang et al. 2011) to 

control the curvature of the decision boundaries for preventing 

over-fitting. 

a The constituent and the single neural network classifiers used the same value. 
b The combiner and the single support vector machine classifiers used the same value. 
c The explanation follows that above. 
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5.3.2 Feature Representation Selection 

Seven text feature representations were tested and compared to investigate the effectiveness of 

different types of representations. These representations include combinations of the three types 

of features: words, POS tags, and semantic classes, as shown in Figure 5.7. To study the 

significance levels of the performance differences across these representations, a set of Welch’s 

unequal variance t-tests were conducted. The probability values (p-values) were used to interpret 

the t-test results: if the p-value is greater than 0.05, there is no significant difference; otherwise the 

difference is significant. Figure 5.7 summarizes the mean configuration-based accuracies, their 

corresponding confidence intervals, and the p-values for comparing the proposed feature 

representation to the remaining six representations. The experimental results show that the 

proposed semantic distributed feature representation – which uses words, POS tags, and semantic 

classes (FR7 in Figure 5.7) – achieved the highest configuration-based accuracy of 91.3% on the 

testing set. By combining the high and low cooccurrence rate features, as well as the syntactic and 

semantic features, it was effective in capturing the highly-variable patterns of the text in the bridge 

inspection reports.  

The feature representations (FR1, FR2, FR3, and FR6) that used words, POS tags, semantic classes, 

and the combination of POS tags and semantic classes achieved an accuracy of 87.0%, 83.4%, 

63.8%, and 84.0%, which is 4.3%, 7.9%, 27.5%, and 7.3% lower compared to the highest (FR7), 

respectively, on the testing set, with all differences being significant. The lower performance was 

caused by two main reasons. First, the representations with a low cooccurrence rate (such as FR1) 

generated too many unseen feature patterns in the testing configurations that have not been learned 

from the training configurations. Second, the representations with a high cooccurrence rate (such 

as FR2, FR3, and FR6) caused the configurations that belong to different transition types to have 
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similar and/or identical feature patterns. The unseen and similar/identical feature patterns made 

the dependency parsing (DP) algorithm limited in effectively distinguishing the configurations of 

different transition types and, thus, resulted in a lower accuracy. 

The feature representations (FR4 and FR5) that used the combination of words and POS tags and 

the combination of words and semantic classes achieved an accuracy of 86.8% and 85.8%, which 

is 4.5% and 5.5% lower compared to the highest (FR7), respectively, on the testing set, with all 

differences being significant. The improved performance of FR7, compared to FR4 and FR5, was 

mainly due to the fact that, in addition to combining the low and high cooccurrence rate features, 

it also utilized the POS tags and semantic classes jointly. These two types of features are 

complementary to each other and, thus, led to the optimal DP performance. The semantic class 

features are effective in capturing the dependency relations (word-to-word interactions) between 

the concepts that have defined semantics. For example, the words “severe” and “corrosion” can be 

classified into a correct transition type based on their defined semantic meanings: a categorical 

severity measure (“severe”, as a modifier) describes a deficiency (“corrosion”, as a head). On the 

other hand, the POS tag features are effective in capturing the relations between the concepts that 

do not have defined semantics (low-content-bearing words, such as “of”, “on”, and “at”). For 

example, the SIEs “wearing surface” (as a head) and “concrete deck” (as a modifier) in the phrase 

“wearing surface on the concrete deck” can be associated with a correct SIE-to-SIE dependency 

relation based on the POS tag of the “on” (i.e., preposition). 
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Figure 5.7. Performance results for feature representation selection. 

5.3.3 Comparison to Baseline Algorithms 

Three baseline DP algorithms were developed for comparative evaluation: a semantic NN-based, 

a semantic SVM-based, and a semantic stacked generalization (SG)-based. The first two were used 

to evaluate the effectiveness of the proposed ensemble learning-based approach. The semantic 

NN-based DP baseline was selected because it is one of the state-of-the-art NN-based DP methods 

(e.g., Chen and Manning 2014) that has been commonly used as a benchmark (e.g., by Weiss et 

al. 2015; Alberti et al. 2015). The semantic SVM-based DP baseline was selected because it is 

commonly used in the literature (e.g., Kudo and Matsumoto 2002; Yamada and Matsumoto 2003). 

For these baselines, a single NN or SVM classifier was used. The hyperparameter values of the 

classifiers are shown in Table 5.4. The third baseline was used to evaluate the effectiveness of the 

proposed sampling approach. It was selected because it is the most similar to the proposed 

algorithm – except that the proposed algorithm used the similarity-based sampling method rather 
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than cross-validation partitioning. For the SG-based and the proposed DP algorithms, four 

constituent NN classifiers with the logistics sigmoid activation function and a combiner SVM 

classifier with the linear kernel functions were used. These functions were selected based on the 

results in Section 5.3.1. All the DP algorithms (for both the proposed and the baseline models) 

were developed using the proposed semantic distributed feature representation, as per Figure 5.2.  

The performances of the proposed and the baseline algorithms are summarized in Figure 5.8, and 

their confusion matrices are shown in Figure 5.9. As shown in Figure 5.8, the proposed semantic 

NNE-based DP algorithm (A4) achieved the highest accuracy of 91.3% on the testing set. The 

semantic NN-based DP baseline with the hyperbolic tan activation function (A2-4) achieved an 

accuracy of 77.8%. The semantic SVM-based DP baseline with the radial basis function kernel 

(A1-3) achieved an accuracy of 63.0%. And, the semantic SG-based DP algorithm (A3) achieved 

an accuracy of 76.4%. As shown in Figure 5.9, the proposed algorithm achieved improved 

precisions and recalls across all transition types.  

These results indicate that the proposed ensemble learning-based DP approach is effective in 

dealing with highly technical, domain-specific text (such as that in the bridge inspection reports) 

for extracting dependency relations. It significantly improved the accuracy by 13.5% and 28.3%, 

compared to the NN- and SVM-based DP baselines, respectively. This is because, by using the 

constituent and combiner classifiers, the proposed ensemble learning-based DP approach was able 

to sufficiently capture the distributions of all the configurations, which were too complex to be 

captured by a single classifier. The results also indicate that the proposed similarity-based 

sampling method is effective in capturing the complex configuration distributions of the text. It 

significantly improved the accuracy by 14.9% compared to the SG-based DP baseline. This is 

because the sampling method used the similarities measured in multiple feature spaces as a 
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collective criterion to sample the configurations into meaningful clusters (see Section 5.2.1.2). 

Conversely, the SG-based algorithm simply clustered the configurations using cross-validation 

partitioning. Only learning from the similarly-distributed and more easily-separable configurations 

allowed each constituent classifier to sufficiently capture the local distributions of the 

configurations, which resulted in more effective ensembling – improved ability to capture the 

global distributions of all the configurations. 

 

Figure 5.8. Performances of different dependecy parsing (DP) algorithms. 



 

 

165 

 

Figure 5.9. Confusion matrices for the proposed and the baseline dependency parsing 

algorithms. 
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5.3.4 Performance of the Proposed Dependency Parsing Algorithm 

The performance of the proposed semantic NNE-based DP algorithm was evaluated in extracting 

dependency relations from bridge inspection reports for representing the information about bridge 

conditions and maintenance actions into SIEs and SISs. The SIE-level measures evaluated how 

well the individual SIEs can be correctly represented, while the SIS-level measures evaluated how 

well the SISs can be correctly represented (an SIS representation is correct if and only if all its 

constituent SIEs are represented correctly). The SIS-level measures are, thus, more stringent 

compared to the SIE-level measures. Examples of the extracted information are provided in Figure 

5.10. The experimental results are summarized in Figure 5.11. 

 
Figure 5.10. The semantic information element (SIE) level and the semantic information set 

(SIS) level performance of the proposed algorithm.  
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Figure 5.11. The semantic information element (SIE) level and the semantic information set 

(SIS) level performance of the proposed algorithm.  
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5.3.4.1 Performance at the Semantic Information Element Level 

At the SIE level, on average, the proposed semantic NNE-based DP algorithm achieved a precision, 

recall, and F-1 measure of 96.6%, 90.4%, and 93.3%, respectively. For some SIE types (e.g., ET, 

DY, DC, and SM), the algorithm achieved results lower than these averages. For the ET and DY 

SIEs, it achieved an SIE-level precision, recall, and F-1 measure of 90.5%, 83.6% and 86.9%, and 

93.5%, 87.3%, and 90.3%, which are 6.1%, 6.8%, and 6.4%, and 3.1%, 3.1%, and 3.0% lower 

compared to the averages, respectively. Two main sources of errors that contributed to these results 

were identified. First, the large number of the ET and DY SIEs negatively affected the performance 

of the algorithm. Bridge inspection reports tend to have more descriptions about bridge elements 

and their deficiencies. For example, in the used dataset, 50.2% and 22.1% of the concepts are ET 

and DY SIEs, respectively. These SIEs are, thus, the main sources of the ambiguities in the 

dependency relations (i.e., associating the right DY elements to the right ET elements is 

challenging, given the existences of multiple such SIEs in a sentence). Second, the errors generated 

during the POS tagging process negatively affected the performance of the algorithm. For example, 

in the following sentence, the words “shows” and “cut” were incorrectly tagged as “noun” and 

“verb”, respectively: “The salvaged stringer superstructure, shows flame cut holes for various 

stringer ends, over the east abutment, and along the fascia stringer ends, over each side, of the pier.” 

(CDOT 2009). This resulted in incorrectly associating the DY element (“flame cut holes”) to the 

other ET elements (e.g., “east abutment”, “fascia stringer ends”, and “pier”), instead of correctly 

associating it to “stringer superstructure”.   

For the DC and SM SIEs, the algorithm achieved an SIE-level precision, recall, and F-1 measure 

of 97.2%, 77.4%, and 86.1%; and 92.3%, 75.7%, and 83.1%, respectively. The recalls of these two 

SIEs are much lower than the average (13.0% and 14.7% lower for DC and SM, respectively). 
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Two main sources of errors that caused the lower recalls were identified. First, when combining 

words into SIEs, the information representation method (as per Figure 5.4, step 2) sometimes 

combined multiple DC SIEs into one single element, and thus led to the low recall for the DC SIEs 

(multiple DC SIEs should be extracted, while only the single DC element was incorrectly 

extracted). For example, in the following sentence, the DC SIEs “rodent droppings” and “debris” 

were combined into one DC element “rodent droppings debris”, which is incorrect: “The interior 

of the longitudinal box girders exhibited heavy rodent droppings, debris, and nests….” (LaDOTD 

2008). For a correct extraction and representation, the three DC SIEs “rodent droppings”, “debris”, 

and “nests” should all be extracted and represented as separate SIEs. A further analysis revealed 

the root source of such mistakes: ignoring punctuation during the parsing (which is the default 

practice according to the universal dependencies guideline (Marneffe et al. 2014) and is commonly 

applied in other DP methods). Punctuations are in some cases indicative of correct dependency 

relations. So, when the comma between “rodent droppings” and “debris” was not considered, they 

were associated with an incorrect dependency relation. Second, the proposed SIE-to-SIE 

dependency relation types (as per Figure 5.3) sometimes limited the information representation, 

and thus led to the lower recall of the SM SIEs. For example, in the sentence above, the SM SIE 

“heavy” and the DC SIE “rodent droppings” should be extracted and represented. Although the 

DP algorithm correctly associated a dependency relation between these two elements, the SM SIE 

was not represented in an SIS because no semantics (SIE-to-SIE dependency relation types) were 

defined between the SM and DC SIEs. 

5.3.4.2 Performance at the Semantic Information Set Level 

At the SIS level, the proposed semantic NNE-based DP algorithm achieved a precision, recall, and 

F-1 measure of 88.2%, 81.5%, and 84.7%, respectively. Compared to the average SIE-level 
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measures, the SIS-level precision, recall, and F-1 measure are 8.4%, 8.9%, and 8.6% lower, 

respectively. This is because (as discussed) the SIS-level measures are naturally more stringent 

than the SIE-level ones. The results also show that the performance in extracting/representing the 

bridge elements (at the SIE level) sets an upper bound for the entire SIS-level performance. This 

is because the bridge elements are the root of the extraction and representation, so when a bridge 

element is extracted and represented incorrectly, its whole SIS becomes incorrect. 
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CHAPTER 6 – UNSUPERVISED DATA LINKING 

This chapter presents the proposed data linking method for linking data records that are extracted 

from textual bridge inspection reports (extracted as per Research Tasks #3 and #4). The method 

development and evaluation (Research Task #5) are presented in this chapter. 

6.1 Comparison to the State of the Art 

Generally, data linking includes three primary components: (1) attribute similarity assessment: 

assessing the similarities between the corresponding attributes of the records, (2) record similarity 

assessment: assessing the similarities between the records based on their attribute similarities, and 

(3) record linking: linking the records based on their similarities. Many data linking methods have 

been developed in various application domains, such as healthcare (Brook et al. 2008), national 

security and crime investigation (Phua et al. 2012), government service (Winkler 2006), etc. 

Despite the importance of existing methods, they are still limited in linking data extracted from 

highly technical, domain-specific documents, such as bridge inspection reports. First, most of the 

existing methods (e.g., Fu et al. 2014; Fisher et al. 2015; Karapiperis and Verykios 2014; 

Karapiperis and Verykios 2015; De Leone and Minnetti 2015) use term-level string comparisons 

to assess the similarities between simple entities (e.g., numbers and single terms). Such methods 

are rather insufficient in assessing the similarities between more complex entities, such as those 

extracted from bridge inspection reports (e.g., domain-specific concepts). Second, most of the 

existing methods use vector representations of attribute similarities to assess record similarity 

(Vatsalan et al. 2013). Such methods are limited in effectively assessing the similarities of records 

when dependencies among attribute similarity assessments exist (Ananthakrishna 2002; Weis and 

Naumann 2004). Although a limited number of methods (e.g., Weis and Naumann 2004; Albrech 

and Naumman 2008; Puhlmann et al. 2006) have been developed for addressing this limitation for 
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domain-general applications, they cannot be used for capturing domain-specific dependencies, 

such as those carried in the bridge report records. Third, the majority of existing data linking 

methods are classification-based (Vatsalan et al. 2013), where pairwise classifications are 

conducted for linking record pairs. Such methods open the door to transitive closures, which 

typically lead to false positives (Christen 2012; Elmagarmid et al. 2007). 

6.2 Data Linking Method Development 

6.2.1 Proposed Data Linking Method 

The proposed data linking method is composed of three primary sub-methods: concept similarity 

assessment, record similarity assessment, and SC-based record linking. An overview of the 

proposed method is presented in Figure 6.1.  

 

Figure 6.1. Overview of the proposed spectral clustering (SC)-based data linking method. 
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6.2.1.1 Concept Similarity Assessment 

A new concept similarity (CS) assessment method was proposed, which assesses the similarities 

between the concepts based on the similarity degrees of their terms. Three alternative CS scoring 

functions were proposed and tested: term-based, relative-position-based, and right-position-based 

functions. For all three functions, the assumption is: at different places in a report, the writer could 

use different terminologies to refer to the same entity/instance. For example, although 

linguistically “west longitudinal box girder” is a subconcept of “longitudinal girder”, the writer of 

the inspection report used both terminologies at different places to refer to the same girder; and 

the variability in terminology was merely an inconsistency in writing style. 

The term-based function is based on the following hypothesis: the similarity of two concepts is 

best assessed based on the similarity degrees of their most-similar terms. For each concept pair, 

this function (1) assesses the string-based term similarity (TS) of each term in the shorter concept 𝑥 

to each term in the longer concept 𝑦, using an existing TS scoring function, (2) selects the most-

similar term from concept 𝑦 – the one with the highest string-based TS score – for each term in 

concept 𝑥, and (3) uses the normalized total of the selected scores as the concept similarity degree. 

The term-based CS score is calculated using Eq. (6.1), where 𝐶𝑆(𝑥, 𝑦) is the concept similarity of 

concept 𝑥 to concept 𝑦; 𝑡𝑖 and 𝑡𝑗 are the terms of concepts 𝑥 and 𝑦, respectively; 𝑇𝑆(𝑡𝑖 , 𝑡𝑗) is the 

string-based term similarity of 𝑡𝑖  to 𝑡𝑗 ; and 𝑛  and 𝑚  are the lengths of concepts 𝑥  and 𝑦 , 

respectively.  

𝑇𝑒𝑟𝑚-𝑏𝑎𝑠𝑒𝑑 𝐶𝑆 𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑆(𝑥, 𝑦) =  
1

𝑛
×∑ 𝑚𝑎𝑥

1≤𝑗≤𝑚
{𝑇𝑆(𝑡𝑖, 𝑡𝑗)}

𝑛

𝑖=1
                                           (6.1) 
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The relative-position-based function follows the same hypothesis and steps of the term-based 

function. But, in addition to the string-based term similarity, it also considers the position-based 

term similarity when selecting the most-similar terms, because the positions of terms in concepts 

can also capture the term similarity. The position-based similarity between a pair of terms is 

calculated using a relative position score, which is 1 minus the absolute difference between the 

normalized position of 𝑡𝑖 in concept 𝑥 (i.e., 𝑖 𝑛⁄ ) and that of 𝑡𝑗 in concept 𝑦. The relative position 

scores are multiplied with the string-based TS scores for selecting the most-similar terms. The 

relative-position-based CS score is calculated using Eq. (6.2), where 𝑖 and 𝑗 are the positions of 𝑡𝑖 

and 𝑡𝑗  in concepts 𝑥 and 𝑦, respectively; 𝑖 𝑛⁄  and 𝑗 𝑚⁄  are the normalized positions of 𝑡𝑖 and 𝑡𝑗 , 

respectively; 1 − |𝑖 𝑛⁄ − 𝑗 𝑚⁄ |  is the relative position score between 𝑡𝑖  and 𝑡𝑗 ; and the other 

notations follow those defined in Eq. (6.1). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒-𝑝osition-𝑏𝑎𝑠𝑒𝑑 𝐶𝑆 𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑆(𝑥, 𝑦) 

= 
1

𝑛
×∑ 𝑚𝑎𝑥

1≤𝑗≤𝑚
{𝑇𝑆(𝑡𝑖, 𝑡𝑗) × (1 − |

𝑖

𝑛
−
𝑗

𝑚
|)}

𝑛

𝑖=1
   (6.2) 

The right-position-based function is based on the following hypothesis: in a multi-term concept 

name, the contribution of a term’s meaning to the concept meaning decreases from right to left; 

the most right term (i.e., the last term) contributes the most (Zhang and El-Gohary 2016). Thus, in 

addition to the string-based term similarity, this function also considers the contribution level of 

the term meaning to the concept meaning. The contribution level is calculated using a right position 

score, which is the ratio between the summed position indices of the paired terms and that of all 

the paired terms. As such, for each concept pair, this function (1) assesses the string-based TS of 

each term in concept 𝑥 to each term in concept 𝑦, (2) adjusts the string-based TS score of each 

term pair by multiplying it with its right position score, and (3) uses the total of all the adjusted 
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scores as the concept similarity degree. The right-position-based CS score is calculated using Eq. 

(6.3), where (𝑖 + 𝑗) ∑ ∑ (𝑖 + 𝑗)𝑚
𝑗=1

𝑛
𝑖=1⁄  is the right position score and the other notations follow 

those defined in Eq. (6.1). Examples of using these functions to assess the similarity between two 

concepts are provided in Figure 6.2. 

𝑅𝑖𝑔ℎ𝑡-position-𝑏𝑎𝑠𝑒𝑑 𝐶𝑆 𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑆(𝑥, 𝑦)                                                                                              

= ∑ ∑ (𝑇𝑆(𝑇𝑖, 𝑇𝑗) ×
(𝑖 + 𝑗)

∑ ∑ (𝑖 + 𝑗)𝑚
𝑗=1

𝑛
𝑖=1

)
𝑚

𝑗=1

𝑛

𝑖=1
             (6.3) 

 

Figure 6.2. Examples for the proposed concept similarity (CS) scoring functions. (a) The term-

based CS scoring function. (b) The relative-position-based CS scoring function. (c) The right-

position-based CS scoring function. 
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6.2.1.2 Record Similarity Assessment 

A new sequential record similarity assessment method was proposed, which breaks down the 

record-level similarity assessment task into sequences of attribute-level tasks based on similarity 

assessment dependencies. Three types of similarity assessment dependencies were defined and 

used: element-deficiency, element-deficiency cause, and element-maintenance action. 

The element-deficiency (ET-DY) dependency is used to break down the record assessment task 

for the records that include bridge element (ET) and deficiency (DY) attribute values (i.e., concept 

names in this case). This dependency assumes that: (1) if two records in a bridge inspection report 

have same/similar ET and DY concepts, then they refer to the same deficiency instance, i.e., the 

same deficiency on the same element of the same bridge (e.g., a specific “crack” on a specific 

“timber deck” of a specific “bridge”); and (2) for the same deficiency instance, its deficiency 

characteristics (numerical measure, categorical quantity measure, and categorical severity 

measure) as well as maintenance action and material should be the same. Under this dependency, 

the assessment of record similarity is conducted, sequentially, based on the ET and DY concepts. 

First, the similarities of the records are assessed based on that of the ET concepts. Second, for the 

records including same/similar ET concepts, their similarities are further assessed based that of the 

DY concepts. 

The element-deficiency cause (ET-DC) dependency is used to break down the record assessment 

task for the records that include ET and deficiency cause (DC) attribute values, but no DY attribute 

values. This dependency assumes that: (1) if two records in a bridge inspection report have 

same/similar ET and DC concepts, then they refer to the same deficiency cause instance, i.e., the 

same deficiency cause on the same element of the same bridge (e.g., a specific “white rot” on a 

specific “timber deck” of a specific “bridge”); and (2) for the same deficiency cause instance, its 
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maintenance action and material should be the same. Under this dependency, the assessment of 

record similarity is conducted, sequentially, based on the ET and DC concepts. 

 The element-maintenance action (ET-MA) dependency is used to break down the record 

assessment task for the records that include ET and maintenance action (MA) attribute values, but 

no DY and no DC attribute values. This dependency assumes that (1) if the records in a bridge 

inspection report have same/similar ET and MA concepts, then they refer to the same maintenance 

action instance, i.e., the same action performed on the same element of the same bridge (e.g., a 

specific “splicing augmentation” performed on a specific “timber beam” of a specific “bridge”); 

and (2) for the same maintenance action instance, the material used should be the same. Under this 

dependency, the assessment of record similarity is conducted, sequentially, based on the ET and 

MA concepts. 

