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ABSTRACT

The increasing availability of heterogeneous bridge data from multiple sources opens
unprecedented opportunities for data analytics to better predict bridge deterioration for supporting
enhanced bridge maintenance decision making. Such data include structured National Bridge
Inventory (NBI) and National Bridge Elements (NBE) data, structured traffic and weather data,
and unstructured textual bridge inspection reports. However, despite the availability of the data,
existing data-driven prediction methods mostly learn from abstract inventory data (e.g., the NBI
data which describe bridge conditions by condition ratings) from a single source — missing the
opportunity of leveraging the wealth of unstructured textual inspection reports and the diverseness

of the multi-source data for enhanced deterioration prediction.

To capitalize on this opportunity, a novel bridge data analytics framework is proposed. The
proposed framework is composed of six primary components: (1) a bridge deterioration knowledge
ontology for facilitating semantic information and relation extraction from textual bridge
inspection reports based on content and domain-specific meaning; (2) a semi-supervised machine
learning-based semantic information extraction method for extracting information entities that
describe bridge conditions and maintenance actions from the reports; (3) a supervised machine
learning-based semantic relation extraction method for extracting dependency relations from the
reports to link the extracted, yet isolated, information entities into concepts and to represent the
semantically-low concepts in a semantically-rich structured way; (4) an unsupervised machine
learning-based data linking method for linking the data records that are extracted from the reports
and refer to the same entity; (5) a hybrid data fusion method for fusing the linked data records into

a unified representation and for, subsequently, integrating the fused data with the other types of



structured data (i.e., NBI and NBE data, as well as traffic and weather data); and (6) a data-driven,
deep learning-based bridge deterioration prediction method for learning from the integrated bridge
data to predict the condition ratings of the primary bridge components and to predict the quantities

of specific bridge element-level deficiencies.

The performance of the proposed framework was evaluated in predicting the deterioration of the
state-owned bridges in Washington. It achieved a macro-precision and macro-recall of 89.9% and
85.8% when predicting the future condition ratings of the primary bridge components (i.e., decks,
superstructures, and substructures), and achieved a root mean square error, coefficient of variation,
and coefficient of determination of 1.3, 27.6%, and 0.89, respectively, when predicting the future
quantities of specific bridge element-level deficiencies. The experimental results demonstrated the

promise of the proposed framework.
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CHAPTER 1 - INTRODUCTION

1.1 Introduction and Motivations

Bridges play an important role in ensuring the connectivity of transportation systems for providing
daily mobility to the public. However, the U.S. bridges are in critical conditions and raise safety
concerns. According to the American Society of Civil Engineers (ASCE)’s Infrastructure Report
Card, the U.S. bridges received a grade of C+ (mediocre), with 9.1% and 13.6% of the nation’s
614,387 bridges being structurally deficient and functionally obsolete, respectively (ASCE 2017).
It is estimated that the average annual failure rate of the nation’s bridges is between 87 and 222,
with an expected value of 128 (Cook et al. 2013). Bridge failures are in some cases catastrophic
and pose great threats to the safety of the public. For instance, the collapse of the I-35W Mississippi
River Bridge — one of about 600 bridge failures that occurred in the U.S. between 1989 and 2013
—alone killed 13 people and injured 145 in 2007 (NTSB 2008). While bridge agencies are striving
to improve the conditions of bridges, it is challenging to make cost-effective maintenance
decisions under the stringent funding constraints. As estimated by the ASCE, in order to eliminate
the nation’s deficient bridge backlog by 2028, a $20.5 billion annual investment in the construction
and maintenance of bridges is needed, while only $12.8 billion is being invested currently (ASCE
2013). Bridge maintenance decision making relies largely on the predicted future conditions of
bridges and their elements to allocate the limited maintenance funding (Qiao et al. 2016; Zambon
et al. 2017; Chang et al. 2019). With the increasing availability of data that can capture multiple
factors related to the deterioration of bridges, there has been many demands for data-driven bridge
deterioration prediction for supporting cost-effective maintenance decisions (FHWA 2016;

NASEM 2016).



However, the current state-of-the-art data-driven bridge deterioration prediction methods/models
are limited in this regard. On one hand, with the rapidly-evolving and expanding capabilities in
data collection, large amounts of heterogeneous bridge data from multiple sources are becoming
increasingly available. Such data include structured National Bridge Inventory (NBI) data,
structured National Bridge Elements (NBE) data, and unstructured textual bridge inspection
reports. In addition, structured traffic and weather data, which are relevant to bridge deterioration,
are collected by responsible agencies such as the Federal Highway Administration (FHWA) and
the National Oceanic and Atmospheric Administration (NOAA). On the other hand, despite the
availability of the data, existing research efforts (e.g., Morcous 2011; Wellalage et al. 2014; Chang
et al. 2017; Goyal et al. 2017; Lu et al. 2019) mostly focus on using abstract bridge inventory data
from a single source — such as the NBI data which describe bridge conditions mainly by condition
ratings — to predict, at a limited performance level, the future condition ratings of bridges. Such
abstract data, although are very useful and important, are not sufficient, because they lack detailed
descriptions about bridge conditions and maintenance actions, which limits the ability to learn
from the history to predict the future deterioration. More specifically, existing data-driven
methods/models are not capable of: (1) making use of the large amounts of rich data about bridge
conditions and maintenance actions that are buried in textual inspection reports, which misses the
opportunity of learning from such rich data for improved performance of bridge deterioration
prediction (Washer et al. 2014); and (2) utilizing integrated data from multiple sources, which
limits the capability to consider a diverse set of factors that may affect the deterioration of bridges
(e.g., maintenance actions taken, material used in maintenance, traffic and weather patterns, etc.)

and are, hence, important to consider when predicting the deterioration (Brown et al. 2014).



To address the aforementioned limitations, a novel bridge data analytics framework is proposed.
The proposed framework is composed of six primary components, as per Figure 1.1, to allow for
the extraction, integration, and analysis of both structured and unstructured data from multiple
sources for enhanced bridge deterioration prediction. Three types of data are utilized in the
proposed framework, including structured NBI and NBE data, structured traffic and weather data,
and unstructured textual bridge inspection reports. Accordingly, the thesis research included seven
primary research tasks: (1) conducting a comprehensive literature review; (2) developing a bridge
deterioration knowledge ontology for facilitating semantic information and relation extraction
from textual bridge inspection reports based on content and domain-specific meaning; (3)
developing a semi-supervised machine learning (ML)-based semantic information extraction
method and algorithm for extracting information entities that describe bridge conditions and
maintenance actions from the reports; (4) developing a supervised ML-based semantic relation
extraction method and algorithm for extracting dependency relations from the reports to link the
extracted, yet isolated, information entities into concepts and to represent the semantically-low
concepts in a semantically-rich structured way; (5) developing an unsupervised ML-based data
linking method and algorithm for linking the data records that are extracted from the reports and
refer to the same entity (e.g., the same type of deficiency on a bridge element); (6) developing a
hybrid data fusion method and algorithm for fusing the linked data records into a unified
representation and for, subsequently, integrating the fused data with the other types of structured
data (i.e., NBl and NBE data, as well as traffic and weather data); and (7) developing a data-driven,
deep learning-based bridge deterioration prediction method and algorithm for learning from the

integrated bridge data to predict the condition ratings of the primary bridge components (i.e.,



decks, superstructures, and substructures) and to predict the quantities of specific bridge element-

level deficiencies.
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Figure 1.1. Proposed bridge data analytics framework.

1.2 State of the Art and Knowledge Gaps

1.2.1 State of the Art and Knowledge Gaps in Bridge Domain Ontologies

Ontology is defined as “an explicit specification of a conceptualization” for formally representing

knowledge (Gruber 1995). An ontology that semantically represents bridge deterioration



knowledge is at the cornerstone of the proposed bridge data analytics framework. It aims to
facilitate semantic information and relation extraction from textual bridge inspection reports based
on content and domain-specific meaning. However, there is a lack of ontologies that sufficiently
represent the knowledge of bridge deterioration for adequately supporting such text analytics.

Accordingly, three primary knowledge gaps were identified.

First, existing ontologies provide a limited coverage of the core bridge deterioration knowledge
aspects that are essential to analyze the semantics of the text to extract the needed information. For
example, the ontology by El-Diraby and Kashif (2005) only represents the types of bridges without
representing the deficiency types, which are essential to capture and extract information about how
a bridge element has been or could be affected by different types of deficiencies. Similarly, the
ontology by Bien et al. (2007) provides a limited coverage of bridge deficiencies and deficiency
causes without any coverage of maintenance actions, which are essential to capture and extract

information regarding how a deficiency has been or could be maintained.

Second, although existing ontologies can collectively cover the needed bridge deterioration
knowledge aspects, they together still suffer from: (1) insufficient concept and/or relation coverage
within each knowledge aspect. For example, the ontology by Kubota and Mikami (2013) only
moderately covers the bridge element concepts, which limits the ontology’s ability to support the
extraction of bridge element concepts — especially when extracting agency-developed-elements
that are defined and customized by different agencies to meet different bridge condition assessment
needs; and (2) inconsistent and/or informal concept definition, conceptualization, and
interpretation across the above-mentioned ontologies. For example, “slip” is defined as “the

difference between the velocities of a solid surface and a fluid on the surface” by TRB (2015).



However, it is defined as “a deformation of the structure element caused by shear forces, without

the deformation of the element cross-section” by Bien et al. (2007).

Third, existing ontologies are insufficient in capturing the classifications and multimodality views
of bridge deterioration knowledge for semantically-rich information representation. For example,
existing ontologies (e.g., Bien et al. 2007; TRB 2015) only model bridge deficiency concepts as a
set of vocabularies without classifications or only with shallow classifications. Besides, existing
ontologies (e.g., NCHRP 2011) only capture bridge maintenance action concepts as a list without
modeling how these concepts could be classified according to different categorization criteria.
Without in-depth and multi-view classifications, the extracted information from documents are
semantically limited and may even mislead the representation, interpretation, and utilization of the
extracted information. For instance, without a deeper classification, these two maintenance action
concepts — “heat straightening” and “post-tensioning” — would be considered semantically
equivalent, which could imply that these actions can be applied for a similar maintenance purpose;
and, without multi-views or relationships, they cannot be represented according to the types of
needed material, crew, cost, etc., and thus make the information lose important application

contexts.

1.2.2 State of the Art and Knowledge Gaps in Information Extraction

Information extraction (IE), within this thesis, is defined as a named entity recognition and
classification (NERC) task, which aims to automatically recognize and classify information
entities into predefined entity classes. There is a body of research efforts — inside and outside of
the civil engineering domain — that have been undertaken towards extracting information from

unstructured text. Despite their achievements, existing IE methods are still limited in supporting



automated IE from complex, technical text — with highly-varying text patterns — such as that in

bridge inspection reports. Accordingly, two primary knowledge gaps were identified.

First, there is a lack of IE methods that can simultaneously reduce human effort and achieve high
performance when extracting information from highly heterogeneous and complex text. On one
hand, most of the existing IE methods have taken a rule-based approach or a supervised ML-based
approach. For example, almost all IE efforts in the construction domain have used rule-based IE
methods (e.g., Abuzir and Abuzir 2002; Al Qady and Kandil 2010; Zhang and EI-Gohary 2013;
Zhou and EI-Gohary 2015). Rule-based and supervised ML-based IE methods might be able to
address the complexity and variability of text and thus achieve high IE performance by learning
from a large set of representative examples, but they require a high amount of human effort. This
is because such IE methods involve a human-intensive process for developing IE rules (in the case
of rule-based IE) or annotating training examples (in the case of supervised ML-based IE). For
example, the development of pattern-matching-based rules for the UMass MUC-4 system required
1,500 human-hours (Lehnert et al. 1991). It is even more challenging and more time-consuming
to develop a comprehensive set of representative IE rules or annotations for text with highly-
varying text patterns, such as that in bridge inspection reports. The utilization of incomprehensive
and/or less representative rules or annotations could negatively affect the IE performance. One the
other hand, although semi-supervised and unsupervised ML approaches offer plausible solutions
to address this human-intensiveness problem, existing semi-supervised and unsupervised ML-
based IE methods are still limited in extracting information from highly complex and variable text
with high performance. They either followed a suboptimal algorithm for IE (e.g., Jiao et al. 2006;
Mann and McCallum 2007; Liao and VVeeramachaneni 2009; Liu et al. 2011) or did not explicitly

capture the dependency structures of the natural language (e.g., Miller et al. 2004; Guo et al. 2009).



IE performance could be negatively affected by not explicitly representing and utilizing the

dependency structures inherent in the natural language (Sutton and McCallum 2006).

Second, there is a lack of semantic ML-based IE methods. In recent years, a number of efforts
explored the use of semantics for facilitating various natural language processing (NLP) tasks. For
example, it was shown that the use of semantics — that are formally and explicitly defined by
domain ontologies — improves the performance of domain-specific IE (e.g., Soysal et al. 2010;
Zhang and El-Gohary 2013; Zhou and El-Gohary 2015). This is because formally defined
semantics can assist in recognizing and extracting target information based on content and domain-
specific meaning. Utilizing semantics for enhancing automated IE is therefore especially important
for this research, given the complexity and variability of the text in bridge inspection reports.
However, the utilization of formally defined semantics for supporting IE has been primarily
studied in rule-based IE methods (e.g., Paassen et al. 2014; Zhang and El-Gohary 2013; Zhou and
El-Gohary 2015). Most of the existing ML-based IE methods (e.g., Wu and Weld 2010; Qi et al.
2014) have only focused on representing text with syntactic features and/or less formally defined
semantic features. The utilization of semantic features in ML-based IE differs from that in rule-
based IE, because semantic features are meant to be interpreted by computers in the ML-based
case rather than by human (when developing the rules). As such, the use of formally and explicitly

defined semantics has not been well-explored in facilitating ML-based IE.

