245/18

Lh. 369

ORO-5203-6

GEOLOGIC AND GEOCHEMICAL STUDIES OF THE NEW ALBANY GROUP (DEVONIAN BLACK SHALE) IN ILLINOIS TO EVALUATE ITS CHARACTERISTICS AS A SOURCE OF HYDROCARBONS

Quarterly Progress Report, January 1-March 31, 1978

By Robert E. Bergstrom Neil F. Shimp

Work Performed Under Contract No. EY-76-C-05-5203

Illinois State Geological Survey Urbana, Illinois

MASTER



**U. S. DEPARTMENT OF ENERGY** 

### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

## **DISCLAIMER**

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

#### NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Paper Copy \$5.25 Microfiche \$3.00

# NOTICE MN ONLY

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It has been reproduced from the best available copy to permit the broadest possible availability.

GEOLOGIC AND GEOCHEMICAL STUDIES OF THE NEW ALBANY GROUP (DEVONIAN BLACK SHALE) IN ILLINOIS TO EVALUATE ITS CHARACTERISTICS AS A SOURCE OF HYDROCARBONS

Quarterly Progress Report - January 1-March 31, 1978 Report ORO-EY-76-C-05-5203-6

> Robert E. Bergstrom and Neil F. Shimp Principal Investigators

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DOE Contract EY-76-C-05-5203

University of Illinois Code No. 1-46-26-80-360

Tilinois State Geological Survey

#### GEOLOGICAL EVALUATION

#### Introduction

This project is a detailed analysis of the lithology, stratigraphy, and structure of the New Albany Group in Illinois to determine those characteristics of lithology, thickness, regional distribution, vertical and lateral variability, and deformation that are most relevant to the occurrence of hydrocarbons.

This study will result in the preparation of cross sections, facies maps, and geologic structure maps based on subsurface data available in the Illinois Survey files. Previous work in Illinois is being re-evaluated and updated. New data on the physical, chemical, and mineralogic characteristics of the New Albany will be derived from the studies of new cores in Illinois and will be incorporated into the stratigraphic and structural investigations of existing data.

## Advise DOE on Drill Sites and Coring

#### Progress

A few leads on drilling that might be possible to develop into cores through the New Albany have been received during the past quarter, but none has produced definite commitments. Discussion has continued on the feasibility of taking shallow cores in Illinois. Figure 1 shows the locations of presently available New Albany Group cores in Illinois and western Kentucky. Figure 2 shows the locations of four potential sites for shallow drilling to reach and core the New Albany. Below is an outline of the basic information on each of these potential drill sites.

#### Hardin County, Illinois

#### Possible sites:

On the flank of Hicks Dome, in any of Secs. 24, 25, 36, T. 11 S., R. 7 E., or Secs. 19, 20, 29, 30, 31, 32, 33, T. 11 S., R. 8 E. Drilling site should be located on the Fort Payne chert and as close to the center of the structure as possible. The Fort Payne is 280-640 feet thick in this area and will probably be very difficult to drill through, so the site should be selected to minimize the amount of drilling in chert. However, 60 to 70 feet of bedrock overburden will be necessary to accommodate the core barrel.

#### Thickness:

The New Albany is approximately 400 feet thick in this area and is dipping about 10-20 degrees in all directions away from the center of the structure. Total core thickness will be about 410-420 feet.

#### Stratigraphy:

We expect to encounter a very thin Hannibal-Saverton equivalent greenish-gray shale, very thick Grassy Creek Shales, and thick Sweetland Creek and Blocher Shales. The Grassy Creek, Sweetland Creek, Blocher, and total New Albany Group are all near their maximum thickness at this site.

#### Advantages to sites:

- -Near the Devonian depositional center of the Illinois Basin
- -Thick sequence of potentially gas-bearing black shales
- -Only shallow drilling site in entire Illinois Basin where deep basin facies is encountered

#### Disadvantages to sites:

- -- Any gas originally present in shale may have been lost due to proximity to outcrops and extensive fracturing.
- -Structural dip complicates interpretation of electric logs.
- -Extensive tracturing and mineralization may make data on physical properties and geochemical analyses difficult to relate to other areas.
- -- Most of the eastern and southern flanks of Hicks Dome are U.S. Forest Service land, and drilling on national forest land will probably require an environmental impact statement. This somewhat limits the choice of drilling sites.

#### References:

Baxter and Desborough, 1965, Illinois State Geological Survey Circular 385.

Baxter, Desborough, and Shaw, 1967, Illinois State Geological Circular 413.

## Union County, Illinois

#### Possible sites:

Anywhere in eastern Union County, in any of townships T. 11 S., R. 1 W., T. 11 S., R. 1 E., T. 12 S., R. 1 E., or T. 13 S., R. 1 E.

#### Thickness:

The New Albany Shale is overlain by 200 to 700 feet of Mississippian limestones, cherty limestone, and shale in this area. The New Albany ranges from 30 feet thick near the outcrop in central Union County to approximately 100 feet at the east edge of the county. Both the thickness of shale and amount of overburden increase rapidly eastward.

#### Stratigraphy:

We expect to encounter a few feet of Chouteau Limestone, a thin Hannibal-Saverton interval, Grassy Creek Shale, Sweetland Creek Shale, doubtfully some Blocher Shale, and Alto and Lingle Formations below the New Albany.

#### Advantages to sites:

- -Proximity to previously studied outcrop localities
- —Will provide data on facies transitions associated with the Du Quoin Monocline
- -Most of shale is black to olive-black and potentially gas-bearing.
- -Area of sparse subsurface data

#### Disadvantages to sites:

- -New Albany Group is relatively thin.
- -- Most of area is surrounded by Shawnee National Forest and some land belongs to U.S. Forest Service. Drilling on national forest land will probably require an environmental impact statement.
- -Might be as much as 100 feet of Fort Payne chert to drill through

#### Jersey County, Illinois

#### Possible sites:

The stratigraphically most complete section is probably located in eastern Jersey County (T. 8 N., R. 10 W.). Alternative sites might be found in Greene County (thicker total section and thicker "black" shale interval, but stratigraphically less interesting), in western Pike County, or northwestern Jersey County (T. 8 N., R. 13 W., a thinner section but much shallower and probably posing fewer drilling problems).

#### Thickness:

The New Albany Shale is overlain by approximately 800 feet of Mississippian and Pennsylvanian rocks and surficial deposits in eastern Jersey County, and is shallower in eastern Greene County (250-500 feet) and northwestern Jersey County (0-200 feet). The total thickness of the New Albany Group ranges from about 100 to 200 feet.

#### Stratigraphy:

This is a stratigraphically complex area with very few subsurface records (no geophysical logs of the New Albany Group in Jersey County have been found in our files). Based on outcrop stratigraphy and sample studies, we expect to encounter a relatively thick Hannibal sequence that may include a dark gray to black member (the Nutwood) at near maximum thickness; both the "Glen Park" and Louisiana Formations; Grassy Crack and/or Sweetland Creek Shale; and possibly Sylamore Sandstone at the base of the New Albany.

#### Advantages to sites:

- -- Proximity to classical type sections of the New Albany Group in Illinois
- --Presence of Nutwood, "Glen Park," and Louisiana lithologies. The relationships of these three units are stratigraphically and environmentally very important in developing an overall model for New Albany deposition.
- -This is an area with virtually no reliable subsurface data.

#### Disadvantages to sites:

- —Section is predominantly greenish-gray shale, limestone, and siltstone, with little black shale.
  - —The Burlington Limestone, which lies a few feet above the New Albany in this area, is approximately 120 feet thick and contains several cherty intervals that will be significant drilling problems.
  - The presence of coal seams in eastern Jersey County might require casing of the hole.

#### References:

Baxter, 1970, Illinois State Geological Survey Circular 448. Workman and Gillette, 1956, Illinois State Geological Survey Report of Investigations 189.

#### Champaign-Douglas Counties, Illinois

#### Possible sites:

The most promising site is probably along the east flank of the Tuscola Anticline somewhere between the villages of Tolono and Camargo. An alternative site might be in eastern Douglas County in the general vicinity of the town of Newman.

#### Thickness:

The New Albany Group is generally 80-100 feet thick along the flanks of the Tuscola Anticline and is overlain by generally 200-500 feet of overburden consisting of glacial drift, possibly some Pennsylvanian strata, and Borden Siltstone. In northeastern Douglas County, the New Albany is generally 50-80 feet thick and is overlain by 600-900 feet of overburden, consisting of glacial drift, Pennsylvanian strata, and Borden Siltstone.

#### Stratigraphy:

In this general area the Chouteau Limestone is thin, and it appears to pinch out in eastern Douglas County. The Hannibal-Saverton Shales are very thin. The Grassy Creek and Sweetland Creek Shales appear to be of about equal thickness, but poorly differentiated, with no deep basin-type dark black shale facies present.

#### Advantages to sites:

- -Very shallow depth, should be easy drilling, especially of flanks of Tuscola Anticline
- -- May shed light on relationships between depositional facies and early development of La Salle Anticlinal Belt
- -May yield interesting data regarding effects of structure on strength of shale

#### Disadvantages to sites:

- -Total New Albany Shale section is relatively thin.
- -- Little or no "good" black shales, probably little gas potential
- -Probably will be lithologically similar to Tazewell County core

#### Problems

The lack of good core material from the central part of the basin, where the New Albany is 3000 feet or more below the surface, continues to pose a problem for our work. A partial solution would be to take the core in Hardin County where the New Albany is at shallow depth. Direct contract with a driller to take one or more of these shallow cores is possible, if suitable financial arrangements can be made. This may form the best alternative to getting a deep basin core.

It may prove to be difficult or impossible to process new core received later than the fall of 1978 in the time frame specified by the original proposal and contract.

#### New Albany Well Map and Tabulation

## Progress

The listing of holes in the northeastern quadrant of the Illinois Basin is completed. Maps to a scale of 1:1,000,000 have been produced with locations plotted. Figure 3 shows the counties involved in the northeastern quadrant and indicates the total area completed to date.

The tabulation of drill holes through the Devonian black shale in the northwestern quadrant of Illinois is under way.

#### Stratigraphic Cross Sections

#### Progress

Stratigraphic cross sections have been essentially completed for several months, except for revising and refining of correlations as more data become available regionally. Supplementary cross sections are produced or extended as needed to help solve stratigraphic problems in certain areas. During the past quarter, supplementary north-south sections have been extended in central Illinois and along the eastern boundary of the state.

#### Isopach Maps

#### Progress

Tabulation of data on total thickness for the New Albany Group in Illinois is virtually complete (milestone 6). However, in many parts of the state, formational subdivisions of the New Albany are still only tentative and will require further detailed correlation work. Also, further work is needed in correlating some key geophysical horizons. A preliminary hand-contoured map of the New Albany Group thickness has been done for most of the state. Thickness contours have been drawn for formational units in some portions of the state, but these may be subject to revision as the greater regional picture is developed.

#### Discussion and Problems

Several stratigraphic problems have been encountered in recognition of mappable subunits on a regional basis. As a result of facies changes, contacts between formal stratigraphic units may need to be shifted vertically from one place to another. In some cases there is a transition zone through which the dominant lithology of one formation grades vertically to that of another, and there is no distinct contact between the two formations.

One stratigraphic nomenclatural problem arises from the lateral changes in the interval encompassing the Sweetland Creek and Grassy Creek Shales. In many areas distant from the center of the Illinois Basin, the distinction between these two shale formations becomes subtle to practically non-existent, being recognizable in neither geophysical logs nor sample lithologies. In these areas the entire interval is being left undifferentiated and tentatively referred to the Grassy Creek-Sweetland Creek Shales.

In central Illinois the succession from the Grassy Creek Shale to the overlying Saverton Shale is transitional through an interval several feet thick. This transition zone generally exhibits a low electrical resistivity, often only slightly higher than the Saverton above. However, the natural radio-activity of the zone is generally high, very nearly as high as that of the underlying Grassy Creek. Sample lithology, although variable, consists generally of relatively dark shales more similar to the Grassy Creek than the Saverton. For these reasons, the transition zone has in most cases been included with the Grassy Creek.

Stratigraphic problems also pervade the Saverton-Louisiana-"Glen Park"-Hannibal sequence in west-central Illinois. Several inconsistencies are apparent in past recognition of contacts between these formations. The most practical solutions to some of these problems are to define contacts on the basis of key beds that are readily recognizable on geophysical logs. Some past workers have evidently used this approach, although contacts defined in this way are not necessarily correlative with those defined in the type areas and may require some redefining of the age limits of some formations.

Considerable attention has been given to delineating the erosional boundaries of the New Albany Group. In much of west-central Illinois, the New Albany has been thinned by erosion and is disconformably overlain by Valmeyeran (middle Mississippian) strata—the Fern Glen Formation, or the Burlington Limestone. Near the northern limit of the New Albany, the overlying Mississippian rocks, as well as the New Albany itself, have been truncated and are disconformably overlain by Pennsylvanian strata. In some areas the New Albany is overlain by Pleistocene glacial drift.

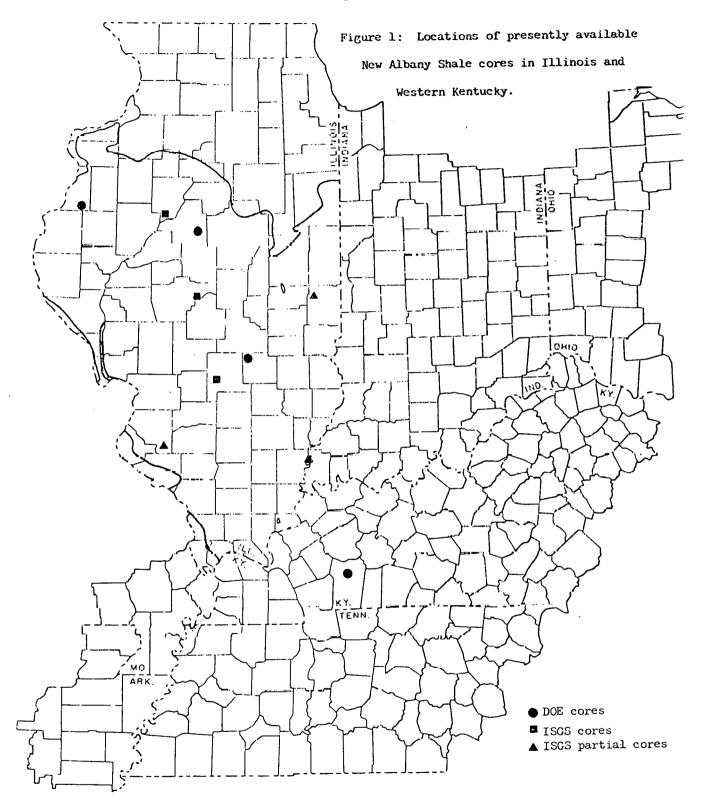
Facies changes and truncation present special problems in contouring the thickness of the New Albany. The best approach to mapping is to subdivide the map into areas showing these special situations. Where the New Albany is essentially complete (conformably overlain by the Chouteau Limestone), contouring is relatively straightforward. It is, however, slightly complicated by lateral gradation of the Blocher Shale into the upper Lingle Limestone. Here, contours must be offset along an arbitrary vertical cutoff between Blocher and Lingle.

The greatest difficulties in contouring arise where the upper part of the New Albany has been eroded. Erratic distribution of thickness values indicates that the erosion surface is generally far from smooth. Furthermore, in most of the eroded areas, data are rather sparsely distributed, and many are of questionable reliability. For these reasons, in the eroded areas, a larger contour interval, depicting more generalized thicknesses, is probably in order.

#### Sample Studies

#### Progress

Sample studies of the New Albany in 35 strategically located wells were completed during February and March. Lithologic information from these studies was correlated with geophysical logs. Chips of various nonshale lithologies were collected for thin-section petrographic studies. Shale samples were taken from approximately 100-foot vertical intervals for vitrinite reflectance, clay mineralogy, and chemical analyses. Sampling was performed with great care to insure noncontamination.


#### Problems

In a few wells, samples were unavailable for critical stratigraphic intervals. Contamination and mixing of the samples (during drilling) has made interpretation and sampling difficult or impossible in some cases.

#### Data Formats

#### Progress

With the recent finalization of data formats for stratigraphic data encoding, five counties in southwestern Illinois have been chosen for a test of the mapping function. The full data set for this area has been punched and will be used to test the data assembly capacity of the MINERS system. The first test maps will be produced during April.