6.2.1.3 Spectral Clustering-Based Record Linking 

An improved SC-based data linking method was proposed to link the records in an unsupervised 

way at each attribute level, without forming transitive closures. Figure 6.3 shows an overview of 

the proposed data linking method. 

The improved spectral clustering uses a proposed iterative bi-partitioning method to automatically 

identify the optimal number of target clusters for data linking, without using a manually pre-

defined number. The bi-partitioning includes three main steps. First, the original NJW normalized 

SC method (Ng et al. 2002) is used to always bi-partition a parent cluster into two child clusters, 

where the parent cluster contains concepts to be linked and each of the child clusters contains 

linked concepts. Second, the quality of the partitioning is assessed by a proposed partitioning 

quality assessment function. Third, the assessment score is compared to a user-defined threshold. 
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If the score is greater than the threshold, the original parent cluster is eliminated, and the children 

become the new parent clusters, so that the linked concepts in each child cluster are further 

partitioned. Otherwise, the resulting child clusters are eliminated, and the original parent cluster is 

kept without further partitioning. These steps are repeated until no more parent clusters can be 

partitioned. 

 

Figure 6.3. The improved spectral clustering (SC)-based data linking method. 

The partitioning quality assessment function was proposed based on the following assumption: a 

high-quality partitioning should result in a high inter-cluster distance and a low intra-cluster 

distance. The function is defined in Eq. (6.4), where PAQ score is a partitioning quality assessment 

score; 𝑃𝐶 is a parent cluster; 𝐶𝑖 and 𝐶𝑗 are concepts in child clusters 𝐶𝐶1 and 𝐶𝐶2, respectively; 

𝐶𝑘 and 𝐶𝑙 are concepts in the same child cluster; 𝐶𝑆(𝐶𝑖 , 𝐶𝑗) is the concept similarity between 𝐶𝑖 

and 𝐶𝑗 ; 𝑁𝐵  is the number of unique concept pairs between 𝐶𝐶1  and 𝐶𝐶2 , which is used for 

normalizing the total inter-cluster distance; and 𝑁𝑊 is the total number of unique concept pairs in 

each of the child clusters, which is used for normalizing the total intra-cluster distance. The 
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function considers two cases. First, when a parent cluster only contains two concepts (i.e., each of 

its children has one concept), the function uses the ratio between the dissimilarity and the similarity 

to capture the partitioning quality. It assigns a high PQA score to a high-quality partitioning, which 

in this case indicates higher dissimilarity and lower similarity. Second, when the parent cluster 

contains more than two concepts, the function uses a revised McClain-Rao index (McClain and 

Rao 1975) to capture the partitioning quality. It assigns a high PQA score to a high-quality 

partitioning, which in this case indicates higher average inter-cluster distance and lower intra-

cluster distance. 

𝑃𝑄𝐴 𝑠𝑐𝑜𝑟𝑒 =

{
 
 

 
 1 − 𝐶𝑆𝐴𝐹

(𝑖, 𝑗)

𝐶𝑆𝐴𝐹(𝑖, 𝑗)
                                                              𝑖𝑓 |𝑃𝐶| = 2;

∑ ∑ 1 − 𝐶𝑆𝐴𝐹(𝑖, 𝑗)𝑗∈𝐶𝐶2𝑖∈𝐶𝐶1

∑ ∑ 1 − 𝐶𝑆𝐴𝐹(𝑘, 𝑙)𝑘,𝑙∈𝐶𝐶;𝑘<𝑙𝐶𝐶∈{𝐶𝐶1,𝐶𝐶2}
×
𝑁𝐵

𝑁𝑊
   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                   (6.4) 

Since the spectral clustering represents concepts using similarity graphs, the use of unsupervised 

pre-classification prior to the clustering – to break down a similarity graph into several small ones 

– was tested to evaluate if the size reduction of the graph would improve the performance of the 

clustering. The pre-classification was formulated as a linear sum assignment optimization problem, 

which aims to classify a pair of concepts into “match” and “non-match” (a “match” means that the 

concepts should be linked). A constraint that a concept cannot be linked to itself was added to the 

original optimization problem to avoid having all concepts only linked to themselves. The linked 

concept pairs were grouped to form small graphs/clusters. For example, if concept x is linked to 

concept y and concept y is linked to concept z, the three concepts are grouped into a cluster. 
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6.2.2 Implementation of the Proposed Method 

The proposed data linking method was implemented in a Python program. The program includes 

two modules: a record preprocessing module and a data linking module. The preprocessing module 

conducts morphological analysis to map several variants of a term into a single root form, thereby 

facilitating the assessment of term similarity. For example, it mapped “cracks” and “cracked” into 

the same root “crack”. The natural language toolkit (NLTK) Porter stemmer (Bird et al. 2009) was 

used for conducting the morphological analysis. The linking module links the preprocessed 

records. The concept similarity assessment and the iterative bi-partitioning methods were 

implemented in Python. The Freely Extensible Biomedical Record Linkage (FEBRL) package 

(Christen 2008) was used for term similarity assessment. The Source Scientific Tools for Python 

(SciPy) package (Jones et al. 20001) was used for unsupervised pre-classification. The Warshall’s 

algorithm (Cormen et al. 1990) was used for grouping concept pairs into small clusters.  

6.3 Data Linking Method Evaluation 

A set of experiments were conducted to test and evaluate the performances of the data linking 

method and its sub-methods. A total of 1,743 records (extracted from ten bridge inspection reports) 

were automatically linked using the proposed data linking algorithm, and the linking results were 

evaluated based on precision and recall. Five main experiments were conducted to test: (1) the 

performances of the term similarity scoring functions, (2) the performances of the concept 

similarity scoring functions, (3) the performance of the sequential record similarity assessment 

method, (4) the performance of the improved SC-based data linking method, and (5) the overall 

performance of the proposed data linking method. Figure 6.4 shows examples of the records linked 

by the proposed method. 
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Figure 6.4. Examples of the records linked by the proposed data linking method. 

6.3.1 Dataset Preparation 

A set of ten bridge inspection reports were collected for testing and evaluation. The characteristics 

of the selected reports are summarized in Table 6.1. These reports are considered representative, 

because: (1) they are from different regional divisions, representing all five regions in the U.S. 

(West, Southwest, Midwest, Northeast, and Southeast); (2) they are from different reporting years, 

ranging from 2006 to 2016; and (3) they are for different types of bridge structures, including steel, 

masonry, concrete, and timber structures. The information extraction methods, presented in 

Chapters 4 and 5, were used to extract the records about bridge conditions and maintenance actions 

from these reports. Errors in the extraction were manually checked and corrected to avoid affecting 

the data linking evaluation. As a result, a total of 1,743 correct records were included in the dataset. 

To develop the gold standard annotations for evaluation, the records were independently linked by 
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four human annotators, who are researchers with background in both civil engineering and 

machine learning. An initial annotator agreement rate of 78.6% was achieved. Full annotator 

agreement was then achieved after discussion. 

Table 6.1. Characteristics of the selected bridge inspection reports. 

Report no. Region Structure type Reporting year Number of records 

1 Midwest Steel truss arch 2006 409 

2 Midwest Steel multi-girder 2015 152 

3 Northeast Stone masonry arch 2009 97 

4 Northeast Steel truss 2013 451 

5 Southeast Steel cable-stayed bridge 2008 163 

6 Southeast Multi-steel beam with timber deck 2016 93 

7 Southwest Steel girder with concrete abutment 2007 88 

8 Southwest Steel girder with concrete abutment 2008 32 

9 West Deck truss 2011 125 

10 West Double-leaf bascule 2009 133 

 

6.3.2 Evaluation Metrics 

The linking results were compared to those in the gold standard, and were evaluated based on 

example-based precision, recall, and F-1 measure. Using the example-based measures, the data 

linking performance was calculated for each record in a report, and the overall performance was 

obtained by calculating the mean performance over all the records in the report. The example-

based precision and recall (thereafter called precision and recall for simplification) were calculated 

using Eqs. (6.5) and (6.6) (Olson and Delen 2008), respectively, where 𝑛 is the number of records 

extracted from a report; and, for each record 𝑖 , true positive (𝑇𝑃) is the number of records 

correctly-linked to record 𝑖, false positive (𝐹𝑃) is the number of records incorrectly-linked to 

record 𝑖, false negative (𝐹𝑁) is the number of records that should but were not linked to record 𝑖, 

𝑇𝑃 + 𝐹𝑃 is the total number of records linked to record 𝑖, and 𝑇𝑃 + 𝐹𝑁 is the total number of 

records that should be linked to record 𝑖. The example-based F-1 measure, which is the weighted 
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harmonic mean of precision and recall, was calculated using Eq. (6.7) (Olson and Delen 2008). 

Average precision, recall, and F-1 measure were calculated as the arithmetic means of the example-

based measures over all the reports in the dataset. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑛
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑛

𝑖=1
                                                                                                           (6.5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝑛
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝑛

𝑖=1
                                                                                                                 (6.6) 

 𝐹-1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
                                                                                     (6.7) 

6.3.3 Performance of Term Similarity Scoring Functions 

A total of 14 commonly-used term similarity scoring functions (see Section 2.4.2) were evaluated 

to investigate which one can better assess term similarity. To study the significance levels of their 

performance differences, a set of Welch’s unequal variance t-tests were conducted. For these t-

tests, the positional bigram-based function was used as the base case, for two reasons: the pairwise 

comparisons for all the functions would be unnecessarily too exhaustive to perform, and the chosen 

function achieved the highest F-1 measure of 92.3%, making it a suitable benchmark. The 

probability values (p-values) were used to interpret the results of the t-tests: if the p-value is greater 

than 0.05, there is no significant performance difference between the tested and the base functions; 

otherwise the difference is significant. Table 6.2 summarizes the experimental results and the p-

values. 

The results indicate that there is no significant performance difference across the tested functions: 

all their p-values are greater than 0.05. This could be due to performing stemming before term 

similarity assessment. The stemming removed the morphological derivations and/or inflections of 
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the terms, making the functions perform similarly. For example, without stemming, using the exact 

comparison-based and the Levenshtein edit distance-based functions, the similarity degrees 

between the terms “cracked” and “cracking” are 0.000 and 0.625, respectively. With stemming, 

both functions provide the same result (a similarity degree of 1.000), because both terms were 

converted to the same root form “crack”. 

Table 6.2. The performance results for the term similarity scoring functions. 

Term similarity scoring function a 
Precision Recall F-1 Measure 

Avg.b P-value c Avg. P-value Avg. P-value 

Bag distance 94.1% 0.1477 88.5% 0.7589 91.2% 0.5385 

Compression distance 95.3% 0.8465 88.2% 0.6959 91.6% 0.7194 

Exact comparison 95.6% 0.9016 87.5% 0.5648 91.4% 0.6513 

Jaro distance 93.5% 0.0643 89.7% 0.9471 91.6% 0.6669 

Levenshtein edit distance 95.7% 0.8380 89.1% 0.8985 92.3% 0.9578 

Longest common substring 95.5% 0.9838 89.2% 0.9239 92.2% 0.9367 

Ontology longest common substring 95.2% 0.7792 88.9% 0.8561 91.9% 0.8319 

Positional bigram 95.4% 1.0000 89.4% 1.0000 92.3% 1.0000 

Sequence matching 95.0% 0.6500 89.2% 0.9176 92.0% 0.8470 

Skip-gram 95.8% 0.8098 88.9% 0.8556 92.2% 0.9429 

Smith-Waterman edit distance 95.3% 0.8458 89.4% 0.9878 92.3% 0.9513 

Syllable alignment distance 95.8% 0.7628 88.4% 0.7433 92.0% 0.8448 

Trigram 95.6% 0.9286 88.5% 0.7758 91.9% 0.8261 

Winkler distance 92.9% 0.0748 90.0% 0.8628 91.4% 0.6227 

a For the same function, different parameters were tested and the optimal parameter was selected based on the testing results. For 

example, for the N-gram-based function, trigram was selected over unigram and bigram. The performance of the function with the 

selected parameter was reported. 
b The averages were calculated over the selected ten bridge inspection reports, as per Table 6.1. 

c The p-values were calculated from the Welch’s unequal variance t-tests (using the positional bigram-based function as the base 

case), and are significant at 0.05 level (2-tailed).  

6.3.4 Performance of the Proposed Concept Similarity Scoring Function 

The three proposed concept similarity (CS) scoring functions were evaluated to investigate which 

one can better assess concept similarity. To study the significance levels of the performance 

differences, a set of Welch’s unequal variance t-tests were conducted. Table 6.3 summarizes the 

experimental results and the p-values. 



 

 

185 

Two main observations are drawn from these results. First, the similarity of two concepts is better 

assessed by the similarities of their most-similar terms (as assumed in the term- and relative-

position-based functions), rather than the similarities of all their terms (as assumed in the right-

position-based function). The former functions achieved an average precision, recall, and F-1 

measure of 95.4%, 89.4%, and 92.3%, and 95.5%, 89.5%, and 92.4%, respectively – compared to 

100.0%, 67.9%, and 80.9% for the latter one. The right-position-based function decreased the 

similarity between two concepts when their lengths are different. For example, the function 

resulted in a low similarity between “strip seal gland” and “gland”, because it used all the term 

pairs and the different concept lengths led to including the dissimilar term pairs (“strip”, “gland”) 

and (“seal”, “gland”) when calculating the concept similarity. As a result, only the true-positive 

same-length concepts were linked – no false positives were generated; hence the “perfect” 

precision of 100.0%. Many true-positive different-length concepts were not linked; hence the 

significant decrease in the recall (by around 21.6%, with p-value = 0.0011). This indicates that the 

term- and relative-position-based functions are more suitable in assessing concept similarity when 

the variability in terminology is merely an inconsistency in writing style (e.g., using “longitudinal 

girder” to refer to “west longitudinal box girder”), such as the case for bridge inspection reports. 

The right-position-based function would probably be more suitable when variability in 

terminology is intended, i.e., when different concept lengths indicate different concepts (e.g., 

concepts at different abstraction levels). 

Second, considering the relative positions of terms has a small and insignificant impact on concept 

similarity assessment. Compared to the term-based function, the relative-position-based function 

only marginally changed the average precision, recall, and F-1 measure by 0.1%, 0.1%, and 0.2%, 

respectively, with p-values greater than 0.05. This is mainly because the most-similar terms are 
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usually placed in similar/same relative positions and their similarities are, thus, not affected by 

their relative positions. For example, the terms “longitudinal” and “girder” are the most-similar 

terms between “longitudinal girder” and “west longitudinal box girder”, and these terms are in the 

same relative positions (e.g., both “girder” instances are the last terms). 

Table 6.3. The performance results for the proposed concept similarity scoring functions. 

CSSF a 
Precision Recall F-1 Measure 

Avg. b P-value c Delta d Avg. P-value Delta Avg. P-value Delta 

SF#1 95.4% – – 89.4% – – 92.3% – – 

SF#2 95.5% – – 89.5% – – 92.4% – – 

SF#3 100.0% – – 67.9% – – 80.9% – – 

SF#1 vs. SF#2 – 0.9649 -0.1% – 0.9842 -0.1% – 0.9776 -0.1% 

SF#1 vs. SF#3 – 0.0003 -4.6% – 0.0011 +21.5% – 0.0061 +11.4% 

SF#2 vs. SF#3 – 0.0003 -4.5% – 0.0010 +21.6% – 0.0058 +11.5% 

a CSSF = concept similarity scoring function; SF#1 = term-based CSSF; SF#2 = relative-position-based CSSF; SF#3 = right-

position-based CSSF. 
b The averages were calculated over the selected ten bridge inspection reports, as per Table 6.1. 

c The p-values were calculated from the Welch’s unequal variance t-tests, and are significant at 0.05 level (2-tailed). 
d The delta is the performance difference between the functions in comparison. 

6.3.5 Performance of the Proposed Record Similarity Assessment Method 

To evaluate the performance of the proposed sequential record similarity assessment method, the 

classification and clustering results, with and without the use of the method, were compared. 

Several combinations, as per Table 6.4 (A1 to A6), were evaluated. When not using the method, 

the normalized total of the concept similarities of two records was used for assessing the record 

similarity. As shown in Table 6.4, the experimental results indicate that the assessment method 

was significantly effective, when combined with the improved spectral clustering (without pre-

classification) – 6.9% improvement in F-1 measure (A3 vs. A4), with p-value = 0.0044. When 

combined with the pairwise classification (without clustering), although the method was able to 

improve the F-1 measure by 12.7% (A1 vs. A2), the improvement was insignificant (p-value = 

0.1059) and the improved value was still unsatisfactory (F-1 measure = 59.3%). This is mainly 
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because the pairwise classification only considered pairwise similarities when linking the 

concepts/records, without considering the impacts of linking a pair of concepts on the linking of 

the other concepts (i.e., the intra- and inter-cluster similarities used in the clustering). For example, 

purely based on the pairwise similarity degree of 1.000 between “truss” and “horizontal strut of 

truss”, the two concepts were incorrectly linked. When considering the following similarities, the 

“truss” was only linked to the concepts about the same truss, without also being incorrectly linked 

to the concepts about the strut: the high intra-cluster similarities between “horizontal strut” and 

“horizontal strut of truss” and between “truss” and “deck truss”, and the low inter-cluster 

similarities between “horizontal strut” and “truss” and between “horizontal strut” and “deck truss”. 

When combined with both, pre-classification and clustering, a similar improvement to that for 

clustering alone (A3 vs. A4) was shown – 7.2 % improvement in F-1 measure (A5 vs. A6), with 

p-value = 0.0018, indicating that the proposed sequential record similarity assessment method had 

a significant impact on clustering only.  

Table 6.4. The performance results for the different data linking algorithms. 

Data linking 

algorithm a 

Precision Recall F-1 measure 

Avg. b P-value c Delta d Avg. P-value Delta Avg. P-value Delta 

A1 30.5% – – 98.4% – – 46.6% – – 

A2 42.8% – – 96.5% – – 59.3% – – 

A3 79.2% – – 92.3% – – 85.2% – – 

A4 96.2% – – 88.3% – – 92.1% – – 

A5 79.0% – – 92.3% – – 85.1% – – 

A6 95.4% – – 89.4% – – 92.3% – – 

A1 versus A2 – 0.1314 -12.3% – 0.0497 1.9% – 0.1059 -12.7% 

A3 versus A4 – 0.0000 -17.0% – 0.2342 4.0% – 0.0044 -6.9% 

A5 versus A6 – 0.0000 -16.4% – 0.3293 2.9% – 0.0018 -7.2% 

A3 versus A5 – 0.9519 -0.2% – 0.9982 0.0% – 0.9550 0.1% 

A4 versus A6  0.5363 0.8%  0.7815 -1.1%  0.9069 -0.2% 

a A1 = pre-classification only (pairwise classification, without clustering); A2 = sequential record similarity assessment + pre-

classification; A3 = clustering only (using iterative bi-partitioning spectral clustering, without pre-classification); A4 = sequential 

record similarity assessment + clustering; A5 = pre-classification + clustering; A6 = sequential record similarity assessment + pre-

classification + clustering.  
b The averages were calculated over the selected ten bridge inspection reports, as per Table 6.1. 

c The p-values were calculated from the Welch’s unequal variance t-tests, and are significant at 0.05 level (2-tailed). 
d The delta is the performance difference between the algorithms in comparison. 
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6.3.6 Performance of the Proposed Spectral Clustering-Based Data Linking Method 

To evaluate the performance of the improved SC-based data linking method, three main 

experiments were conducted to: (1) evaluate if the use of unsupervised pre-classification prior to 

the SC improves the performance of the clustering, (2) select the most suitable threshold value for 

the partitioning quality assessment function, and (3) evaluate the performance of the iterative bi-

partitioning (improved SC). 

6.3.6.1 Performance of the Unsupervised Pre-Classification 

To evaluate the performance of the unsupervised pre-classification method, the clustering results, 

with and without the use of pre-classification, were compared. Several combinations, as per Table 

6.4 (A3 to A6), were evaluated. The impact of conducting pre-classification, prior to the clustering, 

on the performance of the data linking was only marginal and insignificant. As shown in Table 6.4, 

the changes in F-1 measure are smaller than 0.5% (A3 vs. A5 and A4 vs. A6), with p-values much 

greater than 0.05. This is likely due to two reasons. First, as mentioned above, the pre-classification 

was formulated as a linear sum assignment optimization task, with the constraint that a concept 

cannot be linked to itself but has to be linked to another concept. This constraint intended to avoid 

the situation where all the concepts are only linked to themselves. But, it also resulted in limiting 

the extent of breaking down the graphs/clusters – the forced links between the concepts prevented 

further separating the graphs. Second, the sizes of the graphs were not large enough to benefit from 

size reduction. The pre-classification might show effectiveness in other cases/applications that deal 

with larger graph sizes (i.e., larger sizes of records per report) (Liu et al. 2013; Chen and Cai 2015). 
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6.3.6.2 Threshold Analysis 

To select the optimal threshold value for the partitioning quality assessment function, a total of 21 

experiments were conducted, with threshold values ranging from 0 to 1 and a step size of 0.05. 

The experimental results, as shown in Figure 6.5, indicate that (1) when the threshold value 

increased from 0.00 to 0.05, the F-1 measure increased; (2) when it was set between 0.05 and 0.15, 

the F-1 measure did not change much; and (3) starting at a value of 0.15, as the value increased, 

the F-1 measure showed a decreasing trend. The optimal threshold value is, thus, within the range 

of 0.05 and 0.15. As the threshold value becomes smaller than the optimum, accepting a 

partitioning becomes easier, which results in over-partitioned clusters that contain less false 

positives and much more false negatives. This leads to slowly-increased precision and quickly-

decreased recall, which decreases the F-1 measure. As the threshold value becomes greater than 

the optimum, accepting a partitioning becomes more difficult, which results in under-partitioned 

clusters that contain more true positives and much more false positives. This leads to quickly-

decreased precision and slowly-increased recall, which decreases the F-1 measure. For the 

following experiments, a threshold value of 0.10 was used.  

 

Figure 6.5. Performance of different threshold values. 
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6.3.6.3 Performance of the Iterative Bi-Partitioning 

To evaluate the performance of the iterative bi-partitioning method, it was compared to the elbow 

method. Using the elbow method, the optimal number of target clusters is manually selected based 

on the R-squared (RS) index, which is the ratio of the intra-cluster variance to the total variance of 

a dataset (Gan et al. 2007). As shown in Table 6.5, the iterative bi-partitioning method was 

effective in correctly identifying the numbers of target clusters and in clustering the records. 