1.2.3 State of the Art and Knowledge Gaps in Relation Extraction

Relation extraction (RE), within this thesis, is defined as a dependency parsing (DP) task, which
aims to automatically extract dependency relations between information entities in natural
language text. There is a body of research efforts that have focused on developing ML-based DP

models — using different learning techniques and various feature representations — for extracting



dependency relations from text. Despite the importance of these efforts, they cannot effectively
extract dependency relations from highly technical, domain-specific text such as that in bridge

inspection reports. Accordingly, three primary knowledge gaps were identified.

First, from an ML-based DP perspective, there is a lack of studies in ensemble learning-based DP
methods. The majority of such methods (e.g., Yamada and Matsumoto 2003; Zhang and Clark
2008; Zhang and Nivre 2011; Chen and Manning 2014; Dyer et al. 2015; Cheng et al. 2016;
Kiperwasser and Goldberg 2016; Hashimoto et al. 2017; Dozat and Manning 2017; Nguyen et al.
2017; Strubell and McCallum 2017; Dozat and Manning 2018) have focused on learning a single
classifier to parse text for extracting dependency relations. Although a single classifier trained with
advanced learning techniques (e.g., support vector machines and neural networks) could perform
well on nonlinearly-separable instances/configurations, it is not sufficient to separate those with
even more complex distributions (Sun et al. 2006; Bicke et al. 2007; Haixing et al. 2017) — such
as the configurations of the text in the bridge reports (especially given that the reports have highly-
varying levels of text characteristics and patterns). There are several efforts (e.g., Sagae and Lavie
2006; Nivre and McDonald 2008; Attardi and Dell’Orletta 2009; Hall et al. 2010) that proposed
to integrate DP models at the parser level. For example, Nivre and McDonald (2008) proposed to
integrate a graph-based parser and a transition-based parser by letting one parser generate features
for the other one. Such methods are more co-training-based rather than ensemble learning-based.
To the author’s best knowledge, there is no ensemble learning-based DP method that utilizes a set
of constituent classifiers to collectively capture the complex distributions of all the configurations

for improved dependency relation extraction performance.

Second, from an ensemble learning perspective, there is a lack of studies in sampling training

instances/configurations in a way that each constituent classifier is trained only with similarly-



distributed and thus more easily-separable configurations. Existing ensemble learning techniques
(refer to Section 2.3.3) sample configurations based on simple, presumed distributions, such as the
uniform distribution or weighted uniform distribution. Sampling configurations in this way cannot
capture the configuration distribution characteristics of the text in bridge inspection reports, which
makes it hard to generate meaningful configuration clusters and could thus make the trained
constituent classifiers limited in collectively and sufficiently capturing the underlying distributions

of all the configurations.

Third, from a feature representation perspective, there is a lack of studies that utilized semantic
text features for facilitating DP. Existing DP methods (e.g., Bansal et al. 2014; Chen and Manning
2014; Guo et al. 2015) have relied on using distributed representations of syntactic features [e.qg.,
words and part-of-speech (POS) features]. Although distributed representations could reveal the
semantic meanings of the features to some extent, they provide limited semantics about word-to-
word interactions that are important to consider when deciding on how sentences should be parsed.
Such interactions can be better captured by the semantic features. For example, “maintenance
material” and “maintenance action” are the semantic features for the words ‘“concrete” and
“patching”, respectively. Based on the defined semantics — a maintenance material concept
semantically describes a maintenance action concept — the dependency relation between
“concrete”, as a modifier word, and “patching”, as a head word, could be correctly parsed and

extracted.

1.2.4 State of the Art and Knowledge Gaps in Data Linking

Data linking, within this thesis, aims to link the data records that are extracted from bridge
inspection reports and refer to the same entity. A number of research efforts have been undertaken

towards developing data linking methods. Despite the importance of these efforts, they are still

10



limited in linking data extracted from highly technical, domain-specific documents, such as bridge

inspection reports. Accordingly, three primary knowledge gaps were identified.

First, there is a lack of concept similarity assessment methods that are able to assess similarity in
the absence of both contextual information and taxonomy-based concept mappings. To assess
concept similarity, existing semantic similarity (SS) scoring functions either require the textual
contexts of the concepts in a text corpus (e.g., Landauer 1998; Turney 2011), or need to map the
concepts in comparison to their corresponding concepts in a taxonomy (e.g., Resnik 1995; Leacock
and Chodorow 1998; Muller et al. 2006). Such prerequisite mapping is a challenge in itself,
because it requires assessing the similarities between the concepts in the records and the concepts
in the taxonomy. Zhang-EI-Gohary similarity (Zhang and EI-Gohary 2016) is the closest one that
can address this challenge. It utilizes the WordNet taxonomy to calculate term-level SS scores and
uses a scoring function to aggregate these scores into a concept-level SS score. As a result, only
term-level mapping is needed. Term-level mapping, compared to concept-level mapping, is much
more straightforward, because terms can be mapped by exact comparisons after stemming.
However, this method generates asymmetrical similarities (i.e., the similarity of concept x to
concept y is not equal to the similarity of y to x), because it compares a term of the first concept to
all the terms of the second. Despite its success in its intended application, this method is not

applicable to data linking in which symmetrical similarities are required (Christen 2012).

Second, there is a lack of record similarity assessment methods that can effectively assess the
similarities of records when dependencies among attribute similarity assessments exist. These
dependencies affect how record similarity should be assessed. For instance, in the following
example, because the bridge element concepts in the two records (“floor beam splice” and “fascia

stringer”) are already assessed as being different, there is no need to further assess the similarity

11



of the deficiency concepts (“flaking rust”): <floor beam splice, flaking rust> and <fascia stringer,
flaking rust>. Existing data linking methods, especially clustering-based ones, mostly aggregate
attribute similarities — either using equal (e.g., Elsner and Schudy 2000; Ng and Cardie 2002;
Bilenko et al. 2005; Soon et al. 2006; Ailon et al. 2008; Elsner and Charniak 2008; Hassanzadeh
et al. 2009) or different (e.g., Hassanzadeh et al. 2009; Hassanzadeh and Miller 2009; Haveliwala
et al. 2009) attribute weights — into an overall similarity score for assessing record similarity,
without taking such dependencies into account. It has been shown that such assessment methods
are prone to generate a significant number of falsely-linked records (Ananthakrishna et al. 2002;
Weis and Naumann 2004). On the other hand, a limited number of studies (e.g., Weis and
Naumann 2004; Albrecht and Naumann 2008; Puhlmann et al. 2006) relied on general data
schemas [e.g., Extensible Markup Language (XML) schema] to capture the structure of record
attributes for assessing record similarity. However, such schemas cannot be used for capturing

domain-specific dependencies such as those carried in the bridge report records.

Third, there is a lack of data linking methods that can address transitive closure problems. Existing
linking methods, especially classification-based ones (e.g., Fellegi and Sunter 1969; Dey et al.
1998; Cochinwala et al. 2001; Elfeky et al. 2002; Bilenko and Mooney 2003; Christen 2008; Jiang
et al. 2014), mostly follow the basic principle of the Fellegi-Sunter model. Such methods, thus,
assume that the transitivity assumption holds: if (Ri, R;) and (Ri, Rx) are linked respectively, then
(Rj, Rx) is also linked, where R represents a record. These methods open the door to transitive

closures, which typically leads to false positives (Elmagarmid et al. 2007; Christen 2012).

1.2.5 State of the Art and Knowledge Gaps in Data Fusion

Data fusion, within this thesis, aims to fuse the linked data records into a unified representation.

The fusion requires two tasks. First, concept names that refer to the same entity, but vary in terms

12



of surface forms and abstraction levels, need to be fused into canonical identifier names. This is
defined, within this thesis, as a named entity normalization task. Second, the numerical deficiency
measures of the multiple instances, which are of the same type of deficiency but are at different
locations of a bridge element, need to be fused into a single representative representation. This is
defined, within this thesis, as a numerical data fusion task. A number of research efforts have been
undertaken in the areas of named entity normalization and numerical data fusion. Despite the
importance of these efforts, they are still limited in fusing data extracted from highly technical,
domain-specific documents, such as bridge inspection reports. Accordingly, two primary

knowledge gaps in each of the areas were identified.

In the area of named entity normalization, there is a lack of normalization methods that do not
require human involvement in the normalization process. Most of the existing methods heavily
rely on human-developed dictionaries or training data to normalize concept names (see Section
2.5.1). However, despite that several guidelines have defined the standard vocabularies used for
structured bridge data (e.g., FHWA 1995; AASHTO 2010), there are no such guidelines for
inspectors/writers — who have very different writing styles and specificity levels — to follow when
choosing the concept names to use in the textual bridge inspection reports. As a result, the concept
names used in the reports vary, to a high degree, in terms of surface forms and abstraction levels.
It is challenging to develop/generate normalization dictionaries/data that can representatively and
comprehensively capture such high-level variations. Second, there is a lack of normalization
methods that are able to normalize concept names with both types of variations, such as those in
bridge inspection reports. Most of the existing methods mainly focus on dealing with surface-form
variations, which are caused by different naming conventions, e.g., acronyms and morphological

variations. Yet, they are limited in normalizing concept names that also vary in terms of abstraction

13



levels (e.g., “north concrete bridge rail”, a subconcept of “bridge railing”). Balancing the
abstraction and detailedness of the identifier names is critical to the ML-based bridge deterioration
prediction model. As the features of the model, abstract identifiers (e.g., using “bridge” as the
identifier of the aforementioned names) are too frequent in a collection of reports and, thus, lead
to the loss of distinctive feature patterns. On the other hand, detailed identifiers (e.g., using “north
concrete bridge rail”) are too rare in the collection and, thus, increase the dimensionality and the
sparsity of the feature space, which would cause overfitting to a particular feature and therefore

would undermine the generalizability of the model.

In the area of numerical data fusion, there is a lack of fusion methods that define the interval-based
representation of the fused data in an objective way. Interval-based representations are usually
used in major data fusion frameworks to characterize the uncertainty of the data (Sentz and Ferson
2002; Torra 2010). However, most of the existing methods (e.g., Zhang et al. 2017; Tian et al.
2018; He et al. 2018; Wu et al. 2018; Song et al. 2019) define the representation (i.e., defining the
number of intervals and the size of the interval) in a subjective way. For example, based on
subjective human judgement, Zhang et al. (2017) defined the representation of the fused building
settlement data as four equal-size intervals. Subjective judgements are limited in defining the
optimal number of intervals and the optimal size of the interval, because there is a tradeoff
relationship between the two. A large number of intervals is preferred to capture more distinctive
data instances for avoiding underfitting; and, at the same time, a large interval size is preferred to
retain more data instances within an interval for avoiding overfitting. But, as the number increases,
the size decreases. Such tradeoff is very difficult to balance using only subjective judgements of
humans. Second, there is a lack of fusion methods that focus on fusing data that are

complementary, such as the numerical deficiency measures in inspection reports, each of which

14



partially describes the overall condition of a deficiency. The majority of existing fusion methods
(e.g., He et al. 2018; Zheng and Deng 2018; Xiao 2019; Mohammadi et al. 2019) focus on fusing
data that are imprecise, conflicting, and/or multi-modal (Khaleghi et al. 2013), using the fuzzy set
theory, Dempster-Shafer theory, and/or matrix factorization (Sentz and Ferson 2002; Lahat et al.
2015). When fusing complementary data (e.g., the deficiency measures), they would result in an
interval-based representation that can only represent a subset of the data, which are less imprecise
or conflicting but cannot fully capture the whole condition that the data collectively describe. Thus,
despite being successful in their intended applications, existing data fusion methods are limited in

fusing complementary data.

1.2.6 Sate of the Art and Knowledge Gaps in Data-Driven Bridge Deterioration
Prediction

Data-driven bridge deterioration prediction, within this thesis, aims to learn from the integrated
bridge data from multiple sources for predicting the future condition ratings of the primary bridge
components and predicting the future quantities of specific bridge element-level deficiencies. A
number of research efforts have been undertaken in the area of data-driven bridge deterioration
prediction. Despite the importance of these efforts, they are still limited in supporting such a

challenging prediction task. Accordingly, two primary knowledge gaps were identified.

First, there is a lack of methods that capitalize on the wealth of multi-source heterogeneous bridge
data for enhanced deterioration prediction — that is not only able to predict the condition ratings of
the primary bridge components with improved performance, but also able to predict the quantities
of specific bridge element-level deficiencies. With the rapidly-evolving and expanding capabilities
in data collection, large amounts of heterogeneous bridge data from multiple sources are becoming

increasingly available, including structured NBI and NBE data, structured traffic and weather data,
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and unstructured textual bridge inspection reports. Among them, previously-untapped textual
inspection reports, which include a large amount of rich data/information describing bridge
conditions and maintenance actions, are key data sources to allow for such enhanced prediction.
However, despite the availability of such bridge data, existing data-driven prediction methods
(e.g., Morcous 2011; Wellalage et al. 2014; Chang et al. 2017; Goyal et al. 2017; Lu et al. 2019)
mostly focus on using abstract bridge inventory data from a single source — such as the NBI data
which describe bridge conditions mainly by condition ratings — to predict the condition ratings of
the primary bridge components (i.e., decks, superstructures, and substructures). Yet, due to mainly
using abstract single-source data, their performance level is limited. Existing methods are, thus,
limited in making use of the integrated bridge data that are originally in heterogeneous formats
and from multiple sources — missing the opportunities of leveraging the wealth of textual
inspection reports and the diverseness of the multi-source data for enhanced deterioration

prediction.