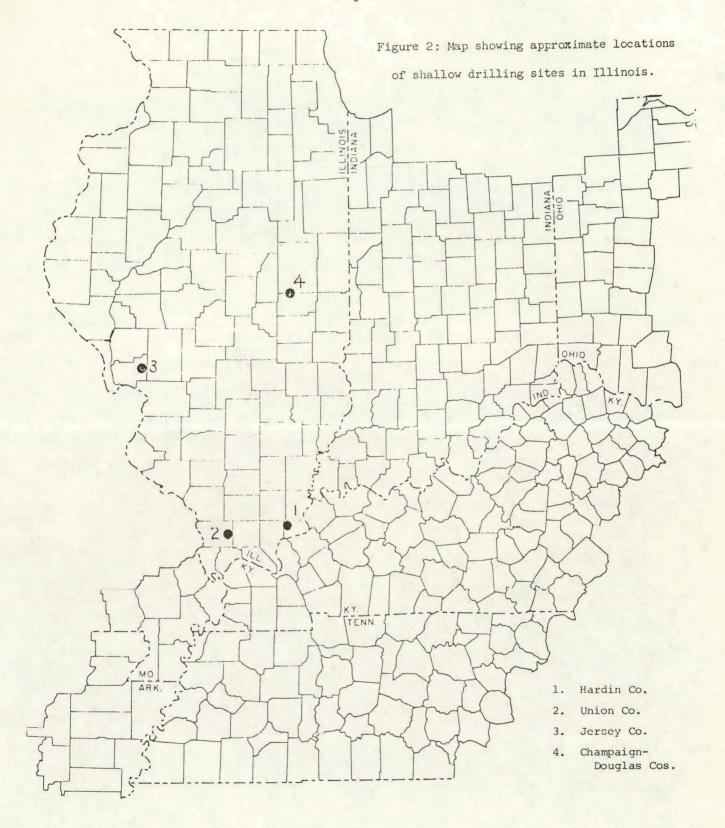





Fig. 3.

Index map showing portion of Illinois for which listing of holes penetrating upper Devonian shales has been completed. Maps showing location of these holes have also been plotted.

## MINERALOGIC AND PETROGRAPHIC CHARACTERIZATION OF NEW ALBANY IN ILLINOIS

#### Introduction

This project is directed at characterizing in detail the mineralogic and petrographic properties of the New Albany Shale in Illinois. This includes the quantitative and qualitative characterization, by optical and X-ray techniques, of the inorganic mineral constitutents, the dispersed organic matter, and the fabric of the shale. The data generated will provide a fundamental basis for regional and local correlations of geologic data, for interpretation of the sedimentology, depositional environment, and diagenetic history, and for evaluation of hydrocarbon potentials based on the degree of thermal maturation of organic matter in the New Albany Shale.

#### Lithologic and Radiographic Characterization

#### Progress

Fifty-eight samples from the O4IL (Henderson Co., Illinois), O6IL (Tazewell Co., Illinois), and O7IL (Fayette Co., Illinois) cores were embedded in epoxy and slabbed during the last quarter. Radiography of these samples is still in progress.

Two cores from Survey files were described and sampled during February: one from Fayette County, Illinois (07IL), and one from St. Clair County, Illinois (09IL). Twelve samples were taken from these cores.

Approximately 189 samples of rotary drill cuttings from several wells in Illinois were picked during February and March. The distribution of samples was as follows:

Vitrinite reflectance: 51 samples Clay mineralogy: 53 samples Chemical analysis: 53 samples Thin-section petrography: 32 samples

## Problems

Serious problems were encountered during the handling and initial water-sawing of the core samples. The low strength of the greenish-gray shales and their tendency to swell in water caused severe breakage and slaking. Many samples were reimbedded in epoxy between saw cuts, and this slowed our progress considerably. Radiographs of these samples are not expected to be of good quality. Severe difficulties in thin-section preparation are anticipated, and this may delay their preparation and/or reduce the number of thin sections made.

### Microscopic Characterization

#### Progress

Thin-section analysis of the O2IL (Effingham Co., Illinois) core was completed in February. The data have been encoded for computer storage and handling, and a printout should be available soon. We will include a printout with our monthly report at that time.

Nine thin sections from the O3IL core (White Co., Illinois) were made during the quarter and are now being studied. Fifteen thin sections of well cutting samples were prepared, and a total of 33 thin sections of outcrop and well cutting samples were characterized during March. These samples are almost exclusively from sandstone and carbonate units below, within, and above the New Albany Group. Generally the thin sandstones within the New Albany Group are calcite cemented and do not appear to have significant porosity. The carbonate lithologies are quite variable and are principally of interest in deciphering the depositional environments of the shale and lateral facies transitions from shale to carbonate.

Fourteen samples from the OlKY (Christian Co., Kentucky) and the OlIL (Sangamon Co., Illinois) cores have been chosen for analysis with the Scanning Electron Microscope. Evaluation of various methods of sample preparation is in progress.

## X-Ray Diffraction Mineralogy and Clay Orientation

#### Progress

Thirteen whole-rock samples from the O2IL core and 30 samples from the O4IL core were analyzed for silt mineralogy during February. The data are presented in tables 1 and 2.

Clay mineralogy has been determined for 30 samples from the 04TL core and for 22 samples from the 06IL core. The data are presented in tables 3 and 4. Clay orientation index slides are being prepared for all samples. The clay mineralogy of the two cores is very similar (fig. 1). Both are also similar to the 01IL and 02IL cores (fig. 2). At this time it appears that the New Albany contains more chlorite in the northern portion of the Illinois Basin than in the southern portion. Clay mineral analyses now in progress of well cuttings should allow us to map any regional variations more precisely.

Clay mineral analysis of a standard sample (SDO-1) provided by the U.S. Geological Survey was completed, and the data collected are presented in tables 5 and 6. The sample was divided into three splits, and four slides were made of each split: two by the smear technique (which we routinely use) and two by sedimentation. The results in table 5 are from the first slide from each group. Analyses of the duplicate slides are given in table 6.

As can be seen by comparing these two tables, the results within each group of samples are in good agreement, but there are significant diferences between the first set of slides and the duplicates that were run a few weeks later.

The following explanation accounts for the differences. To conserve energy, the heat is turned off in our X-ray laboratory overnight. The room temperature drops to about  $24^{\circ}\text{C}$ . This seems to be the temperature at which ethylene glycol can no longer enter between clay layers. Complete glycolation appears to occur at  $26-27^{\circ}\text{C}$ . The difference between the two sets of samples, therefore, is attributed to deglycolation during the night, which results in an apparent reduction of expandable clays when the slides are X-rayed early in the morning (before they re-equilibrate with the glycol atmosphere at higher, daytime room temperatures). This was a previously unsuspected source of error.

## Vitrinite Reflectance

#### Progress

Reflectance analysis of the 02IL core was completed during January, and the results are summarized in table 7 and in figure 3. The reflectance values for this core are slightly higher than the 01KY and 01IL cores (fig. 4), which is consistent with its basinward position relative to those wells.

A single vitrain band was found within the 05IL partial core. Vitrains are generally a very reliable indicator of rank, and even this single sample is probably representative of the New Albany at that location. The measured reflectance of the sample (05IL01L4) was  $0.47\pm0.02$  percent Ro.

A sample of New Albany Shale and associated vitrain from Marion County, Indiana, was provided by N. Shaffer of the Indiana Survey and measured during January. Both the macerated shale sample and the vitrain yielded identical results: 0.46 + 0.06 percent Ro.

Acid separation of dispersed coaly particles for vitrinite reflectance analysis was completed for a set of 8 samples from the 06IL (Tazewell Co., Illinois) core and 8 samples from the 04IL (Henderson Co., Illinois) core. Eight samples from the 07IL (Fayette Co., Illinois) and 21 samples from the supplementary drill cutting sets from various counties were acid digested during March. All samples are now being mounted and polished for reflectance analysis.

#### Problems

The greenish-gray shales in the O4IL and O6IL cores yielded very little organic matter. Additional samples will be processed if necessary.

## Summary of Progress

Analysis of the 02IL and 03IL cores (milestone 16) is complete except for thin-section petrography of the 03IL core. Preparation of thin sections from the 03IL samples has been delayed because the initial sample preparation on the canned samples from the 04IL and 06IL core was deemed of higher priority.

Milestone 17 (acquisition of fluorescence equipment) has been deleted due to budget cuts directed by DOE.

Work towards milestone 18 (completion of 04IL and 05IL cores) is running slightly behind schedule, while work on milestone 19 (completion of 06IL core) is well ahead of schedule. All three cores will probably be completed more or less simultaneously.

| 38 SE 2 V F D | PPAG | MS ICHT | <b>まだいかけい アモ カモも かろ</b> |
|---------------|------|---------|-------------------------|

|                  | CORSTEAS (CONTRACTOR CONTRACTOR C |      |           |                                        |      |               |                                       |                 |             |                  |                                        |                                        |             |                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|----------------------------------------|------|---------------|---------------------------------------|-----------------|-------------|------------------|----------------------------------------|----------------------------------------|-------------|-----------------------------|
| SAMPLE DEPTH     | MCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 017  | FLN       | NSP                                    | PLG  | 45P/FL 4      | CAL                                   | 1000F           |             | SIM+APA          | PAM                                    | 446                                    | ● 100 + MAQ | acaeaeae<br>Aggajn          |
| NUMHER           | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.8 | 23,5      | 27.6                                   | 27.9 | ********      | 29.4                                  | _======<br>34,4 | ********    | 52,1             | 53.2                                   | ************************************** | ********    | व्यवस्थानकात<br>इक्षण रामहर |
| 021L01C1         | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175  | 30<br>30  | ###################################### |      | 4/100         | · · · · · · · · · · · · · · · · · · · | ======<br>*     | *********   | #########<br>194 | ************************************** | 9#84234<br>                            |             | ********                    |
| 051FB1F5         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30   | **        | r                                      | 10   | 2/120         | 570                                   | 50              | 55ø         |                  | e e                                    | œ.                                     | 6           |                             |
| #21L#2C1         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 185  | 35        | 5                                      | 70   | 4/ 93         | 95                                    | rea.            | - J-1       | 10               | 5                                      | Š                                      | 100         |                             |
| uSILu3C1         | 5u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150  | جج        | 64                                     | 35   | 0/104         | 100                                   | · •             | igh         | 10               | 25                                     | 11 45                                  | 35          |                             |
| 071LpaC1         | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170  | 54        | €                                      | 45   | W/14#         | 15                                    | ga.             | 3.5         | 100              | 55                                     | 15                                     | 123         |                             |
| <b>@21Ly4C</b> 2 | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 146  | 30        | a.                                     | 59   | 44/ 55        | 97                                    | 15              | 75          | 15               | 410                                    | iż                                     | 52          |                             |
| 071LU5C1         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104  | 34        | 45                                     | 50   | 42/ 57        | 12                                    | 55              | 65          | 200              | 49                                     | 10                                     | 5/19        |                             |
| 051L05L2         | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 134  | 314       | 6:                                     | 6.0  | a/10a         | 25                                    | mm.             | A8:05       | 20               | 15                                     | 5                                      | 2:5         |                             |
| 051F04C1         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 135  | 50        | 1,                                     | 70   | 6/198         | 15                                    | 25              | 440         | 15               | 309                                    | 10                                     | 42.00       |                             |
| <b>05110415</b>  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 146  | 30        | 5                                      | 55   | #/ 91         | 55                                    | 55              | <b>9</b> 0  | ₹1               | 16                                     | 5                                      | 23          |                             |
| 821L97C1         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130  | 25        | a gr                                   | 68   | <b>39/ 59</b> | <b>a</b>                              | <b>50</b> 3     | <b>5</b> 49 | 20               | 2.5                                    | 5                                      | 500         |                             |
| 02IL04C1         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105  | 25        | 5.4                                    | 59   | 45/ 54        | 15                                    | 45              | 6.7         | 200              | 52                                     | 7                                      | 59          |                             |
| 02IL09L1         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 205  | <b>54</b> | (1                                     | P    | 4/ 8          | <b>500</b>                            | 195             | 695         | 200              | 10                                     | ď                                      | 10          |                             |

| RFLATIVE | PEAK | HEICHTS |
|----------|------|---------|
|----------|------|---------|

| ******          |        |        |         |               |        |                                                          |                                        |                       |                                        |                    |           |
|-----------------|--------|--------|---------|---------------|--------|----------------------------------------------------------|----------------------------------------|-----------------------|----------------------------------------|--------------------|-----------|
| SAMPLE          | MCA    | UYZ    | FLO     | KSP           | PLG    | CAL                                                      | <b>GUI</b>                             | SIO-APA               | PYP                                    | MAR                | MINERAL   |
| NUMBER          | 19.5   | 8,95   | 23,5    | 27.6          | 27.9   | 29,4                                                     | 7m_6                                   | 32,1                  | 33.2                                   | 52.a               | TWO THETA |
| MSIL01C1        | 78,57  | 95.37  | 95,71   | 0.04          | 100.00 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | ###################################### | 47_42                 | ###################################### | isessessis<br>Qu'à | *******   |
| <b>021L01L2</b> | 21.43  | 14,63  | 0,00    | <b>ភ</b> ិពិធ | 12.50  | 170.30                                                   | 25,64                                  | <b>au</b> _ <b>au</b> | (P) =100                               | (ଜ] (ଅଟନ           |           |
| 051F05C1        | 85.71  | 96.50  | 16H. #R | 10.40         | 87.50  | <b>®_</b> ø≉ø                                            | un _ un ce                             | 47.62                 | <b>a</b> _ma                           | 33.53              |           |
| 051F03C1        | 71.43  | 73,17  | 71.43   | 4.86          | 56,25  | 80 _ CE CE                                               | <b>≠4_</b> (P100)                      | 47.62                 | 45.05                                  | 46.67              |           |
| 021L04C1        | 78.57  | 82.93  | 57.14   | 4,00          | 56,25  | 3.00                                                     | 40 BASP                                | 47.62                 | 1000 499                               | 1000.00            |           |
| 021L04C2        | 85.71  | 68,29  | 45.71   | 80,00         | 62.58  | 6.20                                                     | 39,46                                  | 71.43                 | 72,73                                  | 89,70              |           |
| 03110201        | 85,71  | 68,27  | 95,71   | 96,60         | 75,er  | ₹200                                                     | £6,21                                  | 95.24                 | 72.73                                  | 66.67              |           |
| 02118512        | 85.71  | 63,41  | 85.71   | 9,09          | 75.64  | <b>₩</b> _169.00                                         | 41.03                                  | 95,24                 | 27.27                                  | 33,33              |           |
| 051F09C1        | 85.71  | 65,85  | 85.71   | 6.86          | 87.58  | 3.00                                                     | 12.62                                  | 71.43                 | 54.55                                  | 44.67              |           |
| 85118615        | 100.00 | 68.29  | 85,71   | 10.09         | 68,75  | 11.00                                                    | 17,95                                  | 1 (00 m) (10 m)       | 12.75                                  | 33,33              |           |
| 021L07C1        | 188.88 | 63,41  | 71.43   | 80 ps         | 75.40  | 0,00                                                     | 15.34                                  | 95_24                 | 45.45                                  | 35.53              |           |
| 05116861        | 100,00 | 51,22  | 71,43   | 100.00        | 75 pr  | 3,97                                                     | 23.00                                  | 95.24                 | 56.16                                  | 46.67              |           |
| 851F&&F1        | 0.00   | 100.00 | 9,00    | P_8P          | 9.00   | 190.00                                                   | 100.00                                 | 47.62                 | 18_18                                  | 69 _ 69 GP         |           |

TABLE 2: SILT MINERALOGY; HENDERSON COUNTY, ILLINOIS, CORE SAMPLES (04IL).