Compared to those identified by the elbow method, the numbers identified by the bi-partitioning 

method were much closer to the true numbers in the gold standard. In terms of linking performance, 

the bi-partitioning method significantly improved the precision by 46.2%, with p-value = 0.0000. 

The iterative bi-partitioning method outperformed the elbow method because of two main reasons. 

First, it used a “one-vs-all” (OVA)-like clustering approach, where binary clustering decisions for 

partitioning the records into two clusters were iteratively made; while, the elbow method used a 

“one-vs-one” (OVO)-like approach, where a “multi-class” clustering decision for partitioning the 

records into a large number of clusters were made at once. Making a sequence of binary decisions 

is less complex than making a “multi-class” decision at the same time. The clustering approaches 

also affected the performance of the k-means clustering method, which is used in the original NJW 

normalized SC method to cluster the leading eigenvectors of the Laplacian matrix. The k-means 

method only needed to consider two (the number of target clusters) seeds using the OVA approach, 

but it needed to consider a large number of seeds using the OVO approach. It has been shown that 

the k-means method becomes unstable and less accurate when dealing with a large number of 

seeds (Boukhdhir et al. 2015). Second, the partitioning quality assessment function used in the bi-

partitioning method considered both the inter- and intra-cluster similarities to identify the optimal 

numbers and cluster the records. Compared to the RS index that only considered the intra-cluster 
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variance, this function was thus able to better capture the dynamic nature of the clustering/linking 

– the impact of linking a set of records on the linking of the other records. In addition, unlike the 

elbow method, which requires human interpretation to identify the “elbow” points, the assessment 

function only uses an experimentally-determined threshold value, which avoided the subjectivity 

in selecting the number. 

Table 6.5. The performance results for the iterative bi-partitioning method. 

Report 

no. a 

Elbow method Iterative bi-partitioning method  
Number of clusters 

in the gold standard 
Precision Recall 

Number of 

clusters identified 
Precision Recall 

Number of 

clusters identified 

1 50.5% 76.9% 111 97.9% 76.3% 217 172 

2 74.5% 77.9% 51 93.5% 86.7% 59 54 

3 55.4% 86.0% 37 96.6% 90.9% 60 57 

4 39.7% 77.3% 116 94.6% 73.5% 299 249 

5 15.9% 99.4% 13 95.3% 89.8% 111 106 

6 55.5% 95.2% 33 98.6% 97.8% 58 57 

7 37.5% 95.9% 25 97.7% 97.0% 65 66 

8 44.8% 96.9% 12 100.0% 96.9% 29 27 

9 61.5% 83.5% 54 93.7% 87.2% 86 74 

10 64.9% 79.8% 76 93.7% 87.1% 95 90 

Average 50.0% 86.9% 53 96.2% 88.3% 108 95 

P-value 0.0000 b 0.5172 b 0.1021 c – – 0.7141 c – 
a The report numbering follows that defined in Table 6.1. 
b The p-values for comparing the precision (or the recall) of the iterative bi-partitioning method to that of the elbow method. 
c The p-values for comparing the number of clusters identified using the iterative bi-partitioning method (or the elbow method) to 

that in the gold standard. 

6.3.7 Overall Performance of the Proposed Data Linking Method and Error Analysis 

The overall performance results for the proposed data linking method are shown in Table 6.6. The 

results are based on using the positional bigram-based term similarity scoring function and the 

term-based concept similarity scoring function. On average, the algorithm achieved a precision, 

recall, and F-1 measure of 96.2%, 88.3%, and 92.1%, respectively. 
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Table 6.6. Performance results for the proposed data linking algorithm. 

Report no. a Precision Recall F-1 measure 

1 97.9% 76.3% 85.7% 

2 93.5% 86.7% 90.0% 

3 96.6% 90.9% 93.6% 

4 94.6% 73.5% 82.7% 

5 95.3% 89.8% 92.5% 

6 98.6% 97.8% 98.2% 

7 97.7% 97.0% 97.4% 

8 100.0% 96.9% 98.4% 

9 93.7% 87.2% 90.3% 

10 93.7% 87.1% 90.3% 

Average 96.2% 88.3% 92.1% 
a The report numbering follows that defined in Table 6.1. 

Two main sources of errors that caused false negatives were identified. First, the concept similarity 

scoring function was limited when the similarities of the most-similar terms cannot sufficiently 

capture the similarities between the concepts. For example, a concept similarity of 1.000 is 

expected for the concepts “upper bracing” and “top bracing”, because they are used to refer to the 

same bracing entity. But, the function assessed the concept similarity as 0.500 due to the similarity 

of 0.000 for the most-similar terms (“upper”, “top”), making the concepts incorrectly unlinked. 

Second, the partitioning quality assessment function cannot successfully deal with ambiguous 

assessment cases, in which the inter-cluster similarity between two child clusters is exactly 0.500 

(a cut-off between similar and dissimilar) and the intra-cluster similarity of each child is 1.000. In 

such cases, the function tended to over-partition parent clusters, which caused false negatives. For 

example, the inter-cluster similarity between the concepts about “rubber trough” and the concepts 

about “drain trough” is 0.500 and the intra-cluster similarity is 1.000. These similarities led to a 

PQA score that is greater than the threshold value, making the two set of concepts incorrectly 

unlinked.  
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One main source of errors that contributed to the false positives was identified. The concept 

similarity scoring function was limited in some cases when a concept is composed of a noun phrase 

and a prepositional phrase. For example, the scoring function incorrectly assigned a similarity of 

1.000 to “upper strut of tower” and “tower”, making these two concepts incorrectly linked.  
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CHAPTER 7 – HYBRID DATA FUSION 

This chapter presents the proposed data fusion method for fusing the linked data records (extracted 

as per Research Tasks #3 and #4, and linked as per Research Task #5) into a unified representation. 

The method development and evaluation (Research Task #6) are presented in this chapter. The 

integration method for integrating the fused data with the other types of structured data (i.e., NBI 

and NBE, data as well as traffic and weather data) is presented in Chapter 8, Section 8.2.2. 

7.1 Comparison to the State of the Art 

Fusing the data extracted from textual bridge inspection reports requires two tasks. First, concept 

names that refer to the same entity, but vary in terms of surface forms and abstraction levels, need 

to be fused into canonical identifier names. This is different from concept mapping (e.g., Zhang 

and El-Gohary 2016; Le and Jeong 2017), which focuses on classifying the types of relationships 

between concept names and mapping equivalent concept names together. Rather, this is a concept 

naming problem – representing the concept names using canonical identifier names that balance 

the abstraction and detailedness, so that they are not too frequent or too rare (in a collection of 

inspection reports) to the extent of causing the loss of distinctive feature patterns or undermining 

the generalizability. Fusing concept names was thus defined, in this research, as a named entity 

normalization task: the multiple concept names that are used in a single report to refer to the same 

entity are normalized into a canonical identifier with balanced abstraction and detailedness, and 

the identifiers from different reports are subsequently fused if they are the same. Second, the 

numerical deficiency measures of the multiple instances, which are of the same type of deficiency 

but are at different locations of a bridge element, need to be fused into a single representative 

representation. Unlike data in multi-sensor data fusion applications (e.g., Jiang et al. 2016; Zhang 

et al. 2017), which are mainly characterized as being conflicting, imprecise, and/or multi-modal 
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(Khaleghi et al. 2013), each of the deficiency measures is partially describing the overall condition 

of the deficiency and these data are, thus, complementary. Fusing deficiency measures was thus 

defined, in this research, as a numerical data fusion task: the measures of the multiple deficiency 

instances, from one report, are fused into a single representation that is representative of all the 

original measures. 

7.2 Data Fusion Method Development 

7.2.1 Proposed Data Fusion Method 

A hybrid data fusion method is proposed. At the cornerstone of the method are two proposed 

algorithms for fusing concept names and numerical data, respectively: an unsupervised named 

entity normalization algorithm and an entropy-based numerical data fusion algorithm. As depicted 

in Figure 7.1, the input of the proposed method is data records that are extracted from different 

bridge inspection reports and are linked if they refer to the same entity and come from the same 

report. The method includes two main steps for fusing these records. First, for a set of linked 

records, the concept names are fused into a canonical name with balanced abstraction and 

detailedness using the proposed normalization algorithm, resulting in a set of partially-fused 

records. The canonical names from all the partially-fused records are fused if they are the same, 

and the fused names are used as features in the unified representation of the reports. Second, for a 

set of partially-fused records, the numerical deficiency measures are fused into a single 

representative interval-based representation using the proposed fusion algorithm, resulting in a 

fully-fused record. The fused data from all the fully-fused records are used as values of their 

corresponding features/names and inspection reports in the unified representation. 
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Figure 7.1. Overview of the proposed hybrid data fusion method. 

7.2.1.1 Unsupervised Named Entity Normalization 

A new unsupervised named entity normalization algorithm is proposed. It fuses concept names 

that refer to the same entity, but vary in terms of both surface forms and abstraction levels, into a 

canonical identifier concept name that balances the abstraction and detailedness. The proposed 

algorithm includes three primary components: identifier concept name generation, ranking, and 

selection. Figure 7.2 provides an overview of the proposed normalization algorithm. 
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Figure 7.2. Proposed unsupervised named entity normalization algorithm. 

7.2.1.1.1 Identifier Concept Name Generation 

Identifier concept name generation aims to generate all candidate identifier concept names – in 

their canonical forms and at different abstraction levels – that a set of original concept names could 

have. The generation includes two steps: morphological analysis and n-gram generation. 

Morphological analysis aims to analyze how a term is formed based on morphological derivation 

and inflection, and to map the term into its canonical form. It is used to account for the surface-
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form variations. For example, for “bridge railing” and “bridge rail”, morphological analysis 

removed the suffix of “railing” and mapped the first name to its canonical form “bridge rail”, 

resulting in a normalized surface form of the two. N-gram generation aims to generate candidate 

identifier names which are at different abstraction levels, so that an identifier that balances the 

abstraction and detailedness can be subsequently selected. It is used to capture the abstraction-

detailedness variations. Two types of candidate names are generated from the original names (in 

canonical forms) using an n-gram language model: regular and skip n-grams. Regular n-grams are 

the concept names (e.g., unigram, bigram, and trigram concept names) that have constituent terms 

following the same consecutive sequence as they appear in an original concept name. Skip n-grams 

are similar to regular n-grams, but their terms are not consecutive in the original name. For 

example, “asphalt deck” and “asphalt wearing” are the regular and skip bigrams of the concept 

name “asphalt deck wearing surface”, respectively. 

7.2.1.1.2 Identifier Concept Name Ranking 

Identifier concept name ranking aims to rank the generated candidate identifier concept names. 

The ranking is, separately, conducted at each abstraction level. For example, bigram names (both 

regular and skip) are ranked separately – not together with the other types of names (e.g., unigram 

and trigram names) – to avoid the mixing of concept name distributions, which would negatively 

affect the ranking. A new concept ranking function is, thus, proposed to rank the candidate 

identifiers. As shown in Eq. (7.1), the proposed function considers the corpus statistic score (CSS), 

term-position score (TPS), and term-sequence score (TSS) of a candidate identifier concept name 

(CICN) to calculate its ranking score. 

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒(𝐶𝐼𝐶𝑁) = 𝐶𝑆𝑆(𝐶𝐼𝐶𝑁) × 𝑇𝑃𝑆(𝐶𝐼𝐶𝑁) × 𝑇𝑆𝑆(𝐶𝐼𝐶𝑁)                                        (7.1) 
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The corpus statistic score is used to rank the candidate concept names based on how frequent or 

rare they are in a collection of bridge inspection reports. To calculate the scores, two alternative 

corpus statistic measures, term frequency (TF) and inverse document frequency (IDF), were 

selected. TF captures the frequency rate of a concept name in all the sets of candidate names, where 

each set contains the candidate names that refer to the same entity and come from a single report 

in the collection. It prefers the concept names that are frequent. IDF captures the frequency rate of 

a concept name across all the sets, i.e., how many sets in the collection contain a specific name. It 

prefers the concept names that are less frequent across the sets and are thus rare. Two variations 

of the measures, TF-IDF and Okapi BM25, were also selected because, theoretically, they can 

balance both types of preferences. The performances of these four measures were tested (see 

Section 7.3.1.1). 

The term-position and term-sequence scores are used to rank the candidate concept names based 

on how meaningful they are, because it is desirable for names that are meaningful to be ranked 

high. They are calculated based on the lexical patterns (i.e., lexical position and sequence) of terms 

in their original concept names. The term-position scores are calculated based on the following 

lexical-position hypothesis: the contribution of a term’s meaning to the entire meaning of a concept 

name decreases from right to left; the most right-hand side term contributes the most (Zhang and 

El-Gohary 2016). Thus, a candidate concept name that is mostly composed of terms from the right-

hand side of an original name has a higher score than the name that is mostly composed of terms 

from the left-hand side. The term-position score is calculated using Eq. (7.2), where CICN is a 

candidate identifier concept name, OCN is an original concept name in a set of original names 

OCNs, N is the number of names in the set, T is a term of CICN, M is the number of terms in CICN, 

𝐼𝑛𝑑𝑒𝑥𝑂𝐶𝑁(𝑇) is the index of T in OCN, and |𝑂𝐶𝑁| is the length of an original concept name. 
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𝑇𝑒𝑟𝑚-𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 (𝐶𝐼𝐶𝑁) = 1.0 + 
1

𝑁
∑

1

𝑀
∑

𝐼𝑛𝑑𝑒𝑥𝑂𝐶𝑁(𝑇)

|𝑂𝐶𝑁|
{𝑇 ∈ 𝐶𝐼𝐶𝑁}{𝑂𝐶𝑁 ∈ 𝑂𝐶𝑁𝑠}

                  (7.2) 

The term-sequence scores are calculated based on the following lexical-sequence hypothesis: a 

candidate concept name with terms following the same consecutive sequence as they appear in its 

original name has a higher score. This hypothesis was made because using skip n-grams, although 

provides more candidate concept names with various term combinations, generates some names 

that have terms that do not follow the same consecutive sequence and are, thus, generally less 

meaningful. For example, the terms of the skip bigram “asphalt wearing” do not follow the same 

consecutive sequence as they appear in the original concept name “asphalt deck wearing surface” 

and are, thus, less meaningful. The term-sequence score is calculated using Eq. (7.3), where 

𝐼{1,0} = 1.0 if a candidate concept name has terms following the same consecutive sequence as 

they appear in an original name; otherwise 𝐼{1,0} = 0. The other notations follow those defined in 

Eq. (7.2).  

𝑇𝑒𝑟𝑚-𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒(𝐶𝐼𝐶𝑁) = 1.0 + 
1

𝑁
∑ 𝐼{1,0}

{𝑂𝐶𝑁 ∈ 𝑂𝐶𝑁𝑠}

                                                        (7.3) 

7.2.1.1.3 Identifier Concept Name Selection 

Identifier concept name selection aims to select a final canonical identifier concept name from the 

top-ranking identifier names (one top-ranking name for each abstraction level). The selection is 

conducted hierarchically (i.e., in a top-down fashion), so as to select an identifier with balanced 

abstraction and detailedness. For example, for a pair of top-ranking identifiers in the adjacent 

abstraction levels (e.g., unigram and bigram names), if the detailed name fails to meet any of the 

if statements in a proposed selection rule, the abstract name is selected as the final identifier; 
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otherwise, the selection continues to the next pair (e.g., bigram and trigram names), until the 

abstract name in the pair is selected or no detailed name is available. 

 The proposed concept selection rule, which considers both the corpus statistics and the lexical 

patterns of the concept names, includes three cascading if statements: 

• if the ranking score of the detailed concept name added by an adjustment factor alpha is 

greater than the ranking score of the abstract concept name; the adjustment factor alpha is 

used to balance the abstraction and detailedness of the identifier concept names. A large value 

of alpha favors detailed names, and a small value favors abstract names. 

• if the word-association score of the detailed concept name is greater than a threshold value 

beta; the word-association score measures the degree to which two terms are related, using 

corpus statistics (e.g., co-occurrence rates of the terms in a collection of inspection reports). It 

is used to make sure that the detailed concept names are lexical atoms (semantically-coherent 

phrases, e.g., “map crack”) rather than random combinations of terms. The normalized Google 

distance (Cilibras and Vitany 2007) was selected to calculate the word-association scores, 

because it is less negatively affected by extremely-frequent terms, which make lexical atoms 

have low scores as random combinations. The threshold value beta is used to further balance 

the abstraction and detailedness. A large value of beta makes it stringent for detailed identifier 

names to be selected and, thus, favors abstract names. A small value makes it easier for detailed 

names to be selected and, thus, favors such names. 

• if the part-of-speech (POS) pattern of the detailed concept shows a noun-phrase pattern; the 

POS patterns (i.e., lexical class patterns of terms) are used to filter out concept names that are 

not noun phrases, because a noun phrase is the most frequently-occurring phrase type and is 
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commonly used for naming concepts. Two noun-phrase patterns were used: “noun + noun” 

and “adjective + noun”, where “noun” could be a noun or a noun phrase. 

As noted, two hyperparameters, alpha and beta, are used in the rule to balance the abstraction and 

detailedness of the candidate identifier concept names. In order to find the optimized values for 

them, a total of 10,000 value combinations (with the values of alpha and beta ranging from 0 to 1 

with step size of 0.01, respectively) were tested. The combination with alpha = 0.38 and beta = 

0.81 was empirically selected based on the testing results and was used for the experiments 

conducted in this research. 

7.2.1.2 Entropy-Based Numerical Data Fusion 

A new entropy-based numerical data fusion algorithm is proposed to fuse multiple numerical data 

into a single representative interval-based representation. The proposed algorithm includes four 

primary components: interval determination, degree tuple quantification, degree tuple fusion, and 

interval-based data representation. Figure 7.3 shows the proposed fusion algorithm. 

7.2.1.2.1 Interval Determination 

Interval determination aims to determine the number of intervals and the size of the interval for 

representing the fused data. Intervals are used to represent the fused data, in order to account for 

the uncertainty in data and to avoid the exaggerated impact of minor fluctuations in continuous 

data on the machine learning models. The proportional k-interval discretization method (Yang and 

Webb 2001) is used to define the intervals. This method was selected because it can use data to 

balance the trade-off relationship between the number of intervals and the interval size. A large 

number is preferred to capture more distinctive data instances for avoiding underfitting; and, at the 

same time, a larger size is preferred to retain more data instances within an interval for avoiding 
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overfitting. However, as the number increases, the size decreases. To balance this, the 

discretization method gives equal weight to them. The number of the intervals is defined as √𝐾 

and the size of each interval is defined based on the minimum and the maximum of the √𝐾 unique 

data instances in the interval, where 𝐾 is the number of unique data instances in a dataset (e.g., 

unique deficiency measures of the same type of deficiency in a collection of inspection reports). 

 

Figure 7.3. Proposed entropy-based numerical data fusion algorithm 

7.2.1.2.2 Degree Tuple Quantification 

Degree tuple quantification aims to quantify the values contained in a degree tuple: membership, 

non-membership, and indeterminacy degree values. Membership and non-membership degrees are 

the extent of a data instance belonging and not belonging to an interval, respectively. 
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Indeterminacy degree is the extent of hesitancy in claiming that the instance belongs or does not 

belong to the interval. The normal cloud model (Li et al. 2009) is used to quantify these values, 

because it can capture the uncertainty in the membership and non-membership to allow for the 

modeling of indeterminacy. The normal cloud model, which is based on the Gauss membership 

function and normal distribution, is a generalized normal distribution for quantifying the 

membership degree of a data instance belonging to an interval as a value between 0 and 1 (Li et 

al. 2009). The model assumes that the standard deviation of the Gauss membership function is not 

a fixed number, but a random number following a normal distribution. Because of the randomness 

in drawing the standard deviation, for an interval, the Gauss function maps a data instance to many 

membership degree values (i.e., one-to-many mapping). Based on this mapping property, a new 

equation is proposed to quantify the degree tuple, as per Eq. (7.4), where 𝑥 is a data instance, 𝐼 is 

an interval, 𝑢𝐼(𝑥) is a membership degree value mapped from the Gauss function, and 𝑀𝐷𝑉, 

𝑁𝐷𝑉, and 𝐼𝐷𝑉 are the membership, non-membership, and indeterminacy degree values of 𝑥 to 𝐼, 

respectively. 

[

𝑀𝐷𝑉𝐼(𝑥)

𝑁𝐷𝑉𝐼(𝑥)

𝐼𝐷𝑉𝐼(𝑥)
]  = [

𝑚𝑖𝑛({𝑢𝐼(𝑥)})

1 − 𝑚𝑎𝑥({𝑢𝐼(𝑥)})

𝑚𝑎𝑥({𝑢𝐼(𝑥)}) − 𝑚𝑖𝑛({𝑢𝐼(𝑥)})
]                                                                             (7.4) 

7.2.1.2.3 Degree Tuple Fusion 

Degree tuple fusion aims to fuse the quantified degree tuples of an interval into a single tuple. An 

information entropy-based fusion function is proposed to conduct the fusion. Information entropy 

is the average rate at which a stochastic process generates information (Shannon 1948); intuitively, 

it measures the amount of information in a random variable, where information entropy equal to 

zero indicates that the variable always generates the same information (Mehri and Darooneh 2011). 
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Considering an interval as a variable that generates data instances, if it always generates the same 

particular instance (i.e., the membership degree value of this instance to the interval is 1) and 

cannot generate other instances (i.e., the membership degree values are 0), the information entropy 

of this interval is zero. Conversely, if the interval generates all the instances (i.e., the membership 

values of these instances to the interval are within 0 and 1), its information entropy is greater than 

zero. In the first case, the interval can only represent the particular instance and, thus, is less 

representative of all the complementary data instances that collectively describe a target (e.g., the 

overall condition of a deficiency). As a result, its fused membership degree value should be 

downweighed and the other two values should be upweighted. In the second case, the interval can 

represent all the instances and, thus, is more representative. As a result, its fused membership 

degree value should be upweighted and the other two values should be downweighed. Based on 

the aforementioned analysis, the proposed information entropy-based function fuses the degree 

tuples of an interval as per Eq. (7.5), where 𝑊𝐼 is the weight of the interval calculated using Eq. 