Second, there is a lack of bridge deterioration prediction methods that are able to effectively learn
from highly dimensional and imbalanced bridge data for supporting the prediction. Bridge data,
especially integrated data from multiple sources, are of high dimensionality. For example, for a
single bridge in the created dataset (refer to Section 8.2.2.1), its integrated data at a single timestep
include 12,687 features, with 134, 1,480, 16, 196, and 10,861 features from the NBI data, NBE
data, traffic data, weather data, and inspection report data, respectively. The high dimensionality
of bridge data challenges the performance of data-driven methods in effectively predicting the
deterioration. On the other hand, bridge data are naturally imbalanced; specifically, the numbers
of bridges in different condition rating categories are imbalanced. For example, as of 2018, 2.5%,

14.8%, 42.0%, 24.7%, 12.3%, and 3.7% of the decks of the bridges in the U.S. are in the condition
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rating categories of “excellent”, “very good”, “good”, “satisfactory”, “fair”, and “poor” or below,
respectively. The imbalance in bridge data negatively affects the ability of data-driven methods to
effectively capture the distribution characteristics of the data, which would undermine the
performance of predicting the future condition ratings. However, existing data-driven prediction
methods (e.g., Huang 2010; Creary and Fang 2015; Contreras-Nieto et al. 2016; Lim and Chi 2019)
mostly leave these data challenges understudied or even untouched, which limits the ability to

effectively learn from bridge data, which are highly dimensional and imbalanced.

1.3 Problem Statement

There is an emerging opportunity of leveraging machine learning-based data analytics to allow for
the extraction, integration, and analysis of heterogeneous bridge data from multiple sources, in
order to better predict bridge deterioration. However, there are two primary challenges to the
utilization of multi-source heterogeneous bridge data: (1) heterogeneity: the data are structured
and unstructured; and (2) complexity: the data are highly technical (i.e., having different levels of
technical detail, text patterns, and text characteristics) and domain-specific, and are highly
dimensional and imbalanced. There is no existing framework that is capable of dealing with the
heterogeneity and complexity of the bridge data. In this regard, the following knowledge gaps were
identified: (1) there is a lack of ontologies that sufficiently represent the knowledge of bridge
deterioration for adequately supporting information and relation extraction from textual bridge
inspection reports; (2) there is a lack of information extraction methods and algorithms that are
able to effectively extract information that describes bridge conditions and maintenance actions
from highly technical, domain-specific text, such as that in the textual reports; (3) there is a lack
of relation extraction methods and algorithms that are able to effectively extract dependency

relations from such text for representing the extracted information in a semantically-rich structured
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way; (4) there is a lack of data linking methods and algorithms that are able to effectively assess
the similarities between the data records extracted from the text and link the records without
forming transitive closures; (5) there is a lack of data fusion methods and algorithms that are able
to effectively fuse complex concept names (i.e., varying in terms of both surface forms and
abstraction levels) and effectively fuse complementary numerical data in an objective way; and
(6) there is a lack of data-driven bridge deterioration prediction methods and algorithms that are
able to effectively learn from highly dimensional and imbalanced bridge data, which are originally
in heterogeneous formats and from multiple sources, for better predicting the condition ratings of

the primary bridge components and the quantities of specific bridge element-level deficiencies.

1.4 Research Objectives and Questions

The overall objective of the thesis research is to develop a bridge data analytics framework to
allow for the extraction, integration, and analysis of multi-source heterogeneous (structured and
unstructured) data for enhanced bridge deterioration prediction. Accordingly, six specific research

objectives and outcomes were defined, along with the research questions.

(1) Objective #1: Develop a bridge deterioration knowledge ontology for facilitating semantic
information and relation extraction from textual bridge inspection reports based on content and

domain-specific meaning.

Research Questions: What are the concepts that need to be represented in the ontology to

sufficiently cover the subject domain of knowledge (i.e., bridge deterioration knowledge) in
terms of breadth, depth, classifications, and multimodality views? What are the concepts that
need to be represented in the ontology to adequately support the subject application (i.e.,

semantic information and relation extraction from the reports)?
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Outcome: An ontology that sufficiently represents the knowledge of bridge deterioration for
adequately supporting semantic information and relation extraction from textual bridge

inspection reports.

(2) Objective #2: Develop an ML-based semantic information extraction method for extracting
information entities that describe bridge conditions and maintenance actions from textual

bridge inspection reports.

Research Questions: What is the target information that needs to be extracted to capture the

necessary information about bridge conditions and maintenance actions for supporting bridge
deterioration prediction? What are the necessary features to represent the highly technical,
domain-specific text in bridge inspection reports for information extraction? How to use the
semantics of the ontology to conduct information extraction with high performance? How to
develop information extraction algorithms that require as less human-annotation effort as
possible, while achieving high performance (at least 85% in both precision and recall) — given

the varied patterns and characteristics of the text?

Outcome: An ML-based semantic information extraction method and algorithm for
automatically extracting information entities that describe bridge conditions and maintenance

actions from textual bridge inspection reports.

(3) Objective #3: Develop an ML-based semantic relation extraction method for extracting
dependency relations from textual bridge inspection reports for linking the extracted, yet
isolated, information entities into concepts and representing the semantically-low concepts in

a semantically-rich structured way.
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Research Questions: What are the necessary features to capture the interrelationships between

the information entities for relation extraction? How to use the semantics of the ontology to
conduct relation extraction with high performance? How to develop relation extraction
algorithms that are able to capture the complex distributions of all the configurations? How to
develop relation extraction algorithms that are able to sample similarly-distributed and thus
more easily-separable configurations into the same cluster? How to develop relation extraction
algorithms that can achieve high performance (at least 80-85% in both precision and recall)

when representing the extracted information in a semantically-rich structured way?

QOutcome: An ML-based semantic relation extraction method and algorithm for automatically
extracting dependency relations from the text for representing the extracted information in

semantically-rich structured way.

(4) Objective #4: Develop an ML-based data linking method for linking the data records that are

extracted from textual bridge inspection reports and refer to the same entity.

Research Questions: How to assess concept similarity in the absence of contextual information

and taxonomy-based concept mappings? How to assess record similarity in the presence of
dependencies among attribute (i.e., concept) similarity assessments? How to link the records
without forming transitive closures for better linking performance? How to develop data
linking algorithms that can automatically identify the optimal number of target clusters (i.e.,

the number of sets containing the linked records), without manually identifying this number?

QOutcome: An ML-based data linking method and algorithm for linking the data records that

are extracted from textual bridge inspection reports and refer to the same entity.
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(5) Objective #5: Develop a hybrid data fusion method for fusing the linked data records into a
unified representation and for, subsequently, integrating the fused data with the other types of

structured data (i.e., NBI and NBE data, as well as traffic and weather data).

Research Questions: How to normalize the multiple concept names that refer to the entity, but

vary in terms of both surface forms and abstraction levels, into a canonical name with balanced
abstraction and detailedness? How to develop named entity normalization algorithms that do
not require established lexicons in dictionaries and human-annotated training data? How to
fuse numerical data that are complementary, such as the numerical deficiency measures in this
research (i.e., each of the measures partially describes the overall condition of a deficiency)?
How to define the interval-based representations of the fused data in an objective way? How
to integrate the fused data with the other types of structured data (i.e., NBl and NBE data as

well as traffic and weather data)?

Outcome: A hybrid data fusion method that includes three algorithms: (1) a named entity
normalization algorithm for fusing the multiple concept names, (2) a numerical data fusion
algorithm for fusing the multiple deficiency measures, and (3) a data integration algorithm for

integrating the fused data with the other types of structured bridge data.

(6) Objective #6: Develop a data-driven, deep learning-based bridge deterioration prediction
method for learning from the integrated bridge data (outcome of Objective #5) to predict the
condition ratings of the primary bridge components (i.e., decks, superstructures, and

substructures) and to predict the quantities of specific bridge element-level deficiencies.

Research Questions: How to develop prediction algorithms that are able to effectively learn

from highly dimensional and sparse data, such as the integrated bridge data? How to develop
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prediction algorithms that are able to effectively address the imbalance in data, such as the
class imbalance in the integrated bridge data? How to capture the temporal dynamics that
connect data over time for supporting the prediction? How to use deep learning techniques to

support such a challenging data-driven prediction task?

Outcome: A data-driven, deep learning-based bridge deterioration prediction method and
algorithm for predicting the condition ratings of the primary bridge components (i.e., decks,
superstructures, and substructures) and for predicting the quantities of specific bridge element-

deficiencies.

1.5 Research Tasks and Methodology

The research methodology includes seven primary research tasks, as summarized in Figure 1.2. A
detailed introduction to each task and the corresponding research methodology is presented in the

following subsections.
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Figure 1.2. Research tasks and methodology.

1.5.1 Research Task #1 — Literature Review

The literature review covered six primary domains: semantic modeling and ontology, information
extraction, relation extraction, data linking, data fusion, and data-driven bridge deterioration

prediction. The following list summarizes the topics covered in each domain.
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Semantic modeling and ontology: the literature review focused on: (1) ontology development
methodologies, and (2) existing semantic models and ontologies in the construction and civil
infrastructure domain (with a focus on those related to bridge deterioration knowledge).
Information extraction: the literature review focused on existing research and methods for
information extraction in both the computer science and the construction and civil
infrastructure domains. Specifically, the literature review covered: (1) existing rule-based
information extraction methods and algorithms, (2) existing ML-based information extraction
methods and algorithms (including supervised, semi-supervised, and unsupervised learning
algorithms for information extraction), and (3) semantic similarity measures for assessing the
similarities between terms/words (including corpus-based and knowledge-based semantic
similarity measures).

Relation extraction: the literature review focused on existing research and methods for relation
extraction (i.e., dependency relation extraction, also known as dependency parsing) in both the
computer science and the construction and civil infrastructure domains. Specifically, the
literature review covered: (1) the transition-based dependency parsing model, (2) existing ML-
based dependency parsing methods and algorithms (with a focus on neural network-based
methods/algorithms, which are the current state of the art in the area of dependency parsing),
and (3) existing ensemble machine learning methods.

Data linking: the literature review focused on existing research and methods for data linking
in both the computer science and the construction and civil infrastructure domains.
Specifically, the literature review covered: (1) existing ML-based data linking methods and

algorithms (including classification-based and clustering-based linking methods/algorithms),
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(2) existing term similarity assessment functions, (3) existing concept similarity assessment
functions, and (4) existing spectral clustering methods.

e Data fusion: the literature review focused on two areas: named entity normalization and
numerical data fusion. In the area of named entity normalization, the literature review covered:
(1) existing dictionary-based named entity normalization methods and algorithms, and (2)
existing ML-based named entity normalization methods and algorithms. In the area of
numerical data fusion, the literature review covered: (1) the commonly-used descriptive
statistics in data fusion, and (2) existing data fusion theories and their applications.

o Data-driven bridge deterioration prediction: the literature review focused on existing research
and methods in the areas of data-driven bridge deterioration prediction and machine learning
(with a focus on deep learning). Specifically, the literature review covered: (1) existing data-
driven bridge deterioration methods and algorithms (including deterministic, stochastic, and
artificial intelligence-based prediction methods/models), (2) existing deep learning methods
and algorithms (with a focus on recurrent neural networks), (3) existing manifold learning
methods and algorithms, and (4) existing methods and algorithms for addressing data

imbalance.

1.5.2 Research Task #2 — Semantic Data Modeling and Ontology Development

This research task aimed to develop a bridge deterioration knowledge ontology (namely,
BridgeOnto) for facilitating semantic information and relation extraction from textual bridge

inspection reports. This research task included two primary subtasks.
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1.5.2.1 Subtask #2.1 — BridgeOnto Development and Coding

This subtask aimed to develop a domain-specific, unambiguous, and formalized representation of
bridge deterioration knowledge, and to code it in Web Ontology Language (OWL) format.
Benchmarking the ontology development methodology by El-Gohary and El-Diraby (2010), the

development of the BridgeOnto included the following seven primary steps:

1. Domain, purpose, intended users, and scope definition: These fundamental scope descriptions
were defined (as per Table 3.1) and utilized as guidance throughout the BridgeOnto
development process.

2. Competency questions (CQs) development: A competency question (CQ) is expressed in the
form of a natural language sentence that shows a pattern for a type of questions that an ontology
must be able to answer (Fox and Gruninger 1998). CQs serve as functional requirements to
ontologies. A set CQs for formulating the functional requirements to the BridgeOnto were
developed and are discussed in Section 3.2.1.

3. Concept hierarchy construction: A concept hierarchy was constructed using two main iterative
steps: (1) extracting key concepts from concept sources (the identified concept sources are
explained in more detail in Section 3.1.2), and (2) organizing the extracted concepts into a
concept hierarchy. The main concepts of the ontology were defined based on an analysis of a
sample of bridge inspection reports, from both bridge engineering and NLP perspectives, in
order to facilitate information and relation extraction from bridge inspection reports. At the
highest level of abstraction, the BridgeOnto represents bridge deterioration knowledge by five
main concepts: bridge element, deficiency, deficiency cause, maintenance action, and their
related attributes (e.g., maintenance material, numerical measure, numerical measure unit,

categorical quantity measure, categorical severity measure, and date). A combination of top-
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down and bottom-up hierarchy construction approaches were used to avoid the inclusion of
unnecessarily too detailed specific concepts and/or less-meaningful high-level concepts. The
top-down approach first defines the most general concepts and then specifies their
subconcepts; whereas, the bottom-up approach begins with defining the most specific concepts
and then groups them into high-level concepts (Noy and McGuinness 2001).