#### DRSERVED PEAK HEIGHTS (COUNTS/SEC)

| SAMPLE DEPTH   | MCA  | 017  | FLN  | k g P | PLG  | ► 5P/PLG | CAL  | סטר   | CAL+DUL | SIU+APA | PYH  | HAR  | PYR+HAR | MINERAL   |
|----------------|------|------|------|-------|------|----------|------|-------|---------|---------|------|------|---------|-----------|
| NUMBER         | 19,A | 20.8 | 23,5 | 27.6  | 27,9 |          | 29.4 | 370.8 |         | 32,1    | 33.2 | 42.0 |         | TWO THETA |
| 04 I L Ø 1 C 1 | 65   | 125  | 50   | 74    | ρ    | 190/ 2   | 0    | 245   | 245     | 15      | 18   | ų    | 15      |           |
| 841L0SC1       | 64   | 145  | 3.5  | 65    | P    | 100/ 6   | vi   | 286   | 280     | Sn      | 25   | g    | 25      |           |
| 941L03C1       | 66   | 114  | 40   | 55    | ก    | 102/ a   | ٧    | 360   | 360     | 15      | 15   | Ø    | 15      |           |
| BeILPECI       | 65   | 195  | 45   | 7 14  | а    | 100/ 3   | V    | 230   | 230     | 12      | 10   | Ø    | 10      |           |
| 84ILØ5C1       | 55   | 150  | 45   | 65    | iA.  | 1961 9   | 8    | 367   | 360     | 15      | 5.5  | 6    | Sα      |           |
| BAILPBC1       | 60   | 150  | 55   | 75    | И    | 100/ 2   | N    | 265   | 265     | 10      | 17   | И    | 17      |           |
| 04 I L Ø 7 C 1 | 7 y  | 100  | 65   | 75    | a    | 100/ 3   | И    | 252   | 225     | 24      | 26   | Ø    | 56      |           |
| 04IL08C1       | 64   | 90   | 55   | 45    | ø    | 1007 8   | Ø    | 2710  | 240     | 15      | 96   | ย    | 6 L     |           |
| 941L89C1       | 64   | 100  | 50   | 6.5   | Ø    | 100/ 0   | Ŷ,   | 160   | 169     | 17      | 15   | 14   | 15      |           |
| DAILIDGI       | 7.15 | 116  | 5 M  | 65    | ř,   | idus u   | ν    | 135   | 135     | 15      | 18   | 14   | 10      |           |
| 741L11C1       | 69   | 185  | 45   | ħЙ    | Ø    | 1707 0   | a    | 169   | 165     | 15      | 8.0  | ย    | 211     |           |
| BAILIZCI       | 68   | 115  | 45   | 70    | 9    | 1001 4   | 9    | 165   | 163     | 15      | 52   | 8    | 25      |           |
| 04111301       | 60   | 110  | 50   | 7 (4  | 6    | 1887 6   | n    | 150   | 150     | 10      | а    | Ø    | Ø       |           |
| 041L14C1       | 65   | 105  | 50   | 7 11  | Ø    | 130/ 0   | e    | 125   | 125     | 15      | 25   | N;   | 25      |           |
| 84 IL 15C1     | 85   | 165  | 56   | 45    | 45   | 50/ 50   | ×ν   | 45    | 65      | 25      | 17   | i)   | 17      |           |
| 341L16C1       | 75   | 175  | 3.5  | 56    | а    | 100/ 0   | 5.9  | 70    | 918     | 25      | 15   | 0    | 15      |           |
| 841L17C1       | 8.0  | 195  | 25   | 50    | 40   | 55/ 44   | 25   | 75    | 140     | а       | 15   | Ø    | 15      |           |
| 741L18C1       | 80   | 190  | 25   | 50    | 45   | 52/ 47   | 2.5  | 49    | 65      | 50      | 15   | а    | 15      |           |
| 74 IL 19C 1    | 8.0  | 190  | 35   | 58    | 45   | 52/ 47   | 5 // | 45    | 65      | Ø.      | Ø    | 9    | Pt.     |           |
| 841L2°C1       | 75   | 160  | 26   | 70    | a    | 100/ 0   | 24   | 50    | 70      | 15      | 25   | 5    | 30      |           |
| 84IL21C1       | ጸብ   | 135  | 25   | 50    | 50   | 50/ 50   | 64   | 96    | 90      | 30      | 17   | Ø    | 17      |           |
| 112501         | 75   | 140  | 25   | 50    | 50   | 54/ 54   | 30   | 95    | 125     | 30      | 40   | Ŋ    | 48      |           |
| 041L23C1       | 75   | 125  | 30   | 54    | 50   | 50/ 50   | Ø    | 90    | 90      | 30      | 30   | 5    | 35      |           |
| 12451148       | 75   | 145  | 25   | 64    | 55   | 52/ 47   | 25   | 160   | 185     | 35      | 25   | 5    | 30      |           |
| 04112501       | 75   | 120  | 30   | 5 N   | 50   | 50/ 50   | 61   | 200   | 280     | 0       | 15   | Ü    | 15      |           |
| 041L26C1       | 70   | 135  | 29   | 411   | 40   | 50/ 5H   | 54   | 65    | 85      | 25      | 35   | 19   | 45      |           |
| 041L27C1       | 66   | 75   | 20   | 25    | 20   | 55/ 44   | 15   | 500   | 515     | 15      | 25   | 9    | 25      |           |
| 13851149       | 70   | 95   | 20   | 25    | 15   | 62/ 37   | 60   | 500   | 569     | ē       | 15   | ű    | 15      |           |
| 04IL29C1       | 20   | 175  | - 5  | 25    | P    | 100/ 0   | 590  | 500   | 1000    | 5       | 55   | Ø    | 55      |           |
| 041L30C1       | 50   | 40   | ē    | 0     | P    | 8/ N     | a    | 500   | 500     | .a      | 10   | P    | 10      |           |

RELATIVE PEAK HEIGHTS

| SAMPLE   | MCA    | OTZ    | FLO           | KSP    | Pl.G        | C & L  | nnı    | diutant | o à o  | μĀĢ           | MINERAL   |
|----------|--------|--------|---------------|--------|-------------|--------|--------|---------|--------|---------------|-----------|
| NUMBER   | 19,8   | 80.8   | 23,5          | 27.6   | 27.9        | 29.4   | 30,8   | 32.1    | 33,2   | 52.0          | THO THETA |
| *******  |        |        |               |        |             |        |        |         |        |               |           |
| 04110151 | 76.49  | 64.10  | 76,92         | 82.35  | 0.00        | 0,00   | 49.00  | 42.86   | 21.82  | 0.00          |           |
| 04110201 | 70.59  | 74.36  | 55.85         | 76.47  | 0 00        | 0.00   | 56,00  | 57.14   | 45.45  | 6.60          |           |
| 24110301 | 70.99  | 56.01  | 61.5 <i>0</i> | 49,71  | 0.60        | 0.00   | 78.00  | 60.50   | 21.21  | <b>0,8</b> 0  |           |
| 041L04C1 | 76.47  | 53,85  | 69,23         | A2.35  | 0.00        | 0.00   | 06.00  | 34.29   | 18,18  | <b>บ.</b> ดด  |           |
| 04110501 | 64.71  | 61.54  | 49.23         | 76.47  | ผู้ผล       | 0.40   | 72.00  | 34.29   | 36.36  | 9.80          |           |
| 04110601 | 70.59  | 61.54  | 84.62         | 88.24  | 8.89        | 0.00   | 53.00  | 28.57   | 30.91  | 0.00          |           |
| 041L87C1 | 82.35  | 51.28  | 100.00        | 88.24  | 0.00        | 8.00   | 45.00  | 57,14   | 36,36  | 9.90          |           |
| 09110861 | 76.31  | 46.15  | 64.62         | 146,64 | 0.00        | 8.00   | 48.80  | 42.86   | 36,36  | 0.00          |           |
| 94118961 | 70,59  | 91,28  | 76,92         | 74.07  | 0.00        | 0.00   | 32,00  | 48.51   | 27,27  | ம். ம்மி      |           |
| 04111001 | 82.35  | 56.41  | 76,92         | 76,47  | 0.80        | 8.00   | 27.00  | 34.29   | 18,18  | 0.00          |           |
| 041L11C1 | 70.59  | 53,85  | 69.23         | 70.59  | <b>8.88</b> | 0.00   | 33,00  | 42.86   | 36,36  | v . na        |           |
| 841L12C1 | 70.59  | 58,97  | 85,84         | A2,35  | 0.00        | 0.40   | 33,00  | 34.29   | 45.45  | 6.88          |           |
| 041L13C1 | 70.34  | 36.41  | 16.45         | 82,35  | 6.40        | 0.00   | 30.00  | 28.57   | 0.00   | <b>ଓ</b> ୍ଟମ  |           |
| BAILIACI | 76.47  | 53.85  | 76,92         | 82.35  | 0.00        | 0.00   | 25.00  | 42.86   | 45.45  | อ.นด          |           |
| 04IL15C1 | 188.00 | 84.62  | 40.00         | 52,94  | A1.82       | 4.00   | 9.00   | 71.43   | 30.91  | 0.40          |           |
| 841L16C1 | 88.24  | 89.74  | 53,85         | 58.82  | 0.00        | 4.00   | 14.00  | 71.43   | 27.27  | 0.00          |           |
| 84111761 | 94.12  | 190.00 | 38.46         | 58.82  | 72.73       | 5.00   | 15.00  | 6.66    | 27.27  | ଜ୍ଜର          |           |
| 841L18C1 | 94.12  | 97.44  | 38.46         | 58.82  | 61.82       | 5.00   | 4,00   | 57.10   | 27.27  | (g) is co     |           |
| 04111901 | 94 12  | 97.44  | 53,85         | 58.62  | 81,82       | 4.00   | 9.20   | 0,66    | 0.00   | <b>ผ</b> ู้ผล |           |
| 041L20C1 | 88,24  | 82.05  | 39.77         | A2.35  | 0.00        | 4.00   | 10,00  | 34,29   | 45.45  | 50.00         |           |
| 04IL21C1 | 94.12  | 69.23  | 38.46         | 58.82  | 90.91       | 0.00   | 18.00  | A5.71   | 30,91  | 0.09          |           |
| 04IL22C1 | 88.24  | 71.79  | 38.46         | 58.82  | 90.91       | 6.00   | 19.88  | 85.71   | 72.73  | 0.00          |           |
| 041L23C1 | 88.24  | 64.19  | 46.15         | 58.82  | 90.91       | 0.00   | 18.00  | 85.71   | 54,55  | 54.04         |           |
| 04IL24C1 | 88.24  | 74.36  | 38.46         | 70.59  | 100.00      | 5.00   | 32.00  | 100.00  | 45.49  | 50.00         |           |
| 041L25C1 | 88,24  | 61.54  | 46.15         | 58.82  | 90.91       | 0.00   | 40.00  | 4.00    | 21.21  | 0.00          |           |
| 041L26C1 | 82.35  | 69.23  | 30.77         | 47.06  | 72.73       | 4.00   | 13.00  | 71.43   | 63.64  | 100.00        |           |
| 04112761 | 70.59  | 38,46  | 30.77         | 29.41  | 36,36       | 3,00   | 100.00 | 48.50   | 45.45  | u.88          |           |
| 04112801 | 82.35  | 48.72  | 30.77         | 29.41  | 21.27       | 12.00  | 100.00 | 0.00    | 27,27  | 9.00          |           |
| 04IL29C1 | 23,53  | 89.74  | 7.59          | 29.41  | 0.00        | 100.00 | 100.00 | 14.29   | 100.00 | 0.00          |           |
| 041L30C1 | 23.53  | 20.51  | 0.00          | 0.00   | 8.80        | 0.00   | 100.00 | 0.00    | 18,18  | ท. ยต         | •         |

TABLE 3. CLAY MINERALOGY, HENDERSON COUNTY, 'ILLINOIS CORE SAMPLES (041L)

| Sample | Depth* | Clay             | Minerals (pa | arts/10)+   |
|--------|--------|------------------|--------------|-------------|
| Number | (ft)   | Illite           | Chlorite     | Expandables |
| 01C1   | 323.3  | 7.5              | 2.5          | 0.0         |
| 02C1   | 333.0  | 6.0              | 2.0          | 1.5         |
| 03C1   | 343.4  | 5.5              | 2.5          | 2.0         |
| 04C1   | 353.0  | 6.0              | 2.5          | 1.5         |
| 05C1   | 363.3  | 5.5              | 2.0          | 2.5         |
| 06C1   | 373.2  | 5.5              | 2.5          | 2.0         |
| 07C1   | 383.4  | 5.0              | 2.0          | 3.0         |
| 08C1   | 393.1  | 5.0              | 2.5          | 2.5         |
| 09C1   | 403.5  | 5.0              | 2.0          | 3.0         |
| 10C1   | 413.4  | 6.0              | 3.0          | 1.5         |
| 11C1   | 424.4  | 5.5              | -3.0         | 1.5         |
| 1201   | 433.3  | 6.0              | 2.5          | 1.5         |
| 13C1   | 443.2  | 6.0              | 2.5          | 1.5         |
| 14C1   | 453.0  | 6.5              | 2.5          | 1.0         |
| 15C1   | 463.2  | 5.5              | 2.5          | 1.5         |
| 16C1   | 473.0  | 5.0              | 2.0          | 3.0         |
| 17C1   | 482.4  | 5.0              | 2.5          | 3.0         |
| 18C1   | 493.2  | 5.0              | 2.5          | 2.5         |
| 1901   | 503.2  | 6.5              | 2.0          | 1.0         |
| 20C1   | 513.4  | 6.5              | 2.0          | 1,5         |
| 21C1   | 523.2  | 6.5              | 2.0          | 2.0         |
| 22C1   | 533.0  | 5.5              | 2.5          | 1.5         |
| 23C1   | 542.2  | 5.0              | 2.5          | 2.5         |
| 24C1   | 553.4  | 6.5              | 2.5          | 1.5         |
| 25C1   | 563.2  | 6.5              | 2.5          | 1.5         |
| 26C1   | 573.0  | 6.0              | 2.5          | 1.5         |
| 27C1   | 583.4  | 6.0              | 2.5          | 1.5         |
| 28C1   | 493.2  | 5.5              | 2.5          | 2.0         |
| 29C1   | 604.5  | 6.5 <sup>#</sup> | 1.5          | 2.0         |
| 30C1   | 613.3  | 6.0 <sup>#</sup> | 2.0          | 2.0         |

<sup>\*</sup>Depth (to top of sample) below drilling reference at 772 ft. above mean sea level.
+Kaolinite was not detected in these samples.
#Illite is poorly crystalline.

TABLE 4. CLAY MINERALOGY, TAZEWELL COUNTY, ILLINOIS

CORE SAMPLES (04IL)

| Sample<br>Number | Depth*<br>(ft) | Clar<br>Illite |              | (parts/10)+<br>Mixed-Structure |
|------------------|----------------|----------------|--------------|--------------------------------|
|                  |                |                | 7 m : m em - |                                |
| 04C1             | 933.4          | 4.5            | 2.0          | 3.5                            |
| . 05C1           | 943.5          | 7.5            | 2.0          | 0.5                            |
| 06C1             | 954.0          | 5.5            | 2.0          | 2.5                            |
| 07C1             | 962.2          | 5.0            | 2.0          | 2.5                            |
| 0801             | 9/3.4          | 5.5            | 2.5          | 2.5                            |
| 09C1             | 984.2          | 5.5            | 2.5          | 2.0                            |
| 10C1             | 993.1          | 5.0            | 2.5          | 2.5                            |
| 11C1             | 1003.2         | 6.0            | 3.0          | 1.0                            |
| 12C1             | 1014.1         | 6.5            | 3.0          | 1.0                            |
| 13C1             | 1024.1         | 6.0            | 2.5          | 1.0                            |
| 14C1             | 1034.2         | 6.0            | 2.5          | 1.5 ·                          |
| 15C1             | 1044.1         | 6.0            | 2.5          | 1.5                            |
| 1601             | 1053.2         | 0.5            | 2.0          | 1.0                            |
| 17C1             | 1063.2         | 6.5            | 2.0          | 1.5                            |
| 18C1             | 1073.3         | 6.5            | 2.0          | 1.0                            |
| 19C1             | 1083.2         | 7.0            | 2.5          | 0.5                            |
| 20C1             | 1093.4         | 6.0            | 3.0          | 1.0                            |
| 21C1             | 1103,1         | 6.5            | 2.5          | 1.0                            |
| 22C1             | 1113.4         | 6.5            | 2.5          | 1.0                            |
| 23C1             | 1123.5         | 6.5            | 2.5          | 1.0                            |
| 24C1             | 1133.4         | 6.0            | 2.5          | 1.5                            |
| 25C1             | 1143.5         | 6.0            | 1.5          | 2.5                            |

<sup>\*</sup>Depth (to top of sample) below drilling reference at 641 feet above mean sea level.

<sup>+</sup>Kaolinite was not detected in these samples.

TABLE 6. CLAY MINERALOGY, USGS STANDARD SAMPLE SDO-1; DUPLICATE SLIDES

| Slide Preparation |       | Clay Minerals (parts/10) |     |                 |     |  |  |  |  |
|-------------------|-------|--------------------------|-----|-----------------|-----|--|--|--|--|
| Technique         | Split | Illite                   |     | Mixed-Structure |     |  |  |  |  |
| Smear             |       |                          | -   |                 |     |  |  |  |  |
|                   | Α     | 5                        | 2   | 2               | 0.5 |  |  |  |  |
|                   | В     | 5                        | 2.5 | 2               | 0.5 |  |  |  |  |
|                   | С     | 5.5                      | 1.5 | 2               | 0.5 |  |  |  |  |
| Sedimented        |       |                          |     | •               |     |  |  |  |  |
|                   | Α     | 6                        | 1.5 | 2               | 0.5 |  |  |  |  |
|                   | В     | 5.5                      | 2   | 2               | 0.5 |  |  |  |  |
|                   | С     | 5                        | 1.5 | 3               | 0.5 |  |  |  |  |

TABLE 5. CLAY MINERALOGY, USGS STANDARD SAMPLE SDO-1

| Slide Preparation |         | Clay Minerals (parts/10) |             |                 |             |  |  |  |  |
|-------------------|---------|--------------------------|-------------|-----------------|-------------|--|--|--|--|
| Technique         | Split ' | Illite                   |             | Mixed-Structure |             |  |  |  |  |
| _                 |         |                          | <del></del> |                 | <del></del> |  |  |  |  |
| Smear             |         |                          |             |                 |             |  |  |  |  |
|                   | Α       | 6.5                      | 2.5         | tr              | 0.5         |  |  |  |  |
|                   | В       | 7                        | 2.5         | 0               | 1           |  |  |  |  |
|                   | С       | 6                        | 2           | 1.5             | 0.5         |  |  |  |  |
| Sedimented        |         |                          |             |                 |             |  |  |  |  |
|                   | Α       | 7                        | 2           | 0.5             | 0.5         |  |  |  |  |
|                   | В       | 6                        | 2           | 1               | 0.5         |  |  |  |  |
|                   | С       | 7                        | 1.5         | 1               | 0.5         |  |  |  |  |
| •                 |         |                          |             |                 |             |  |  |  |  |

- 20 -

TABLE 7. VITRINITE REFLECTANCE EFFINGHAM COUNTY, ILLINOTS, CORE SAMPLES (021L)

| Sample | Depth* | #               | Ro(%)   | Std.      |
|--------|--------|-----------------|---------|-----------|
| Number | (ft)   | Readings        | Average | Deviation |
| 01C1   | 3011.4 | 45              | 0.66    | 0.14      |
| 0201   | 3021.4 | 50              | 0.52    | 0.07      |
| 03C1   | 3043.3 | 50              | 0.44    | 0.07      |
| 03C1   | 3043.3 | 51 <sup>+</sup> | 0.49    | 0.03      |
| 04Cl   | 3053.0 | 26              | 0.49    | 0.06      |
| 04C2   | 3059.5 | 29              | 0.47    | 0.07      |
| OPCI   | 3065.3 | 31              | 0.48    | 0.06      |
| 05L2   | 3071.5 | . 26            | 0.47    | 0.08      |
| 06C1   | 3073.3 | 50              | 0.48    | 0.07      |
| 06L2   | 3081.1 | 27              | 0.52    | 0.09      |
| 07C1   | 3085.6 | .36             | 0.51    | 0.10      |
| 08C1   | 3096.7 | 50 <sup>+</sup> | 0.56    | 0.03      |
| ·      |        |                 |         |           |

<sup>\*</sup> Depth below logging reference @ 612.1 ft. above mean sea level.