(7.6), i.e., the information entropy of the interval divided by the sum of information entropies of 

all the generated intervals. In Eqs. (7.5) to (7.6), 𝐹𝑀𝐷𝑉 , 𝐹𝑁𝐷𝑉 , and 𝐹𝐼𝐷𝑉  are the fused 

membership, non-membership, and indeterminacy degree values of interval I, respectively; 𝑁 is 

the number of instances in the set of numerical data 𝑋; and 𝑀 is the total number of intervals 

generated from the data discretization. The other notations follow those defined in Eq. (7.4). 

[

𝐹𝑀𝐷𝑉𝐼(𝑋)

𝐹𝑁𝐷𝑉𝐼(𝑋)

𝐹𝐼𝐷𝑉𝐼(𝑋)
]  =

[
 
 
 
 
 
 
 
𝑊𝐼 

𝑁
∑ 𝑀𝐷𝑉𝐼(𝑥)

{𝑥∈𝑋}

1 −𝑊𝐼 

𝑁
∑ 𝑁𝐷𝑉𝐼(𝑥)

{𝑥∈𝑋}

1 −𝑊𝐼 

𝑁
∑ 𝐼𝐷𝑉𝐼(𝑥)

{𝑥∈𝑋} ]
 
 
 
 
 
 
 

                                                                                           (7.5) 
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𝑊𝐼 =
∑ 𝑀𝐷𝑉𝐼(𝑥) × 𝑙𝑜𝑔2𝑀𝐷𝑉𝐼(𝑥)
𝑁
𝑖=1

∑ ∑ 𝑀𝐷𝑉𝐼𝑗(𝑥) × 𝑙𝑜𝑔2𝑀𝐷𝑉𝐼𝑗(𝑥)
𝑁
𝑖=1

𝑀
𝑗=1

                                                                                    (7.6) 

7.2.1.2.4 Interval-Based Data Representation 

Interval-based data representation aims to select an interval from all the possible intervals (defined 

in Section 7.2.1.2.1) for representing the multiple numerical data instances. The selection is 

conducted based on the Euclidean distance between the fused degree tuple and the ideal degree 

tuple [1, 0, 0]. An ideal degree tuple has a fused membership degree value 1 and the other two 

degree values 0. This entails that the ideal interval corresponding to the ideal tuple can fully 

represent the multiple data instances that are complementary. Thus, an interval is selected if its 

fused degree tuple is the closest to the ideal tuple. As a result of the numerical data fusion process, 

the set of multiple numerical data instances are represented in a united way as: the count of the 

data instances, the single representative interval of the instances. 

7.2.2 Implementation of the Proposed Method 

7.2.2.1 Implementation for Method Verification 

The verification aimed to evaluate the correctness of the proposed hybrid data fusion method. The 

verification included two main steps: dataset preparation and verification experiments. Two types 

of experiments were conducted to verify the two algorithms respectively: named entity 

normalization experiments and numerical data fusion experiments. 

7.2.2.1.1 Dataset Preparation 

A dataset, which includes ten bridge inspection reports, was created. The information about these 

reports is summarized in Table 6.1. The information extraction methods (developed as Research 

Tasks #3 and #4, in Chapters 4 and 5, respectively) were used to extract information about bridge 
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conditions and maintenance actions from these reports and to represent the extracted information 

in a structured format. The data linking method (developed as per Research Task #5, in Chapter 6) 

was used to link the extracted data records that refer to the same entity and come from the same 

report. The linked records formed the dataset for the normalization and fusion experiments. 

7.2.2.1.2 Named Entity Normalization Experiments 

The experiments aimed to implement the proposed normalization algorithm to evaluate its 

accuracy, by comparing the algorithm-generated identifier concept names to the gold-standard 

identifiers. The algorithm was implemented in a Python program (Python version 2.7). The natural 

language toolkit Porter stemmer and “ngrams” function (Bird et al. 2009) were used for the 

morphological analysis and the n-gram generation, respectively. The Stanford POS tagger 

(Toutanova et al. 2003) was used for analyzing the POS patterns of the concept names. The gold 

standard was prepared by three human annotators, who are researchers with background in civil 

engineering, natural language processing, and machine learning. Full inter-annotator agreement 

was achieved after discussion. Accuracy, which is the number of correct identifier concept names 

out of the total number of identifier concept names, was calculated using Eq. (7.7). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑛𝑎𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑛𝑎𝑚𝑒𝑠
                                                 (7.7) 

7.2.2.1.3 Numerical Data Fusion Experiments 

The fusion experiments aimed to implement the proposed fusion algorithm to evaluate its stability 

in Monte Carlo simulations. Two main factors could affect the stability of the algorithm: the 

uncertainty in the data and the randomness in drawing the standard deviation of the Gauss function. 

Thus, two main groups of simulations were conducted: (1) simulations with data sampled from 

normal distributions, where each sampled instance has an uncertainty level (i.e., the standard 
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deviation of the normal distribution) ranging from 0.5 to 10 with a step size of 0.5, and (2) 

simulations with the times of randomly drawing the standard deviation of the Gauss function 

ranging from 100 to 2,000 with a step size of 100. The number of iterations for each simulation 

run was set to 10,000. The algorithm and simulations were implemented in a Python program 

(Python version 2.7). Information entropy was used to evaluate the stability of the algorithm. It is 

equal to zero if the algorithm can stably fuse the same set of data instances into the same interval 

in a simulation run; otherwise, it increases. As a verification metric, it was calculated using Eq. 

(7.8) (Pathria and Beale 2011), where 𝑀 is the number of intervals, 𝑁𝑖  is the times of the 𝑖𝑡ℎ 

interval being selected to represent the same set of data instances , and 𝑁 is the number of iterations 

in a simulation run (i.e., 𝑁 = 10,000). 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑
𝑁𝑖
𝑁
× 𝑙𝑜𝑔2

𝑁𝑖
𝑁

𝑀

𝑖=1
                                                                             (7.8) 

7.2.2.2 Implementation for Method Validation 

The validation aimed to evaluate the performance of the proposed hybrid data fusion method in 

supporting its intended use, fusing data extracted from bridge inspection reports for supporting 

enhanced bridge deterioration prediction.  

7.2.2.2.1 Dataset Preparation 

The NBI data and the textual bridge inspection reports of 1,300 bridges, which are located in the 

state of Washington, were collected. The NBI data were collected from the Federal Highway 

Administration (FHWA 2019). The NBI data have a total of 134 features, including features about 

bridge location, geometric characteristics (e.g., bridge length, deck width, and number of spans, 

etc.), structural characteristics (e.g., functional classification, design load, wearing surface type, 

etc.), construction characteristics (e.g., year built and type of construction), conditions (i.e., 
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condition ratings), etc. The condition ratings use a 0-9 scale to describe the condition of a primary 

bridge component (a deck, a superstructure, or a substructure), with 0 and 9 representing “failed 

condition” and “excellent condition”, respectively. A description of the meaning of each condition 

rating category is presented in Table 7.1. For more details about the NBI data, the readers are 

referred to FHWA (1995). The bridge inspection reports were collected from the Washington 

Department of Transportation. Same as the dataset preparation conducted for method verification, 

information extraction and data linking were conducted to process the reports. The linked records 

were then fused, as per Figure 7.1, thereby forming the unified representation of the data extracted 

from the reports. Using the collected data, seven datasets were created. Table 7.2 summarizes the 

details of these datasets. In each dataset, the data were split into a training dataset and a testing 

dataset. The training dataset contains the data from 2013, and the condition ratings of the decks, 

superstructures, and substructures of the bridges from 2015. The testing dataset contains the data 

and the ratings from 2015 and 2017, respectively. 

Table 7.1. Description of the condition rating categories in National Bridge Inventory data 1. 

Condition rating category Description 

9 Excellent condition 

8 Very good condition 

7 Good 

6 Satisfactory condition 

5 Fair condition 

4 Poor condition 

3 Serious condition 

2 Critical condition 

1 “Imminent” failure condition 

0 Failed condition 
1 The condition rating categories and its corresponding description are defined by FHWA (1995). 
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Table 7.2. Summary of the created datasets. 
Dataset Data 1 Purpose 2 

#1 The national bridge inventory (NBI) data Used to develop baseline prediction models to 

evaluate if further learning from bridge inspection 

reports is able to enhance the performance of 

bridge deterioration prediction. 

#2 The NBI data + the unfused data extracted from 

the bridge inspection reports 

Used to develop baseline prediction models to 

evaluate if the fusion of the data extracted from 

reports is necessary for enhance the prediction 

performance. 

#3 The NBI data + the report data fused by the 

proposed hybrid data fusion method 

Used to develop prediction models to evaluate the 

performance of the proposed method in fusing the 

data extracted from the reports for supporting 

enhanced bridge deterioration prediction. 

#4 The NBI data + the fused report data (where the 

deficiency measures were fused by taking the 

maximum of the measures, i.e., using the worst 

deterioration case) 

Used to develop baseline prediction models to 

evaluate if the deficiency measures fused by the 

proposed method can better support the 

prediction, compared to the measures fused by 

taking the maximum. 

#5 The NBI data + the fused report data [where the 

deficiency measures were fused by using one of 

the central tendency measures (arithmetic mean, 

Bonferroni mean, geometric mean, harmonic 

mean, Heroin mean, power mean, median, 

mode)] 

Used to develop baseline prediction models to 

evaluate if the deficiency measures fused by the 

proposed method can better support the 

prediction, compared to the measures fused by 

using the mean (or total, i.e., the data were 

represented as the number of measures instances 

+ the mean of the measures). 

#6 The NBI data + the fused report data [where the 

deficiency measures were fused by using one of 

the variation measures (range, mean absolute 

difference, coefficient of variation, standard 

deviation, variance)] 

Used to develop baseline prediction models to 

evaluate if the deficiency measures fused by the 

proposed method can better support the 

prediction, compared to the measures fused by 

using the variation. 

#7 The NBI data + the fused report data [where the 

deficiency measures were fused by using one of 

the central tendency measures] + the fused report 

data [where the deficiency measures were fused 

by using one of the variation measures] 

Used to develop baseline prediction models to 

evaluate if the deficiency measures fused by the 

proposed method can better support the 

prediction, compared to the measures fused by 

using the combinations of the central tendency 

and the variation measures (e.g., the measures 

were represented as the number of the measure 

instances, the arithmetic mean of the measures, 

the variance of the measures). 

1 The concept names in the textual bridge inspection reports in datasets #4 to #7 were fused by the proposed 

unsupervised named entity normalization algorithm. 
2 Bridge deterioration prediction means the predictions of future condition ratings of decks, superstructures, and 

substructures. 

7.2.2.2.2 Validation Experiments 

The validation experiments aimed to develop machine learning models for predicting the future 

condition ratings of decks, superstructures, and substructures. The decision tree algorithm was 
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selected for developing the models, because it can directly handle both categorical and numerical 

features, without the need for one-hot encoding. One-hot encoding transforms categorical features 

into numerical features using dummy variables. Such variables increase the dimensionality and the 

sparsity of the feature space, which would negatively affect the validation. Seven main types of 

the prediction models were developed, with each type trained and tested using the data in one of 

the datasets, as per Table 7.2. Average accuracy was selected as the validation metric. Average 

accuracy is the average of the ratio of the number of correctly-predicted condition ratings to the 

total number of ratings per condition rating category. It was calculated using Eq. (7.9), where 𝑁 is 

the number of condition rating categories, 𝐶𝑅𝑠 are condition ratings, and 𝐶𝑅𝐶 is a condition rating 

category. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦-𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑅𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡ℎ  𝐶𝑅𝐶

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑅𝑠 𝑖𝑛 𝑡ℎ𝑒  𝑖𝑡ℎ 𝐶𝑅𝐶

𝑁

𝑖=1
     (7.9) 

7.3 Data Fusion Method Evaluation 

7.3.1 Performance Results of Method Verification 

7.3.1.1 Performance of the Proposed Named Entity Normalization Algorithm 

Table 7.3 summarizes the performance results of the proposed normalization algorithm. The 

results show that the algorithm performed well: it achieved an average accuracy of 94.4%. Two 

important observations were also drawn from the results. 
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Table 7.3. Performance results for the proposed named entity normalization method. 

Ranking function 1 Part-of-speech (POS) pattern 2 

Accuracy for each concept name type 3 

ET 

(%) 

DY 

(%) 

DC 

(%) 

MA 

(%) 

MM 

(%) 

CSS – 69.4 86.3 93.7 99.1 100.0 

“Adj. + noun” 64.6 54.9 61.7 99.1 79.3 

“Noun + noun” 73.3 80.5 89.9 99.1 100.0 

“Adj. + noun” & “noun + noun” 69.9 83.2 93.7 99.1 88.9 

CSS x TPS – 71.3 86.4 93.7 99.1 100.0 

Adj. + noun 64.7 54.9 61.7 99.1 79.3 

Noun + noun 75.1 80.6 89.9 99.1 100.0 

Adj. + noun & noun + noun  71.8 83.2 93.7 99.1 88.9 

CSS x TSS – 77.3 88.3 95.7 100.0 100.0 

Adj. + noun 74.3 55.7 63.8 100.0 79.3 

Noun + noun 82.6 81.1 93.5 100.0 100.0 

Adj. + noun & noun + noun 78.8 84.5 97.4 100.0 88.9 

CSS x TPS x TSS – 81.7 89.3 94.4 100.0 100.0 

Adj. + noun 75.2 55.8 63.8 100.0 79.3 

Noun + noun 85.4 81.8 92.3 100.0 100.0 

Adj. + noun & noun + noun 82.4 85.2 96.1 100.0 88.9 

1 Four corpus statistic measures for calculating CSS were tested: term frequency (TF), inverse document frequency 

(IDF), TF-IDF, and Okapi BM25. The performance results achieved using TF were reported, because TF 

outperformed the others. The other measures use or partially use IDF, which frequently gave high scores to 

extremely-rare concept names that should not be selected as identifiers. CSS = corpus-statistic score; TPS = term-

position score; TSS = term-sequence score. 
2 “–” indicates that no part-of-speech pattern was used. Adj. = adjective. 
3 ET = bridge element; DY = deficiency; DC = deficiency cause; MA = maintenance action; MM = maintenance 

material. The bold font indicates the highest accuracy for each concept name type. 

First, the ranking function with the corpus-statistic, term-position, and term-sequence scores was 

effective. It achieved the highest accuracies of 85.4%, 89.3%, 100.0% and 100.0% for bridge 

element, deficiency, maintenance action, and maintenance material names, respectively. But, for 

deficiency cause names, the function with the corpus-statistic and term-sequence scores achieved 

the highest accuracy of 97.4%, which is 1.3% higher than that achieved using the function with all 

the three. This is likely because the right-hand side terms are not always the meaning-bearing terms 

in some deficiency cause names. For example, in the following names, the right-hand side terms 

are less meaningful than the those on the left-hand side: “debris buildup”, “sand buildup”, “poor 
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weld quality”. The function without the term-position score, thus, achieved a higher accuracy for 

deficiency cause names. Second, using POS patterns for selecting identifier concept names was 

effective. For example, using POS patterns achieved the highest accuracies of 85.4%, 97.4%, 

100.0%, and 100.0% for the bridge element, deficiency cause, maintenance action, and 

maintenance material names, respectively. But, for deficiency names, without using POS patterns 

achieved the highest accuracy of 89.3%, compared to 85.2% achieved using the “adjective + noun” 

and “noun + noun” patterns. This could be attributed to that some deficiency names are not noun 

phrases (e.g., “pulled out” and “laterally misaligned”), and restricting identifiers to noun phrases 

led to the decrease in the accuracy. 

7.3.1.2 Performance of the Proposed Numerical Data Fusion Algorithm 

Figure 7.4 shows examples of the simulation results for fusing the deficiency length measures of 

a patching on a girder: {12, 24, 24, 24, 24, 36, 48}, where the unit is inch. The patterns of the 

simulation results for fusing the numerical data in the dataset (Table 6.1) follow the same patterns 

shown in Figure 7.4. Overall, the results show that the proposed fusion algorithm was stable. 

Two important observations were drawn from the results. First, the fusion algorithm was stable up 

to an uncertainty level of 2.0. As the uncertainty level increased from 2.0, the information entropy 

showed an increasing trend, see Figure 7.4 (a-2). The increase in the information entropy indicates 

that the algorithm became unstable and started to fuse the same set of deficiency measures into 

different intervals in a single simulation run [see the distributions of the intervals in Figure 7.4 (a-

1)]. The uncertainties in numerical data negatively affect the quantification and fusion of the 

degree values. Due to the uncertainties, these values changed in each fusion iteration of a 

simulation run, which made the fusion results of the same set of data vary. Second, the algorithm 

was stable in the presence of the randomness of the standard deviation of the Gauss membership 
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function. As shown in Figure 7.4 (b-2), increasing the randomness of the standard deviation (i.e., 

increasing the times of randomly drawing it) did not cause change in the information entropy. This 

indicates that the fusion algorithm was stable and able to fuse the same set of numerical deficiency 

measures into the same interval [see the distributions of the interval in Figure 7.4 (b-1)]. The 

standard deviation was bounded by a normal distribution in the cloud model (Li et al. 2009). 

Despite being random, the standard deviation was always within the bound, which made it not 

affect the stability of the fusion algorithm. 

 

Figure 7.4. Examples of Monte Carlo simulation results for fusing multiple deficiency measures. 
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7.3.2 Performance Results of Method Validation 

The performance results for predicting the future condition ratings of decks, superstructures, and 

substructures are presented in Figure 7.5. Overall, the results show that the proposed hybrid data 

fusion method was effective in fusing the data extracted from bridge inspection reports for 

supporting enhanced data-driven bridge deterioration prediction. Three important observations 

were also drawn from the results. 

First, learning from textual bridge inspection reports, in addition to NBI data, was able to improve 

the prediction performance. Learning from both NBI data and the report data fused by the proposed 

method, compared to learning from NBI data alone, improved the prediction accuracies for decks, 

superstructure, and substructures by 8.3%, 9.5%, and 8.3%, respectively. NBI data, which mainly 

describe condition ratings and as-built characteristics of bridges, are certainly important. But, they 

do not include descriptions about the element-level deterioration conditions of bridges, such as 

those in bridge inspection reports. Such descriptions are much more detailed and dynamic in 

capturing the deterioration conditions of bridges in each inspection year and are, therefore, more 

informative in capturing the patterns of how the condition ratings evolve over time. Hence, they 

helped improve the performance of predicting the future ratings. 

Second, data fusion is very important for learning from the data extracted from bridge inspection 

reports to improve the performance of bridge deterioration prediction. Learning from the unfused 

report data was only able to marginally improve the prediction accuracies by 0.3%, 1.0%, and 

0.4%, respectively. But, learning from the report data fused by the proposed method improved 

these accuracies largely by 8.7% on average. The multiple – even ambiguous and conflicting – 

concept names and numerical data in inspection reports negatively affected the generalizability of 
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the machine learning models, which limited the performance of learning from bridge inspection 

reports in improving the prediction performance. 

Third, the proposed entropy-based data fusion algorithm was effective in fusing the numerical 

deficiency measures for supporting the prediction. Learning from the deficiency measures fused 

by taking the maximum (i.e., using the measure corresponding to the worse deterioration case), 

the mean/total, and the variation of the measures were only able to improve the prediction 

accuracies by 2.7% on average. Learning from the deficiency measures fused by the combinations 

of the means and the variations, even, decreased the accuracies by around 3.0%, due to the doubled 

size of the feature dimensionality caused by the combinations. The proposed algorithm improved 

the accuracies by 8.7% on average, which is quite higher than the improvement rates achieved 

using the other methods. This is largely attributed to the fact that the proposed algorithm uses data 

discretization to define the interval-based representations for representing the fused measures, and 

utilizes information entropy to fuse deficiency measures into a single representative interval. The 

algorithm, thus, takes balancing the overfitting and underfitting of the machine learning prediction 

model and the complementarity of the measures into account, resulting in the improved prediction 

performance.  
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Figure 7.5. Performance results for predicting the future condition ratings of decks, 

superstructures, and substructures. 
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CHAPTER 8 – DATA-DRIVEN BRIDGE DETERIORATION PREDICTION 

This chapter presents the proposed bridge deterioration prediction method for learning from the 

integrated bridge data from multiple sources (integrated as per Research Task #6) to predict the 

deterioration. The method development and evaluation (Research Task #7) are presented in this 

chapter. 

8.1 Comparison to the State of the Art 

At the backbone of this framework is the proposed deep learning-based bridge deterioration 

prediction method, which aims to learn from the integrated bridge data to predict the condition 

ratings of bridges and the quantities of bridge element-level deficiencies. The proposed method 

uses (1) manifold learning to embed the integrated data, which are of high dimensionality and 

sparsity, into a low-dimensional dense space; (2) recurrent neural networks to learn from the 

embedded data from past years to predict the conditions of bridges and their elements in the next 

year; and (3) cost-sensitive learning to address the class imbalance in the data to better predict the 

conditions. The proposed bridge deterioration prediction method is novel in two primary ways. 

First, it learns from both structured and unstructured bridge data from multiple sources – especially 

previously-untapped textual inspection reports which include a large amount of detailed 

data/information about bridge conditions and maintenance actions – to allow for the prediction of 

the condition ratings of bridges with improved performance and the prediction of the quantities of 

bridge element-level deficiencies. It, thus, goes beyond the current state of the art in data-driven 

bridge deterioration prediction, where existing methods (e.g., Morcous 2006; Chang et al. 2017; 

Goyal et al. 2017; Lu et al. 2019) mostly focus on learning from abstract bridge inventory data 

from a single source – such as the NBI data which mainly use condition ratings to describe bridge 

conditions – to predict, at a limited performance level, the future ratings. Second, it incorporates 
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manifold learning and cost-sensitive learning techniques to address the challenges of learning from 

highly dimensional and imbalanced data for improved performance of bridge deterioration 

prediction. Most of the existing methods (e.g., Huang 2010; Creary and Fang 2015; Contreras-

Nieto et al. 2016; Lim and Chi 2019) leave such data challenges understudied or even untouched, 

which negatively affects the prediction performance and limits the ability to effectively use data 

to predict the deterioration. 

8.2 Data-Driven Bridge Deterioration Prediction Method Development 

8.2.1 Proposed Bridge Deterioration Prediction Method 

To address the aforementioned knowledge gaps, a new deep learning-based bridge deterioration 

prediction method is proposed. It learns from the integrated bridge data, which are originally in 

heterogeneous formats and from multiple sources, to predict the condition ratings of the primary 

bridge components (i.e., decks, superstructures, and substructures) and to predict the quantities of 

specific bridge element-level deficiencies. The proposed method includes three primary 

components, as per Figure 8.1: manifold learning, recurrent neural network modeling, and cost-

sensitive learning.  
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Figure 8.1. Proposed deep learning-based bridge deterioration prediction method. 