4. Multimodality modeling: The concept hierarchy was reclassified based on different modality
views for representing the polymorphic and multifaceted nature of bridge deterioration
knowledge. Different modality views are shown Section 3.1.2.

5. Relation modeling: Three major types of relations were captured: (1) “is-a” relationship to
characterize sub-superordinate relationships, (2) “is-part-of” relationship to decompose
concepts into their constituent parts, and (3) cross-concept relationship to establish non-
hierarchical relationships with semantic meanings between concepts.

6. Ontology capturing: Ontology capturing was conducted to define the formal terms of the
concepts and relations.

7. Ontology coding: The BridgeOnto was coded using Protégé 3.4.5 (Protégé 2016). Protégé is
an off-the-shelf ontology editor that supports coding ontology in OWL format. The coding
included the following two main steps: (1) representing and coding the concepts as Protégé-
OWL classes and using superclass-subclass relations to represent the hierarchical “is-a”

relationships; and (2) representing and coding the relations using Protégé-OWL “extension

property restrictions” and “necessary conditions”.

1.5.2.2 Subtask #2.2 — BridgeOnto Evaluation

This subtask aimed to evaluate the developed ontology. The evaluation included verification and

validation (GOomez-Pérez et al. 2006). Verification aimed to ensure that the ontology was
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constructed correctly and consistently towards implementing the ontology requirements. The
verification process included two main components: (1) answering CQs: verifying that the
ontology meets its functional requirements, and (2) automated consistency and redundancy
checking: verifying the freeness of the ontology from such errors. Validation aimed to evaluate the
capability of the ontology in modeling the real-world that it tries to model. Validation is an
important ontology quality assessment procedure that aims to assure the correctness of the
knowledge encoded in an ontology (Vrandeci¢ 2009). The ontology was validated using two
techniques: (1) human expert validation: assessing how well the ontology meets the following
criteria based on domain expert opinion: clarity, representation, coverage, conciseness,
navigational ease, and extendibility; and (2) application-oriented validation: applying the ontology
in a real-life application scenario (i.e., information and relation extraction from textual bridge
inspection reports — as per Research Tasks #3 and #4) to evaluate its performance in its intended

use.

1.5.3 Research Task #3 — Semantic Information Extraction

This research task aimed to develop an ML-based, semantic information extraction (IE) method
and algorithm for extracting information entities that describe bridge conditions and maintenance

actions from textual bridge inspection reports. This research task included two primary subtasks.

1.5.3.1 Subtask #3.1 — Information Extraction Method Development

IE, within this thesis, is defined as a named entity recognition and classification (NERC) problem.
NERC aims to automatically recognize and classify information entities into predefined entity
classes. As explained in Section 1.5.2.1, the entity classes were predefined based on the analyses

of sample bridge inspection reports, from both bridge engineering and NLP perspectives. The

28



defined entity classes include: bridge element, deficiency, deficiency cause, maintenance action,
maintenance material, numerical measure, numerical measure unit, categorical quantity measure,
categorical severity measure, date, and other. This subtask focused on developing an ontology-
based, semi-supervised conditional random fields (CRF)-based information extraction method and
algorithm for extracting information entities of these entity classes from the inspection reports. It

was composed of four main steps:

1. Baseline algorithm selection: In selecting the baseline algorithm(s), a number of existing rule-
based and ML-based IE methods and algorithms were reviewed and analyzed (see Sections
1.2.2 and 1.5.1). Based on the review and analysis, the supervised CRF algorithm was selected
as the baseline algorithm, because of its state-of-the-art IE/NERC performance. The baseline
algorithm was also used to benchmark the performance of the proposed IE algorithm.

2. IE algorithm development: An ontology-based, semi-supervised CRF-based IE algorithm was
developed. In developing the algorithm, a number of existing semi-supervised ML methods
and algorithms were reviewed and analyzed (see Sections 1.2.2 and 1.5.1). Based on the review
and analysis, the IE algorithm was developed under the semi-supervised learning cluster
assumption: if two data points lay in the same cluster, they are likely to have a similar class
label. This assumption was followed because it is the underlying assumption of most existing
semi-supervised ML approaches.

3. Semantic feature representation: A semantic feature representation was developed to represent
words in sentences for facilitating information extraction. In developing the semantic feature
representation, existing feature representations for supporting IE were reviewed and analyzed
(see Section 1.2.2). The semantic feature representation was then developed to include both

syntactic features (i.e., lexical forms, stems, and POS tags of words) and semantic features
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(i.e., semantic classes of words extracted based on the ontology developed as per Research
Task #2). The semantic feature representation was used by the IE algorithm to learn how to
extract information and to measure semantic similarities between labeled and unlabeled words.
4. Semantic similarity measurement: A semantic similarity (SS) measure was developed to derive
the most likely entity class sequences for unlabeled data/sentences, so that the developed semi-
supervised IE algorithm can learn from both labeled and unlabeled data. In developing the SS
measure, existing semantic similarity measures were reviewed and analyzed (see Section
1.5.1). A heterogeneous information network meta-path-based SS measure was then
developed, because it allows for capturing both corpus-based and knowledge-based semantic
similarities between information entities (i.e., words). Capturing both types of similarities is

essential for an accurate similarity measuring.

1.5.3.2 Subtask #3.2 — Information Extraction Method Evaluation

This subtask aimed to evaluate the performance of the developed IE methods and algorithms (both
the proposed and the baseline). Evaluating the performance aimed to compare the algorithm-
generated extraction results against the gold standard using evaluation metrics. Precision and recall
were selected as the primary evaluation metrics. Precision is the percentage of the total number of
correctly-extracted information entities out of the total number of all extracted entities. Recall is
the percentage of the total number of correctly-extracted entities out of the total number of entities
that should be extracted. F-1 measure, as the weighted harmonic mean of recall and precision, was
also selected. Because the proposed IE method deals with a multi-class classification problem
where each information entity could be labeled with one of the eleven defined entity classes,
average precision, recall, and F-1 measure were also used as evaluation metrics, which are the

arithmetic means of precisions, recalls, and F-1 measures over all the entity classes. The details of
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method implementation, including dataset preparation, are presented in Section 4.2.2. The

evaluation results are presented and discussed in Section 4.3.

1.5.4 Research Task #4 — Semantic Relation Extraction

This research task aimed to develop an ML-based, semantic relation extraction (RE) method and
algorithm for extracting dependency relations from textual bridge inspection reports to link the
extracted, yet isolated, information entities into concepts and to represent the semantically-low

concepts in a semantically-rich structured way. This research task included two primary subtasks.

1.5.4.1 Subtask #4.1 — Relation Extraction Method Development

RE, within this thesis, is defined as a dependency parsing (DP) problem. DP aims to recognize and
extract word-to-word dependency relations from the text for linking words (i.e., information
entities extracted as per Research Task #3) into concepts and for representing the semantically-
low concepts in a semantically-rich structured way. This subtask focused on developing a semantic
neural network ensemble (NNE)-based DP method and algorithm for automatically extracting

dependency relations from the text. It was composed of four main steps:

1. Baseline algorithm selection: In selecting the baseline algorithms, existing rule-based and ML-
based DP methods and algorithms were reviewed and analyzed (see Sections 1.2.3 and 1.5.1).
Based on the review and analysis, three DP algorithms were selected as the baselines for
benchmarking and evaluating the performance of the proposed algorithm, including semantic
single classifier-based algorithms that use a single neural network (NN) or a single support
vector machine (SVM) classifier and a semantic stacked generalization-based algorithm that

use cross-validation partitioning for sampling the configurations.
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2. DP algorithm development: In developing the DP algorithm, existing ensemble learning and
dependency parsing methods and algorithms were reviewed and analyzed (see Sections 1.2.3
and 1.5.1). Based on the review and analysis, NN-based and SVM-based DP algorithms were
selected as the bases for developing the proposed semantic NNE-based DP algorithm. The NN
algorithm was used for developing constituent classifiers for the proposed algorithm. The SVM
algorithm was used for developing a combiner classifier for the proposed algorithm.

3. Semantic distributed feature representation: In developing the semantic distributed feature
representation, existing feature representations for supporting DP were reviewed and analyzed
(see Section 1.2.3). A new semantic distributed feature representation, which uses
configuration-based features, syntactic and semantic text features, and distributed feature
representation, was then developed for representing the configurations. Configurations in the
semantic distributed feature representations were used by the DP algorithms (the proposed and
the baseline) to learn how to extract dependency relations.

4. Similarity-based sampling: In developing the sampling algorithm, the characteristics of the
configuration distributions were analyzed, and existing ensemble learning methods and
algorithms were reviewed and analyzed (see Sections 1.2.3 and 1.5.1). A similarity-based
sampling algorithm was then developed to sample configurations into configuration clusters
(defined based on the characteristics of the configuration distributions and are further
explained in Section 5.2.1.2) in a way that a cluster only contains similarly-distributed and thus
more easily-separable configurations. The similarities between the configurations and the

transition centers were used to sample configurations into the clusters.
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1.5.4.2 Subtask #4.2 — Relation Extraction Method Evaluation

This subtask aimed to evaluate the performance of the developed relation extraction/DP methods
and algorithms (both the proposed and the baseline). The evaluation included algorithm validation
and testing. Algorithm validation was conducted, using the configurations, to: (1) select the
hyperparameter values for the classifiers, (2) select the feature representation, and (3) compare the
performance of the proposed DP algorithm to those of the three baselines. The selection and
comparison were conducted based on configuration-based accuracy, which is the ratio of the
number of correctly-classified configurations to the total number of configurations. Algorithm
testing was conducted, using the testing sentences, to evaluate the performance of the proposed
DP algorithm (with the selected hyperparameters and feature representation) in extracting
dependency relations from bridge inspection reports for representing the extracted information in
a semantically-rich structured way. The performance was measured in terms of precision, recall,
and F-1 measure, at both the semantic information element (SIE) and semantic information set
(SIS) levels. Precision is the ratio of the number of correctly-extracted SIES/SISs to the total
number of extracted SIEs/SISs. Recall is the ratio of the number of correctly-extracted SIEs/SISs
to the total number of SIES/SISs that should be extracted. F-1 measure is the weighted harmonic
mean of precision and recall. A threefold cross-validation was performed to evaluate the
generalizability of the algorithm. The confidence intervals of the mean values for these measures
were also calculated to evaluate the sensitivity of the performance results. These evaluation metrics
were calculated by comparing the algorithm-predicted extractions with the gold standard
annotations. The details of method implementation, including dataset preparation, are presented in

Section 5.2.2. The evaluation results are presented and discussed in Section 5.3.
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1.5.5 Research Task #5 — Unsupervised Data Linking

This research task aimed to develop an ML-based data linking method and algorithm for linking
data records that are extracted from textual bridge inspection reports and refer to the same entity.

This research task included two primary subtasks.

1.5.5.1 Subtask #5.1 — Data Linking Method Development

Data linking, within this thesis, aims to link the data records that are extracted from the reports and
refer to the same entity. For example, the following two records were extracted from the same
bridge inspection report (LaDOTD 2008) and refer to the same entity (i.e., the crack on the girder
web): <box girders webs, crack, several> and <longitudinal steel box girder webs, cracks, many>.
This subtask focused on developing a spectral clustering (SC)-based data linking method and

algorithm for linking the data records. It was composed of four main steps:

1. Development of concept similarity assessment method: A new concept similarity (CS)
assessment method was developed, which assesses the similarities between concepts based on
the similarity degrees of their terms, without the need for pre-existing context information or
taxonomy-based concept mappings. In developing the method, three alternative CS scoring
functions were developed and tested. The most suitable function was selected based on the
testing results.

2. Development of record similarity assessment method: A new sequential record similarity
assessment method was developed, which breaks down the record-level similarity assessment
task into sequences of attribute-level tasks based on similarity assessment dependencies.
Similarity assessment dependencies indicate that: (1) the record similarity assessment should

be conducted as sequences of attribute similarity assessment tasks, where the similarities of
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object concepts should be assessed prior to assessing the similarities of property concepts; and
(2) the similarities of object concepts decide if there is a need to further assess the similarities
of property concepts. For example, because the bridge element (object) concepts in the two
records are already assessed as being different, there is no need to further assess the similarity
of the deficiency (property) concepts: <floor beam splice, flaking rust> and <fascia stringer,
flaking rust>. Accordingly, three types of similarity assessment dependencies for the bridge
report record similarity assessment were defined: element-deficiency, element-deficiency
cause, and element-maintenance action. The method was evaluated based on its effectiveness
in supporting the linking.