<sup>+</sup> Handpicked sample from vitrain band lying on bedding plane (not macerated).

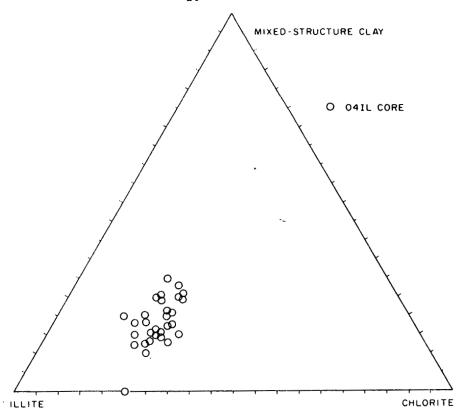
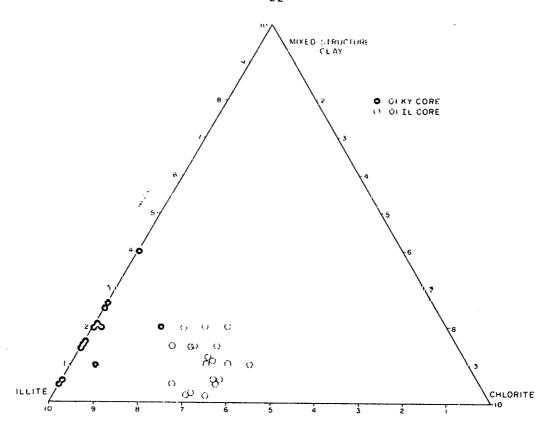






Fig. 1. Clay mineralogy: 04IL and 06IL cores.



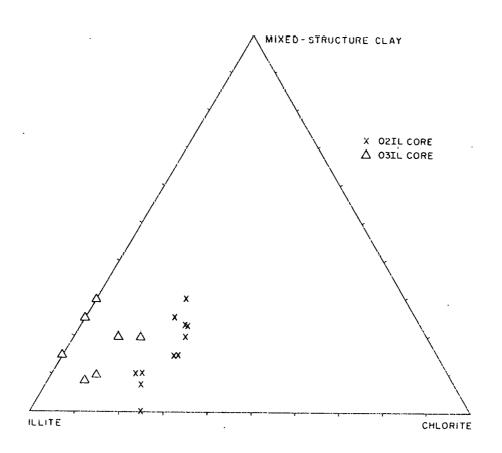



Fig. 2. Clay mineralogy: OlKY, OlIL, 02IL, and O3IL cores.

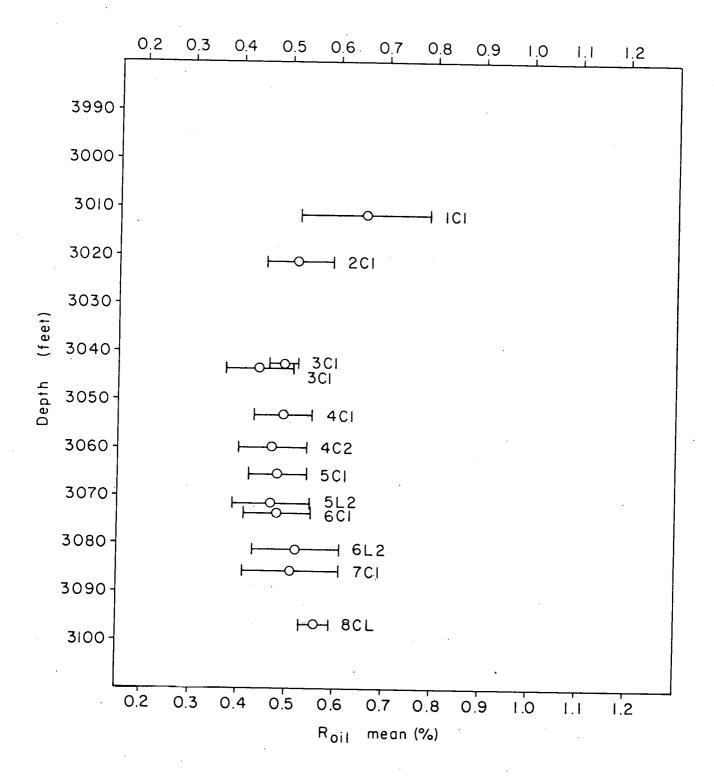



Fig. 3. Mean-random vitrinite reflectance, in oil, Effingham County, Illinois core samples (O2IL). Error bars correspond to + one standard deviation. Depths are below reference level of 612 feet above mean sea level.

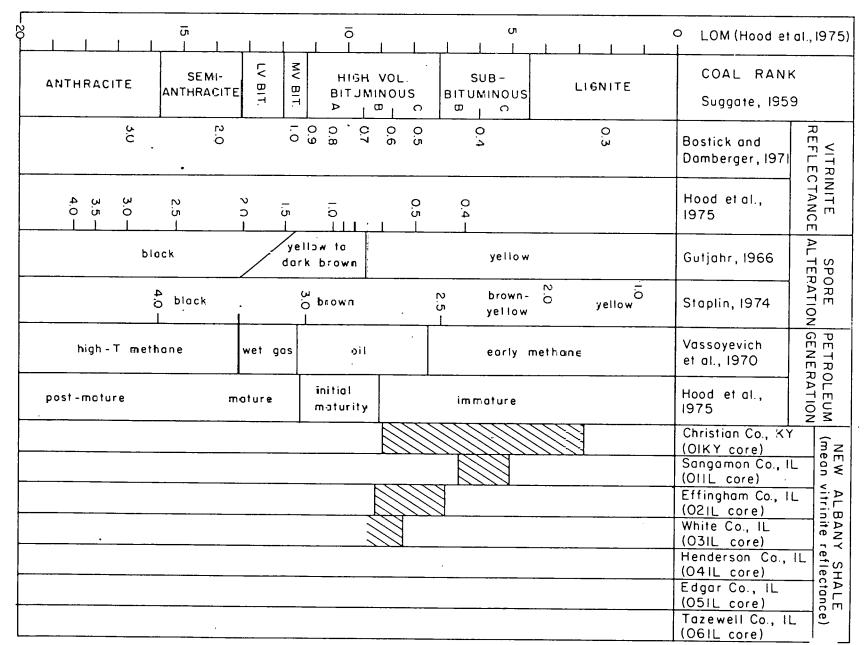



Fig. 4. Relation of of vitrinite Basin petroleum generation New Albany level of Shale organic spore samples. spore coloration, to reflectance, metamorphism (LOM), (LOM), coal rank, , and principal stages observed from Illinois

#### PHYSICAL CHARACTERIZATION

#### Introduction

This project is a study of the index properties, directional properties, and strength of oriented core of Devonian black shale from the Illinois Basin. Index properties include moisture content, specific gravity, bulk density, and Shore hardness. Directional seismic velocities will be determined with an acoustical bench. Strength tests include point-load fracture strength and indirect-tensile strength (Brazilian split). Fracture frequency, drilling rate, and core recovery are also compiled as an additional mechanical index.

## Destructive Testing

#### Testing Procedure

All destructive testing for this study is being performed on a Tinius-Olsen Model 300CT-1 compression testing machine. The machine has electronic-load indicator and servo controls (fig.1). A specially designed subpress with interchangeable flat and point-load platens was used in the load frame for each of the two types of tests being run.

Figures 2 and 3 are typical examples of test results, showing the data-recording sheet and the load-deformation curve. The load curve has proven to be a good record of the test quality as well as a characterization of distinctive modes of failure for the various lithologies designated. While not specifically a part of this study, an analysis of the loading curves is in progress and will be presented at a later date.

The point-load tests are performed with quickly applied compression (approximately 8 cm/min), and the test value is recorded as the point-load index (load at failure divided by the sample thickness squared). The loading points of the compression machine are hardened 60-degree cones with a 5-mm radius point. Point-load samples are approximately half the core diameter in thickness with ends machined to within 0.05 cm parallelism. Sample preparation for the point-load test is not critical, as the credibility of the test is usually determined by splitting subparallel to the bedding. This splitting is caused by irregular bedding, fossils, mineralized nodules, or coring-induced fractures. The fast test rate (maximum machine rate) is the only control that has tended to minimize the effect of splitting.

The indirect-tensile tests are performed at a slow deformation rate (approximately .001 cm/min), and the test value is recorded as the tensile strength (2 x load divided by the sample diameter x sample thickness x  $\pi$ ). The platens are flat with no cushion. Where the core has very irregular sides (core 02IL only), a thin fiber board cushion was used. As with the point-load test, splitting due to geologic flaws was a problem. There are too few comparable samples (lithology and orientation) to quantitatively assess the influence of this splitting on the test results.

#### Progress

#### Core 01KY

The destructive testing and initial analysis of core OlKY has been completed. In summary, there is a preferred orientation (northwest-southeast). The degree of expression and the orientation appear to be controlled by the lithology.

Near-vertical, natural fractures were noted in 22 of the 172 samples tested. The general direction of fracture orientation is northwest-southeast with 13 fractures oriented  $135^{\circ}/315^{\circ}+20^{\circ}$ , and 7 fractures oriented  $90^{\circ}/270^{\circ}+10^{\circ}$ . Figure 4a summarizes these data.

The point-load test was performed on 75 samples, most of which were lithologies III (poorly laminated brownish-black shales) or IV (finely laminated brownish-black shales). Figure 5 shows the position of the resulting fractures. The fractures resulting from the point-load tests show a preferred orientation of 130°/310° for lithologies III and IV (poorly laminated and finely laminated brownish-black shales). Lithology II (indistinctly bedded olive-gray shales) had only 10 samples and showed considerable scatter in orientation relative to lithologies III and IV (see figs. 4b,c,d).

The indirect tensile test was performed on 97 samples. Figure 6 summarizes the results. The preferred orientation shown by the indirect tensile strength (normal to axis of testing) is generally compatible with the point-load test data. However, the relative preference (fig. 6) is small (ratio of maximum value to minimum is 1.16) for all test values. Furthermore, subdivision by lithology is inconclusive at this point due to the small number of samples available for testing.

#### Core 02IL

As a result of poor core recovery and questionable orientation of available core, the results of the destructive testing are of questionable value. Figure 7 shows that one-third of the core was either broken or lost at the time of drilling. Another one-third of the core was either unoriented or unable to be oriented (had multiple orientation grooves or spiraling orientation grooves). Where questionable core was oriented, it was done by comparison with adjacent oriented core.

In summary, this core is of questionable value for orientation work and should probably be regarded as an unoriented core.

The distribution of destructive test samples by lithology is as follows:

|                      | Lithology      |                   |                  |                  |                 |     |  |  |
|----------------------|----------------|-------------------|------------------|------------------|-----------------|-----|--|--|
| Test                 | $\frac{II}{a}$ | $\frac{II_{b}}{}$ | III <sub>a</sub> | III <sub>b</sub> | IV <sub>a</sub> | IVb |  |  |
| Point-Load           | 5              | -                 | 2                |                  | 22              | 2   |  |  |
| Indirect-<br>Tensile | 2              | 2                 | 1                | 3                | 29              | -   |  |  |

 $$\operatorname{As}$$  with core OlKY, most of the samples are the brownish-black shale (lithologies III and IV).

The results of the point-load tests (figs. 8 and 9) show a preferred orientation northeast/southwest. The core had nine data sets, two of which, 02IL06 and 02IL07, offered no destructive test samples. Furthermore, data sets 02IL01 and 02IL09 are largely the limestone from above and below the New Albany.

The indirect-tensile test was performed on 37 samples. Figure 10 summarizes the results. There is a preferred orientation indicated. This is compatible with the point-load test results; however, it is based on a small number of samples.

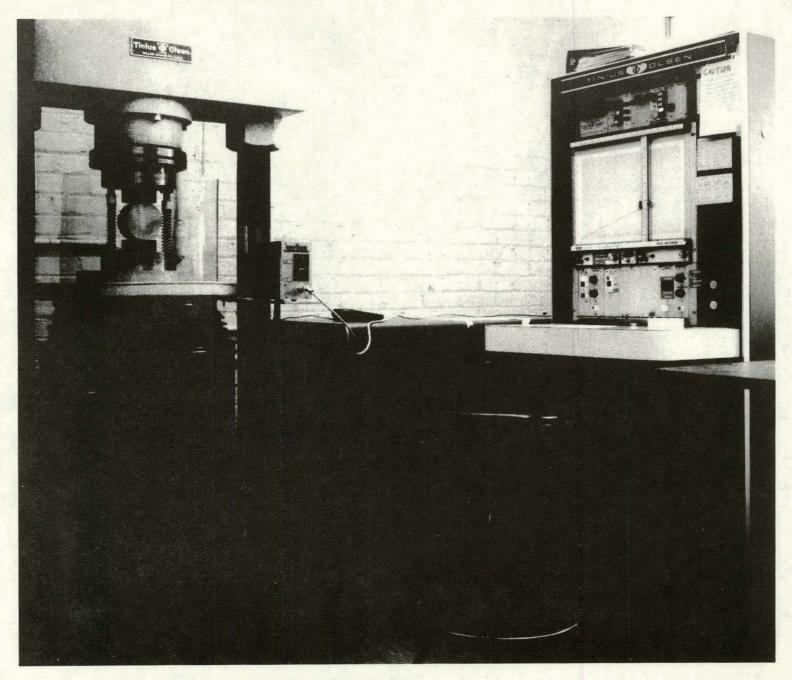



Fig. 1. Compressior Testing Machine, Model 300CT-1.

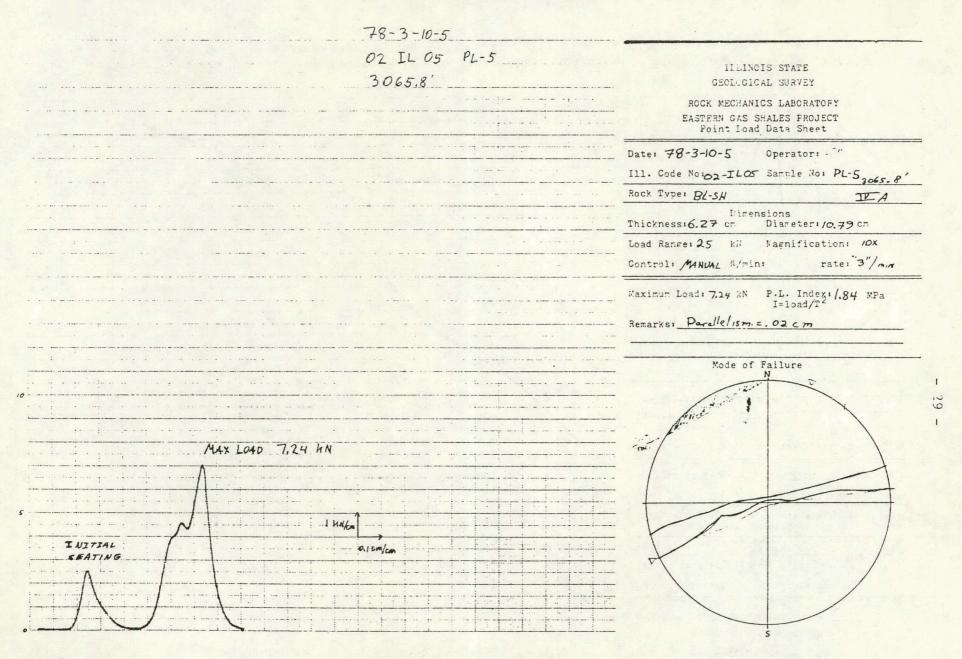



Fig.2. Example of a point-load test data sheet. A typical load deformation curve shows a peak for the initial seating of the point followed by loading to failure. The orientation of the resulting fracture(s) is shown at the right as "mode of failure."