8.2.1.1 Manifold Learning 

Manifold learning was used to embed the integrated bridge data, which are high-dimensional and 

sparse, into a low-dimensional dense space for better supporting the deep learning. The isometric 

feature mapping (Isomap) algorithm (Tenenbaum et al. 2000) was used for the manifold learning. 

It was selected because of four main reasons. First, the Isomap algorithm is a nonlinear 
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dimensionality reduction technique that preserves the geometrical structure of data (which are 

often nonlinear) at all scales by mapping nearby data instances in a high-dimensional space to 

nearby instances in a low-dimensional space (Silva et al. 2003; Liu et al. 2008). This property 

allows the algorithm to represent and embed data into a low-dimensional space, in a way that the 

global geometrical structure of the embedded data is more faithful to that of the original data. 

Second, it generates a low-dimensional representation (i.e., embeddings) of the original data that 

is globally-optimal in a computationally-efficient way (Silva et al. 2003). Third, in most cases, it 

is guaranteed to converge asymptotically to the true underlying structure of the original data (Silva 

et al. 2003). Fourth, it is an unsupervised learning algorithm that does not require the labeling of 

data, which makes it more applicable to real-world applications, such as bridge deterioration 

prediction. Because the Isomap algorithm requires assessing the distances between data instances 

(which, in this research, include both numerical and categorical features), a revised Euclidean 

distance is proposed to allow for the distance assessment of the data instances with the mixed types 

of features. 

Using the Isomap algorithm, embedding the integrated bridge data into a low-dimensional dense 

space includes three main steps. First, a neighborhood graph was constructed as the basis for 

approximating the geometrical structure of the original integrated data. The neighborhood graph 

is a graphical representation of the data, where each node of the graph is a data instance, an edge 

connects two data instances if one is among the k-nearest neighbors of the other, and the weight 

of an edge is the distance between the data instances that the edge connects. In the proposed 

method, k = 10 was adopted based on the study by Samko et al. (2006), which shows that 𝑘 ∈

[3, 10] performs well on a number of datasets. The revised Euclidean distance is proposed, as per 

Eq. (8.1), to allow for calculating the weights between the data instances, which have both 
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numerical and categorical features. In Eq. (8.1), x and y are the original data instances in the high-

dimensional space, 𝑥𝑖 and 𝑦𝑖 are the features of their corresponding data instances, and n is the 

number of features. 

Second, the shortest path-based distance matrix was constructed based on the neighborhood graph 

to characterize the structure of the data. The data instances that are far away from each other in the 

high-dimensional nonlinear space may appear close if their distances are measured using the 

Euclidean distance. The shortest path distances between the data instances provide a plausible 

approximation to their geodesic distances, which can capture the underlying distances/structures 

between the data instances in such a space (Fan et al. 2012). For a pair of data instances on the 

graph, all the paths that connect them are enumerated, and the path with the smallest distance (i.e., 

the total of the weights of the edges along the path) is identified as the shortest path between them. 

The distances of all shortest paths are used to construct the shortest path-based distance matrix D. 

Third, the d-dimensional dense embeddings of the original integrated data were formed based on 

the dimensions that are the most decisive of the structure of the data. Such dimensions are 

determined by the eigenvalues. Thus, the top d eigenvalues and their corresponding eigenvectors 

of the matrix 𝝉𝐺  are used to form the d-dimensional dense embeddings, where 𝝉𝐺  is a matrix 

constructed using the squared matrix of D and the centering matrix. In the proposed method, the 

value of d was set to 1200, based on the “elbow point” of the curve that shows the embedding 

stress against the dimensionality of the embeddings (i.e., d), as per Figure 8.2. The embedding 

stress measures the quality of the embedding (Tenenbaum et al. 2000) and was calculated using 

the L-2 norm between the shortest path distance-based matrix 𝝉𝐺  and the Euclidean distance-based 

matrix 𝝉𝐸. 
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Figure 8.2. The stress of the embeddings against the dimensionality of the embeddings. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐱, 𝐲) = √(𝑥1 − 𝑦2)2 + (𝑥1 − 𝑦2)2 +⋯+ (𝑥𝑛 − 𝑦𝑛)2                                                 (8.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                                                                                                               

{

𝑥𝑖 − 𝑦𝑖 = 𝑥𝑖 − 𝑦𝑖, 𝑖𝑓𝑥𝑖  𝑎𝑛𝑑 𝑦𝑖 𝑎𝑟𝑒 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠                            
𝑥𝑖 − 𝑦𝑖 = 1,                  𝑖𝑓𝑥𝑖  𝑎𝑛𝑑 𝑦𝑖 𝑎𝑟𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑛𝑑 𝑥𝑖 = 𝑦𝑖
𝑥𝑖 − 𝑦𝑖 = 0,                  𝑖𝑓𝑥𝑖  𝑎𝑛𝑑 𝑦𝑖 𝑎𝑟𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑛𝑑 𝑥𝑖 ≠ 𝑦𝑖

𝑖 = 1, 2,⋯ , 𝑛 

8.2.1.2 Recurrent Neural Network Modeling 

A new RNN architecture is proposed and was used to learn from the embedded bridge data from 

past years to predict the conditions of bridges and their elements in the next year. The RNN 

architecture includes an input layer, a recurrent layer, a pooling layer, a set of nonlinear dense 

layers, and an output layer, as per Figure 8.1. The RNN architecture was modeled in this way for 

three main reasons. First, it uses hidden states to capture and remember the temporal dynamics 

that connect data derived from a physical system over time (Che et al. 2017), which allows for 

capturing the patterns of the sequential changes of the bridge conditions over the past years and 
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leveraging the patterns to better predict the conditions of bridges in the next year. Second, it is 

composed of high-dimensional hidden states with nonlinear dynamics (Salehinejad et al. 2017), 

which allows for better capturing the dimensionality and the nonlinearity of the data. Third, 

compared to the RNN with long short-term units or gated recurrent units, it can achieve comparable 

performance and improve computational efficiency, when dealing with data that have short 

sequences and short-range dependencies (Tang et al. 2019), such as the bridge data. 

The input layer takes two types of inputs: the embedded bridge data and the target classes from 

past years. The embedded data are represented as a sequence of vectors {𝐱𝑡=1, 𝐱𝑡=2, ⋯ 𝐱𝑡=𝑛}, 

where 𝐱𝑡=𝑛  is an instance of the embedded data of a bridge at inspection year 𝑡 = 𝑛, 𝐱𝑡=𝑛 =

(𝑥𝑡=1
1 , 𝑥𝑡=1

2 , ⋯ 𝑥𝑡=1
𝑑 ), 𝑥𝑡=1

𝑑  is the 𝑑𝑡ℎ feature of the instance, and 𝑑 is the size of the embeddings. 

The target classes are represented as a sequence of vectors {𝐲𝑡=1, 𝐲𝑡=2, ⋯ 𝐲𝑡=𝑛}, where 𝐲𝑡=𝑛 is a 

one-hot encoded vector of the target class of the bridge at inspection year 𝑡 = 𝑛 and a target class 

could be the condition rating of a primary bridge component or the (discretized) quantity of a 

specific bridge element-level deficiency. The target class information from past years 𝐲𝑡=𝑛  is 

included in the embedded data 𝐱𝑡=𝑛, but it was separately modeled as input because of two reasons. 

First, the target classes from previous years are directly related to the target class to be predicted 

in the next year (i.e., 𝐲𝑡=𝑛+1) and they are, thus, very informative and important to the prediction. 

Second, although the integrated data capture the information about the target classes, the manifold 

learning might have embedded the data into a low-dimensional space that makes the importance 

of these target classes less apparent. 

The recurrent layer contains two sets of hidden states, each of which corresponds to a type of input. 

A hidden state takes the values mapped from its corresponding input vector/node in the input layer 

and the values mapped from its previous state (in the same set). The mapping is conducted using 
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Eq. (8.2) (Graves et al. 2013), where 𝐡𝑡=𝑖 is a hidden vector containing the mapped values for a 

hidden state at timestep 𝑡 = 𝑖, 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation function, 𝐖𝐼𝐻 is a weight 

matrix for the input-to-state mapping, 𝐖𝐻𝐻 is a weight matrix for the state-to-state mapping, 𝐛ℎ 

is a bias vector of hidden states, and 𝐳𝑡=𝑖 could be 𝐱𝑡=𝑖 or 𝐲𝑡=𝑖. The hyperbolic tangent activation 

function was selected because it is commonly used in RNN and its second derivative can sustain 

for a long range before getting to zero to avoid potential vanishing gradients. 

𝒉𝑡=𝑖 = 𝑡𝑎𝑛ℎ(𝑾𝐼𝐻𝒛𝑡=𝑖 +𝑾𝐻𝐻𝒛𝑡=𝑖 + 𝒃ℎ), 𝑖 = 1,2,⋯𝑛                                                          (8.2) 

The pooling layer is a global average pooling layer that takes all the hidden vectors as input, and 

outputs a single vector with the same size of the hidden vectors. It aims to reduce the 

dimensionality of the intermediate representations of the data (i.e., the number of the hidden 

vectors) and reduce the sensitivity of the output to noise. To represent the hidden vectors using a 

single vector, the pooling layer uses the average of all the values that are at the same position of 

all the hidden vectors to represent these values in the single vector. For example, the first value in 

the single vector is the average of all the first values of the hidden vectors. A set of nonlinear dense 

layers with the hyperbolic tangent activation function was added upon the pooling layer to capture 

the patterns of the single hidden vector. The dense layer was connected to the output layer for 

making a final prediction. A softmax output layer was used to predict the (categorical) condition 

rating of a primary component of a bridge, and a dense output layer with the linear activation 

function was used to predict the (numerical) quantity of a bridge element-level deficiency. 

8.2.1.3 Cost-Sensitive Learning 

Cost-sensitive learning was used to address the imbalance in the bridge data to better predict the 

condition ratings of the primary bridge components. In the proposed method, the binary focal loss 
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function (Lin et al. 2017) was adopted, and was extended to a multi-class loss function for the cost-

sensitive learning. This function was chosen for extension for two main reasons. First, unlike 

sampling-based approaches for dealing with data imbalance, the use of this function does not 

increase or decrease the number of data instances, which helps avoid overfitting and the loss of 

important instances. Second, it uses a modulating factor that directly considers the costs of 

misclassifications to better deal with the skewed distributions of the data classes. The modulating 

factor is, thus, more effective in dealing with the imbalance, compared to the weighting factor (i.e., 

inverse class frequency) used in existing cost-sensitive learning methods. 

Because the binary focal loss cannot deal with multi-class classification problems, it was extended 

to a multi-class focal loss based on the multi-class cross-entropy loss. The multi-class cross-

entropy loss is calculated using Eq. (8.3) (De Boer et al. 2005), where 𝐶 is the number of classes 

(e.g., the number of different condition ratings of decks), 𝐼𝑖,𝑐 is a binary indicator, 𝐼𝑖,𝑐 = 1 if the 

𝑐𝑡ℎ class if the correct class/label for the 𝑖𝑡ℎ data instance and 𝐼𝑖,𝑐 = 0 otherwise, and 𝑝𝑖,𝑐 is the 

probability of the 𝑖𝑡ℎ data instance being classified into the 𝑐𝑡ℎ class. The cross-entropy loss treats 

the cost of misclassifying the instances in the minority classes and the cost of misclassifying the 

instances in the majority classes equally, without addressing the imbalance. The modulating factor 

defined in the binary focal loss was added into the cross-entropy loss, resulting in a multi-class 

focal loss that can deal with both multi-class classification problems and imbalance in data, as per 

Eq. (8.4), where (1 − 𝑝𝑖,𝑐)
𝛾
 is a modulating factor for adjusting the costs of misclassifications, 

𝛾 = 2 [based on Lin et al. (2017)], and the other notations follow those defined in Eq. (8.3). 

The proposed multi-class focal loss function serves as the objective function for training the RNN 

(i.e., the training process aims to minimize the multi-class focal loss). It exhibits the following 
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properties, which help adjust the two types of misclassification costs for dealing with the 

imbalance. First, it decreases the contributions of the data instances in the majority classes to the 

training of the RNN. These data instances are relatively easy to be correctly classified due to the 

large percentage of them in the dataset. In this case, the probabilities of such instances being 

classified into their correct classes approach to 1 quickly. This decreases the values of the 

modulating factor for these instances and, thus, exponentially decreases their misclassification 

costs. As a result, the RNN focuses less on learning from the data instances in the majority classes, 

because the correct classifications of them do not help reduce the overall loss/cost much. Second, 

it increases the contributions of the data instances in the minority classes to the training of the 

RNN. These data instances are hard to be correctly classified due to the small percentage of them 

in the dataset. In this case, the probabilities of such instances being classified into their correct 

classes are far away from 1. This increases the values of the modulating factor for these instances, 

and thus, exponentially increases their misclassification costs. As a result, in order to reduce the 

overall loss/cost, the RNN focuses more on learning from the data instances in the minority classes 

and tuning its parameters to adjust the classifier for better separating such instances. 

𝐶𝑟𝑜𝑠𝑠-𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 = −∑𝐼𝑖,𝑐 × log(𝑝𝑖,𝑐)

𝐶

𝑐=1

                                                                                    (8.3) 

𝑀𝑢𝑙𝑡𝑖-𝑐𝑙𝑎𝑠𝑠 𝑓𝑜𝑐𝑎𝑙 𝑙𝑜𝑠𝑠 = −∑(1 − 𝑝𝑖,𝑐)
𝛾
× 𝐼𝑖,𝑐 × log(𝑝𝑖,𝑐)

𝐶

𝑐=1

                                                      (8.4) 

8.2.2 Implementation of the Proposed Method 

The proposed deep learning-based bridge deterioration prediction method was implemented in 

predicting the condition ratings of the primary bridge components (i.e., decks, superstructures, and 

substructures) and in predicting the quantities (i.e., the number of deficiency instances and the total 
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length/area of the deficiency instances) of three common types bridge element-level deficiencies 

– pier spall, deck delamination, and girder crack. The implementation included four primary steps: 

data preparation, information extraction and data integration, algorithm training, and performance 

evaluation. An overview of the implementation methodology is presented in Figure 8.3. A step-

by-step illustration of the implementation methodology is presented in Figure 8.4. 

 

Figure 8.3. Implementation methodology for the proposed bridge deterioration prediction 

approach (the proposed bridge data analytics framework). 
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Figure 8.4. An illustrative example of the implementation methodology of the proposed deep 

learning-based bridge deterioration prediction method. 

8.2.2.1 Data Preparation 

A dataset, which contains the NBI and NBE data, the traffic and weather data, and the textual 

bridge inspection reports of 2,646 state-owned bridges in the state of Washington, was created. 
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The details of the created dataset are summarized in Table 8.1. The data from 2006-2015 were 

used for predicting the conditions of the bridges in 2016 and 2017. The datasets were further split 

into training and testing sets using 3-fold cross validation, where the ratio of the number of bridges 

in a training set to the number of bridges in a testing set is 2:1. In addition, the data of the year for 

which the prediction is made (e.g., 2017) were excluded from both sets to avoid data leakage (i.e., 

making predictions using data that are not available in practice at the time of the prediction). For 

a full list of the features of the data, the readers are referred to Appendix A. 

In order to evaluate the error propagation across the different data analytics steps (Section 8.3.3), 

an additional gold standard was developed to identify the error rates of the information extraction, 

data linking, and data fusion algorithms (Section 8.2.2.2) for comparative purposes. The gold 

standard for each data analytics step was, separately, prepared by three annotators. The three are 

researchers with background in civil engineering, natural language processing, and machine 

learning. Disagreements were resolved using discussion to reach consensus and full annotator 

agreement for the final gold standard. 
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Table 8.1. Details of the created dataset. 
Data Description Year range 1 Source 

National 

Bridge 

Inventory 

(NBI) data 

The NBI data are bridge-level data. They include features 

about the locations of bridges (e.g., highway agency 

district, longitude, and latitude), the geometric, structural, 

and construction characteristics of bridges (e.g., bridge 

length, deck width, design load, functional classification, 

year built), and the conditions of bridges (e.g., the 

condition ratings of the primary bridge components – 

decks, superstructures, and substructures). 

2006-2017 Federal Highway 

Administration 

(FHWA 2019) 

National 

Bridge 

Elements 

(NBE) data 

The NBE data are element-level data. They include the 

total quantity of a bridge element and the quantities of the 

element in four condition states: “Good”, “Fair”, “Poor”, 

and “Severe”. The NBE data include the bridge elements 

that are the national bridge elements and the agency 

developed elements. At the highest level of abstraction, 

the NBE data include bridge elements, such as decks, 

superstructures, substructures, bearings, approach slabs, 

overlays, etc. Under these abstract elements, a total of 

185 detailed bridge elements (e.g., concrete decks, steel 

orthotropic decks, concrete stringers, concrete trusses) are 

defined in the NBE data. 

2006-2017 The Bridge 

Engineering 

Information System of 

the Washington 

Department of 

Transportation 

(WSDOT) 2 

Traffic data The traffic data include features about the average daily 

traffic and the percentages of single, double, and triple 

unit trucks. Two types of traffic data were included in the 

dataset: original and interpolated. For example, for the 

average daily traffic of a bridge, the original counts of the 

average daily traffic from three traffic monitoring stations 

that are the closest to the bridge and the interpolated 

count based on the three original counts were included. 

The interpolation was conducted using the barycentric 

interpolation method. For the years when no traffic data 

are available, the averages of the available traffic data 

were used as substitutes. 

2005-2017 The Transportation 

Data, GIS & Modeling 

Office of the WSDOT 

(WSDOT 2019) 

Weather 

data 

The weather data include a total of 49 features, such as 

cooling degree days computed with bases of 45, 50, 55, 

57, 60, 65, 70, and 72 oF, diurnal temperature range, 

heating degree days, precipitation totals, snowfall totals, 

and average, maximum temperature, minimum temperate, 

etc. Similar to the traffic data, both original and 

interpolated weather data were included. 

2006-2017 National Oceanic and 

Atmospheric 

Administration 

(NOAA 2019) 

Textual 

bridge 

inspection 

reports 

The textual bridge inspection reports include technically-

detailed data/information about bridge conditions (e.g., 

the types of deficiencies and the quantities of 

deficiencies) and maintenance actions (e.g., the types of 

maintenance actions and the types of maintenance 

material). 

2006-2017 The Bridge 

Engineering 

Information System of 

the WSDOT 

1 Bridges are inspected at a 2-year interval. For a bridge, its data could be in the year range from 2006 to 2016 or 

from 2007 to 2017. 
2 The NBE data are from the textual bridge inspection reports, collected from the WSDOT. 
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8.2.2.2 Information Extraction and Data Integration 

Information extraction was conducted to extract information from the unstructured textual bridge 

inspection reports and represent the extracted information in a semantically-rich structured way. 

The following types of information that describe bridge conditions and maintenance actions were 

extracted from the reports: “bridge element”, “deficiency”, “deficiency cause”, “maintenance 

action”, “maintenance material”, “numerical measure”, “numerical measure unit”, “categorical 

quantity measure”, “categorical severity measure”, and “date”. The ontology-based semi-

supervised conditional random field algorithm (developed as per Research Task #3, in Chapter 4) 

was used for extracting the information from the reports. The semantic neural network ensemble 

algorithm (developed as per Research Task #4, in Chapter 5) was used extracting the dependency 

relations from the text for representing the extracted information in a structured way. For example, 

as per Figure 8.4, the information was extracted from the following sentence and was then 

represented in a structured format <bridge element = “bridge rail”, deficiency = “deep edge spall”, 

deficiency cause = N/A, numerical measure = “18, 6, 3”, numerical measure unit = “inch, inch, 

inch”>: “At SW corner, behind the thrie beam, bridge rail has an 18” x 6” x 3” deep edge spall.” 

(WSDOT 2015). 

Data integration was conducted to link and fuse the records that were extracted from the reports 

and refer to the same entity (e.g., the same type of deficiency on the same type of bridge element). 

The spectral clustering-based data linking algorithm (developed as per Research Task #5, in 

Chapter 6) was used for linking the records, and the hybrid data fusion algorithm (developed as 

per Research Task #6, in Chapter 7) was used for fusing the linked records into a unified 

representation. For example, as per Figure 8.4, the following two records are referring to the same 

entity (i.e., the spall on the bridge rail) and were thus linked: <bridge element = “bridge rail”, 
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deficiency = “deep edge spall”, deficiency cause = N/A, numerical measure = “18, 6, 3”, numerical 

measure unit = “inch, inch, inch”> and <bridge element = “north concrete bridge rail”, deficiency 

= “deep top edge spall”, deficiency cause = N/A, numerical measure = “3, 6, 3”, numerical measure 

unit = “feet, inch, inch”>. The linked records were then fused into a single record in a unified 

representation: <bridge element = “concrete bridge rail”, deficiency = “deep spall”, deficiency 

cause = N/A, numerical measure = “[16, 34), [5, 10), [1, 5)”, numerical measure unit = “inch, inch, 

inch”, number of deficiency instances = 2>, where the multiple concept names (e.g., “bridge rail” 

and “north concrete bridge rail”) were fused into a canonical name (i.e., “concrete bridge rail”) 

and the multiple numerical deficiency measure data (e.g., 18 inch vs. 3 ft) were fused into a single 

representative interval-based representation (i.e., the representative interval for the multiple 

deficiency measures = [16, 34) and the number of the deficiency instances = 2). 

Data integration was also conducted to integrate the fused report data with the other types of 

structured bridge data. Prior to the integration, the missing values of the numerical features of the 

structured data – the NBI and NBE as well as the traffic and weather data – were imputed using 

the mean of the corresponding feature values that are available. The missing values of the 

categorical features were represented using a dummy value “N/A”. The integration included the 

following two steps. First, the fused report data were integrated with the NBI data and NBE data 

based on the structure identification numbers of the bridges. Second, the data integrated in the first 

step were further integrated with the traffic data and weather data based on the spatial distances 

between the bridges and the traffic/weather monitoring stations. For example, for a bridge, the top-

three closet traffic monitoring stations to the bridge were selected, and the original traffic data 

from these stations and the data interpolated based on the original data (using the barycentric 

interpolation method) were integrated with the NBI, NBE, and fused data of the bridge. 
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8.2.2.3 Algorithm Training 

The proposed prediction algorithm was trained using the integrated bridge data in the training set. 