Selection of data linking method: SC was selected for linking the records at each attribute level
for five main reasons. First, data linking can be naturally formulated as a graph-partitioning
task, where same/similar records (as vertices) are partitioned into the same subgraph and are
thus linked (as edges). Second, SC does not make a strong assumption on the shapes of target
clusters (Long et al. 2006; Zhang et al. 2008). This is much desired because records do not
necessarily lie in disjoint convex sets. Third, it embeds high-dimensional data into a linear,
low-dimensional space by representing the n X n Laplacian matrix using an n X k matrix
(where k « n). The resulting matrix contains only a few leading eigenvectors of the Laplacian
matrix (Chan et al. 1994; Doyle et al. 2008), and thus avoids the curse of dimensionality (Doyle
et al. 2008). Because of the linearity, the clustering results are always at global maxima. Fourth,
previous studies have shown that it outperforms “traditional” clustering methods, such as k-
means and single linkage (Long et al. 2006; Zhang et al. 2008). Fifth, it can be easily
implemented, because its eigen-decomposition process can be solved efficiently by standard

linear algebra methods (Zhang et al. 2008; Lei and Rinaldo 2015).
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4. Development of improved SC-based data linking method: An improved SC-based data linking
method was proposed, which uses iterative bi-partitioning to automatically identify the optimal
number of target classes (the number of sets containing linked records). The original SC
method requires manually defining this number (Meila 2016), which is challenging because
the number varies across datasets (e.g., across different bridge inspection reports) and the true
number for each dataset is unknown (if without human-annotated gold standards). In addition
to this improvement, the use of unsupervised pre-classification prior to the clustering — to break
down a similarity graph into several small ones — was tested to evaluate if the size reduction
of the graph would improve the clustering performance. Both, the pre-classification and the

iterative bi-partitioning, were evaluated based on their effectiveness in supporting the linking.

1.5.5.2 Subtask #5.2 — Data Linking Method Evaluation

This subtask aimed to evaluate the performance of the developed data linking methods and
algorithms (both the proposed and its variations). The linking results were compared to those in
the gold standard, and were evaluated based on example-based precision, recall, and F-1 measure.
Using the example-based measures, the data linking performance was calculated for each record
in a report, and the overall performance was obtained by calculating the mean performance over
all the records in the report. The example-based precision is the average of the ratio of the number
of correctly-linked records to the total number of linked records across all the records extracted in
a report. The example-based recall is the average of the ratio of the number of correctly-linked
records to the total number of records that should be linked across all the records extracted in a
report. The example-based F-1 measure is the weighted harmonic mean of the example-based

precision and recall. The details of method implementation, including dataset preparation, are
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presented in Sections 6.2.2 and 6.3. The evaluation results are presented and discussed in Section

6.3.

1.5.6 Research Task #6 — Hybrid Data Fusion

This research task aimed to develop a hybrid data fusion method and algorithm for fusing the
linked data records into a unified representation and for, subsequently, integrating the fused data
with the other types of structured data (i.e., NBl and NBE data, as well as traffic and weather data).

This research task included two primary subtasks.

1.5.6.1 Subtask #6.1 — Data Fusion Method Development

Data fusion, within this thesis, aims to fuse the linked data records (extracted from bridge
inspection reports as per Research Tasks #3 and #4, and linked as per Research Task #5) into a
unified representation and to integrate the fused data with the other types of structured data. This
subtask focused on developing hybrid data fusion method and algorithms. The developed method
includes three algorithms: a named entity normalization (NEN) algorithm for fusing concept
names, a numerical data fusion algorithm for fusing numerical deficiency measures, and a data
integration algorithm for integrating the fused report data with the other types of structured data

(i.e., NBl and NBE data as well as traffic and weather data). It was composed of three main steps:

1. NEN algorithm development: In developing the NEN algorithm, existing NEN methods and
algorithms were reviewed and analyzed (see Sections 1.2.5 and 1.5.1). An unsupervised NEN
algorithm was then developed to include a concept ranking function and a concept selection
rule for normalizing concept names. The ranking function considers the corpus statistic score,
term-position score, and term-sequence score of a candidate identifier concept name to

calculate its ranking score. Ranking functions with different combinations of the three types of
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scores were also developed and tested. The most suitable function was selected based on the
testing results. The selection rule considers both the corpus statistics and the lexical patterns
of concept names to select a final candidate identifier name from the top-raking names.
Different combinations of two hyperparameters, which are used by the rule to balance the
abstraction and detailedness of the identifier concept names, were tested. The combination with
the optimal hyperparameter values was selected based on the testing results.

Numerical data fusion algorithm development: In developing the fusion algorithm, existing
numerical data fusion theories, methods, and algorithms were reviewed and analyzed (see
Sections 1.2.5 and 1.5.1). Based on the review and analysis, the fusion algorithm was then
developed to use interval-based representations for representing the fused data, because they
can account for the uncertainty in data and can avoid the exaggerated impact of minor
fluctuations in continuous data on the machine learning-based prediction models. It was
developed to use information entropy as the main fusion criterion for fusing the data which are
complementary, because information entropy can quantify how well an interval-based
representation can represent such data.

Data integration algorithm development: In developing the integration algorithm, the
characteristics of the bridge data (i.e., NBI, NBE, traffic, weather, and fused report data) were
analyzed, and the main integration criteria were then identified. Based on the analysis and the
identified integration criteria, the integration algorithm was then developed to integrate the
fused report data with the structured NBI and NBE data based on the structure identification
number, and to, subsequently, integrate these data with structured traffic and weather data
based on the spatial distances between bridges and traffic/weather monitoring stations. The

detailed implementation of the integration is further explained in Section 8.2.2.2.
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1.5.6.2 Subtask #6.2 — Data Fusion Method Evaluation

This subtask aimed to evaluate the performance of the developed data fusion methods and
algorithms (both the proposed and its variations). Only the normalization and fusion algorithms
need to be evaluated. The integration algorithm does not require evaluation, because the integration
is a straightforward and error-free process. The evaluation included method verification and
validation. Method verification aimed to evaluate the correctness of the fusion method. The NEN
algorithms (the proposed and its variations) were verified based on accuracy, which is the number
of correct identifier concept names out of the total number of identifier concept names. The
developed entropy-based fusion algorithm was verified based on information entropy, which is
equal to zero if the algorithm can stably fuse the same set of data instances into the same interval
in a simulation run; otherwise, it increases from zero. Method validation aimed to evaluate the
performance of the fusion method in supporting its intended use — fusing data extracted from
bridge inspection reports for supporting bridge deterioration prediction (i.e., predicting the future
condition ratings of decks, superstructures, and substructures). Two main types of prediction
models were developed: using fused data and using unfused data. The performances of the
prediction models developed using the fused data were compared to the performances of the
models developed using the unfused data, in order to evaluate the performance of the fusion
method. The performance results were compared based on average accuracy, which is the average
of the ratio of the number of correctly-predicted condition ratings to the total number of ratings
per condition rating category. The details of method implementation, including dataset
preparation, are presented in Section 7.2.2. The evaluation results are presented and discussed in

Section 7.3.
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1.5.7 Research Task #7 — Data-Driven Bridge Deterioration Prediction

This research task aimed to develop a data-driven, deep learning-based bridge deterioration
prediction method and algorithm for learning from integrated bridge data to predict the condition
ratings of the primary bridge components (i.e., decks, superstructures, and substructures) and to
predict the quantities of specific bridge element-level deficiencies. This research task included two

primary subtasks.

1.5.7.1 Subtask #7.1 — Data-Driven Bridge Deterioration Prediction Method Development

This subtask focused on developing a data-driven, deep learning-based prediction method and
algorithm that is able to learn from the integrated bridge data, which are highly dimensional and
imbalanced, for predicting the condition ratings of bridges and the quantities of specific bridge

element-level deficiencies. It was composed of four main steps:

1. Selecting and extending the method for dealing with data dimensionality: In selecting the
method for extension, existing manifold learning (also known as dimensionality reduction)
methods and algorithms were reviewed and analyzed (see Sections 1.2.6 and 1.5.1). Based on
the review and analysis, the isometric feature mapping (Isomap) algorithm (Tenenbaum et al.
2000) was selected for embedding the high-dimensional and sparse bridge data into a low-
dimensional dense space. Because the Isomap algorithm requires assessing the distances
between data instances (which, in this research, include both numerical and categorical
features), a revised Euclidean distance was proposed to allow for the distance assessment of
the data instances with the mixed types of features.

2. Recurrent neural network (RNN) development: An RNN architecture was developed to learn

from the embedded bridge data from past years to predict the conditions of bridges and their

40



elements in the next year. In developing the architecture, three main criteria were followed: (1)
the ability of the architecture to capture the temporal dynamics that connect data over time, (2)
the ability of the architecture to capture the dimensionality and the nonlinearity of data, and
(3) the computational efficiency of the architecture. An RNN architecture, which includes an
input layer, a recurrent layer, a pooling layer, a set of nonlinear dense layers, and an output
layer, was then developed.

Selecting and extending the method for dealing with data imbalance: In selecting the method
for extension, existing data sampling and cost-sensitive learning methods and algorithms were
reviewed and analyzed (see Sections 1.2.6 and 1.5.1). Based on the review and analysis, the
cost-sensitive learning approach was selected, because it does not increase or decrease the size
of a dataset, which helps avoid overfitting and the loss of important data instances. The binary
focal loss function, which is used for conducting cost-sensitive learning, was selected because
it uses a modulating factor to directly adjust the learning cost. Since predicting the condition
ratings of bridges is a multi-class classification problem, the binary focal loss function was
extended into a multi-class focal loss function.

Bridge deterioration prediction algorithm development: A deep learning-based bridge
deterioration prediction algorithm was developed. It combines the Isomap algorithm, the RNN
architecture, and the multi-class focal loss function to predict bridge deterioration. Two
baseline algorithms were also developed to benchmark the performance of the proposed
algorithm in predicting the condition ratings. The first baseline learned from the integrated
multi-source bridge data, using the RNN architecture, but with the cross-entropy loss function.
Unlike the multi-class focal loss function used in the proposed algorithm, the cross-entropy

loss function treats the cost of misclassifications in the minority classes and the cost of
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misclassifications in the majority classes equally and, hence, does not address the imbalance
in the data. The second baseline is same as the first (i.e., used the RNN architecture with the
cross-entropy loss), but only learned from the NBI data. The second baseline algorithm is
similar to existing data-driven bridge deterioration prediction methods/algorithms, which
mostly focus on learning from single-source bridge inventory data (e.g., NBI data or similar
inventory data collected by different countries), without addressing data imbalance. Only the
proposed algorithm was used for predicting the quantities of deficiencies for two main reasons.
First, to the author’s best knowledge, there is no existing data-driven prediction
method/algorithm that is able to predict the detailed quantity of a specific bridge element-level
deficiency, which provides no benchmark for direct comparison. Second, learning from NBI
data solely is not applicable in this case, since they do not include such detailed data about

bridge element-level deficiencies.

1.5.7.2 Subtask #7.2 — Data-Driven Bridge Deterioration Prediction Method Evaluation

This subtask aimed to evaluate the performance of the developed bridge deterioration prediction
methods and algorithms (both the proposed and the baseline). The following two metrics were
used for evaluating the performance of predicting the condition ratings: macro-precision and
macro-recall. Macro-precision and macro-recall measure the overall performance using the mean
of the precision and recall for each condition rating category, respectively. Precision is the ratio of
the number of correctly-predicted condition ratings to the total number of predicted ratings for a
category. Recall is the ratio of the number of correctly-predicted condition ratings to the total
number of ratings that should be predicted for a category. The following three metrics were used
for evaluating the performance of predicting the deficiency quantities: root mean square error

(RMSE), coefficient of variation (CV), and coefficient of determination (R?). RMSE measures, on
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average, how concentrated the predicted data are around the line that best fits the actual data. CV
measures the extent to which the overall prediction error varies with respect to the mean of the
actual data. R?> measures the percentage of the variance of the actual data explained by the
prediction model. The details of method implementation, including dataset preparation, are

presented in Section 8.2.2. The evaluation results are presented and discussed in Section 8.3.

1.6 Contribution to the Body of Knowledge

1.6.1 Intellectual Merit

This thesis research offers a novel bridge data analytics framework to allow for the extraction,
integration, and analysis of both structured and unstructured data from multiple sources for
enhanced bridge deterioration prediction. It contributes to the body of knowledge in seven primary

ways.

e First, this research offers a new bridge deterioration knowledge ontology. The ontology
advances the knowledge modeling efforts in the bridge domain by sufficiently capturing the
bridge deterioration knowledge (about bridge element, deficiency, deficiency cause,
maintenance action, and their related attributes) in terms of breadth, depth, classifications, and
multimodality views. The ontology has shown effectiveness in adequately supporting semantic
information and relation extraction from bridge inspection reports and, hence, is expected to
be able to support similar text analytics tasks in the bridge domain.

e Second, this research offers a new ontology-based, semi-supervised conditional random fields-
based information extraction method for extracting information that describes bridge
conditions and maintenance actions from bridge inspection reports. The method offers a way

for semantically and simultaneously capturing the dependency structures as well as the
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distributions of a small set of fixed labeled data and a large set of unlabeled data in a semi-
supervised yet concave objective function for machine learning. Its capability of dynamically
adapting itself to unseen instances by further learning from the unlabeled data and its concavity
nature allow the needed information extraction to be conducted effectively and in an efficient
way that requires less human effort.

Third, this research offers a new semantic neural network ensemble-based relation extraction
method for extracting dependency relations from bridge inspection reports to represent the
unstructured text in a semantically-rich structured way. The method offers a new way for
ensemble learning, which allows each of the multiple constituent neural network classifiers to
only learn from similarly-distributed and thus more easily-separable data instances (sampled
by the proposed similarity-based sampling method), in order to better capture the complex
distributions of all the data instances collectively for supporting more effective ensemble
learning. This new ensemble learning approach, compared to the traditional approaches that
use simple, presumed distributions for data sampling, allows the extraction of dependency
relations from highly technical, domain-specific text (such as that in textual inspection reports)
to be conducted more effectively.