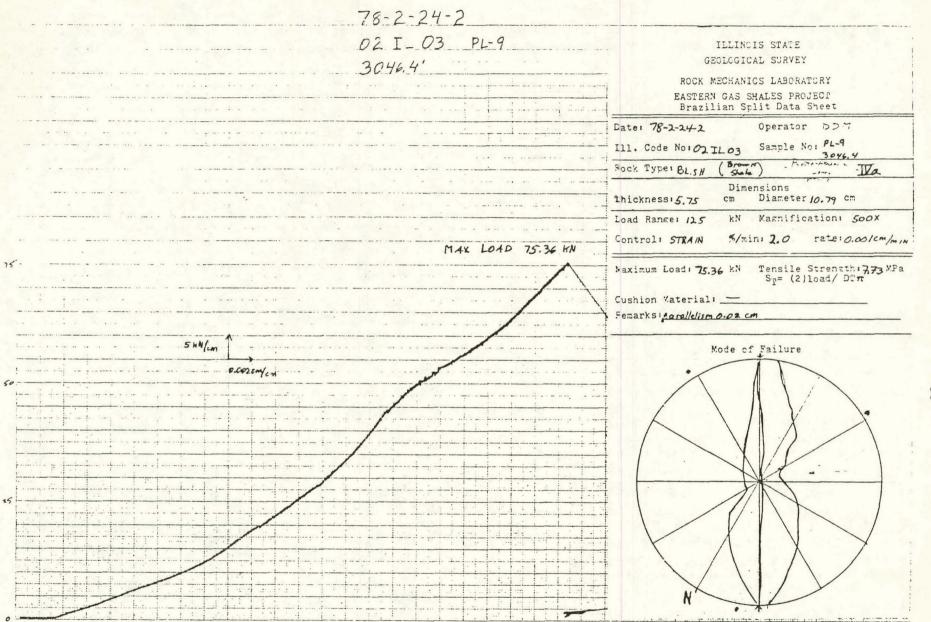



Fig. 3. Example of an indirect-tensile test (Brazilian split) data sheet. The mode of failure diagram at the right shows the test direction and the resulting fractures, relative to the core orientation.

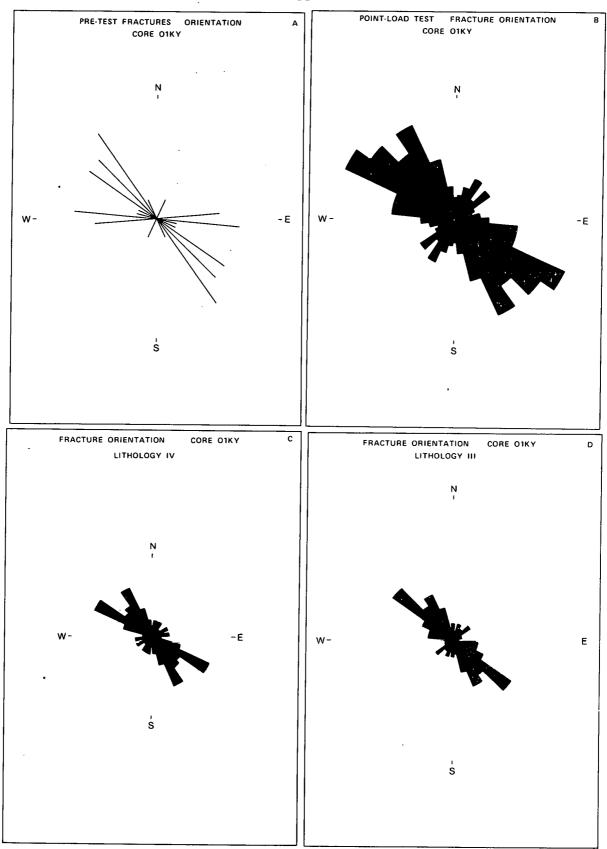



Fig. 4. Frequency plot of fracture orientations core OlKY.

- a) natural fractures
- b) point-load fractures, all tests
- c) point-load fractures, finely laminated brownish-black shales
- d) point-load fractures, poorly laminated brownish-black shales

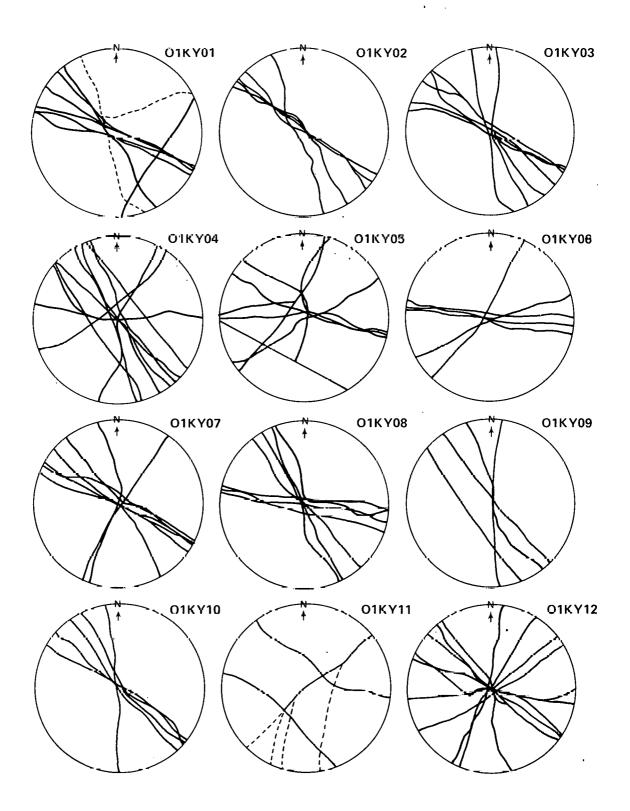
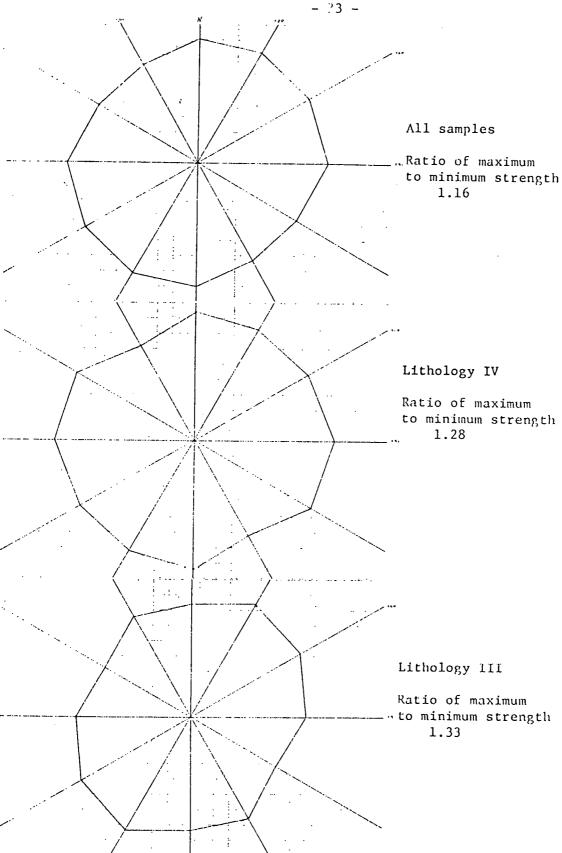




Fig. 5. Position of fractures resulting from point-load testing, lithologies II, III, IV, core OlKY. Fractures resulted from a point load applied at the center of the circle (core).



Relative preference of orientation of indirect-tensile strength. The average strength for each of the six test directions is proportional to the distance from the center of the diagram.

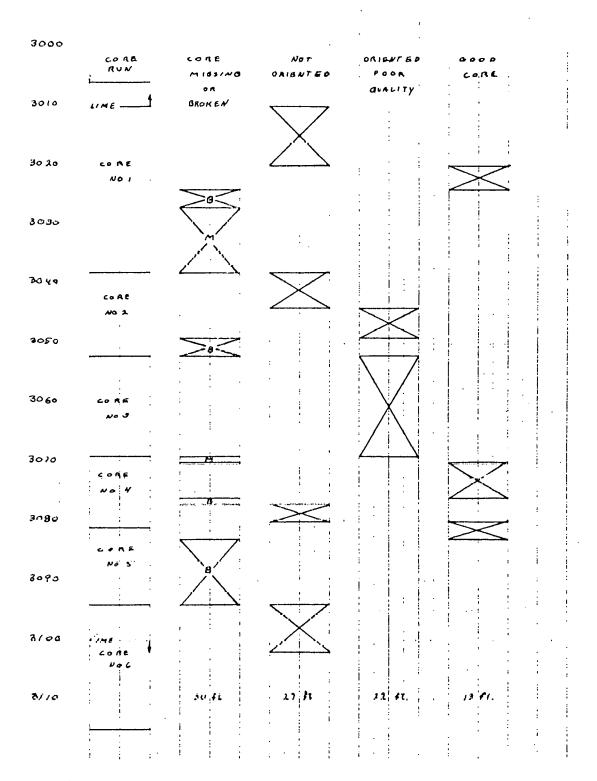



Fig. 7. Quality of oriented core, core 02IL.

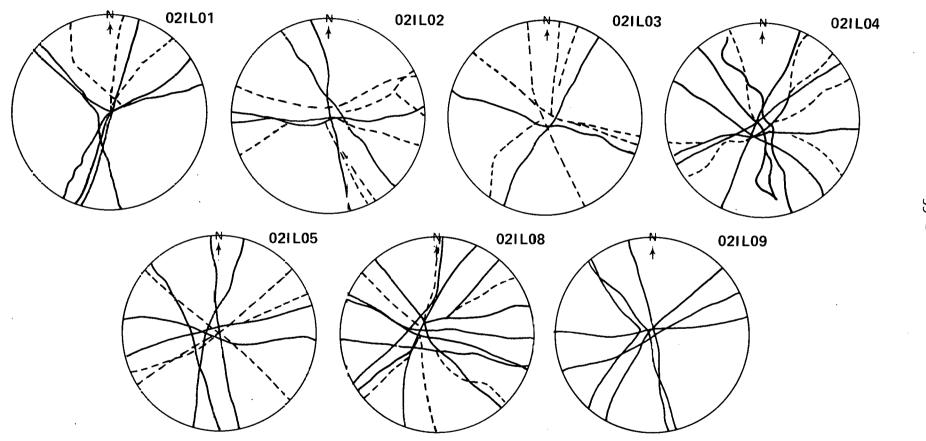



Fig. 8. Position of fractures resulting from point-load testing, lithologies II, III, IV and limestone, core O2IL.

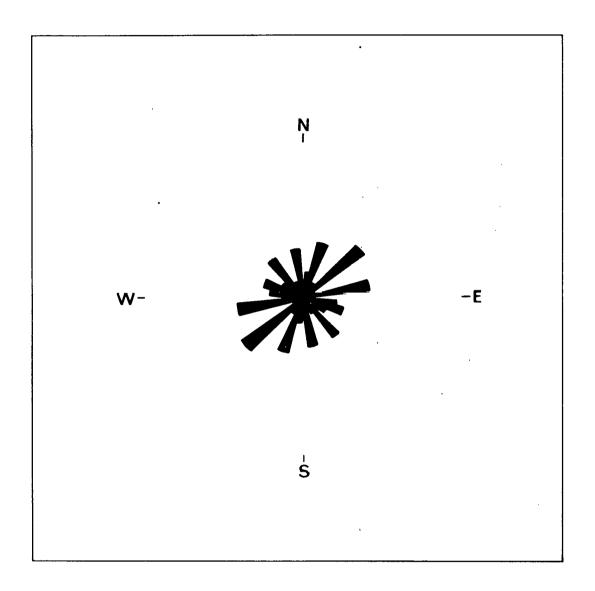



Fig. 9. Frequency plot of fracture orientations, core 0211.

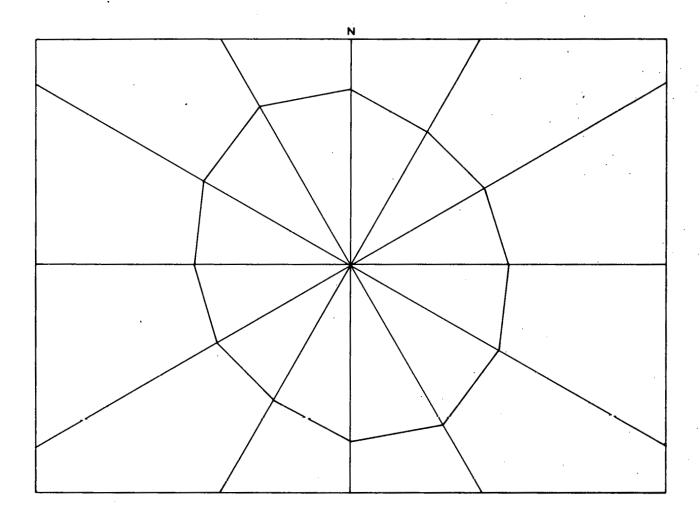



Fig. 10. Relative preference of orientation of indirect tensile strength, lithologies II, III, IV and limestone, core 02IL.

## GEOCHEMICAL CHARACTERIZATION

# QUANTITATIVE DETERMINATION OF MAJOR, MINOR, AND TRACE ELEMENTS IN SHALES

#### Introduction

Determine not less than 49 major, minor, and trace elements in 300-500 shale samples, which are representative cross sections of the cores taken. Include organic and mineral carbon; total hydrogen; pyritic\*, sulfate\*, and total sulfur; exchangeable cations (Ca, Na, K, Mg); and base exchange capacity. Also, report other elements observed during normal routine analysis. The data generated will be used to evaluate 1) the potential economic importance of trace element concentrations in organic-rich shales, 2) new geochemical exploration techniques for natural gas, 3) trace element enrichment in shale organic matter, 4) the occurrence of heavy metal sulfides in shale, 5) potential catalytic effects of trace elements on shale pyrolysis yields, and 6) potential disposal problems.

\* Where total sulfur exceeds 0.5%

## Elemental Analysis

### Progress

Attached is the latest computer print-out of chemical analyses completed and entered as of March 1978. The print-out data are comprised of an updating of results previously reported for 37 core samples and results of analyses of 20 new shales. Statistical evaluations, interpretations etc. must await completion of additional analyses. In this regard, analytical progress is on schedule and no unsolvable problems are foreseen at this time.

# TRACE ELEMENT DISTRIBUTION IN ORGANIC AND INORGANIC FRACTIONS OF SHALE

## Introduction

Develop chemical and/or physical methods for the separation of the organic and inorganic phases of shales, and determine the trace elements that are associated with each phase. Methods tested include float-sink gravity separations, mechanical separations (Humphrey Spiral), acid extractions, and zonal centrifugation. Compare results of analyses for ten shales, their gravity fractions, and their separated organic phases to determine the elements closely associated with organic matter. Separation procedures that are most promising will be used to study further the organically combined trace elements in additional shale samples. This research is designed to yield new information concerning chemical variations in shale organic matter, which is the shale component about which little is known and which may be the most characteristic feature of gas-bearing shales.