The training included four main steps. First, the integrated bridge data were embedded into a low-

dimensional dense space using the Isomap algorithm. The size of the embeddings was set to 1200 

based on Figure 8.2. The algorithm was implemented using the manifold learning module in the 

scikit-learn package (Pedregosa et al. 2011). Second, the proposed RNN architecture (as per Figure 

8.1) was modeled, and the multi-class focal loss function [as per Eq. (8.4)] for predicting the 

condition ratings and the mean square error loss function for predicting the quantities of 

deficiencies were defined. The model and loss functions were implemented in a Python program 

developed using Keras (Chollet 2015), which is a Python deep learning library. Third, the 

hyperparameters of the algorithm were set based on hyperparameter tuning, as follows: size of 

hidden states = 128, batch size = 32, number of dense layers = 6, maximum number of epochs = 

1000, quantity monitored for early stopping = training loss, minimum change in the monitored 

quantity = 0, and patience = 25. Fourth, the embedded data were fed into the RNN architecture to 

start the training process, and the training proceeded until the early stopping/convergence criterion 

was met (i.e., the change of the training loss remained as 0 for 25 epochs). 

8.2.2.4 Performance Evaluation 

The performance of the proposed method in predicting the condition ratings and in predicting the 

quantities of bridge element-level deficiencies was, separately, evaluated. In the first evaluation 

case, the performance was measured using two metrics: macro-precision and macro-recall. Macro-

precision and macro-recall measure the overall performance using the mean of the precision and 

recall for each category, respectively. The two metrics were calculated using Eqs. (8.5) and (8.6) 

(Madjarov et al. 2012), respectively, where 𝑡𝑝𝑖 = number of condition ratings predicted correctly 
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as positive of a condition rating category 𝑖; 𝑓𝑝𝑖 = number of condition ratings predicted incorrectly 

as positive of category 𝑖; 𝑓𝑛𝑖 = number of condition ratings predicted incorrectly as negative of 

category 𝑖; 𝐶 = total number of condition ratings categories that a primary bridge component could 

have; (𝑡𝑝𝑖 + 𝑓𝑝𝑖) = total number of predicted condition ratings for category 𝑖; and (𝑡𝑝𝑖 + 𝑓𝑛𝑖) = 

total number of true condition ratings for category 𝑖. 

𝑀𝑎𝑐𝑟𝑜-𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝐶
∑

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑝𝑖

𝑐

𝑖=1
                                                                                             (8.5) 

𝑀𝑎𝑐𝑟𝑜-𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝐶
∑

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑛𝑖

𝑐

𝑖=1
                                                                                             (8.6) 

In the second evaluation case, the performance was measured using three metrics: root mean 

square error (RMSE), coefficient of variation (CV), and coefficient of determination (R2). The 

three metrics were calculated using Eqs. (8.7) to (8.9) (Chai and Draxler 2014; Abdi 2010; 

Nagelkerke 1991), respectively, where 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑗 is the predicted quantity of a deficiency for the 

𝑗𝑡ℎ bridge, which could be the number of deficiency instances of the same type on a bridge element 

of the same type or the total length/area of the deficiency instances; 𝑦𝑑𝑎𝑡𝑎,𝑗 is the actual quantity 

of the deficiency; �̅�𝑑𝑎𝑡𝑎 is the average of the actual quantities of the deficiencies of the same type 

across all the bridges in the dataset, and 𝑁 is the number of bridges in the dataset. RMSE measures, 

on average, how concentrated the predicted data are around the line that best fits the actual data. 

CV measures the extent to which the overall prediction error varies with respect to the mean of the 

actual data. R2 measures the percentage of the variance of the actual data explained by the 

prediction model. 

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 = √
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑗 − 𝑦𝑑𝑎𝑡𝑎,𝑗)

2𝑁
𝑗=1

𝑁
                                                          (8.7) 
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𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (%) =
√1
𝑁
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑗 − 𝑦𝑑𝑎𝑡𝑎,𝑗)

2𝑁
𝑗=1

�̅�𝑑𝑎𝑡𝑎
× 100                             (8.8) 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 1 −
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑗 − 𝑦𝑑𝑎𝑡𝑎,𝑗)

2𝑁
𝑗=1

∑ (𝑦𝑑𝑎𝑡𝑎,𝑗 − �̅�𝑑𝑎𝑡𝑎)
2𝑁

𝑗=1

                                          (8.9) 

8.3 Data-Driven Bridge Deterioration Prediction Method Evaluation 

8.3.1 Performance of Predicting Bridge Condition Ratings 

The performance of the proposed method was compared to those of two baseline methods to 

evaluate the effectiveness of the proposed method for addressing the imbalance in the data and the 

effectiveness of learning from integrated bridge data from multiple sources. The first baseline 

learned from the integrated multi-source bridge data, using the proposed RNN architecture (as per 

Figure 8.1), but with the cross-entropy loss function. Unlike the proposed multi-class focal loss 

function, the cross-entropy loss function treats the cost of misclassifications in the minority classes 

and the cost of misclassifications in the majority classes equally and, hence, does not address the 

imbalance in the data. The second baseline is same as the first (i.e., used the RNN architecture 

with the cross-entropy loss function), but only learned from the NBI data. The second baseline 

method is similar to existing data-driven bridge deterioration prediction methods, which mostly 

focus on learning from single-source bridge inventory data (e.g., NBI data or similar inventory 

data collected by different countries), without addressing data imbalance. The performance results 

of these methods for predicting the condition ratings for decks, superstructures, and substructures 

are summarized in Tables 8.2 to 8.4, respectively. The averages of the performance results of the 

three methods, across the three component types, are shown in Table 8.5. The breakdown of the 

performance results of the proposed method for different bridge types are shown in Table 8.6. 

Three main conclusions were drawn from these results. 
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First, the proposed method was effective in dealing with the imbalance in the data. For example, 

the proposed method achieved a macro-precision and macro-recall of 89.1% and 83.7%, 91.3% 

and 85.9%, and 89.3% and 87.8%, when predicting the condition ratings for the decks, 

superstructures, and substructures, respectively. Without addressing the imbalance, the first 

baseline method only achieved a macro-precision and macro-recall of 81.9% and 75.6%, 82.2% 

and 67.8%, and 83.2% and 72.4%, respectively. The performance improvements were achieved 

mainly because the method used a proposed multi-class focal loss function. The loss function 

increased the cost for the misclassifications of the data instances in the minority classes and 

decreased the cost for the misclassifications of the data instances in the majority classes. This made 

the proposed method focus more on learning from the instances in the minority classes and, thus, 

largely improved the performance for such classes, which led to the improvements in the overall 

performance. For example, compared to the first baseline method, the proposed method barely 

improved the performance for the majority classes when predicting the condition ratings of the 

decks, as per Table 8.2. For the majority class of condition rating category “7”, it did not improve 

the precision (95.1% vs. 95.4%) and the recall (94.7% vs. 95.1%). But the proposed method largely 

improved the performance for the minority classes. For the minority class of condition rating 

category “4”, it improved the precision by 17.0% (86.4% vs. 69.4%) and the recall by 36.2% 

(78.7% vs. 42.5%). 

Second, learning from the integrated bridge data outperformed only learning from the NBI data in 

predicting the condition ratings of the primary bridge components. For example, learning from the 

NBI data alone, the second baseline method only achieved a macro-precision and macro-recall of 

75.6% and 65.1%, 75.8% and 62.6%, and 73.3% and 62.5%, when predicting the condition ratings 

for the decks, superstructures, and substructures, respectively. On average, as per Table 8.5, the 
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precisions are 15.0% lower and recall are 23.3% lower, compared to those achieved by the 

proposed method, respectively. This is mainly attributed to the fact that abstract bridge inventory 

data (e.g., the NBI data) mainly include features about the as-built geometric, structural, and 

construction characteristics of the bridges and mainly describe the conditions of the bridges by 

condition ratings, only. Such abstract data, although are very useful and important, are not enough 

in capturing the patterns of the sequential changes of the condition ratings (e.g., the condition 

rating of a bridge in the current year is the same as that in the past year, but is worsened in the next 

year due to exacerbated deficiencies), because they lack technically-detailed data about bridge 

conditions (e.g., the types of bridge element-level deficiencies, their quantities, and causes) and 

maintenance actions (e.g., the types of maintenance actions and material). Depending on the 

deficiency conditions of a bridge and the kind of maintenance it received, the condition ratings of 

bridges that have same/similar as-built characteristics could be in different rating categories. In 

this case, only learning from NBI data was not able to sufficiently capture the patterns of the 

condition ratings and was, thus, limited in predicting the ratings in the next year. Conversely, 

learning from the integrated multi-source bridge data, especially the detailed data about the 

deficiency conditions and the maintenance actions for the bridge elements, allowed the prediction 

method to sufficiently capture the patterns for better differentiating different deterioration cases 

for improved prediction performance. 

Third, the proposed method achieved relatively higher performances for bridge types with less 

variability in condition ratings, rather than bridge types with a larger size of instances. For 

example, although the total number of timber bridges in the dataset is much smaller than that of 

the prestressed concrete bridges (93 vs. 1,147, as per Table 8.6), the proposed method achieved a 

higher performance for the timber bridges, when predicting the condition ratings of the decks 
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(precision = 92.4% and recall = 89.4% vs. precision = 89.0% and recall = 83.4%), the 

superstructures (precision = 95.0% and recall = 90.8% vs. precision = 91.6% and recall = 87.5%), 

and the substructures (precision = 92.6% and recall = 93.5% vs. precision = 90.8% and recall = 

86.9%). This is largely attributed to the smaller variability in the condition ratings of timber bridges 

– the standard deviation of the bridge numbers in different deck, superstructure, and substructure 

rating categories is 19.59, 19.11, and 24.40, compared to that of 244.97, 245.50, and 289.43 for 

the prestressed concrete bridges, respectively. The results indicate that data variability, not only 

data size, is essential for improved prediction performance. 

Table 8.2. The performance results of the proposed method and the baseline methods for 

predicting the condition ratings of the decks. 

CR 1 TP + FN  
Proposed method 2 Baseline method #1 3 Baseline method #2 4 

TP TP + FP P (%) R (%) TP TP + FP P (%) R (%) TP TP + FP P (%) R (%) 

“N” 67 67 69 97.2 100.0 67 69 97.2 100.0 67 69 97.2 100.0 

“8” 64 45 50 90.0 70.5 43 49 88.1 67.4 35 43 81.4 55.7 

“7” 1596 1512 1590 95.1 94.7 1518 1592 95.4 95.1 1424 1515 94.0 89.2 

“6” 747 685 781 87.7 91.7 690 784 88.0 92.4 688 903 76.2 92.1 

“5” 66 49 62 79.3 74.2 42 69 61.0 63.6 35 47 74.6 53.0 

“4” 56 44 51 86.4 78.7 24 35 69.4 42.5 21 32 65.7 37.6 

“3” 50 38 43 88.2 75.9 34 46 73.9 68.0 14 35 40.1 28.2 

Macro-precision/macro-recall 89.1 83.7   81.9 75.6   75.6 65.1 

1 CR = condition rating category; “N” = “not applicable”; “8” = “very good condition”; “7” = “good condition”; “6” = satisfactory condition”; 

“5” = “fair condition”; “4” = “poor condition”; “3” = “serious condition”. 
2 The proposed deep learning-based bridge deterioration prediction method, which uses the proposed RNN architecture (as per Fig, 1) for 

learning from the integrated data, the Isomap algorithm for data embedding, and the proposed multi-class focal loss function for addressing the 

imbalance in the data. It learns from the integrated bridge data from multiple sources. 
3 The first baseline method, which uses the RNN architecture, the Isomap algorithm, and the multi-class cross-entropy loss function (without 

addressing the imbalance). It learns from the integrated bridge data from multiple sources. 
4 The second baseline method, which uses the RNN architecture and the multi-class cross-entropy loss function (without addressing the 

imbalance). It only learns from the National Bridge Inventory (NBI) data. 
* The other notations in the table: TP = true positives; FN = false negatives; FP = false positives; P = precision; R = recall; “–” = not applicable. 

The numbers of TP and TP + FP for each condition rating category are the sums achieved in the 3-fold cross validation, respectively. The 

precision and recall for each condition rating category are the averages achieved in the 3-fold cross validation, respectively. As a result, for each 
category, TP/(TP + FP) might not be exactly equal to the precision, and TP/(TP + FN) might not be exactly equal to the recall. 
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Table 8.3. The performance results of the proposed method and the baseline methods for 

predicting the condition ratings of the superstructures. 

CR 1 TP + FN 
Proposed method 2 Baseline method #1 3 Baseline method #2 4 

TP TP + FP P (%) R (%) TP TP + FP P (%) R (%) TP TP + FP P (%) R (%) 

“N” 54 54 56 96.5 100.0 54 56 96.5 100.0 54 56 96.5 100.0 

“8” 60 46 54 85.5 76.7 42 56 75.2 70.0 42 56 75.2 70.0 

“7” 1536 1476 1518 97.2 96.1 1476 1515 97.4 96.1 1476 1515 97.4 96.1 

“6” 825 785 864 90.9 95.2 758 873 86.8 91.9 758 879 86.2 91.9 

“5” 145 112 132 85.0 77.3 97 128 76.2 66.9 97 130 74.9 66.9 

“4” 22 16 19 84.1 72.6 11 18 61.3 50.0 3 10 24.4 13.7 

“3” 4 3 3 100.0 83.3 0 0 – 0.0 0 0 – 0.0 

Macro-precision/macro-recall 91.3 85.9   82.2 67.8   75.8 62.6 

1 CR = condition rating category; “N” = “not applicable”; “8” = “very good condition”; “7” = “good condition”; “6” = satisfactory condition”; 
“5” = “fair condition”; “4” = “poor condition”; “3” = “serious condition”. 
2 The proposed deep learning-based bridge deterioration prediction method, which uses the proposed RNN architecture (as per Fig, 1) for learning 

from the integrated data, the Isomap algorithm for data embedding, and the proposed multi-class focal loss function for addressing the imbalance 
in the data. It learns from the integrated bridge data from multiple sources. 
3 The first baseline method, which uses the RNN architecture, the Isomap algorithm, and the multi-class cross-entropy loss function (without 

addressing the imbalance). It learns from the integrated bridge data from multiple sources. 
4 The second baseline method, which uses the RNN architecture and the multi-class cross-entropy loss function (without addressing the 

imbalance). It only learns from the National Bridge Inventory (NBI) data. 
* The other notations in the table: TP = true positives; FN = false negatives; FP = false positives; P = precision; R = recall; “–” = not applicable. 
The numbers of TP and TP + FP for each condition rating category are the sums achieved in the 3-fold cross validation, respectively. The 

precision and recall for each condition rating category are the averages achieved in the 3-fold cross validation, respectively. As a result, for each 

category, TP/(TP + FP) might not be exactly equal to the precision, and TP/(TP + FN) might not be exactly equal to the recall. 

Table 8.4. The performance results of the proposed method and the baseline methods for 

predicting the condition ratings of the substructures. 

CR 1 TP + FN 
Proposed method 2 Baseline method #1 3 Baseline method #2 4 

TP TP + FP P (%) R (%) TP TP + FP P (%) R (%) TP TP + FP P (%) R (%) 

“N” 54 54 56 96.5 100.0 54 56 96.5 100.0 54 56 96.5 100.0 

“8” 66 55 65 84.8 83.3 56 66 85.2 84.8 51 78 65.4 77.3 

“7” 1898 1836 1872 98.1 96.7 1799 1862 96.6 94.8 1780 1873 95.0 93.8 

“6” 499 460 523 87.9 92.2 424 515 82.3 85.0 414 509 81.3 83.0 

“5” 93 78 95 82.2 83.9 75 124 60.5 80.6 59 119 48.7 63.4 

“4” 29 25 29 86.6 86.3 18 23 78.3 61.9 6 11 52.8 20.4 

“3” 7 5 6 88.9 72.2 0 0 – 0.0 0 0 – 0.0 

Macro-precision/macro-recall 89.3 87.8   83.2 72.4   73.3 62.5 

1 CR = condition rating category; “N” = “not applicable”; “8” = “very good condition”; “7” = “good condition”; “6” = satisfactory condition”; 
“5” = “fair condition”; “4” = “poor condition”; “3” = “serious condition”. 
2 The proposed deep learning-based bridge deterioration prediction method, which uses the proposed RNN architecture (as per Fig, 1) for learning 

from the integrated data, the Isomap algorithm for data embedding, and the proposed multi-class focal loss function for addressing the imbalance 
in the data. It learns from the integrated bridge data from multiple sources. 
3 The first baseline method, which uses the RNN architecture, the Isomap algorithm, and the multi-class cross-entropy loss function (without 

addressing the imbalance). It learns from the integrated bridge data from multiple sources. 
4 The second baseline method, which uses the RNN architecture and the multi-class cross-entropy loss function (without addressing the 

imbalance). It only learns from the National Bridge Inventory (NBI) data. 
* The other notations in the table: TP = true positives; FN = false negatives; FP = false positives; P = precision; R = recall; “–” = not applicable. 

The numbers of TP and TP + FP for each condition rating category are the sums achieved in the 3-fold cross validation, respectively. The 

precision and recall for each condition rating category are the averages achieved in the 3-fold cross validation, respectively. As a result, for each 
category, TP/(TP + FP) might not be exactly equal to the precision, and TP/(TP + FN) might not be exactly equal to the recall. 
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Table 8.5. The average performance results of the proposed method and the baseline methods. 

Primary bridge 

components 

Performance for predicting the condition ratings of the primary bridge components 

Proposed method 1 Baseline method #1 2 Baseline method #2 3 

P (%) R (%) P (%) R (%) P (%) R (%) 

Decks 89.1 83.7 81.9 75.6 75.6 65.1 

Superstructures 91.3 85.9 82.2 67.8 75.8 62.6 

Substructures 89.3 87.8 83.2 72.4 73.3 62.5 

Average 89.9 85.8 82.4 71.9 74.9 63.4 
1 The proposed deep learning-based bridge deterioration prediction method, which uses the proposed RNN architecture (as per Fig, 1) for learning 

from the integrated data, the Isomap algorithm for data embedding, and the proposed multi-class focal loss function for addressing the imbalance 
in the data. It learns from the integrated bridge data from multiple sources. 
2 The first baseline method, which uses the RNN architecture, the Isomap algorithm, and the multi-class cross-entropy loss function (without 

addressing the imbalance). It learns from the integrated bridge data from multiple sources. 
3 The second baseline method, which uses the RNN architecture and the multi-class cross-entropy loss function (without addressing the 

imbalance). It only learns from the National Bridge Inventory (NBI) data. 
* The other notations in the table: P. = macro-precision; R. = macro-recall. 

Table 8.6. The breakdown of the performance results of the proposed method for different 

bridge types. 

Bridge 

type 1 

Number 

of bridges 

Decks Superstructures Substructures 

P (%) 2 R (%) STD P (%) R (%) STD P (%) R (%) STD 

#1 1147 89.0 83.4 244.97 91.6 87.5 245.50 90.8 86.9 289.43 

#2 1089 89.2 83.7 233.14 91.8 88.8 233.52 90.3 91.2 276.14 

#3 317 86.8 85.7 68.36 92.5 83.5 68.82 93.5 94.0 80.64 

#4 93 92.4 89.4 19.59 95.0 90.8 19.11 92.6 93.5 24.40 
1 #1 = prestressed concrete bridge; #2 = concrete bridge; #3 = steel bridge; #4 = timber bridge. 
2 P = macro-precision; R = macro-recall; STD = standard deviation (of the numbers of the bridges in different condition rating categories). 

8.3.2 Performance of Predicting Element-Level Deficiency Quantities 

The performance results of the proposed method in predicting the quantities of three common types 

of element-level deficiencies of the bridges – pier spall, deck delamination, and girder crack – are 

summarized in Table 8.7. The breakdown of the performance results for different bridge types are 

shown in Table 8.8. Two types of quantities for each type of deficiency were predicted: the total 

number of deficiency instances of the same type of deficiency (e.g., spall) on the same type of 

element (e.g., pier) of a bridge, and the total length (or area) of the deficiency instances. Only the 

performance results of learning from the integrated bridge data using the proposed method were 

reported for two main reasons. First, to the author’s best knowledge, there is no existing data-

driven prediction method that is able to predict the detailed quantity of a specific bridge element-

level deficiency, which provides no benchmark for direct comparison. Second, learning from NBI 
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data solely is not applicable in this case, since they do not include such detailed data about bridge 

element-level deficiencies. 

Table 8.7. The performance results of the proposed method for predicting the quantities of specific 

bridge element-level deficiencies. 

Evaluation metric 1 

Performance for predicting the total number 

of deficiency instances of the element-level 

deficiencies 

Performance for predicting the total 

length/area of deficiency instances of the 

element-level deficiencies 

Pier spall 
Deck 

delamination 
Girder crack Pier spall 

Deck 

delamination 
Girder crack 

RMSE 0.4 0.2 0.3 2.1 (IN) 3.0 (SF) 2.0 (IN) 

CV (%) 24.3 22.4 17.1 27.6 40.6 33.7 

R2 0.87 0.82 0.92 0.93 0.92 0.88 
1 RMSE = root mean square error; CV = coefficient of variation; R2 = coefficient of determination. 

* The other notations in the table: IN = inch and SF = square feet. 

Table 8.8. The performance results of the proposed method for predicting the quantities of specific 

bridge element-level deficiencies for different bridge types. 

Bridge 

type 1 

Number 

of bridges 

Performance for predicting the total number of deficiency instances of the element-level deficiencies 2 

Pier spall Deck delamination Girder crack 

RMSE 
CV 

(%) 
R2 STD RMSE 

CV 

(%) 
R2 STD RMSE 

CV 

(%) 
R2 STD 

#1 1147 0.4 25.6 0.85 2.03 0.2 17.9 0.79 0.11 0.2 9.8 0.94 0.73 

#2 1089 0.4 25.1 0.87 1.35 0.3 33.6 0.53 0.17 0.4 37.8 0.87 2.18 

#3 317 0.6 18.2 0.89 1.09 0.2 10.8 0.90 0.09 0.3 13.1 0.94 1.19 

#4 93 0.4 12.8 0.91 0.70 – – – – – – – – 

Bridge 

type 

Number 

of bridges 

Performance for predicting the total length/area of deficiency instances of the element-level deficiencies 2 

Pier spall Deck delamination Girder crack 

RMSE 

(IN) 

CV 

(%) 
R2 STD 

RMSE 

(SF) 

CV 

(%) 
R2 STD 

RMSE 

(IN) 

CV 

(%) 
R2 STD 

#1 1147 2.8 25.9 0.94 97.93 1.9 28.0 0.95 181.26 2.8 48.2 0.97 253.17 

#2 1089 1.1 24.3 0.95 55.06 3 33.0 0.89 275.26 1.5 26.3 0.89 114.01 

#3 317 2.9 32.4 0.90 115.25 4.5 59.7 0.94 751.1 1.1 17.1 0.88 55.27 

#4 93 0.8 18.2 0.94 28.96 – – – – – – – – 

1 #1 = prestressed concrete bridge; #2 = concrete bridge; #3 = steel bridge; #4 = timber bridge. 
2 RMSE = root mean square error; CV = coefficient of variation; R2 = coefficient of determination; STD = standard deviation (of total lengths/areas 

or numbers of deficiency instances). 