Fourth, this research offers a new unsupervised data linking method for linking data records
that are extracted from the reports and refer to the same entity. The method leverages improved
spectral clustering to analyze the similarities between data instances for effectively linking data
in a completely unsupervised manner, without human involvement. It offers new knowledge
on how to assess concept similarity in the absence of both contextual information and
taxonomy-based concept mappings, how to assess record similarity in the presence of

dependencies among attribute similarity assessments, how to automatically identify the
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optimal number of target class without using a manually identified number, and how to conduct
data linking in an unsupervised way without forming transitive closures.

Fifth, this research offers a new hybrid data fusion method for fusing the linked data extracted
from bridge inspection reports into a unified representation. The named entity normalization
algorithm of the method uses corpus statistics and lexical patterns to fuse concept names, which
offers new knowledge on how to fuse complex concept names that vary in terms of both surface
forms and abstraction levels into identifier concept names that balance the abstraction and
detailedness, without human involvement. The numerical data fusion algorithm of the method
uses data discretization and information entropy to fuse numerical deficiency measures into a
single representative representation, which offers new knowledge on how to fuse
complementary data in an objective way.

Sixth, this research offers a new deep learning-based prediction method for learning from
integrated bridge data from multiple sources for enhanced bridge deterioration prediction. The
proposed method uses a number of machine (deep) learning techniques to support such a
challenging prediction task, including deep learning, manifold learning, and cost-sensitive
learning. It, thus, offers new knowledge on how to effectively learn from data that are highly
dimensional and imbalanced for better predicting bridge deterioration.

Seventh, this research offers a novel bridge data analytics framework, which allows for using
multi-source heterogeneous data for enhanced bridge deterioration prediction — that is not only
able to predict the condition ratings of bridges with improved performance, but also able to
predict the quantities of specific bridge element-level deficiencies. On one hand, this research
goes beyond the current state of the art in data analytics, where data in heterogeneous formats

(i.e., structured and unstructured) are mostly analyzed separately. On the other hand, it goes
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beyond the current state of the art in data-driven bridge deterioration prediction, where existing
methods mostly use abstract bridge inventory data to predict — at a limited performance level

— the condition ratings of bridges.

More detailed discussions of the intellectual merit of each of the aforementioned methods and

contribution to the body of knowledge are provided in Chapter 9.

1.6.2 Broader Impacts

The research outcomes could bring the following significant benefits to the society at large:

Promoting the use of unstructured textual data in the bridge domain: Unstructured textual

bridge data, such as bridge inspection reports, include a large amount of detailed information
describing bridge conditions and maintenance actions — much beyond what can be found in
structured bridge data, such as the NBI data. Yet, due the challenges in analyzing textual data,
the wealth of unstructured textual bridge data is not being fully harnessed. Using the proposed
information and relation extraction methods, data users in the bridge domain (e.g., maintenance
decision makers) could gain improved access to the rich data/information buried in these
unstructured data sources. One important benefit of using textual bridge data, which has been
demonstrated in this research, lies in extracting information from bridge inspection reports and
using it in machine learning for improved performance of bridge deterioration prediction.
Many more benefits can be expected when these methods are applied to other types of textual
data for supporting data-driven applications in the bridge domain (e.g., extracting information
from maintenance reports for learning cost-effective maintenance strategies).

Enabling integrative analysis of both structured and unstructured data in the bridge domain: A

large amount of structured and unstructured data are becoming increasingly available in the
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bridge domain. However, these bridge data are being used separately. The utilization of the
proposed data linking and fusion methods offers opportunities to using structured and
unstructured bridge data in integration. The benefit of the integrative use of such data has been
manifested in this research in improving the performance of data-driven bridge deterioration
prediction. Potential broader benefits are expected, if the methods are applied to integrating all
types of data in the domain (e.g., not only integrating NBI data with textual data, but also with
health monitoring data, inspection images, etc.). In that case, we could have a unified
representation of all the heterogeneous data that covers various aspects of the nation’s bridge
assets (e.g., bridge condition, serviceability, functionality, etc.) — fully unleashing the power
of the data to facilitate bridge asset management.

Enabling safer, efficient, and cost-effective maintenance of bridges: U.S. bridges only received

a grade of C+ (mediocre); 9.1% of the nation’s bridges are structurally deficient and 13.6% of
them are functionally obsolete (ASCE 2017). It is estimated that the average annual failure rate
of the nation’s bridges is between 87 and 222, with an expected value of 128 (Cook et al. 2013).
In order to eliminate the nation’s deficient bridge backlog by 2028, a $20.5 billion annual
investment in the construction and maintenance of bridges is needed, while only $12.8 billion
is being invested currently (ASCE 2013). The proposed framework, through the extraction,
integration, and analysis of both structured and unstructured bridge data from multiple sources,
allows decision makers in bridge management to better predict the future deterioration of
bridges — offering future opportunities to better understand where to make the best maintenance
investments and why those decisions are made, resulting in decisions that are both safe and

cost-effective.
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e Supporting data analytics applications in the construction and civil infrastructure domain: One

direct benefit of the proposed data analytics framework lies in offering new knowledge on how
structured and unstructured data can be analyzed in integration for improving the performance
of data-driven applications. Such knowledge could be directly transferred to supporting the
development of data analytics methods for enhancing deterioration prediction and maintenance
decision making for other types of infrastructure (e.g., highway and dam). In that case, the new
knowledge offered by this research would benefit the society in better restoring our
deteriorating infrastructures. On the other hand, the proposed data analytics framework could
be extended to support data analytics for many other applications and purposes in the broader
construction and civil infrastructure domain, such as analyzing construction daily reports for
supporting predictive project control, analyzing social networking service data for supporting

smart community development, etc.
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CHAPTER 2 - LITERATURE REVIEW

This chapter presents a summary of literature review on semantic modeling and ontology,
information extraction, relation extraction, data linking, data fusion, and data-driven bridge

deterioration prediction.

2.1 Semantic Modeling and Ontology

2.1.1 Ontology Development Methodologies

Several ontology development methodologies have been well-established within the ontological
engineering domain, such as the Toronto Virtual Enterprise (TOVE) Methodology (Fox and
Gruninger 1998), SENSUS (Swartout et al. 1996), Methontology (Fernandez-Lopez et al. 1997),
On-To-Knowledge Methodology (Fensel et al. 2000), and Ontology Development 101 (Noy and
McGuinness 2001). Within the civil infrastructure and construction domain, the most notable
ontology development methodologies include the methodology by El-Gohary and El-Diraby
(2010). The ontology development activities of the above-mentioned methodologies can be
generalized into to a process, including: (1) specification, (2) conceptualization, (3) formalization,

and (4) implementation (Cristani and Cuel 2005; Sure et al. 2006).

2.1.2 Coverage of Bridge Deterioration Knowledge in Existing Ontologies

Ontologies have been widely developed and applied for knowledge sharing and reuse (Fensel et
al. 2000). From an ontology specification perspective, ontologies can be classified into two
categories: lightweight and heavyweight (Wong et al. 2012). Lightweight ontologies are presented
as glossaries, thesaurus, or taxonomies in which knowledge is represented by a set of controlled
vocabularies with or without taxonomy and partonomy structures. Heavyweight ontologies make

further efforts towards representing knowledge with richer and more formal relationships and
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axioms defined for controlled vocabularies. Following this classification, the review of ontologies
that are pertinent to bridge deterioration knowledge is presented in Table 2.1. Kubota and Mikami
(2013), Ulieru and Madani (2006), and Halfawy et al. (2005) proposed ontologies that focus on
supporting highway bridge design, monitoring, and maintenance. Bien et al. (2007) developed a
railway bridge degradation mechanism ontology. El-Diraby and Osman (2011), Osman and El-
Diraby (2006), and EI-Diraby and Kashif (2005) focused on modeling the design and construction
knowledge within the civil infrastructure domain. EI-Gohary and El-Diraby (2010) presented a
domain ontology for processes in the civil infrastructure and construction domain.
BuildingSMART (2014) developed an IFC-Bridge, as an extension to the industry foundation class
(IFC), for representing knowledge about bridge elements. Along with the abovementioned
heavyweight ontologies, many organizations have also developed and are maintaining several
lightweight ontologies, such as the AASHTO Transportation Glossary (AASHTO 2009) and the

Transportation Research Thesaurus (TRB 2015).

Table 2.1. Review of relevant ontologies in the construction and civil infrastructure domain.

Bridge deterioration knowledge concept
Sources Bridge element | Bridge deficiency | Bridge deficiency | Bridge maintenance
concept concept cause concept action concept
BuildingSMART (2013) XX o 0] 0
Kubota and Mikami (2013) X O O O
El-Diraby and Osman (2011) O O O 0]
£, | El-Gohary and EI-Diraby (2010) 0 0 0 0
qi; Bien et al. (2007) 0o X X o
% Ulieru and Madani (2006) X X 0] 0]
Osman and El-Diraby (2006) 0] 0] 0] O
El-Diraby and Kashif (2005) X o o O
Halfawy et al. (2005) XX 0] 0] 0]
= | AASHTO (2009) X X o] o]
g NCHRP (2011) o) o) o) XX
<, | BTS (2015) o) o) o) o]
= | TRB (2015) X X X 0

O = Not cover; X = Rarely cover; XX = Moderately cover.
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2.2 Information Extraction

Information extraction (IE) is an automatic process that aims to recognize and extract information
of a particular class of entities, relations, or events from natural language text (Hobbs and Riloff
2010; Wimalasuriya and Dou 2010). Existing IE methods can be classified into two primary
categories: rule-based methods and ML-based methods (Hobbs and Riloff 2010; Sarawagi 2008;

Wimalasuriya and Dou 2010).

2.2.1 Rule-Based Information Extraction

Rule-based IE methods rely on hand-crafted pattern-matching-based rules for guiding the
recognition and extraction of target information from unstructured textual data (Nadeau and Sekine
2007; Sarawagi 2008). The pattern-matching-based rules are constructed with syntactic and/or
semantic features of text. Outside of the construction domain, many rule-based IE techniques have
been proposed (e.g., Appelt et al. 1993; Corro and Gemulla 2013; Elsebai et al. 2009; Fader et al.
2011; Lehnertetal. 1991; Xu et al. 2010). In the construction domain, a limited number of research
efforts have focused on developing rule-based IE methods to support various domain-specific
tasks. For example, Zhang and EI-Gohary (2015) and Zhou and El-Gohary (2015) developed
pattern-matching-based rules with both syntactic and semantic features to extract building
regulatory information for automated compliance checking. Al Qady and Kandil (2010) developed

IE rules with syntactic features to extract concepts from construction contracts.

2.2.2 Machine Learning-Based Information Extraction

ML-based IE methods utilize ML algorithms to automate the rule induction process for IE from

text (Nadeau and Sekine 2007; Sarawagi 2008). ML-based IE methods differ from each other
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primarily based on the types of ML algorithms used. ML-based IE methods are supervised, semi-

supervised, or unsupervised.

2.2.2.1 Supervised Machine Learning-Based Information Extraction

Supervised ML-based IE methods learn from a large set of independent and identically distributed
labeled data to recognize and extract information from unlabeled data. A number of supervised
ML algorithms have been proposed to support IE, including decision trees (Sekine et al. 1998),
support vector machines (Isozaki and Kazawa 2002), structural support vector machines (Tang et
al. 2012), hidden Markov models (Bikel et al. 1997), maximum-entropy Markov models
(Borthwick et al. 1998), and conditional random fields (CRF) (Lafferty et al. 2001). Among these
IE methods, CRF has been widely recognized for supporting IE. This is because: (1) CRF is a
graphical model that offers a natural formalism for representing the dependency structures of
natural language (Sutton and McCallum 2006); (2) CRF is a discriminative model that captures
conditional probabilities to allow for the exploration of a rich set of interdependent features (Sutton
and McCallum 2006); and (3) CRF models conditional probabilities globally to prevent the label

bias issues (Lafferty et al. 2001).

2.2.2.2 Semi-Supervised Machine Learning-Based Information Extraction

Semi-supervised ML-based IE methods learn from both labeled and unlabeled data to extract
information from unlabeled data. Existing semi-supervised ML-based IE methods have been
proposed using bootstrapping strategy (e.g., Jiang and Zhai 2007; Liao and VVeeramachaneni 2009;
Liu et al. 2011; Wu et al. 2009), information-theoretic regularization (e.g., Jiao et al. 2006; Mann
and McCallum 2007), or robust representations of unlabeled data as inputs (e.g., Guo et al. 2009;
Miller et al. 2004). The bootstrapping strategy relies on an iterative process of adding confidently

extracted unlabeled data and re-training a ML model based on the new dataset (Liu et al. 2011).
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Thus, it might be prone to noises and requires heuristic determination of stopping criteria (Kuksa
and Qi 2010). Information-theoretic regularization aims to regularize learning functions of labeled
data through minimizing the entropy of unlabeled data. The regularization process results in a non-
concave objective function (Jiao et al. 2006). Concavity is especially important for ML-based IE;
otherwise, IE performance could be negatively affected by suboptimal initializations and only
reaching to local maxima. Robust representations of unlabeled data are achieved under the cluster
assumption, which assumes that if two data points lay in the same cluster, they are likely to have
a similar class label (Mann and McCallum 2007). Utilizing the cluster assumption has been proved
to be an effective way for developing semi-supervised ML-based IE methods (e.g., Chen and Wang

2011; Mallapragada et al. 2009).