| SAMPLE<br>NO.                                                  | GEOL.<br>NO. | DEPTH<br>(FT) | \$102<br>(%)                                                                                | ALPC3<br>(1)                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FE AS<br>% FE2D3<br>(NAA)                                          | MGC<br>(X)                                                                   | CAO<br>(%)                                                                                                 | NA A5<br>% NA20<br>(NAA)                                                                                                   | K20<br>(%)<br>(XRF)                                           | # AS<br>% K20<br>(naa)                                                                                    | T102<br>(%)                                                                                           | P205<br>(%)                                                                              | MN<br>(PPM)<br>(NAA)                                                                       |     |
|----------------------------------------------------------------|--------------|---------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----|
| 389881                                                         | 81×Y81C1     |               | 53.2                                                                                        | 10.1                                                                          | 6.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,46                                                               | .74                                                                          | .14                                                                                                        | .74                                                                                                                        | 3.06                                                          | 3.52                                                                                                      | .56                                                                                                   | .16                                                                                      | 116                                                                                        |     |
| 6.5                                                            | 8261         | 219:,1        | 59.3                                                                                        | 9.65                                                                          | 5.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.88                                                               | 1.21                                                                         | 1,63                                                                                                       | .65                                                                                                                        | 2.71                                                          | 3.76                                                                                                      | .52                                                                                                   | . 66                                                                                     | 310                                                                                        |     |
| 23                                                             | 0301         | 2550.3        | 57,8                                                                                        | 9.93                                                                          | 7,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.66                                                               | 1.08                                                                         | 1.60                                                                                                       | .68                                                                                                                        | 2.76                                                          | 3.24                                                                                                      | .54                                                                                                   | . 12                                                                                     | 296                                                                                        |     |
| 94                                                             |              | 5530.5        | 62,8                                                                                        | 15,2                                                                          | 3,91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,69                                                               | 1.49                                                                         | .56                                                                                                        | .65                                                                                                                        | 4.22                                                          | 4.54                                                                                                      | .71                                                                                                   | 4 .01                                                                                    | 276                                                                                        |     |
| P:5                                                            |              | 2546.1        | 48,8                                                                                        | 10.0                                                                          | 7.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.2                                                               | 1.69                                                                         | 7.32                                                                                                       | .74                                                                                                                        | 2,61                                                          | 2.75                                                                                                      | . 45                                                                                                  | 4.25                                                                                     | 410                                                                                        |     |
| 86                                                             |              | 2250.0        | 20.14                                                                                       | 16.9                                                                          | 4.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.30                                                               | 1.95                                                                         | 1.25                                                                                                       | ,98                                                                                                                        | 4,31                                                          | 4.84                                                                                                      | . 53                                                                                                  | .07                                                                                      | 366                                                                                        |     |
| P. 7                                                           |              | 5595.3        | 49.5                                                                                        | 13.5                                                                          | 6.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.38                                                               | 1.05                                                                         | .26                                                                                                        | .77                                                                                                                        | 3.93                                                          | 4.19                                                                                                      | .74                                                                                                   | .07                                                                                      | 160                                                                                        |     |
| 8 9                                                            |              | 2276.3        | 57,9                                                                                        | 14.3                                                                          | 3,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,14                                                               | 2.10                                                                         | 2.23                                                                                                       | ,92                                                                                                                        | 4.23                                                          | a.a.                                                                                                      | .73                                                                                                   | .13                                                                                      | 190                                                                                        |     |
| 6.9                                                            |              | 2288.0        | 51.9                                                                                        | 11,5                                                                          | 3.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.27                                                               | 3,59                                                                         | 4.51                                                                                                       | .63                                                                                                                        | 3.49                                                          | 3.46                                                                                                      | .71                                                                                                   | . 7 1                                                                                    | 366                                                                                        |     |
| 18                                                             |              | 2296.7        | 53.7                                                                                        | 11.5                                                                          | 2,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,11                                                               | 2.83                                                                         | 3,69                                                                                                       | , 75                                                                                                                       | 3.81                                                          | 4.36                                                                                                      | . 4.6                                                                                                 | . 95                                                                                     | 586                                                                                        |     |
| 11                                                             |              | 2299.7        | 45.0                                                                                        | 9.77                                                                          | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.79                                                               | 4.75                                                                         | 7.50                                                                                                       | . 47                                                                                                                       | 2,99                                                          | 3,53                                                                                                      | .52                                                                                                   | .19                                                                                      | 488                                                                                        |     |
| 12                                                             |              | 2318.5        | 51.6                                                                                        | R.44                                                                          | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,29                                                               | 4.31                                                                         | 7.51                                                                                                       | .56                                                                                                                        | 2.87                                                          | 3.34                                                                                                      | , 43                                                                                                  | . 15                                                                                     | 322                                                                                        |     |
| 13                                                             | 1301         | 2318.8        | 46.2                                                                                        | 7.67                                                                          | 3.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,67                                                               | 4.26                                                                         | 11,7                                                                                                       | .45                                                                                                                        | 5.61                                                          | 3,05                                                                                                      | .35                                                                                                   | .19                                                                                      | 360                                                                                        |     |
| 33                                                             | BBLI         | 2273.5        | 55.2                                                                                        | 14.5                                                                          | 5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.46                                                               | 1.42                                                                         | 1,69                                                                                                       | . 84                                                                                                                       | 4.14                                                          | 5.00                                                                                                      | .71                                                                                                   | .12                                                                                      | 260                                                                                        |     |
| 34                                                             |              | 8.7855        | 54,3                                                                                        | 11.9                                                                          | 2.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.88                                                               | 3,62                                                                         | 5.67                                                                                                       | ,75                                                                                                                        | 3,62                                                          | 4.35                                                                                                      | .71                                                                                                   | . 03                                                                                     | 360                                                                                        |     |
| 35                                                             |              | 5545.4        | 51.8                                                                                        | 13.9                                                                          | 3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,62                                                               | 3.47                                                                         | 5,58                                                                                                       | . 78                                                                                                                       | 3.53                                                          | 3.96                                                                                                      | ,63                                                                                                   | .04                                                                                      | 332                                                                                        |     |
| 36                                                             |              | 2311.1        | 49.8                                                                                        | 8,37                                                                          | 5.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,97                                                               | 4.25                                                                         | 10.3                                                                                                       | ,53                                                                                                                        | 2.64                                                          | 3,03                                                                                                      | .37                                                                                                   | .19                                                                                      | 378                                                                                        |     |
| 37                                                             | 13L1         | 2312.6        | 49.8                                                                                        | 7.59                                                                          | 3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.33                                                               | 4.19                                                                         | 9,32                                                                                                       | .53                                                                                                                        | 2,63                                                          | 3.86                                                                                                      | .36                                                                                                   | .25                                                                                      | 360                                                                                        |     |
|                                                                |              |               |                                                                                             |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                              |                                                                                                            |                                                                                                                            |                                                               |                                                                                                           |                                                                                                       |                                                                                          |                                                                                            |     |
|                                                                |              |               | МŅ<br>(РРМ)                                                                                 | V<br>(PPH)                                                                    | V<br>(PP4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S<br>(X)                                                           | CL                                                                           | TOTAL                                                                                                      | ORGANIC                                                                                                                    | INORG.                                                        |                                                                                                           | TOTAL<br>CEC                                                                                          | 88<br>(PPM)                                                                              | AS<br>(PPM)                                                                                |     |
|                                                                |              |               | MN<br>(PPM)<br>(OE=P]                                                                       | V<br>(PPM)<br>(OE-D)                                                          | V<br>(PPM)<br>(DE=P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s<br>(x)                                                           | CL<br>(%)                                                                    | TOTAL<br>C (%)                                                                                             | ORGANIC<br>C (%)                                                                                                           | INORG.<br>C (%)                                               | (X)                                                                                                       | TOTAL<br>CEC<br>MED/10PG                                                                              | 88<br>(PPM)                                                                              | AS<br>(PPM)                                                                                |     |
| 566961                                                         |              |               | MN<br>(PPH)<br>(OE-P)                                                                       | V<br>(PPM)<br>(OE-D)                                                          | V<br>(PPM)<br>(DE=P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s<br>(x)                                                           | CL<br>(%)                                                                    | TOTAL<br>C (%)                                                                                             | ORGANIC<br>C (%)                                                                                                           | INORG.<br>C (%)                                               | (X)                                                                                                       | TOTAL<br>CEC                                                                                          | 88<br>(PPM)                                                                              | AS<br>(PPM)                                                                                |     |
| 65                                                             |              |               | MN<br>(PPM)<br>(OE-P)<br>12P<br>29A                                                         | V<br>(PPM)<br>(OE-D)<br>16P<br>14P                                            | V<br>(PPM)<br>(OE-P)<br>202<br>167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s<br>(x)<br>2,42<br>1,84                                           | .02<br>.02                                                                   | TCTAL<br>C (%)                                                                                             | ORGANIC<br>C (%)<br>14.03<br>10.29                                                                                         | : INORG.<br>C (X)<br>.10<br>.57                               | (X)                                                                                                       | TOTAL<br>CEC<br>MED/12PG                                                                              | 88<br>(PPM)<br>4.9<br>3.3                                                                | A5<br>(PPM)<br>68<br>38                                                                    |     |
| Ø 2<br>Ø 3                                                     |              |               | MN<br>(PPM)<br>(OE-P:<br>12°<br>290<br>220                                                  | V<br>(PPM)<br>(OE-D)<br>16M<br>140<br>173                                     | V<br>(PP4)<br>(OE-P)<br>202<br>162<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S<br>(X)<br>2,42<br>1,84<br>1,93                                   | . 02<br>. 02<br>. 02<br>. 02                                                 | TCTAL<br>C (X)                                                                                             | ORGANIC<br>C (X)                                                                                                           | INORG.<br>C (X)                                               | (X)                                                                                                       | TOTAL<br>CEC<br>MED/12PG                                                                              | 88<br>(PPM)<br>4.9<br>3.3<br>5.6                                                         | A5<br>(PPM)                                                                                |     |
| © 2<br>Ø 3<br>Ø 4                                              |              |               | MN<br>(PPM)<br>(OE-P:<br>12P<br>29A<br>22A<br>26A                                           | V<br>(PPM)<br>(OE-0)<br>16P<br>14P<br>172<br>150                              | V<br>(PPM)<br>(OE-P)<br>200<br>167<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8<br>(x)<br>2.42<br>1.84<br>1.93                                   | . 02<br>. 02<br>. 02<br>. 01<br>. 02                                         | TCTAL<br>C (%)<br>14.13<br>10.86<br>7.78<br>2.24                                                           | ORGANIC<br>C (%)<br>14.03<br>10.29<br>7.03<br>1.64                                                                         | : INORG.<br>C (X)<br>.10<br>.57                               | 1.93<br>1.43<br>1.27                                                                                      | TOTAL<br>CEC<br>MEQ/19PG<br>4.7<br>3.4                                                                | 88<br>(PPM)<br>4.9<br>3.3                                                                | AS<br>(PPM)<br>68<br>38<br>42<br>17                                                        |     |
| 02<br>03<br>04<br>P5                                           |              |               | MN<br>(PPM)<br>(OE-P:<br>12P<br>29A<br>22A<br>26A<br>34A                                    | V<br>(PPM)<br>(OE-O)<br>16P<br>14P<br>172<br>150<br>129                       | V<br>(PPM)<br>(OE-P)<br>200<br>160<br>160<br>150<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S<br>(X)<br>2.42<br>1.84<br>1.93<br>.35<br>2.27                    | . 02<br>. 02<br>. 02<br>. 02<br>. 01<br>. 02<br>. 02                         | TCTAL<br>C (%)<br>14.13<br>10.86<br>7.76<br>2.24<br>7.01                                                   | ORGANIC<br>C (%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81                                                                 | .10 (x)<br>.10 .57 .75 .60                                    | 1.93<br>1.43<br>1.27<br>.74                                                                               | TOTAL<br>CEC<br>MED/10PG<br>4.7<br>3.4<br>4.7<br>5.1<br>3.2                                           | 88<br>(PPM)<br>4.9<br>3.3<br>5.6<br>1.8<br>4.2                                           | AS<br>(PPM)<br>68<br>38<br>42<br>17                                                        |     |
| 02<br>03<br>04<br>P5<br>06                                     |              |               | MN<br>(PPM)<br>(OE-P)<br>12P<br>29A<br>22A<br>26A<br>34A<br>310                             | V<br>(PPM)<br>(OE-D)<br>160<br>140<br>173<br>150<br>129<br>150                | V<br>(PPM)<br>(OE-P)<br>200<br>160<br>160<br>150<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S<br>(X)<br>2.42<br>1.84<br>1.93<br>.35<br>2.27                    | . 02<br>. 02<br>. 02<br>. 02<br>. 01<br>. 02<br>. 02<br>. 02                 | TCTAL<br>C (X)<br>14.13<br>10.86<br>7.78<br>2.24<br>7.01<br>1.69                                           | ORGANIC<br>C (%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81                                                                 | .10 (x) .10 .57 .75 .60 1.20                                  | 1.93<br>1.43<br>1.27<br>.74<br>.91                                                                        | TOTAL<br>CEC<br>MEQ/10AG<br>4.7<br>3.4<br>4.7<br>5.1<br>3.2<br>7.3                                    | 88<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>4.2<br>1.4                                    | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8                                           | ا ع |
| 02<br>03<br>04<br>P5<br>06<br>07                               |              |               | MN (PPM)<br>(DE-P:<br>12P<br>29A<br>26A<br>26A<br>34A<br>31A<br>150                         | V<br>(PPM)<br>(OE-0)<br>160<br>140<br>173<br>150<br>129<br>150<br>>560        | V<br>(PPM)<br>(OE-P)<br>200<br>167<br>150<br>150<br>150<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S<br>(X)<br>2.42<br>1.84<br>1.93<br>.35<br>2.27<br>.22<br>1.74     | . 02<br>. 02<br>. 02<br>. 03<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02         | TCTAL<br>C (%)<br>14.13<br>10.86<br>7.78<br>2.24<br>7.81<br>1.69<br>12.61                                  | ORGANIC<br>C (%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81                                                                 | . INORG.<br>C (X)<br>.10<br>.57<br>.75<br>.60<br>1.70<br>1.73 | 1.93<br>1.43<br>1.27<br>.74<br>.91<br>.59                                                                 | TOTAL<br>CEC<br>MEQ/100G<br>4.7<br>3.4<br>4.7<br>5.1<br>3.2<br>7.3<br>5.0                             | 88<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>4.2<br>1.4                                    | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8                                           | S   |
| 02<br>03<br>04<br>05<br>06<br>07<br>08                         |              |               | MN<br>(PPM)<br>(OE-P)<br>12P<br>29A<br>22A<br>26A<br>34A<br>31A<br>15B                      | V (PPM) (OE-D)  160 140 170 150 120 120 150                                   | V (PPM) (OE-P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S (X)  2.42 1.84 1.93 .35 2.27 .22 1.74 .53                        | . 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02                 | 14.13<br>10.86<br>7.78<br>2.24<br>7.01<br>1.69<br>12.61<br>6.00                                            | ORGANIC<br>C (%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81<br>.66<br>12.30<br>5.04                                         | .1P .57 .75 .60 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2        | 1.93<br>1.43<br>1.27<br>.74<br>.91<br>.59                                                                 | TOTAL<br>CEC<br>MEQ/100G<br>4.7<br>3.4<br>4.7<br>5.1<br>3.2<br>7.3<br>64.9                            | 88<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>4.2<br>1.4                                    | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8<br>45                                     | S   |
| 02<br>03<br>04<br>05<br>06<br>07<br>08                         |              |               | MN (PPM) (OE-P: 12P 290 220 340 310 150 17P 320                                             | V (PPM) (OE-D)  16                                                            | V (PPM) (OE-P) 202 167 150 123 150 453 203 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.42<br>1.84<br>1.93<br>.35<br>2.27<br>.22<br>1.74<br>.53          | CL (X) .02 .02 .02 .02 .02 .02 .02 .02 .02 .02                               | 14,13<br>10.86<br>7.78<br>2.24<br>7,21<br>1.69<br>12.61<br>6.00                                            | 0RGANIC<br>C (%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81<br>.66<br>12.30<br>5.39                                         | .10 (x) .10 .57 .75 .60 1.20 1.23 .31 .96 2.12                | 1.93<br>1.93<br>1.27<br>.74<br>.91<br>.59<br>1.72<br>1.29<br>1.10                                         | TOTAL<br>CEC<br>MEQ/10PG<br>4.7<br>3.4<br>4.7<br>5.1<br>3.2<br>7.3<br>5.0<br>4.9<br>3.3               | 89<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>4.2<br>1.4<br>12.0                            | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8<br>45                                     | S   |
| 02<br>03<br>64<br>65<br>66<br>67<br>68<br>69                   |              |               | MN (PPM) (OE-P: 12P 29A 22A 34A 31A 150 17P 320 24A                                         | V (PPM) (OE-D)  160 140 170 150 150 150 170 150 170 170 170 170               | V (PPM) (OE-P) 200 160 150 150 450 200 190 200 200 200 200 200 200 200 200 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,42<br>1.84<br>1.93<br>.35<br>2.27<br>.22<br>1.74<br>.53          | . 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02                 | 10.13<br>10.86<br>7.78<br>2.24<br>7.01<br>1.69<br>12.61<br>6.00<br>7.51<br>10.56                           | 0RGANIC<br>C (%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81<br>.66<br>12.30<br>5.04<br>9.23                                 | .10 (x) .10 .57 .75 .60 1.73 .31 .96 2.12 1.33                | 1.93<br>1.43<br>1.27<br>.74<br>.91<br>.59<br>1.72<br>1.29                                                 | TOTAL CEC > E0/10PG 4.7 3.4 4.7 5.1 3.2 7.3 5.0 4.9 3.3 2.6                                           | 88<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>4.2<br>1.4<br>11.2.0<br>2.8<br>1.8            | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8<br>45<br>15                               | S   |
| 02<br>03<br>64<br>85<br>86<br>87<br>88<br>89<br>10             |              |               | MN (PPM) (OE-P: 12P 29A 22A 34A 31A 150 17P 32C 24A 36B                                     | V (PPM) (OE-D)  160 140 170 150 120 150 170 170 170 170 170 170               | V (PPM) (OE-P) 200 160 150 150 150 150 150 150 150 150 150 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S (x)  2.42 1.84 1.93 .35 2.27 .22 1.74 .53 .64 1.38               | . 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02                 | 14.13<br>10.86<br>7.21<br>1.69<br>7.21<br>1.69<br>7.51<br>10.56                                            | 0RGANIC<br>(%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81<br>.66<br>12.30<br>5.04<br>5.30<br>9.23<br>7.43                   | . INORG. C (X)                                                | 1.93<br>1.43<br>1.27<br>.74<br>.91<br>.59<br>1.72<br>1.29<br>1.10<br>1.38                                 | TOTAL<br>CEC<br>MEQ/19PG<br>4.7<br>3.4<br>4.7<br>5.1<br>3.2<br>7.3<br>5.0<br>4.9<br>3.3<br>2.6<br>2.5 | 88<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>1.4<br>1.2.0<br>2.8<br>1.8<br>2.1             | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8<br>45<br>15<br>12                         | S   |
| 62<br>63<br>64<br>65<br>66<br>67<br>68<br>69<br>10<br>11       |              |               | MN (PPM) (OE-P) 12P 290 220 267 340 310 150 17P 320 240 360 360 360                         | V (PPM) (OE-D)  16                                                            | V (PPM) (OE-P) 202 167 167 157 157 207 207 207 207 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S (x)  2.42 1.84 1.93 .35 2.27 .22 1.74 .53 .62 .64 1.38 1.00      | CL (X) .02 .02 .02 .02 .02 .02 .02 .02 .02 .02                               | 14,13<br>10.86<br>7.76<br>2.24<br>7.01<br>1.69<br>12.61<br>6.00<br>7.51<br>10.56<br>10.16                  | 0RGANIC<br>C (%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81<br>.66<br>12.30<br>5.04<br>5.39<br>9.23<br>7.43<br>5.67         | . INORG. C (X) .10 .57 .50 1.20 1.20 1.31 .96 2.12 1.33 2.65  | 1.93<br>1.43<br>1.27<br>.74<br>.91<br>.59<br>1.72<br>1.29<br>1.10<br>1.38                                 | TOTAL CEC #EQ/10PG 4.7 3.4 4.7 5.1 3.2 7.3 5.0 4.9 3.3 2.6 2.5 1.7                                    | 88<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>4.2<br>1.4<br>1.2<br>2.8<br>2.8               | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8<br>45<br>15<br>12<br>18<br>16             | S   |
| 02<br>03<br>64<br>85<br>86<br>87<br>88<br>89<br>10             |              |               | MN (PPM) (OE-P: 12P 29A 22A 34A 31A 150 17P 32C 24A 36B                                     | V (PPM) (OE-D)  160 140 170 150 120 150 170 170 170 170 170 170               | V (PPM) (OE-P) 200 160 150 150 150 150 150 150 150 150 150 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S (x)  2.42 1.84 1.93 .35 2.27 .22 1.74 .53 .64 1.38               | . 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02                 | 14.13<br>10.86<br>7.21<br>1.69<br>7.21<br>1.69<br>7.51<br>10.56                                            | 0RGANIC<br>(%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81<br>.66<br>12.30<br>5.04<br>5.30<br>9.23<br>7.43                   | . INORG. C (X)                                                | 1.93<br>1.43<br>1.27<br>.74<br>.91<br>.59<br>1.72<br>1.29<br>1.10<br>1.38                                 | TOTAL<br>CEC<br>MEQ/19PG<br>4.7<br>3.4<br>4.7<br>5.1<br>3.2<br>7.3<br>5.0<br>4.9<br>3.3<br>2.6<br>2.5 | 88<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>1.4<br>1.2.0<br>2.8<br>1.8<br>2.1             | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8<br>45<br>15<br>12                         | S   |
| 03<br>64<br>65<br>667<br>68<br>69<br>11<br>11<br>12<br>13      |              |               | MN (PPM) (OE-P: 12P 29A 22A 24A 34A 31C 150 17P 32C 24A 34C 332                             | V (PPM) (OE-D)  16                                                            | V (PPM) (OE-P) 200 160 150 150 150 150 150 150 150 150 150 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S (x)  2.42 1.84 1.93 .35 2.27 .22 1.74 .53 .62 .64 1.38 1.00      | CL (X) .02 .02 .02 .02 .02 .02 .02 .01 .02 .01 .02 .01                       | 14,13<br>10.86<br>7.76<br>2.24<br>7.01<br>1.69<br>12.61<br>6.00<br>7.51<br>10.56<br>10.16                  | 0RGANIC<br>C (%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81<br>.66<br>12.30<br>5.04<br>5.39<br>9.23<br>7.43<br>5.67         | . INORG. C (x) . 10 12 15 15 15 12 12 12 . 12                 | 1.93<br>1.43<br>1.27<br>.74<br>.91<br>.59<br>1.72<br>1.29<br>1.10<br>1.38                                 | TOTAL CEC #EQ/10PG 4.7 3.4 4.7 5.1 3.2 7.3 5.0 4.9 3.3 2.6 2.5 1.7                                    | 88<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>4.2<br>1.4<br>1.2<br>2.8<br>2.8               | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8<br>45<br>15<br>12<br>18<br>16             | S   |
| 03<br>03<br>05<br>05<br>07<br>08<br>09<br>11<br>12<br>13<br>33 |              |               | MN (PPM) (OE-P: 12P 290 220 267 340 310 17P 320 240 360 350 337 170 310                     | V (PPM) (OE-D) 160 140 170 150 120 150 170 170 170 170 170 170 170 170 170 17 | V (PPM) (OE-P) 200 167 150 150 150 200 190 200 150 200 150 200 320 200 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S (x)  2.42 1.84 1.93 .35 2.27 .74 .53 .62 1.38 1.00               | . 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 02<br>. 01<br>. 02<br>. 01 | 14.13<br>10.86<br>7.78<br>2.24<br>7.01<br>1.69<br>12.61<br>6.00<br>7.51<br>10.56<br>10.16<br>6.32<br>10.38 | ORGANIC<br>C (%)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81<br>5.84<br>5.30<br>9.23<br>7.43<br>5.67<br>7.30                 | . INORG. C (x) .19 .57 .60 1.73 .31 .96 2.12 1.33 2.65        | 1.93<br>1.43<br>1.43<br>1.43<br>1.74<br>.74<br>.91<br>1.72<br>1.72<br>1.29<br>1.10<br>1.38<br>.98<br>1.00 | TOTAL CEC #EQ/10PG 4.7 3.4 4.7 5.1 3.2 7.3 5.0 4.9 3.3 2.6 2.5 1.7 1.2                                | 88<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>2.6<br>1.8<br>2.1<br>2.8<br>5.7               | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8<br>45<br>15<br>12<br>18<br>16<br>17       | S   |
| 02<br>03<br>64<br>65<br>66<br>67<br>68<br>69<br>12<br>13<br>13 |              |               | MN (PPM) (OE-P) 12P 29P 22P 26P 34P 31D 15P 32P 24P 36D | V (PPM) (OE-D)  16                                                            | V (PPM) (OE-P) 200 160 150 150 150 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 | S (x)  2.42 1.84 1.93 2.27 2.21 7.4 53 62 64 1.38 1.00 1.18        | CL (X) .02 .02 .02 .02 .02 .02 .02 .01 .02 .01 .02 .01                       | 14.13<br>10.86<br>7.76<br>2.24<br>7.21<br>1.69<br>12.61<br>10.56<br>10.56<br>10.16<br>5.32<br>10.38        | 0RGANIC<br>C (X)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81<br>66<br>12.30<br>9.23<br>7.43<br>5.57<br>7.39                  | . INORG. C (x) . 10 12 15 15 15 12 12 12 . 12                 | 1.93<br>1.43<br>1.43<br>1.27<br>.74<br>.91<br>.59<br>1.72<br>1.29<br>1.10<br>1.38<br>.98<br>1.06          | TOTAL CEC #EQ/10PG 4.7 3.4 4.7 5.1 3.2 7.3 5.0 4.9 3.3 2.6 2.5 1.7 1.2                                | 88<br>(PPM:<br>4.9<br>3.3<br>5.5<br>1.8<br>4.2<br>1.4<br>2.6<br>2.8<br>2.1<br>2.8<br>5.7 | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8<br>45<br>15<br>12<br>18<br>16<br>17       | S   |
| 03<br>03<br>05<br>05<br>07<br>08<br>09<br>11<br>12<br>13       |              |               | MN (PPM) (OE-P: 12P 290 220 267 340 310 17P 320 240 360 350 337 170 310                     | V (PPM) (OE-D)  16                                                            | V (PPM) (OE-P) 202 167 150 123 150 203 192 203 150 240 322 233 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S (x)  2.42 1.84 1.93 .35 2.27 .22 1.74 .53 .62 .64 1.38 1.00 1.18 | CL (X) .02 .02 .02 .02 .02 .02 .01 .01 .01                                   | 14,13<br>10.86<br>7.76<br>2.24<br>7.01<br>1.69<br>10.56<br>10.56<br>10.16<br>8.32<br>10.38                 | 0RGANIC<br>C (X)<br>14.03<br>10.29<br>7.03<br>1.64<br>5.81<br>.66<br>12.30<br>5.04<br>5.39<br>9.23<br>7.43<br>7.43<br>7.43 | 1 NORG.  C (x)  19  .57 .59 1.20 1.20 1.33 .31 2.65 3.08      | 1.93<br>1.43<br>1.27<br>.74<br>.91<br>.59<br>1.72<br>1.29<br>1.10<br>1.38<br>.98<br>1.06                  | TOTAL CEC #E9/10PG 4.7 3.4 4.7 5.1 3.2 7.3 5.0 4.9 3.3 2.6 2.5 1.7 1.2 4.6 4.0                        | 88<br>(PPM:<br>4.9<br>3.3<br>5.6<br>1.8<br>4.2<br>1.4<br>12.0<br>2.8<br>5.7              | AS<br>(PPM)<br>68<br>38<br>42<br>17<br>37<br>9.8<br>45<br>15<br>12<br>18<br>16<br>17<br>19 |     |