* The other notations in the table: IN = inch; SF = square feet; “–” = not applicable. 

The performance results show that the proposed method performed well in predicting the quantities 

of the element-level deficiencies. When predicting the total number of deficiency instances of a 

specific element-level deficiency (e.g., pier spall of a specific bridge), it achieved an average 
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RMSE, CV, and R2 of 0.3, 21.3%, and 0.87, respectively. This could indicate that, for a specific 

deficiency on a specific bridge element, the difference between the actual total number of the 

deficiency instances and the predicted total number is 0.3; the difference varies with respect to the 

mean of the total numbers of all the deficiencies of the same type by 21.3%; and 0.87 of the 

variance of the actual total number (with respect to the mean) can be correctly explained by the 

proposed method. When predicting the total length/area of deficiency instances of a specific 

element-level deficiency, it achieved an average RMSE, CV, and R2 of 2.4 (inch or square feet), 

34.0%, and 0.91. This could indicate that, for a specific deficiency on a specific element, the 

difference between the actual total length and the predicted total length is 2.4 inch; the difference 

varies with respect to the mean of the total lengths of all the deficiencies of the same type by 

34.0%; and 0.91 of the variance of the actual total length can be correctly explained by the 

proposed method. 

The proposed method achieved a comparatively higher CV, 34.0% vs. 21.3% (i.e., a lower level 

of performance), when predicting the total length/area, compared to predicting the total number. 

The higher CV might be caused by two main reasons. First, compared the total number (generally 

up to 10 in the dataset), the totals of the lengths/areas of the deficiencies span a much wider range 

(e.g., up to 2,000 inches in the dataset). But the mean of the lengths/areas is much smaller than 

those extreme length/area values, due to the rareness of such extremely-severe deficiencies. When 

comparing the errors of predicting the lengths/areas of such deficiencies to the mean for calculating 

CV, the value of CV got largely amplified by the smaller mean. Second, due to the complex 

mechanisms that affect the propagation of bridge deficiencies and the complexity of data reflecting 

these mechanisms, predicting the lengths/areas of the deficiencies is, naturally, much more 

challenging than predicting their total number. Same as the results for predicting the condition 
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ratings, the results for predicting the deficiency quantities (as per Table 8.8) also showed that data 

variability, not only data size, is essential for improved prediction performance. 

8.3.3 Error Analysis 

Two main types of errors that contributed to the incorrect predictions were identified. First, the 

errors that occurred during the information extraction and data integration steps could have 

propagated into deterioration prediction errors. Table 8.9 summarizes the precision and recall error 

rate of each step. The precision error rates increased from 4.3% for the information extraction to 

12.2% for the data linking, and then decreased from 12.2% to 4.1% for the data fusion. The 

decrease was mainly because some of the incorrectly extracted and linked data/information were 

“corrected” in the fusion step. The recall error rates showed a constant increasing trend, increasing 

from 12.7% for the extraction to 16.8% for the fusion. The increase was mainly because some the 

data/information that should be extracted and integrated were incorrectly “dumped” and could not 

be recovered by the subsequent algorithms. For example, for the following sentence, the deficiency 

concept name was incorrectly extracted as “scattered transverse cracks” (i.e., the categorical 

quantity measure information entity “scattered” was incorrectly extracted as a deficiency 

information entity), but was fused into a correct name “transverse crack”; yet, the missed extraction 

of “scattered” as a categorical quantity measure was not recoverable: “The steel truss slabs have 

scattered leaching transverse cracks in the soffit.” (WSDOT 2016). 

Second, the dimensionality and the imbalance of the integrated bridge data showed negative 

impacts on the prediction performance. The Isomap algorithm was used to reduce the 

dimensionality of the bridge data for effective prediction model learning. This algorithm, like all 

other manifold learning algorithms, caused information loss during the embedding process. The 

information that was lost during the embedding could be indicative of bridge deterioration patterns. 
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In addition, although the multi-class focal loss function was able to address the data imbalance 

problem to a great extent, the imbalance problem was not fully resolved (and, indeed, cannot be 

fully resolved by any existing method). For example, as shown in Table 8.2, using the loss function 

was able to improve the precision from 61.0% to 79.3% and the recall from 63.6% to 74.2%, for 

the minority class of deck condition rating categories “5”. But the improved precision and recall 

are still lower than the averages (precision = 89.1% and recall = 83.7%). The lost information and 

the incompletely-resolved imbalance posed challenges to the prediction algorithm and made it 

generate some prediction errors. 

Table 8.9. Error rates of the main algorithms of the proposed bridge data analytics framework. 
Component Algorithm Precision / error rate 

(%) 

Recall / error rate 

(%) 

Information 

extraction 

Ontology-based semi-supervised 

conditional random field (CRF)-based 

information extraction algorithm 

95.7 / 4.3 87.3 / 12.7 

Semantic neural network ensemble-based 

relation extraction algorithm 

88.7 / 11.3 85.5 / 14.5 

Data integration Unsupervised data linking algorithm 87.7 / 12.2 84.9 / 15.1 

Hybrid data fusion algorithm 1 95.9 / 4.1 83. 2 / 16.8 

Data analytics Deep learning-based bridge deterioration 

prediction algorithm 

89.9 / 10.1 85.8 / 14.2 

1 The hybrid data fusion algorithm includes two main sub-algorithms: (1) named entity normalization algorithm for fusing the 

multiple concept names of the same entity and (2) numerical data fusion algorithm for fusing the multiple deficiency measures of 

the same type of deficiency. Because there is not ground truth for numerical data fusion, the precision and recall of the hybrid data 

fusion algorithm only represent those of the normalization sub-algorithm, not including the numerical data fusion sub-algorithm. 
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CHAPTER 9 – CONCLUSIONS, CONTRIBUTIONS, LIMITATIONS, AND 

RECOMMENDATIONS FOR FUTURE RESEARCH 

9.1 Conclusions 

9.1.1 Conclusions for the Proposed Bridge Deterioration Knowledge Ontology 

In this thesis, a new ontology (BridgeOnto) for representing bridge deterioration knowledge for 

supporting semantic information and relation extraction from textual bridge inspection reports was 

developed. It captures and represents bridge deterioration knowledge in five primary aspects with 

in-depth classifications and rich multimodality views, including bridge element, deficiency, 

deficiency cause, maintenance action, and their related attributes. It aims to facilitate information 

and relation extraction from the reports based on content and domain-specific meaning. The 

ontology was verified through answering competency questions and automated consistency and 

redundancy checking, and was validated through human expert interviews and application-

oriented validation. The verification results showed that the ontology was able to answer all the 

competency questions and passed the consistency and redundancy checks. The expert interview 

results indicated that the ontology is very representative, covering the main aspects of the bridge 

deterioration knowledge, clear, effective in classification, consistent, very concise, very easy to 

navigate, and extendable. The application-oriented validation results showed that the ontology was 

effective in supporting the information and relation extraction: (1) compared to without using the 

semantic features defined by the ontology, using such features in assessing the similarities between 

information entities improved the precision and recall of the information extraction by 50.5% and 

45.2%, respectively (as shown in Section 4.3.2.1); and (2) compared to without using the semantic 

features, using such features for representing the configurations improved the configuration-based 

accuracy of the relation extraction by 7.3% (as shown in Section 5.3.2). 
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9.1.2 Conclusions for the Proposed Information Extraction Method and Algorithm 

In this thesis, a new ontology-based, semi-supervised conditional random fields (CRF)-based 

information extraction (IE) method and algorithm for extracting information from textual bridge 

inspection reports was proposed and developed. The proposed IE algorithm allows for capturing 

the dependency structures as well as the distributions of a small set of fixed labeled data and a 

large set of unlabeled data semantically and simultaneously in a concave machine-learning 

function. It was hypothesized that, by dynamically adapting itself to unseen instances through 

further learning from a large collection of unlabeled data, the IE algorithm can achieve the goal of 

extracting information about existing deficiencies and performed maintenance actions from bridge 

inspection reports with reduced human effort, as well as high precision and recall performance. To 

test this hypothesis and to fine-tune the parameters of the IE algorithm, six primary experiments 

with controlled groups were conducted. The experimental results indicated that the algorithm 

achieved an average precision, recall, and F-1 measure of 94.1%, 87.7% and 90.7%, respectively, 

using only 175 human-annotated sentences from the I-35W Bridge 2006 inspection report as a 

fixed labeled dataset. The baseline, supervised CRF-based IE algorithm, achieved an average 

precision, recall, and F-1 measure of 85.8%, 80.8% and 83.1%, respectively, with 630 human-

annotated sentences. The experiment results, thus, prove that the hypothesis is true. In addition, 

the following conclusions were drawn from the results: (1) the knowledge-based semantic 

similarity indicator provided an effective way for measuring token-to-token semantic similarities 

for improved IE performance; (2) the semantic similarity of the context in which a token appears 

affected the IE performance; (3) only using the most-similar entity class sequence for each 

unlabeled sentence achieved an optimal performance; (4) the optimal regularization item weight 

of the proposed IE algorithm was 0.4; and (5) the 2006 I-35W Mississippi River Bridge inspection 
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report provided a reliable source for creating a fixed labeled dataset, and the optimal size of human-

annotated sentences from this report for creating such a dataset was 175. 

9.1.3 Conclusions for the Proposed Relation Extraction Method and Algorithm 

In this thesis, a new semantic neural network ensemble (NNE)-based dependency parsing method 

and algorithm for extracting dependency relations from textual bridge inspection reports was 

proposed and developed. The proposed parsing algorithm automatically links the isolated words 

into concepts and represents the semantically-low concepts in a semantically-rich structured way 

that is ready for bridge data analytics. A set of experiments were conducted to evaluate the 

performance of the parsing algorithm. The experimental results showed that the algorithm 

achieved an average semantic information element (SIE)-level precision, recall, and F-1 measure 

of 96.6%, 90.4%, and 93.3% with a margin of error of 3.8%, 4.4%, and 3.8%, and an semantic 

information set (SIS)-level precision, recall, and F-1 measure of 88.2%, 81.5%, and 84.7% with a 

margin of error of 5.4%, 5.8%, and 5.4%, respectively. The experimental results also showed that 

the semantic NNE-based algorithm was effective. First, the proposed semantic distributed feature 

representation improved the accuracy by 7.3%, compared to the representation without using the 

semantic features. Second, the proposed similarity-based sampling method improved the accuracy 

by 14.9%, compared to the method using cross-validation partitioning. Third, by taking an 

ensemble learning-based approach, the proposed algorithm improved the accuracy by 20.9%, on 

average, compared to the baselines using a single classifier.  

9.1.4 Conclusions for the Proposed Data Linking Method and Algorithm 

In this thesis, a new spectral clustering (SC)-based data linking method and algorithm for linking 

data extracted from textual bridge inspection reports was proposed and developed. The proposed 
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method offers a new concept similarity assessment method, a new sequential record similarity 

assessment method, and an improved SC method. A set of experiments were conducted to evaluate 

the performance of the data linking algorithm in linking the records extracted from the reports. 

The experimental results showed that the algorithm performed well: on average, it achieved a 

precision, recall, and F-1 measure of 96.2%, 88.3%, and 92.1%, respectively. In addition, five 

main conclusions were drawn from the results. First, different term similarity scoring functions 

showed similar performance, when the similarity assessment was conducted after stemming. 

Second, the similarities of the concepts in bridge inspection reports were better assessed by the 

similarities of their most-similar terms, rather than the similarities of all their terms. The impact of 

considering the relative positions of the terms on concept similarity assessment was insignificant. 

Third, a partitioning threshold value in the range of 0.05 to 0.15 was found optimal. Fourth, the 

sequential record similarity assessment method and the iterative bi-partitioning method were 

significantly effective. Fifth, the unsupervised pre-classification was not found effective in 

improving the performance of the data linking, because the sizes of the graphs were not large 

enough to benefit from size reduction. But, theoretically, pre-classification might show 

effectiveness in other cases/applications that deal with larger graph sizes. 

9.1.5 Conclusions for the Proposed Data Fusion Method and Algorithm 

In this thesis, a new hybrid data fusion method and algorithm for fusing data extracted from textual 

bridge inspection reports into a unified representation was proposed and developed. At the 

cornerstone of the proposed method are two algorithms for fusing concept names and numerical 

data, respectively: an unsupervised named entity normalization algorithm and an entropy-based 

numerical data fusion algorithm. A set of experiments were conducted to evaluate the performance 

of the two algorithms. Four main conclusions were drawn from the experimental results. First, the 
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concept ranking function with the corpus-statistic, term-position, and term-sequence scores, 

compared to those with the other combinations of the three scores, was more effective in fusing 

the concept names. Second, the concept selection rule using the part-of-speech (POS) patterns, 

compared to that without using the patterns, was more effective in fusing the names. Third, the 

numerical data fusion algorithm was stable, up to an uncertainty level of 2.0. Fourth, the proposed 

data fusion method was effective in fusing data extracted from the reports for supporting enhanced 

bridge deterioration prediction. Compared to learning from the unfused report data, learning from 

the report data fused by the proposed method improved the accuracy for predicting the condition 

ratings of the decks, superstructures, and substructures by 8.0%, 8.5%, and 7.9%, respectively. 

9.1.6 Conclusions for the Proposed Data-Driven Bridge Deterioration Prediction Method 

and Algorithm 

In this thesis, a new data-driven, deep learning-based prediction method and algorithm for 

predicting bridge deterioration was proposed and developed. It learns from integrated bridge data 

from multiple sources to predict the condition ratings of bridges and to predict the quantities of 

specific bridge element-level deficiencies. The proposed method includes three primary 

components: manifold learning, RNN modeling, and cost-sensitive learning. A set of experiments 

were conducted to evaluate the performance of the proposed algorithm. The experimental results 

showed that the proposed method achieved an average macro-precision and macro-recall of 89.9% 

and 85.8% when predicting the condition ratings of the primary bridge components (i.e., decks, 

superstructures, and substructures), and achieved an average RMSE, CV, and R2 of 1.3, 27.6%, 

and 0.89 when predicting the quantities of three common types of bridge element-level 

deficiencies (i.e., pier spall, deck delamination, and girder crack), respectively. In addition, 

experiments were conducted to compare the performance of the proposed approach to the 
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performance of existing data-driven bridge deterioration prediction approaches, which mostly 

learn from bridge inventory data (mainly, the NBI data or similar inventory data collected by 

different counties) for predicting the deterioration. The comparison results showed that, when 

predicting the condition ratings, the proposed approach – by learning from the integrated bridge 

data from multiple sources – improved the precision by 15.0% and the recall by 23.3%. The 

experimental results indicate the promise of the proposed data-driven bridge deterioration 

prediction approach (the proposed bridge data analytics framework) in supporting enhanced data-

driven bridge deterioration. 

9.2 Contributions to the Body of Knowledge 

9.2.1 Contributions of the Proposed Bridge Deterioration Knowledge Ontology 

This research contributes to the body of knowledge by offering an important effort in bridge 

deterioration knowledge modeling. A domain-specific, formalized bridge deterioration knowledge 

ontology was proposed to capture bridge deterioration knowledge in five main aspects: bridge 

element, deficiency, deficiency cause, maintenance action, and their related attributes. The 

ontology advances the knowledge modeling efforts in the bridge domain by capturing the 

aforementioned bridge deterioration knowledge, with sufficient breadth, depth, classifications, and 

multimodality views. The ontology has shown effectiveness in adequately supporting semantic 

information and relation extraction from bridge inspection reports and, hence, is expected to be 

able to support similar text analytics tasks in the bridge domain. 

9.2.2 Contributions of the Proposed Information Extraction Method and Algorithm 

This research contributes to the body of knowledge in three primary ways. First, it offers a novel 

semantic computational method for semi-supervised CRF-based IE. The proposed IE algorithm 
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semantically and simultaneously captures the dependency structures as well as the distributions of 

a small set of fixed labeled data and a large set of unlabeled data, in a semi-supervised yet concave 

objective function for machine learning. Its capability of dynamically adapting itself to unseen 

instances by further learning from the unlabeled data and its concavity nature enable the needed 

IE to be conducted accurately and in an efficient way that requires less human effort. Second, 

unlike most of the existing IE efforts in the construction domain that focused on rule-based IE 

methods, the proposed IE algorithm takes a semi-supervised machine learning-based approach. 

This makes the proposed algorithm easily reusable and extendable for supporting other IE 

application needs in this particular domain, because no extraction rules need to be created or 

adapted. Third, and most importantly, the use of the proposed IE algorithm provides improved 

access to a large amount of information on bridge deficiencies and maintenance actions, which 

have typically been unexploited and buried in bridge inspection reports. The extracted information 

has shown effectiveness in improving the performance of bridge deterioration prediction, and 

could create new knowledge on existing bridge deficiencies and maintenance strategies, enhance 

the understanding of bridge deterioration, and result in enhanced maintenance decision making. 

9.2.3 Contributions of the Proposed Relation Extraction Method and Algorithm 

This research contributes to the body of knowledge in four primary ways. First, it offers a way of 

leveraging domain-specific semantics – as captured by the semantic features – for better supporting 

the analysis of highly technical, domain-specific text for improved extraction of dependency 

relations. Second, this research offers a new sampling method that utilizes similarities measured 

in multiple feature spaces as a collective criterion to sample data into meaningful clusters for better 

supporting ensemble learning. The proposed method allows for generating meaningful clusters 

that contain the densely- and sparsely-distributed as well as the correctly and incorrectly densely-
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distributed data. Third, this research provides a novel parsing approach that is semantic, NN-based, 

and ensemble learning-based. It uses a set of constituent NN classifiers and a combiner SVM 

classifier to collectively capture the complex distributions of data instances. It was thus able to 

provide better parsing performance than that achieved by conventional dependency parsing 

methods, which only rely on a single classifier. Although the experimental results focused on 

dependency parsing, the applicability of the method is not limited to this case. Rather, it is a generic 

machine learning approach, which has the potential to support many other data-driven applications, 

such as text classification and sentiment analysis. When applying the proposed method to a 

different knowledge domain or application, one can choose to use another type of constituent or 

combiner classifier and test if the classifier of choice can improve the performance for the 

application at hand. Fourth, and most importantly, this research offers an automated method to 

extract word-to-word dependency relations from bridge inspection reports. It automatically links 

the isolated words into concepts and represents the unstructured and semantically-low concepts in 

a semantically-rich structured way that is ready to be used in data analytics for predicting bridge 

deterioration. The proposed method, therefore, allows the use of untapped wealth of data in the 

unstructured reports for bridge deterioration prediction. 

9.2.4 Contributions of the Proposed Data Linking Method and Algorithm 

This research contributes to the body of knowledge in four primary ways. First, it offers a new 

data linking method, which leverages improved spectral clustering to analyze the similarities 

between data instances for effectively linking data in an unsupervised way, without human 

involvement. The method offers opportunities for additional data analytics, as we are able to link 

data extracted from textual bridge inspection reports. This takes us one step closer towards the 

ability to learn from heterogeneous data – including unstructured data – for enhanced data-driven 
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bridge deterioration prediction and maintenance decision making. Second, it offers a new concept 

similarity assessment method, which does not need prerequisite contextual information or 

taxonomy-based mapping. The method provides an effective alternative way to assess concept 

similarity, when such prerequisites are not readily available. It also makes the similarity 

assessment free from dependence on external information and knowledge sources, whose quality 

could heavily affect the assessment performance. Third, it offers a new record similarity 

assessment method, which, unlike the commonly-used vector representations of attribute 

similarities, takes similarity assessment dependencies into consideration. Using dependencies to 

break down record-level similarity assessment into sequences of attribute-level tasks leads to 

reduced similarity-assessment complexities and reduced false positives. Fourth, it offers an 

improved SC method, which uses iterative bi-partitioning to automatically identify the optimal 

number of target clusters. This is important, because, otherwise, repeated clustering experiments 

are needed to manually identify the optimal number (either through trial-and-error or using the 

elbow method). In addition to largely reducing the human involvement in the manual process, 

compared to the elbow method, the iterative bi-partitioning was able to more accurately identify 

this number and improve the precision of clustering. The improved method, thus, extends the 

applicability of the original SC method to cases where high clustering performance is critical or 

where repeating the clustering experiments for each dataset in a large collection (e.g., each bridge 

inspection report) becomes heavily time-consuming or even practically impossible.  

9.2.5 Contributions of the Proposed Data Fusion Method and Algorithm 

This research contributes to the body of knowledge in two primary ways. First, it offers a new 

unsupervised named entity normalization algorithm for fusing concept names without human 

involvement. The algorithm captures both surface-form and abstraction-detailedness variations in 
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concept names to fuse them into canonical identifier names with balanced abstraction and 

detailedness. It, thus, extends the state of the art in named entity normalization, where most of the 

existing methods rely heavily on human-developed dictionaries/data and can only surface-form 

variations to fuse concept names into their canonical forms. Second, this research offers a new 

entropy-based data fusion algorithm. The algorithm uses data discretization to define the interval-

based representation of the fused data, and leverages information entropy to fuse data that are 

complementary into a single representative representation. It, thus, adds to the state of the art in 

numerical data fusion, where most of the existing methods focus on fusing data that are conflicting 

and/or imprecise. 

9.2.6 Contributions of the Proposed Data-Driven Bridge Deterioration Prediction Method 

and Algorithm 

This research contributes to the body of knowledge in two primary ways. First, it offers a new 

computational method that is able to learn from highly dimensional and imbalanced bridge data 

for enhanced bridge deterioration prediction. Compared to existing methods which mostly leave 

such data challenges understudied or even untouched, the proposed bridge deterioration prediction 

method uses manifold learning to embed the high-dimensional data into a low-dimensional space 

and utilizes cost-sensitive learning to address the imbalance in the data. It, thus, offers new 

knowledge on how to effectively use bridge data that are very challenging in terms of 

dimensionality and imbalance for better predicting bridge deterioration. Second, and most 

importantly, it offers a novel data-driven bridge deterioration prediction approach. The proposed 

approach leverages advanced machine learning-based data analytics methods – semantic 

information extraction method, unsupervised data integration method, and deep learning-based 

prediction method – to allow for the extraction, integration, and analysis of multi-source 
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heterogeneous bridge data in an integrative manner for enhanced bridge deterioration prediction. 