2.2.2.3 Unsupervised Machine Learning-Based Information Extraction

Unsupervised ML-based IE methods learn how each of the unlabeled data should be labeled
without learning from labeled data. In the absence of labeled data, some unsupervised ML-based
IE methods attempted to group similar entities into a cluster merely based on similarities measured
from unlabeled text (e.g., Alfonseca and Manandhar 2002; Etzioni et al. 2005; Nadeau et al. 2006;
Shinyama and Sekine 2004). Others also proposed to utilize topic modeling methods, such as
probabilistic latent semantic indexing (Hofmann 1999) and latent Dirichlet allocation (Blei et al.
2003), in order to dynamically cluster similar entities (Guo et al. 2009). Because of the existence
of statistical dependencies between entities in natural language (Sutton and McCallum 2006),
without formally representing and utilizing such dependencies revealed by labeled data,

unsupervised ML-based IE methods might be inclined to generate incoherent clusters (Chen 2016).
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2.2.3 Semantic Similarity Measures

In the natural language processing (NLP) community, many semantic similarity (SS) measures
have been proposed to measure similarities between language units. SS measures can be
categorized into: corpus-based and knowledge-based. Corpus-based SS measures, also known as
distributional SS measures, quantify the degree of semantic similarity between language units
based on their co-occurrences and their linguistic contexts derived from corpus (Harispe et al.
2015; Mihalcea et al. 2006). Existing corpus-based approaches include pointwise mutual
information (PMI) (Turney 2001) and latent semantic analysis (LSA) (Landauer et al. 1998), which
measure SS between language units in their lexical forms. Corpus-based similarity measuring
performance has been improved by also considering the corresponding stems and part-of-speech
(POS) tags of information units, in addition to their lexical forms, and by conducting stop-word
removal (Harispe et al. 2015; Xie and Liu 2008). Knowledge-based SS measures quantify the
degree of semantic similarity between language units according to formal expressions of
knowledge, which explicitly define how the information units in comparison must be understood
(Harispe et al. 2015; Mihalcea et al. 2006). Knowledge-based SS measures strongly depend on
ontologies as knowledge sources (Harispe et al. 2015). Existing knowledge-based approaches
include shortest-path approach (Leacock and Chodorow 1998), random-walk approach (Muller et
al. 2006), depth-based approach (Wu and Palmer 1994), feature-based approach (Bulskov et al.

2002), and information content approach (Resnik 1995), etc.

2.3 Relation Extraction

2.3.1 Transition-Based Dependency Parsing Model

Dependency parsing (DP) performs a grammatical structure analysis of a sentence to extract

dependency relations between “head” words and their corresponding “modifier” words (Buchholz
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and Marsi 2006; Chen and Zhang 2015). Existing DP models can be categorized into: graph-based
and transition-based (McDonald and Nivre 2007). A graph-based model treats DP as a searching
task in which subgraphs are factored, so that the model can search over the space of valid subgraphs
to generate the most-likely dependency graph (Chen and Zhang 2015; Nivre and McDonald 2008)
(aset of dependency relations for a sentence). A transition-based model treats DP as a classification
task, in which a set of configurations generated from an initial configuration are sequentially
classified into transition types (indicating word-to-word dependency relations) for extracting
dependency relations in a sentence (Chen and Manning 2014; Nivre and McDonald 2008).
Transition-based DP models have gained considerable popularity because of their computational
efficiency and accurate performance (Chen and Manning 2014; Dyer et al. 2015; Weiss et al. 2015;

Choi and McCallum 2013).

The transition-based DP approach was introduced by Nivre (2003). As illustrated in Table 2.2, in
the transition-based DP model, a configuration, C = (o, B, A), is composed of a stack (o), a
buffer (B), and a set of dependency arcs/relations (4). The stack, ¢ = |[o;, ... 05, 0;], where i > 0,
is a data structure that stores partially-parsed words of an input sentence. The buffer, B =
[,81, By ..., Bj], where j > 0, is a data structure that stores the words of the sentence that need to
be parsed. The set A is a data structure that stores word pairs that have been parsed with
dependency relations. The initial configuration of the input sentence is defined as € =
(6 = [Root], B = [B1, Bz -, Brn], A = @), where Root is a dummy node at the highest level of a
dependency graph and S;, B, ..., B, correspond to the words of the sentence (where n is the length
of the sentence). The terminal configuration of the sentence is defined as € = (o = [Root],B =
@,A), where A contains the parsed dependency relations of the sentence. From the initial

configuration, the transition-based model predicts a transition type for the current configuration
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and generates the next configuration based on the current configuration and the predicted transition
type. This process repeats until some terminal configuration has been reached, where the sentence
has been completely parsed. Three transition types are defined in the transition-based DP model,

including:

e Shift: moving B, from the buffer B to the stack a, if |B| = 1.

e Left-arc: adding an arc between o, and o,, where g is a head word and g, is a modifier word,
and removing o, from the stack o, if |a| = 2.

e Right-arc: adding an arc between o, and a,, where o, is a head word and o; is a modifier word,

and removing o, from the stack a, if |a| = 2.

Table 2.2. Example of a transition-based dependency parsing model.

Transition® Stack Buffer

Arc
(head, modifier)

[Root]  [The bottom chord connection of truss has severe crevice corrosion]

S [Root The]  [bottom chord connection of truss has severe crevice corrosion]

S [Root The bottom]  [chord connection of truss has severe crevice corrosion]

S [Root The bottom chord]  [connection of truss has severe crevice corrosion]

S [Root The bottom chord connection]  [of truss has severe crevice corrosion]

L [Root The bottom connection]  [of truss has severe crevice corrosion] (connection, chord)
L [Root The connection]  [of truss has severe crevice corrosion] (connection, bottom)
L [Root connection]  [of truss has severe crevice corrosion] (connection, The)
S [Root connection of]  [truss has severe crevice corrosion]

S [Root connection of truss]  [has severe crevice corrosion]

L [Root connection truss]  [has severe crevice corrosion] (truss, of)

R [Root connection]  [has severe crevice corrosion] (connection, truss)
S [Root connection has]  [severe crevice corrosion]

L [Root has]  [severe crevice corrosion] (has, connection)

S [Root has severe]  [crevice corrosion]

S [Root has severe crevice]  [corrosion]

S [Root has severe crevice corrosion]  []

L [Root has severe corrosion]  [] (corrosion, crevice)
L [Root has corrosion]  [] (corrosion, severe)
R [Root has]  [] (has, corrosion)

R [Root] T[] (Root, has)

S = shift; L = left arch; R = right arch.
2.3.2 Machine Learning-Based Dependency Parsing Methods

Early DP research efforts (e.g., Kurohashi and Nagao 1994; Tapanainen and Jarvinen 1997;
Oflazer 2003; Elworthy 2000) have focused on developing rule-based DP methods. Rule-based

DP methods utilize manually-developed parsing rules to extract dependency relations. More
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recently, machine learning-based DP methods have been proposed for automatically classifying
configurations into transition types for dependency relation extraction. Some of these efforts have
focused on developing probabilistic models (e.g., Eisner 1996; Collins 2003; Samuelsson 2000;
Wang and Harper 2004), while others have proposed discriminative approaches with support
vector machines (e.g., Kudo and Matsumoto 2003; Yamada and Matsumoto 2003), beam search-
based perceptron (e.g., Zhang and Clark 2008; Zhang Nivre 2011), dynamic programming-based
perceptron (e.g., Huang and Sagae 2010), or neural networks (e.g., Henderson 2004; Mayberry

and Miikkulainen 2005).

In recent years, there has been an increasing number of research efforts focusing on NN-based DP
methods (e.g., Chen and Manning 2014; Dyer et al. 2015; Weiss et al. 2015; Alberti et al. 2015;
Zhou et al. 2015; Yazdani and Henderson 2015; Cheng et al. 2016; Kiperwasser and Goldberg
2016; Kuncoro et al. 2017; Hashinmoto et al. 2017; Dozat and Manning 2017; Nguyen et al. 2017;
Strubell and McCallum 2017; Babbar and Scholkopf 2017). Neural networks have gained
popularity in the area of DP for two main reasons. First, as opposed to conventional machine
learning-based DP methods (which rely heavily on hand-crafted indicator features), NN-based DP
methods can automatically learn the most-useful feature conjunctions and high-order features,
which helps avoid feature sparsity and incompleteness issues (Chen and Manning 2014, Pei et al.
2015). Second, DP can benefit from neural networks by learning from NN-based distributed
feature representations. Distributed feature representations (also known as word embedding)
transform text features [e.g., words and part-of-speech (POS) tags] into real-valued, continuous,
and dense vectors, and embed semantically-similar features nearby each other in the vector space
(Mikolov et al. 2013). Such representations result in a compact dense feature space, which leads

to more efficient, compact, and accurate classifier learning (Chen and Manning 2014). Recent
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efforts (e.g., Chen and Manning 2014; Bansal et al. 2014; Guo et al. 2015) have demonstrated that,
compared to learning from traditional one-hot feature representations, learning from NN-based

distributed feature representations can improve DP performance.

Chen and Manning (2014) is one the first efforts that incorporated neural networks and deep
learning into a transition-based DP model (Dozat and Manning 207). They developed a simple,
yet relatively accurate and computationally efficient, three-layer feedforward NN architecture for
supporting general-domain DP applications. Many NN-based DP methods that used more complex
NN architectures have since been developed to further improve the parsing accuracy, such as the
recurrent neural network (Kuncoro et al. 2017), the long short-term memory (LSTM) (Kiperwasser
and Goldberg 2016), and the bi-LSTM with deep biaffine attention (Dozat and Manning 2017).
Compared to the three-layer feedforward NN architecture, these complex architectures were able
to marginally improve the parsing accuracy, but at the expense of computational efficiency (see

Chen and Manning 2014; Dozat and Manning 2017).

2.3.3 Ensemble Machine Learning Methods

Ensemble machine learning is a learning paradigm that utilizes multiple classifiers to obtain
improved performance (reduced variability and increased generalization) that cannot be obtained
by any of the constituent classifiers alone (Zhang and Ma 2012; Sun 2013). The most well-
established and prominent ensemble learning algorithms include bagging, boosting, stacked
generalization, and mixture of experts (Zhang and Ma 2012; Xu et al. 2013). Bagging trains each
of the multiple classifiers with a certain percent of instances that are randomly drawn with
replacement from the entire training set (Breiman 1996). Boosting sequentially trains a set of
classifiers, each of which focuses on learning from the instances that were misclassified by its

preceding classifier (Schapire 1990). Adaptive boosting, also referred to as AdaBoost, is a widely
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known boosting algorithm. It sequentially trains a set of classifiers, during which the initial
classifier is trained with instances sampled based on a uniform distribution and each of the
subsequent classifiers is trained with instances sampled according to a weighted distribution,
where the weight is updated based on the distribution and training errors of its preceding classifier
(Freund and Schapire 1995). Stacked generalization first trains a set of tier-1 classifiers with
training instances sampled using cross-validation partitioning, and then trains a tier-2 combiner
classifier using the outputs of the tier-1 classifiers as input (Wolper 1992). The combiner classifier
aims to learn the misclassification and/or classification patterns to correct the misclassifications
generated by the tier-1 classifiers. A mixture of experts trains a set of classifiers (experts) and a
gating network that allocates an individual instance to one or several classifiers (Jacobs et al.
1991). The outputs of the selected classifier(s) are then combined through a linear rule to yield a

final classification decision for the instance.

2.4 Data Linking

Data linking aims to identify the records — which could be syntactically same, similar, or different
— in the same or different data sources that refer to the same entity (i.e., that carries same/similar
semantic meaning) (Singla and Domingos 2006; Elmagarmid et al. 2007). Existing data linking

methods can be classified into two categories: classification-based and clustering-based.

2.4.1 Machin Learning-Based Data Linking Methods

2.4.1.1 Classification-Based Data Linking Methods

Classification-based methods consider data linking as a binary classification task, which aims to
classify the attribute similarity vectors of record pairs into “match” and “non-match” (Christen

2012; Singla and Domingos 2006), where a “match” means that the records should be linked. The
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linking methods in this category follow the fundamental principle of the Fellegi-Sunter
probabilistic model: record pairs are assumed to be independent and identically distributed, and
linking decisions are made independently for each pair (Fellegi and Sunter 1969). The model
estimates the m- and u-probabilities (the attribute agreement weights for matches and non-
matches) based on training data (i.e., record pairs). For classification, these probabilities are
aggregated based on the attribute agreement conditions of the record pair. Besides this probabilistic
method, many rule-, distance-, and machine learning (ML)-based linking methods have also been
developed. Rule-based methods rely on human-developed classification rules to classify record
pairs. For example, in Jiang et al. (2014), a set of rules were developed to link bibliographic data.
Distance-based methods compute a distance between a pair of records and compare the distance
with a pre-defined threshold value to decide if they are a match or not. For example, in Dey et al.
(1998), a weighted distance-based linking method was developed, where attribute weights were
solicited from users. ML-based methods learn attribute weights from training examples to capture
the linking patterns for classifying record pairs (Christen 2012). A number of supervised ML
classification algorithms have been utilized in this regard, including decision trees (Cochinwala et
al. 2001; Elfeky et al. 2002), support vector machines (Bilenko and Mooney 2003; Christen 2008),
conditional random fields (Gupta and Sarawagi 2009), nearest neighbors (Christen 2008; He et al.

2010), logistic regression (Christen 2008), and random forest (Kejriwal and Miranker 2015).