| SAMPLE<br>NO. | GEOL.            | DEPTH<br>(FT)    | 8#<br>(PPH)           | 8E<br>(PPM1<br>(OE=0) | BE<br>(PP4)<br>(OE-P) | 8<br>(PPM) | 8 <i>P</i><br>(PPM) | CE<br>(PP4) | C5<br>(PP <sup>M</sup> ) | CR<br>('PPM')<br>(MAA') | CR<br>(PP*)<br>(OE-D) | •           | CO<br>(PPH)<br>(NAA)  | CU<br>(PPM)<br>(OE-C) |
|---------------|------------------|------------------|-----------------------|-----------------------|-----------------------|------------|---------------------|-------------|--------------------------|-------------------------|-----------------------|-------------|-----------------------|-----------------------|
| 500001        | 12104419<br>1250 | 1822.2           | 980<br>1129           | 3.6<br>4.3            | 3.6<br>5.9            | 129<br>140 | 5<br>4,5            | 82<br>65    | 5.4<br>4.5               | 65<br>56                | 7 a<br>6 2            | 84<br>65    | 39<br>29              | 44<br>32              |
| 03            |                  | 2556.3           | 888                   | 4,2                   | 4.4                   | \$82       | 4                   | 67          | 5.1                      | 2 9                     | 65                    | 73          | 53                    | 96                    |
| P4            |                  | 5536.5           | 570                   | 3.2                   | 5,2                   | 248        | 3                   | 60          | 6,5                      | 69                      | 9.8                   | 116         | 11                    | 12                    |
| 95            |                  | 2246.1           | 7860                  | 3.0                   | 3,4                   | 188        | 3                   | 170         | 4.5                      | 6.4                     | 68                    | 79          | 32                    | 34                    |
| 86<br>97      |                  | 225g,8<br>226g,3 | 798<br>820            | 5,6                   | 4,4<br>5.2            | 292<br>218 | < 4<br>5            | 91<br>81    | 9.1<br>7.4               | 9 9:                    | 165                   | 112<br>128  | 12<br>23              | 11<br>29              |
| 88            |                  | 2270.3           | 968                   | 2.9<br>2.3            | 5,2                   | 246        | 2                   | 77          | 7.8                      | 165                     | 126                   | 150         | 14                    | 14                    |
| 89            |                  | 2286.6           | 352                   | 2.5                   | 5.1                   | 225        | 3.6                 | 70          | 6.9                      | 85                      | 99                    | 110         | 11                    | 13                    |
| 18            |                  | 2292.7           | 412                   | 5.6                   | 5.8                   | 192        | 5.0                 | 75          | 7.7                      | 97                      | 88                    | 110         | 15                    | iź                    |
| 11            |                  | 2299.7           | 390                   | 2.4                   | 3.8                   | 165        | 3                   | 63          | 5.3                      | 65                      | 68                    | 66          | 13                    | 1 4                   |
| 12            | 1201             | 2318:.5          | 278                   | 2.0                   | 3,3                   | 150        | 3                   | 48          | 4.2                      | 55                      | 56                    | 75          | 11                    | 1 4                   |
| 13            | 1301             | 8.8165           | 518                   | 5.2                   | 3,6                   | 132        | 4                   | 58 1        | 4.9                      | 87                      | 6 R                   | 9.6         | 13                    | 3 4                   |
| 33            |                  | 2273.5           | 488                   | 4.5                   | 4.9                   | 198        | 3                   | 71          | е,3                      | 1150                    | 110                   | 142         | 13                    | 14                    |
| 34            |                  | 2287.8           | 237                   | 2,9                   | 3,6                   | 238        | 3,4                 | 56          | 6,3                      | 71                      | 75                    | 81          | 6.5                   | 9,1                   |
| 35            |                  | 5545.4           | 288                   | 4,4                   | 4,2                   | 315        | <5                  | 51          | 5.8                      | 79                      | 7 1                   | 8.8         | . 8.4                 | 7.3                   |
| 36            |                  | 2311.1           | 298                   | 5.8                   | 4.4                   | 150        | < 4                 | 52          | 4.0                      | 61                      | 5.5                   | 75          | 1.1                   | 14                    |
| 37            | 1361             | 2312.6           | 460                   | 5.6                   | 4 , 1                 | 120        | 5                   | 47          | 4.8                      | 67                      | 61                    | 83          | 11                    | 12                    |
|               |                  |                  |                       |                       |                       |            |                     |             |                          |                         |                       |             |                       |                       |
|               |                  |                  | CO<br>(PPM)<br>(DE=P) |                       | CU<br>(FP4)<br>(CE-P) |            | EU<br>(PPM)         | F<br>(PPH)  | GD<br>(PPH)              | GA<br>(PPM)             | GE<br>(PP*)<br>(DE-D) | нF<br>(РРМ) | P8<br>(PPM)<br>(OE=P) | LA<br>(PPM)           |
| 500001        | ******           |                  | 56                    | 89                    | 99                    | 5,6        | 1,6                 | 649         | 1,4                      | 3.7                     | 1.4                   | 3.8         | 30                    | 35                    |
| 02            |                  |                  | 38                    | 68                    | 8 2                   | 4 4        | 1.3                 | 632         | 1.3                      | 15                      | 2.0                   | 3.0         | 14                    | 28                    |
| 03            |                  |                  | 24                    | 8 5                   | 9.8                   | 4.6        | 1,3                 | 507         | 1.8                      | 13                      | 1.7                   | 3.1         | 36                    | 29                    |
| 84            |                  |                  | 12                    | 61                    | 78                    | 4.7        | 1.3                 | 900         | 1,6                      | 55                      | 1.5                   | 3,0         | 19                    | 37                    |
| 05            |                  |                  | 53                    | 7 B                   | 72                    | 17         | 5,2                 | 2925        | 6.5                      | 11                      | < .4                  | 4.5         | 56                    | 43                    |
| 26<br>87      |                  |                  | 9.5                   | 36                    | 35                    | 5,4        | 1,4                 | 895         | 1.9                      | 23                      | ٠,۵                   | 5,2         | 11                    | 42                    |
| 68            |                  |                  | 16<br>26              | 168<br>147            | 178<br>242            | 6.4<br>5.6 | 1,9                 | 745<br>885  | 1,3                      | 22<br>19                | 1.6                   | 3.5<br>4.6  | 23<br>23              | 38<br>44              |
| 89            | -                |                  | 11                    | 132                   | 186                   | 6.8        | 1.5                 | 770         | 1.4                      | 16                      | < .4                  | 5.1         | 14                    | 36                    |
| 10            |                  |                  | ii                    | 192                   | 340                   | 6.4        | 1,6                 | 888         | 1.7                      | 16                      | 1.1                   | 4.6         | 30                    | 37                    |
| 11            |                  |                  | 11                    | 132                   | 198                   | 6.8        | 1,6                 | 865         | 1.8                      | 14                      | < .4                  | 3.3         | 33                    | 33                    |
| 12            |                  |                  | 12                    | 125                   | 250                   | 6.1        | 1.5                 | 928         | 1,3                      | 13                      | < ,4                  | 2.3         | 24                    | 30                    |
| 13            |                  |                  | 1 6                   | 213                   | 272                   | 7, e       | 1,9                 | 920         | 2.3                      | 15                      | . 6                   | 2.6         | 14                    | 31                    |
| 33            |                  |                  | 12                    | 150                   | 210                   | 6,5        | 1.7                 | 956         | 2.6                      | 55                      | .7                    | 4.2         | 56                    | 39                    |
| 34            |                  |                  | 8.8                   | 64                    | 1.00                  | 6,2        | 1.1                 | 875         | 1.4                      | 16                      | < .4                  | 3,9         | 7.2                   | 35                    |
| 35            |                  |                  | 12                    | 155                   | 1.88                  | 6.€        | 1.4                 | 772         | 2.0                      | 36                      | 2.4                   | 3,6         | 11                    | 32                    |
| 36            |                  |                  | 17                    | 120                   | 1.80                  | 6,5        | 1,4                 | 970         | 9                        | 7 5                     | < ,4                  | 5,2         | 7,0                   | 5 9                   |
| 37            |                  |                  | 16                    | 110                   | 1.60                  | 7.8        | 1.5                 | 868         | 2.3                      | 8.7                     | < ,4                  | 2,5         | 7,5                   | 31                    |