On one hand, the proposed approach goes beyond the current state of the art in data analytics, 

where data in heterogeneous formats (i.e., structured and unstructured) are mostly analyzed 

separately. On the other hand, it goes beyond the current state of the art in data-driven bridge 

deterioration prediction, where existing methods mostly use abstract bridge inventory data to 

predict – at a limited performance level – the condition ratings of bridges. By using the integrated 

bridge data from multiple sources, especially the previously-untapped textual bridge inspection 

reports, the proposed approach allows for the prediction of bridge condition ratings with improved 

performance and the prediction of the quantities of element-level deficiencies. The use of the 

proposed bridge data analytics framework has the potential to transform the way decision makers 

in the bridge domain use and interact with the scattered and heterogeneous data – in an integrated 

and analyzed manner. 

9.3 Limitations and Recommendations for Future Research 

9.3.1 Limitations of the Proposed Bridge Deterioration Knowledge Ontology and 

Recommendations for Future Research 

Two main limitations of this research are acknowledged. First, the developed bridge deterioration 

knowledge ontology was validated using a small number of expert interviews due to the challenges 

in recruiting qualified participants. A total of eight expert participants from both academia and 

industry were recruited for the interviews. Although these experts are very experienced in the 

bridge domain and can sufficiently validate the ontology, a larger number of qualified participants 

would allow for validating the ontology more extensively. Second, the ontology was implemented 

and validated in supporting information and relation extraction from bridge inspection reports. 

Although it was primarily designed to support this particular application, the ontology, like all 
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other ontologies, is meant to be reusable. Hence, the reusability of the ontology in other 

applications (e.g., using it for another text analytics application) was not evaluated. 

Three main future research directions could be pursued to extend or improve this research. First, 

further validate the developed ontology using a larger number of qualified experts, in order to 

identify the aspects of the ontology that need further improvements and the ways of how it should 

be improved. Second, further validate the performance of the ontology in supporting other types 

of text analytics applications (e.g., text classification), in order to evaluate its reusability in these 

applications. Third, maintain the ontology current in its representation and representativeness of 

its domain by adding, reclassifying, and/or modifying its concepts and relations. 

9.3.2 Limitations of the Proposed Information Extraction Method and Recommendations 

for Future Research 

Two main limitations of this research are acknowledged. First, the proposed IE method only 

considers a token’s context defined by its preceding and succeeding tokens (i.e., context window 

of size one). A larger window size (e.g., size of two) could capture the needed context when dealing 

with noise in text (e.g., “of possible” is the noise in “drilling of possible stress relief holes”) for a 

better IE performance. Second, like any other ontology-based method, the performance of the 

proposed IE method partially depends on the coverage and quality of ontology used. As shown 

from the error analysis (Section 4.3.2.2), the coverage and token-level ambiguity of the ontology 

affected the IE performance. 

Three main future research directions could be pursued to extend or improve this research. First, 

in future applications of the proposed IE method, model a larger context window and test if it can 

better deal with the noise caused by a small context window. This can be achieved by representing 

each current token with, in addition to its own features, features defined by the two (i.e., in the 
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case of using context window size of two) closest tokens to the left and right of the token. Second, 

evaluate the impacts of using different ontologies – which could naturally vary in coverage, 

structure, semantics, terminology, etc. – on the performance of information extraction. Third, 

extend the proposed IE method in a way that it can learn from a large amount of domain-general 

labeled text that is readily available to extract information from domain-specific text. If successful, 

the extended IE method would significantly save human-annotation efforts and, thus, benefit IE 

applications in various domains, not only information extraction from inspection reports in the 

bridge domain. 

9.3.3 Limitations of the Proposed Relation Extraction Method and Recommendations for 

Future Research 

Three main limitations of this research are acknowledged. First, the error analysis (in Section 5.3.4) 

has shown that the errors in the POS tags have negatively affected the performance of the proposed 

dependency parsing method. One main reason for the POS tagging errors is that the NLTK POS 

tagger, like all other taggers, was trained using general-domain text [e.g., the Wall Street Journal 

(WSJ) dataset]. Second, in this research, three types of SIE-to-SIE dependency relations were 

defined to support the representation of the text. These relations were chosen because they are 

representative of the information needed for better predicting bridge deterioration, yet they are not 

too abundant or complex to the extent of causing extra errors in the extraction. The error analysis, 

however, revealed that they are sometimes not enough to capture all the needed information. Third, 

the proposed method is limited in dealing with the imbalance in the transition types/classes. As a 

result, the precision and recall of the majority class (i.e., “shift”) were higher than those of the 

minority classes (i.e., “left-arc” and “right-arc”). Thus, for the confusion matrices (Figure 5.9), the 

precision and recall of each individual class and the average accuracy should be interpreted jointly.  
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Four main future research directions could be pursued to extend or improve this research. First, 

investigate the use of different types of neural network architectures (e.g., LSTM) and different 

types of transition-based approaches (e.g., top-down and bottom-up predictions) for supporting 

dependency relation extraction. Second, develop a domain-specific POS tagger and test its impact 

on the performance of dependency relation extraction. Third, in the case of using the proposed 

method for extracting dependency relations from bridge inspection reports, explore the use of 

additional SIE-to-SIE dependency relations (e.g., ET-DC-SM relations) to identify the optimal 

number and types of dependency relations. In the case of using it for other types of text, study the 

characteristics of the text to identify the optimal number and types. Fourth, explore the use of data 

sampling methods (e.g., random over-sampling method and synthetic minority over-sampling 

technique), in order to balance the number of configurations in different transition classes for 

further improving the performance of dependency relation extraction. 

9.3.4 Limitations of the Proposed Data Linking Method and Recommendations for 

Future Research 

Two main limitations of this research are acknowledged. First, the concept similarity assessment 

method is string-based and is, thus, limited in assessing the similarities of synonyms (e.g., 

“battledeck” and “orthotropic steel deck plate”) and acronyms (e.g., “delam” and “delamination”). 

If such concepts are frequent in a particular knowledge domain, the method will require adaptation 

(e.g., incorporating a gazetteer list containing the commonly-used synonyms and acronyms in that 

domain) prior to adoption in the new domain. Second, the dependencies used in the record 

similarity assessment method are specific to the domain of knowledge covered in the bridge reports. 

Because the types of dependencies naturally vary from one knowledge domain to another, the 
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defined dependencies may need to be adapted (through modifications and/or extensions), if the 

method is used in a different domain.  

Three main future research directions could be pursued to extend or improve this research. First, 

extend the SC-based data linking method to allow for efficient updating of the linking results when 

changes in the datasets occur (e.g., addition and/or deletion of one or more records). For example, 

only updating the linking results, without re-doing the entire linking, could be computationally-

efficient. Second, study how to learn word embeddings from domain-specific text corpora in an 

unsupervised way and use the learned embeddings for better assessment of concept similarities. 

Third, study how to use sequential deep neural networks (e.g., recurrent neural networks) to 

automatically capture dependencies among the attribute similarity assessments for improved 

linking performance. 

9.3.5 Limitations of the Proposed Data Fusion Method and Recommendations for Future 

Research 

Three main limitations of this research are acknowledged. First, the unsupervised named entity 

normalization algorithm uses the normalized Google distance to assess the associations of words 

for selecting identifier concept names. Half of the normalization errors were caused by the 

incorrectly-assessed associations, where the total error rate of the algorithm is 5.6%. This distance 

was mainly developed for assessing the associations of words in general-domain text. Second, the 

entropy-based data fusion algorithm focuses on fusing data from a single type of source (e.g., 

deficiency measures from the text). It needs modifications and/or extensions when used for fusing 

multi-modal data (e.g., deficiency measures from text, images, and sensors). Third, the bridge 

deterioration prediction models were developed using the decision tree algorithm. Although this 

algorithm is suitable for the validation purpose, it is limited in dealing with highly-dimensional 
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and imbalanced data such as bridge data and could be, thus, limited in showing the significance of 

learning from fused report data over learning form unfused report data.  

Three main future research directions could be pursued to extend or improve this research. First, 

develop a word-association assessment measure that can better adapt to domain-specific text and 

test its impact on named entity normalization. Second, extend the proposed entropy-based fusion 

algorithm to a multi-level context-based fusion algorithm to further capture the context of data 

(e.g., sensing devices and their reliability) for fusing data that are complementary and multi-modal 

at the same time. Third, further evaluate the performance of the proposed hybrid data fusion 

method in fusing data extracted from textual inspection reports for supporting bridge deterioration 

prediction. It is expected that, compared to learning from unfused report data, learning from fused 

report data is able to show an even more significant improvement in the prediction performance, 

if a machine learning algorithm that is better than the decision tree algorithm in dealing with data 

dimensionality and imbalance is used. 

9.3.6 Limitations of the Proposed Data-Driven Bridge Deterioration Prediction Method 

and Recommendations for Future Research 

Five main limitations of this research are acknowledged. First, the performance of the proposed 

bridge deterioration prediction method was evaluated in predicting three types of bridge element-

level deficiencies. Second, the proposed method uses a unidirectional RNN architecture. Although 

the experimental results showed the effectiveness of this architecture, a bidirectional RNN 

architecture would allow for capturing both forward and backward information about the 

sequential changes of bridge conditions (e.g., the information about why the condition of a bridge 

in the current year is improved compared to that in the previous year). It could, thus, potentially 

help improve the prediction performance. Third, the proposed method predicts one type of target 
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class (e.g., the condition ratings of decks) at a time. Fourth, the proposed method is limited in 

analyzing the time-series patterns of bridge deterioration (e.g., how temperature changes at 

different temporal granularities affect the deterioration). Fifth, the proposed method primarily 

focuses on bridge deterioration prediction. It is limited in understanding the deterioration of 

bridges and its impacts on bridge performance and maintenance decision making. 

Four main future research directions could be pursued to improve the proposed method. First, 

further test the performance of the proposed method in predicting other types of deficiencies. 

Although some variability in the performance may occur, a similar performance is expected if the 

data characteristics are similar. Second, develop a bidirectional RNN architecture and test its 

impact on the performance and the computational efficiency of data-driven bridge deterioration 

prediction. Third, incorporate transfer learning techniques into the proposed method to allow for 

the use of only one single base model for capturing the underlying distributions of the input data 

and for the adaptations to different types of target classes with minimum computational resources. 

Fourth, incorporate time-series analysis techniques into the proposed method to allow for 

considering the temporal patterns of deterioration-related factors (e.g., temperature) during the 

prediction, and test if the use of such patterns could improve the performance of the prediction. 

Two main future research directions could be pursued to extend or improve this research, at the 

application level. First, deploy the proposed data analytics framework in the bridge management 

process of bridge agencies (e.g., state Departments of Transportation) to investigate the usability 

of the proposed framework in practice. This would allow for soliciting feedback from the target 

users of the framework (e.g., maintenance decision makers), in order to identify the pain points 

that might hinder direct adoption of the framework in the current practice and, accordingly, lay out 

of roadmap for promoting its full deployment. Second, apply the proposed framework to support 
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the deterioration prediction for other types of infrastructure (e.g., highway and dam) to evaluate 

its generalizability. The evaluation would provide insights on which aspects of the proposed data 

analytics methods are the most important in affecting their successful adaptations to other domains, 

thereby offering new general knowledge on how to better design and adapt existing analytics 

methods to other applications. 

One critical future research direction that needs to be pursed in order to allow this research to bring 

more practical and broader impacts to the society is data-driven bridge maintenance decision 

making. Making well-informed maintenance decisions is rather complex, which requires 

considering many interrelated factors – not only the future conditions of the bridges, but also the 

probabilities of bridge failures, the cost-effectiveness of various maintenance strategies, and the 

impacts of bridge deterioration (including failures) and maintenance on the performance of the 

transportation network. Thus, in order to enhance our bridge maintenance decisions, further 

research is needed in two main directions: (1) study how to predict the time-dependent 

probabilities of bridge failures and the life-cycle cost-effectiveness of different maintenance 

scenarios, given the observed and predicted bridge conditions. To support the prediction, data from 

a number of important sources (in addition to those used in this research) should be exploited, 

including design and construction data from bridge information modeling, maintenance/accident 

data from textual bridge reports, and condition data from health monitoring sensors and inspection 

images; and (2) investigate how to automatically analyze and learn the impacts of the conditions, 

maintenance, and failures of the bridges on the safety, serviceability, and functionality of the entire 

transportation system. Transportation network data (e.g., traffic data, travel behavior data, and 

crash data) and socio-economic data (e.g., data about user travel cost and time, local economic 

conditions, and local accessibility) should be analyzed in integration with the data about bridge 
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deterioration and maintenance to capture the different factors that impact the safety, severability, 

and functionality of the overall system. These research efforts would create new knowledge on 

bridge deterioration and maintenance through the integrative analysis of the multi-source 

heterogeneous data, and pave the way for enabling safer, efficient, and cost-effective maintenance 

of our bridges. 
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APPENDIX A: LIST OF DATA FEATURES 

The features of the National Bridge Inventory (NBI) data, the National Bridge Elements (NBE) 

data, the traffic data, the weather data, and the data extracted from the textual bridge inspection 

reports are presented in Table A.1. 

Table A.1. Data features. 
Data Features 

National 

Bridge 

Inventory 

(NBI) data 

State code, structure number, inventory route, record type, route signing prefix, designated level 

of service, route number, directional suffix, highway agency district, county (parish) code, place 

code, features intersected, features intersected, critical facility indicator, facility carried by 

structure, location, inventory route minimum vertical clearance, kilometer point, base highway 

network inventory route sub route number, linear referencing system inventory route, sub route 

number, latitude, longitude, bypass/detour length, toll, maintenance responsibility, owner, 

functional class of inventory route, year built, lanes on/under structure, lanes on structure, lanes 

under structure, average daily traffic, year of average daily traffic, design load, approach 

roadway width, bridge median, skew, structure flared, traffic safety features, bridge railings, 

transitions, approach guardrail, approach guardrail ends, historical significance, navigation 

control, navigation vertical clearance, navigation horizontal clearance, structure 

open/posted/closed, type of service, type of service on bridge, type of service under bridge, 

structure type, main, kind of material/design, type of design/construction, structure type, 

approach spans, kind of material/design, type of design/construction, number of spans in main 

unit, number of approach spans, inventory route total horizontal clearance, length of maximum 

span, structure length, curb/sidewalk widths, left curb/sidewalk width, right curb/sidewalk width, 

bridge roadway width curb-to-curb, deck width out-to-out, minimum vertical clearance over 

bridge roadway, minimum vertical under clearance, reference feature, minimum vertical under 

clearance, minimum lateral under clearance on right, reference feature, minimum lateral under 

clearance, minimum lateral under clearance on left, deck, superstructure, substructure, 

channel/channel protection, culverts, method used to determine operating rating, operating 

rating, method used to determine inventory rating, inventory rating, structural evaluation, deck 

geometry, under clearance vertical & horizontal, bridge posting, waterway adequacy, approach 

roadway alignment, type of work, type of work proposed, work done by, length of structure 

improvement, inspection date, designated inspection frequency, critical feature inspection, 

fracture critical details, underwater inspection, other special inspection, critical feature 

inspection dates, fracture critical details date, underwater inspection date, other special 

inspection date, bridge improvement cost, roadway improvement cost, total project cost, year of 

improvement cost estimate, border bridge, neighboring state code, percent responsibility, border 

bridge structure number, STRAHNET highway designation, parallel structure designation, 

direction of traffic, temporary structure designation, highway system of inventory route, federal 

lands highways, year reconstructed, deck structure type, wearing surface/protective system, type 

of wearing surface, type of membrane, deck protection, average daily truck traffic, designated 

national network, pier/abutment protection, NBIS bridge length, scour critical bridges, future 

average daily traffic, year of future average daily traffic, and minimum navigation vertical 

clearance vertical lift bridge. 
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Table A.1. Data features (cont’d). 
Data Features 

National 

Bridge 

Elements 

(NBE) data 1 

Concrete deck, bridge deck surface, fully supported concrete deck, post tensioned concrete deck, 

concrete deck - lightweight aggregate, concrete deck w/coated bars, steel orthotropic deck, steel 

deck - concrete filled grid, deck - corrugated or other steel system, timber deck, fiber reinforced 

polymer (FRP) - deck, concrete deck soffit, deck rebar cover flag, concrete slab, concrete hollow 

slab, prestressed concrete slab, prestressed concrete slab w/coated bars, concrete slab w/coated 

bars, timber slab, prestressed concrete girder w/coated strands, steel rolled girder, steel riveted 

girder, steel welded girder, concrete encased steel girder, prestressed concrete trapezoidal girder, 

thin flange girder, post tensioned concrete segmental box girder, steel box girder, prestressed 

concrete super girder, post tension concrete box girder, concrete box girder, steel open girder, 

prestressed concrete bulb-t girder, prestressed concrete multiple web girder units, concrete 

girder, timber glue-lam girder, steel stringer, concrete multiple web girder unit, prestressed 

concrete girder, concrete stringer, timber sawn girder, timber stringer, concrete truss, steel thru 

truss, steel deck truss, truss gusset plates, timber truss, timber arch, steel arch, steel tied arch, 

steel suspender, concrete arch, earth filled concrete arch, suspension - main cable, suspension - 

suspender cable, cable stayed bridge - cable, concrete column on spandrel arch, steel floor beam, 

prestressed concrete floor beam, concrete floor beam, timber floor beam, steel column on 

spandrel arch, steel hanger, steel pin, tension hold down anchor assembly, abutment fill, steel 

pile/column, prestressed hollow concrete pile/column, prestressed concrete pile/column, concrete 

pile/column, timber pile/column, concrete pile/column w/steel jacket, concrete pile/column 

w/composite wrap, submerged concrete pile/column w/steel jacket, concrete pier wall, other pier 

wall, concrete submerged pier wall, other submerged pier wall, concrete web wall between 

columns, concrete abutment, timber abutment, other abutment, steel abutment, concrete 

cantilevered span abutment, concrete submerged foundation, concrete foundation, timber 

foundation, steel submerged pile/column, prestressed concrete submerged pile/column, concrete 

submerged pile/column, timber submerged pile/column, timber cap rehab with steel, steel pier 

cap/crossbeam, submerged hollow prestressed concrete pile/column, prestressed concrete pier 

cap/crossbeam, concrete pier cap/crossbeam, timber pier cap, concrete floating pontoon,  

pontoon hatch/bulkhead, floating bridge - anchor cable, metal culvert, concrete culvert, timber 

culvert, other culvert, steel open grid sidewalk and supports, steel concrete filled grid sidewalk 

and supports, corrugated/orthotropic sidewalk and supports, concrete sidewalk and supports, 

fiber reinforced polymer (FRP) sidewalk and supports, elastomeric bearing, moveable bearing, 

concealed bearing or bearing system, fixed bearing, pot bearing, disc bearing, isolation bearing,  

concrete roadway approach slab, bridge impact, metal bridge railing, concrete bridge railing, 

timber bridge railing, other bridge railing, timber pedestrian rail, other pedestrian rail, metal 

pedestrian rail, concrete pedestrian rail, damaged bolts or rivets, steel cracking, pack rust, bridge 

movement, scour, movable bridge, seismic pier crossbeam bolster, seismic pier infill wall, 

seismic - longitudinal restrainer, seismic - transverse restrainer, seismic - link/pin restrainer, 

seismic - catcher block, seismic - column silo, cathodic protection, concrete deck delamination 

testing, primary safety inspection, secondary safety inspection, asphalt butt joint seal, asphalt 

open joint seal, strip seal - welded, bolt down - sliding plate w/springs, bolt down panel - molded 

rubber, assembly joint seal (modular), silicone rubber joint filler, asphalt plug, steel angle 

w/raised bars, joint paved over flag, concrete slab in-span joint, flexible joint seal, open concrete 

joint, concrete bulb-t, compression seal/concrete header, compression seal/polymer header, 

compression seal/steel header, steel angle header, steel sliding plate, steel sliding plate w/raised 

bars, steel fingers, steel fingers w/raised bars, strip seal - anchored, movable bridge steel tower, 

ceramic tile, bridge mounted sign structures, bridge luminaire pole and base, fender system/pier 

protection, polyester concrete overlay, AC over a polymer overlay, BST on concrete (chip seal), 

asphalt concrete (AC) overlay w/high performance membrane, red lead alkyd paint system, 

inorganic zinc/vinyl paint system, inorganic zinc/urethane paint system, organic zinc/urethane 

paint system, coal tar epoxy paint system, metalizing, galvanizing, epoxy paint for weathering 

steel, zinc primer, weathering steel patina. 
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Table A.1. Data features (cont’d). 
Traffic data Average daily traffic, percentage of single unit trucks, percentage of double unit trucks, and 

percentage of triple unit trucks. 

Weather data Cooling degree day normal (with 45, 50, 55, 57, 60, 65, 70, and 72 oF bases), heating degree day 

normal (40, 45, 50, 55, 57, 60, and 65 oF base), annual precipitation totals, number of days 

during which they year with precipitation is greater than 0.01, 0.10, 0.50, and 1.00 inches, annual 

snowfall totals, number of days during the year snowfall is greater than 0.1, 1.0, 3.0, 5.0, and 

10.0 inches, number of days during the year snow depth is greater than 1.0, 3.0, 5.0, and 10.0 

inches, diurnal temperature range, annual average temperature, annual maximum temperature, 

number of days per year where the maximum temperature is greater than or equal to 40, 50, 60, 

70, 80, 90, and 100 oF, annual minimum temperature, and number of days per year where the 

minimum temperature is less than or equal to 0, 10, 20, 32, 40, 50, 60, and 70 oF.  

Textual 

bridge 

inspection 

reports 

Bridge element, deficiency, deficiency cause, maintenance action, maintenance material, 

numerical measure, numerical measure unit, categorical quantity measure, categorical severity 

measure, and date. 

1 Each element is associated with four quantities: total quantity, quantity in condition state “good”, quantity in 

condition state “fair”, quantity in condition state “poor”, and quantity in condition state “severe”. 

 

 