2.4.1.2 Clustering-Based Data Linking Methods

Clustering-based methods consider data linking as a clustering task, which aims to cluster the
records that refer to the same entity into the same cluster (Christen 2012). A number of studies
have utilized different clustering algorithms for linking records. For example, a hierarchical

clustering algorithm was utilized in (Bilenko et al. 2005) to link online product information.
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Correlation clustering algorithms were utilized in many studies (e.g., Soon et al. 2006; Ng and
Cardie 2002; Ailon et al. 2008; Elsner and Charniak 2008; Elsner et al. 2000) for supporting
various data linking applications. In Hassanzadeh et al. (2009), a number of commonly-used
clustering algorithms were implemented, including single-pass clustering algorithms, star
clustering, Ricochet family of algorithms, cut clustering, articulation point clustering, Markov
clustering, and correlation clustering. Some studies also used clustering algorithms as a post-
processing step after classification to deal with transitive closure problems. In these studies,
records are represented in graphs, where nodes represent the records and edges represent the links
between them. An edge exists between two records, only if they were identified as a match in the
classification step. Clustering algorithms, such as CENTER (Haveliwala et al. 2009) and MERGE-
CENTER (Hassanzadeh and Miller 2009), are then utilized to partition the graphs into subgraphs

to correct the incorrectly-linked records.

2.4.2 Term Similarity Assessment

Term similarity (TS) scoring functions measure to what degree two terms are similar. The
commonly-used TS scoring functions are based on either exact comparisons, distances (including
edit-, bag-, compression-, syllable alignment-, Jaro-, and Winkler-distances), longest common
substrings/sequences, or N-grams. The exact comparison function considers two terms as being
similar only if they are exactly the same; otherwise, they are considered completely different. The
edit-distance functions, including the Levenshtein (Levenshtein 1966) and Smith-Waterman
(Smith and Waterman 1981) edit distances, measure the similarity between two terms based on
the minimum number of edit operations (e.g., insertion, deletion, and substitution) needed to
convert one term into the other. The bag-distance function measures the similarity between two

terms based on the maximum number of distinct letters in them (Bartolini et al. 2002). The
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compression-distance function is based on the Kolmogorov complexity theory, under which two
terms are similar if one can be significantly compressed given the information of the other
(Cilibrasi and Vitanyi 2005). The syllable alignment-distance function transforms terms into
sequences of syllables based on a set of transformation rules, and measures the similarity between
two terms by computing the edit distance between their syllable sequences (Gong and Chan 2006).
The longest common substring (LCS) function measures the similarity based on the length of the
LCS (the largest number of the same and consecutive letters) in the two terms (Friedman and Sideli
1992). The longest common subsequence (sequence matching) function measures the similarity
based on the length of the longest common subsequence (the largest number of the same but not
necessarily consecutive letters) in the terms (Bergroth et al. 2000). A variation of the LCS function,
the ontology LCS function (which was initially used for ontology alignment), also considers the
effect of different substrings on similarity assessment (Stoilos et al. 2005). The N-gram function
measures the similarity based on the number of common N-grams (e.g., unigrams, bigrams, and
trigrams) in the two terms (Christen 2012; Singla and Domingos 2006; Dey et al. 1998). Variations
of the N-gram function include the skip-bigram function (Keskustalo et al. 2003), which considers
non-adjacent letters as bigrams, and the positional N-gram function (Keskustalo et al. 2003), which
additionally considers the positions of the N-grams. The Jaro-distance function combines the N-
gram and edit-distance functions to measure term similarities (Winker and Thibaudeau 1991). The
Winkler-distance function (Winkler and Thibaudeau 1991) is similar to the Jaro function, but also
considers the effect of common prefixes. For more detailed explanations of these functions,

including their equations, the readers are referred to (Christen 2012) and (Elmagarmid et al. 2007).
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2.4.3 Concept Similarity Assessment

Concept similarity (CS) scoring functions measure to what degree two concepts are similar. Many
semantic similarity (SS) indicators have been developed in this regard, including corpus-based and
knowledge-based indicators. Corpus-based SS indicators assess the similarities between concepts
based on their cooccurrence rates and their linguistic contexts derived from a text corpus (Harispe
etal. 2015; Mihalcea et al. 2006). These indicators require that the concepts should have contextual
information (e.g., the preceding and succeeding terms in which the concepts in comparison are
embedded). Existing corpus-based indicators include pointwise mutual information (PMI) (Turney
2001) and latent semantic analysis (LSA) (Landauer et al. 1998). Knowledge-based SS indicators
assess concept similarities based on the formal expressions of knowledge that explicitly define
how the concepts in comparison must be understood (Harispe et al. 2015; Mihalcea et al. 2006).
These indicators strongly depend on ontologies as knowledge sources (Harispe et al. 2015). They
require the concepts to be mapped to an ontology taxonomy prior to similarity assessment. Existing
knowledge-based indicators include the shortest path similarity (Leacock and Chodorow 1998),
the random walk similarity (Muller et al. 2006), and the information content-based similarity

(Resnik 1995).

2.4.4 Spectral Clustering Methods

Spectral clustering (SC) is a family of the graph partitioning theory-based methods. It aims to find
a set of optimal cuts to partition a similarity graph into subgraphs, such that the edges in the same
subgraph have higher weights and the edges in different subgraphs have lower weights (Meila
2016; Long et al. 2006; Von Luxburg 2007). In SC, data points V = {1, ...,n} are represented in
a similarity graph, ¢ = (V, E), where V; is a vertex (data point) and E;; is an edge between V; and

V;. The graph is undirected and weighted, where each edge carries a symmetric, non-negative
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similarity S;; (the similarity between the vertices at the two sides of an edge). Then, SC performs
eigen-decomposition on a Laplacian matrix L (a square matrix representing the graph, whose
elements are derived from an affinity matrix, A, that is same as S), and clusters the data points
based on a new matrix that is constructed by the first few leading eigenvectors of L (Lei and
Rinaldo 2015). The most-commonly used SC methods include unnormalized (Mohar 1997),
normalized (Shi and Malik 2000), and Ng-Jordan-Weiss (NJW) normalized SC (Ng et al. 2002).
These methods differ from each other mainly in terms of the graph Laplacian (how to derive L
from A): some used an unnormalized graph Laplacian (i.e., L =D — A, where D is a degree
matrix) or computed generalized eigenvectors from an unnormalized graph Laplacian, while others
used a normalized graph Laplacian (i.e., L = — D~Y2AD~'/2 where I is an identity matrix)
(Von Luxburg 2007). For a more detailed review of spectral clustering, the readers are referred to

Von Luxburg (2007).

2.5 Data Fusion

2.5.1 Named Entity Normalization

Named entity normalization transforms named entities (i.e., concept names) that refer to the same
entity into a canonical identifier name (Liu et al. 2012). Existing normalization methods are
dictionary-based or machine learning-based, and mainly focus on dealing with the surface-form

variations in concept names.

2.5.1.1 Dictionary-Based Named Entity Normalization

Dictionary-based methods rely on established lexicons in domain-specific dictionaries or domain-
general knowledge bases (especially Wikipedia) to fuse concept names. The lexicons are used as

a look-up source of identifier names. To find an identifier from the lexicons, corpus-based (e.g.,
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pointwise mutual information) or knowledge-based (e.g., Jiang-Conrath similarity by Jiang and
Conrath 1997) concept similarity assessment methods are used to assess the similarity between a
concept name and an identifier. In existing research efforts, domain-specific dictionaries have been
utilized for fusing species and organism names (e.g., Pafilis et al. 2013), disease names (e.g., Wei
et al. 2016), and biomedical names (e.g., Lee et al. 2016). Wikipedia has been used for supporting
named entity normalization-related applications, such as text annotation (e.g., Mihalcea and
Csomai 2007), knowledge base construction (e.g., Alhelbawy and Gaizauska 2014), and question

answering (e.g., Wang et al. 2017).

2.5.1.2 Machine Learning-Based Named Entity Normalization

Machine learning-based methods use machine learning algorithms to learn how to fuse concept
names. A number of supervised algorithms have been used for developing normalization models,
including support vector machines (e.g., Magdy et al. 2007), generalized perceptron (e.g., Wagner
and Foster 2015), random forests (e.g., Jin 2015), conditional random fields (e.g., Akhtar et al.
2015), feed-forward neural networks (e.g., Leeman et al. 2015), long short-term memory recurrent
neural networks (e.g., Han et al. 2019), and Siamese recurrent neural networks (e.g., Fakhraei and
Ambite 2018). Some of these models directly predict identifier concept names (e.g., Leeman et al.
2015), and some predict the edit operations (e.g., insert, replace, and delete) needed to convert
concept names into their identifiers (e.g., Han et al. 2019). In either case, human-annotated data
are required. Because of the challenges in annotating data, several unsupervised normalization
methods have been developed (e.g., Yang and Eisenstein 2013; Tahmasebi et al. 2019). Although
unsupervised methods do not require annotated data, they need a set of target identifiers as input,
in order to compute the similarities between concept names and identifiers (which makes them

resemble dictionary-based methods).

66



2.5.2 Numerical Data Fusion

Numerical data fusion transforms numerical data (e.g., numerical deficiency measures) — either
from a single source or different sources and/or at different time points — into a unified
representation (Bostrom et al. 2007). Existing methods mainly use descriptive statistics or fusion

theories to conduct data fusion.

2.5.2.1 Descriptive Statistics

Descriptive statistics quantitatively describe the features of a set of data (Mann 1995). The
commonly-used descriptive statistics in data fusion include the measures of data central tendency
and the measures of data variation. Central tendency measures include arithmetic mean,
Bonferroni mean, geometric mean, harmonic mean, Heronian mean, power mean, median, and
mode. Variation measures include coefficient of variation, mean absolution deviation, range,
standard deviation, and variance. For a detailed description of these measures, the readers are
referred to Mendenhall and Sincich (2016). Although descriptive statistics are simple, they have
been used in some data fusion applications and achieved certain levels of success. For example,
using a set of descriptive statistics, Wimmer et al. (2008) fused audio and video features for
emotion recognition; Zhang (2015) fused water-depth data and bathymetry data for creating
benthic habitat maps; and Varga et al. (2018) fused pixel-level normalized difference vegetation

indexes across time for land cover analysis.

2.5.2.2 Data Fusion Theory

Several data fusion theories have been developed, including the Dempster-Shafer theory (Shafer
1976), fuzzy set theory (Zadeh 1965), possibility theory (Zadeh 1978), and rough set theory

(Pawlak 1992). The Dempster-Shafer theory assigns a belief mass to a fused value (which could
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be a single number, interval, or set) based on the strength of the evidence supporting this value. In
the presence of evidence from multiple sources, it uses a joint belief mass function to fuse the
belief masses, where the function considers both the agreement and conflict levels of the evidence.
It selects the fused value that has the largest belief mass to represent data from multiple sources.
The fuzzy set theory is a theoretical reasoning scheme, which uses the partial set memberships of
data to allow for imprecise, rather than crisp, reasoning (Khaleghi et al. 2013). The memberships
of imprecise data to a fused value are quantified using a membership function (e.g., piecewise
linear functions and Gaussian distribution function), and are then fused using an aggregation
function (e.g., averaging, conjunctive, and disjunctive functions). The fused value that has the
highest aggregated membership degree is used to represent imprecise data from multiple sources.
The possibility theory, as an extension of the fuzzy set theory, was developed to further deal with
incomplete data using possibility and necessity measures, which quantify the plausibility and the
certainty of a fused value given incomplete data, respectively (Destercke et al. 2009). The rough
set theory could be applied for data fusion by using lower and upper approximations to find a fused
value that has the highest approximation accuracy for representing data from multiple sources.
Despite being theoretically-applicable, this theory has been rarely used in data fusion (Khaleghi et

al. 2013).

2.6 Data-Driven Bridge Deterioration Prediction

2.6.1 Data-Driven Bridge Deterioration Prediction Methods

Existing data-driven bridge deterioration prediction methods/models can be classified into three
categories: deterministic, stochastic, and artificial intelligence (Al)-based (Morcous et al. 2002).
Deterministic methods/models use a mathematical formulation to capture the relationship between

the conditions of bridges and the factors that affect the deterioration of bridges for predicting the
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future bridge conditions (Morcous et al. 2002). Most of the existing deterministic models were
developed using regression techniques. For example, to predict the condition ratings of the primary
bridge components (i.e., decks, superstructures, and substructures), Hatami and Morcous (2011)
developed a nonlinear regression model using the NBI data from the Nebraska Department of
Transportation (DOT); Chang et al. (2017) developed a logistic regression model with the least
absolute shrinkage and selection operator (LASSO) using the NBI data from the Wyoming DOT;
Goyal et al. (2017) developed a proportional hazards regression model using the NBI data from
the North Carolina DOT; and Lu et al. (2019) developed an ordinal logistic regression model using

the NBI data from the North Dakota DOT.

Stochastic methods/models use one or more random variables to capture the uncertainty and
randomness of the deterioration process of bridges for predicting the future bridge conditions
(Morcous et al. 2002). The majority of the existing stochastic models were developed using the
Markov-chain process. For example, Morcous (2006) developed a first-order Markov-chain model
using the deck condition rating data from the Ministere des Transports du Québec (MTQ) to predict
the future ratings of decks. Wellalage et al. (2014) developed a Metropolis-Hasting algorithm-
based Markov-chain model using the timber deck condition rating data from the state of Victoria
of Australia to predict the future ratings of timber decks. Fang and Sun (2018) developed a Weibull
distribution-based semi-Markov model using the bridge inventory data from the City of Shanghai
to predict the condition ratings of bridges. Abdelkader et al. (2019) devel