CHÉMICAL DATA ON CHRISTIAN COUNTY, RENTUCKY CORE

| SAMPLE<br>NO. | NO.      | DEPTH<br>(FT)    | [ U<br>(PPM) | H∏<br>(P₽™)<br>(OE=D) | NI<br>(FP4)<br>(CE-0) | VI<br>(PPM)<br>(DE-P) | N]<br>(PPM)<br>(NAA) | RP<br>(PPH)    | 54<br>(PPH)     | SC<br>(PP")     | AG<br>(PP4)<br>(PE-P) | 59<br>(PPM)<br>(GE=0) | TA<br>(PPM) | TR<br>(PP#)  |
|---------------|----------|------------------|--------------|-----------------------|-----------------------|-----------------------|----------------------|----------------|-----------------|-----------------|-----------------------|-----------------------|-------------|--------------|
| 199568        | 61KA01C1 | 1822.2           | .5           | 180                   | 102                   | 182                   | 13#                  | 110            | 9.1             | 13              | < ,7                  | 110                   | .9          | 1.1          |
| 8.5           |          | 2191.1           | . 3          | 56.0                  | 76                    | 100                   | 9.3                  | 95             | 8.2             | 15              | < ,7                  | 142                   | , A         | , 8          |
| 6.3           |          | 2220.3           | . 4          | 160                   | 85                    | 110                   | 92                   | 100            | 7.7             | 13              | < ,7                  | 190                   | . • ^       | . •9         |
| 94<br>95      |          | 2.88.2           | . 4          | 4<br>160              | 33                    | 42                    | 30                   | 158            | 9,2             | 17              | < .8                  | 195                   | 1.0         | . 8          |
| 86            |          | 2298.1<br>2250.8 | ,5           | 41                    | 84<br>23              | 87<br>38              | 15P<br>49            | 25             | 25              | 14              | ۰,7                   | >602<br>213           | . 7         | 3.6          |
| 67            |          | 2556'3           | .6           | 227                   | 258                   | 302                   | 300                  | 192            | 7.6<br>12       | 16<br>53        | < ,8<br>< ,7          | 252                   | 1.4<br>.A   | , 8<br>1 . 8 |
| r B           |          | 2278.3           | 1            | 1.5                   | 80                    | 180                   | 157                  | 132<br>162     | 11              | 98              | 87                    | 197                   | 1.7         | ,8           |
| P 9           |          | 3.3852           | ٠            | 8.5                   | 82                    | 120                   | 152                  | 132            | 6.6             | 17              | ۸. >                  | 210                   | 1 . a       | 1.0          |
| 10            |          | 229:: 7          | . 6          | ž.                    | 127                   | 288                   | 167                  | 148            | 7.5             | 15              | 4 7                   | 157                   | 1.0         | 1.3          |
| 11            |          | 2299.7           | .5           | 23                    | 90                    | 127                   | 142                  | 163            | 7.9             | 15              | 4 .7                  | 170                   | ,           | 1.1          |
| 12            |          | 2316.5           | ā            | 10                    | 120                   | 192                   | 138                  | 77             | 6.8             | 10              | < .8                  | 137                   | . 6         | , i          |
| 13            |          | 8.8185           | . 5          | 110                   | 287                   | 252                   | 286                  | 93             | 9.5             | 13              | < .6                  | 160                   | . 6         | 1.3          |
| 33            |          | 2273.5           | . 4          | 1.7                   | 130                   | 150                   | 12"                  | 170            | 7,9             | 5.0             | ۲, >                  | 160                   | 1.4         | 1.2          |
| 34            |          | 8.7855           | . 4          | 4                     | 59                    | 76                    | 6.R                  | 110            | 5.6             | 15              | < .8                  | 172                   | 1.0         | 7            |
| 35            |          | 5565.0           | . 4          | 11                    | 1 26                  | 122                   | 96                   | 150            | 6,3             | 16              | < .8                  | 122                   | 1.7         | . 8          |
| 36            |          | 5311.1           | ,5           | 36                    | 107                   | 595                   | 128                  | 87             | 8.6             | 12              | < ,8                  | 160                   | , 7         | , 8          |
| 37            | 1 3 L 1  | 5315.6           | .5           | 3.9                   | 15%                   | 550                   | 163                  | 84             | 7.5             | 15              | 8. >                  | 145                   | .7          | 1.0          |
|               |          |                  | (PPH)        | (PP=)<br>(CE=0)       | (PPH)                 | (PPm)                 | (PPM)<br>(OE-P)      | (PPM)<br>(NAA) | (PPM)<br>(DE-D) | (PPH)<br>(RE-D) | (PPM)<br>(OE-P)       | 45H<br>(%)            | (PPM)       |              |
| 1 0099        |          |                  | 7.1          | 2,4                   | 61                    | 2.3                   | 72                   | 128            | 8.8             | 71              | 516                   | 79.64                 | 32          |              |
| 65            |          |                  | 6.9          | . 8                   | 43                    | 1.9                   | 51                   | 56             | 6 P             | 156             | 216                   | 86.17                 | 24          |              |
| 03            |          |                  | 7.3          | . 9                   | 22                    | 2.0                   | 170                  | 535            | 568             | 149             | 550                   | 57.62                 | 31          |              |
| 64            |          |                  | 8.5          | 4.7                   | 14                    | 5.5                   | 48                   | 128            | 89              | 128             | 559                   | 95,46                 | 21          |              |
| 05            |          |                  | 12           | 1.4                   | 37                    | 5.3                   | 110                  | 239            | 160             | 279             | 272                   | 92.12                 | 8?          |              |
| 86<br>87      |          |                  | 14           | 4.4                   | 5                     | 5,9                   | 43                   | 152            | 66              | 180             | 518                   | 95.88                 | 54          |              |
| 88            |          |                  | 9.1<br>11    | 3.8<br>5.6            | 4 Ø<br>5              | 2.8                   | 412                  | 472            | 237<br>168      | 132<br>178      | 530                   | 82.49                 | 85          |              |
| 89            |          |                  | 15           | 2.6                   | 6                     | 2,9<br>3,3            | 200<br>83            | 288<br>158     | 61              | 596             | 282<br>278            | 91,23                 | 16<br>45    |              |
| 10            |          |                  | 11           | 3 . 8                 | 6                     | 3,3                   | 129                  | 140            | 98              | 130             | 189                   | 87.43                 | 21          |              |
| ii            |          |                  | 7.6          | 3.6                   | 8                     | 3.1                   | 160                  | 218            | 80              | 198             | 508                   | 98.05                 | 5.0         |              |
| 12            |          |                  | 6.4          | 3,6                   | 10                    | 2.6                   | 100                  | 66             | 48              | 132             | 132                   | 92.64                 | ŽĀ          |              |
| 13            |          |                  | 6.5          | 3.7                   | 5.5                   | 3.1                   | 532                  | 368            | 182             | 172             | 188                   | 98.43                 | 35          |              |
| 33            |          |                  | 16           | 5.6                   | 14                    | 2.8                   | 142                  | 269            | 187             | 198             | 189                   | 89,13                 | 30          |              |
| 34            |          |                  | 9,2          | 4 9                   | 6.8                   | 1.9                   | 51                   | 72             | 29              | 168             | 182                   | 95.51                 | 24          |              |
| 35            |          |                  | 8.2          | 5.8                   | 6                     | 2.4                   | 278                  | 556            | 955             | 190             | 510                   | 91.72                 | 30          |              |
| 36            |          |                  | 5.8          | 4 , 2                 | 11                    | 2.4                   | 230                  | 190            | 89              | 170             | 553                   | 93,13                 | 8.5         |              |
| 37            |          |                  | 5.5          | 4.4                   | 13                    | 2.4                   | 250                  | 176            | 72              | 150             | 55 <i>ĕ</i>           | 92.56                 | 26          |              |
|               |          |                  |              |                       |                       |                       |                      |                |                 |                 |                       |                       |             |              |
|               |          |                  |              |                       |                       |                       |                      |                |                 |                 |                       |                       |             |              |
|               |          |                  |              |                       |                       |                       |                      |                |                 |                 |                       |                       |             |              |
|               |          |                  |              |                       |                       |                       |                      |                |                 |                 |                       |                       |             |              |

NO - NOT DETECTED

(%) % FE203

(XRIF) (NAA)

4.56

3.07

2.51

3.55

3.00

4.88

5.72

7.83

6.52

MGO

(x)

2.25

1.84

1.13

1.48

2.70

1.62

1.64

1.90

2.59 15.5

CAO

(1)

1.84

2.03

35

1.35

39

.30

.06

. 61

NA AS KZO

(%)

3,91

2.96

3.81

3.47

2.35

4.08

98.8

3.A5

5.40

(XRFY (NAA)

DSAN Z

1.00

1,25

1,37

1,22

1,02

1.11

.98

.71

,88

(NAA)

\$102 AL203 FE203 FE AS

2.61

2,20

2.88

4 . 81

4.72

5.84

5.22

2.07

18,5 4,31

.(2)

8,54

9.19

9.77

6,81

12,7

12.1

11.7

14,9

SAMPLE GEOL. DEPTH

(FT)

800014 0:IL01L2 1570.0 64.5

83L1 1589.4

84L1 1582.8

05L1 1015,1

07L1 1631.6

89L1 1647.4

89L2 1656.2

1811 1657,6

11L1 1667,5

(x)

71.8

74.2

70.0

51.7

58.8

65.4

65,3

57.9

NO.

NO.

15

16

17

18

19

20

51

55

| 66                                                             | 1161 100/.5 | 21.4                                                                                    | 14,4                                                                  | 5.76                                                                      | 6.52                                                                     | 1,90                                                                   | . 61                                                                              | .71                                                                         | 5.00                                                                         | 6,13                                                                                         | . 4 4                                                                             | . 0.6                                                        | 56%                                                                          |
|----------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|
| 53                                                             | 1261 1678.6 | 62.2                                                                                    | 15.2                                                                  | 5.01                                                                      | 5.86                                                                     | 2,63                                                                   | . 4.3                                                                             | .79                                                                         | 5.32                                                                         | 6.35                                                                                         | AG                                                                                | < . 23                                                       | 595                                                                          |
| 24                                                             | 1311 1688.0 | 56.8                                                                                    | 16.1                                                                  | 5.09                                                                      | 6.29                                                                     | 2.74                                                                   | 36                                                                                | .75                                                                         | 5.63                                                                         | 6.41                                                                                         | .81                                                                               | 0.2                                                          | 287                                                                          |
| 25                                                             | 1411 1698.2 | 56.5                                                                                    | 14.1                                                                  | 5.22                                                                      | 6.29                                                                     | 5.52                                                                   | 52                                                                                | .75                                                                         | 4.69                                                                         | 5.31                                                                                         | .77                                                                               | < . 01                                                       | 230                                                                          |
| 56                                                             | 1511 1710.0 | 51.5                                                                                    | 13.2                                                                  | 5,19                                                                      | 6.88                                                                     | 2.17                                                                   | .18                                                                               | 59                                                                          | 4.96                                                                         | 5,98                                                                                         | .66                                                                               | .05                                                          | 248                                                                          |
| 27                                                             | 1661 1723.4 | 53.8                                                                                    | 11.7                                                                  | 5.35                                                                      | 8.54                                                                     | 2.04                                                                   | 71                                                                                | .73                                                                         | 3.78                                                                         | 4.22                                                                                         | .68                                                                               | .03                                                          | 266                                                                          |
| 28                                                             | 1711 1730.6 | 57.1                                                                                    | 12.2                                                                  | 4.62                                                                      | 5.92                                                                     | 1,54                                                                   | 61                                                                                | . 8 2                                                                       | 3.74                                                                         | 4,02                                                                                         | .66                                                                               | 0.4                                                          | 230                                                                          |
| 29                                                             | 1811 1:40.2 | 62.5                                                                                    | 11.7                                                                  | 4.15                                                                      | 4.46                                                                     | 1.27                                                                   | .47                                                                               | .84                                                                         | 3.44                                                                         | 4.16                                                                                         | .64                                                                               | 0.6                                                          | 198                                                                          |
| 30                                                             | 1961 1153.5 | 55.0                                                                                    | 15.5                                                                  | 5.62                                                                      | 5.91                                                                     | 1.67                                                                   | .56                                                                               | .75                                                                         | 3.86                                                                         | 4.64                                                                                         | .62                                                                               | 10                                                           | 278                                                                          |
| 31                                                             | 2861 1163.3 | 58.0                                                                                    | 12.3                                                                  | 4.37                                                                      | 4,41                                                                     | 2.22                                                                   | 5.56                                                                              | 92                                                                          | 3.87                                                                         | 4.72                                                                                         | .69                                                                               | . 78                                                         | 340                                                                          |
| 35                                                             | 2161 1776.2 | 56.4                                                                                    | 14.8                                                                  | 4.83                                                                      | 4,16                                                                     | 2.15                                                                   | .77                                                                               | .71                                                                         | 4.88                                                                         | 5.52                                                                                         | ,67                                                                               | . 63                                                         | 340                                                                          |
|                                                                | *********** | MN                                                                                      | <u>-</u>                                                              |                                                                           |                                                                          | :<br>CL                                                                | FOTAL                                                                             | DRGANIC                                                                     | THEFT                                                                        |                                                                                              | TOTAL                                                                             | 58                                                           |                                                                              |
|                                                                |             | (PPM)                                                                                   | (PPH)                                                                 | (PPH)                                                                     | (%)                                                                      | (%)                                                                    | C (X)                                                                             | C (X)                                                                       | [ (1)                                                                        | (X)                                                                                          | CEC                                                                               | 30<br>(PPH)                                                  | (PPH)                                                                        |
|                                                                |             | (OE-P)                                                                                  | (DE-D)                                                                | (0E-3)                                                                    | (2)                                                                      |                                                                        |                                                                                   | <b>U</b> (4)                                                                |                                                                              |                                                                                              | MED/1826                                                                          |                                                              | (,,,,,,                                                                      |
| 70014                                                          |             | 845                                                                                     | 556                                                                   | 278                                                                       | .02                                                                      | .13                                                                    | ,88                                                                               | ,43                                                                         | .45                                                                          | .75                                                                                          | 7.3                                                                               | .6                                                           | 2,6                                                                          |
|                                                                |             |                                                                                         |                                                                       |                                                                           |                                                                          |                                                                        |                                                                                   |                                                                             | 4 4                                                                          |                                                                                              |                                                                                   |                                                              | 2 2                                                                          |
| 15                                                             |             | 296                                                                                     | 78                                                                    | 142                                                                       | .05                                                                      | .08                                                                    | .96                                                                               |                                                                             | .67                                                                          | . 44                                                                                         | 2,9                                                                               | • >                                                          | 2,9                                                                          |
| 16                                                             |             | 298<br>150                                                                              | 78<br>70                                                              | 120                                                                       | .07                                                                      |                                                                        |                                                                                   | .29<br>.80                                                                  |                                                                              |                                                                                              |                                                                                   | ,5<br>,6                                                     | 4.3                                                                          |
| 16<br>17                                                       |             |                                                                                         |                                                                       |                                                                           |                                                                          | . 14                                                                   | .97                                                                               | .86                                                                         | .17                                                                          | .48                                                                                          | 3,1                                                                               | . 6                                                          | 4,3                                                                          |
| 16<br>17<br>18                                                 |             | 150                                                                                     | 70                                                                    | 120                                                                       | .07                                                                      | .14                                                                    | .97<br>.44                                                                        | 98.<br>85.                                                                  | .17                                                                          | .48                                                                                          | 3,1                                                                               | .6                                                           |                                                                              |
| 16<br>17<br>18<br>19                                           |             | 150<br>178                                                                              | 7 A<br>120                                                            | 120                                                                       | .07<br>.96<br>.87                                                        | .14                                                                    | .97<br>.44<br>3,88                                                                | .82<br>.28<br>.15                                                           | .17<br>.16<br>3.73                                                           | .48<br>.44<br>.36                                                                            | 3,1<br>4,3<br>2.2                                                                 | .6.7.3                                                       | 4,3<br>3,9<br>2.3                                                            |
| 16<br>17<br>18<br>19<br>20                                     |             | 150<br>178<br>822                                                                       | 70<br>120<br>83                                                       | 120<br>178<br>98                                                          | .07<br>.96<br>.87<br>.69                                                 | .14<br>.11<br>.04<br>.12                                               | .97<br>.44<br>3.88<br>.75                                                         | .82<br>.28<br>.15<br>.32                                                    | .17<br>.16<br>3,73<br>.43                                                    | .48<br>.44<br>.36                                                                            | 3,1<br>4,3<br>2,2<br>6,4                                                          | .6<br>.7<br>.3                                               | 4,3<br>3,9                                                                   |
| 16<br>17<br>18<br>19<br>20<br>21                               |             | 150<br>170<br>822<br>340                                                                | 70<br>120<br>83<br>110                                                | 120<br>178<br>98<br>168                                                   | .07<br>.96<br>.87                                                        | .14<br>.11<br>.04<br>.12                                               | .97<br>.44<br>3.88<br>.75                                                         | .80<br>.28<br>.15<br>.32                                                    | .17<br>.16<br>3.73                                                           | .48<br>.44<br>.36<br>.66                                                                     | 3,1<br>4,3<br>2,2<br>6,4<br>5,8                                                   | .6<br>.7<br>.3<br>.5                                         | 4,3<br>3,9<br>2,3<br>5,9                                                     |
| 16<br>17<br>18<br>19<br>20<br>21                               |             | 150<br>170<br>822<br>340<br>230                                                         | 70<br>120<br>83<br>110<br>86                                          | 120<br>178<br>90<br>160<br>120                                            | .07<br>.86<br>.87<br>.P9                                                 | .14<br>.11<br>.24<br>.12<br>.12                                        | .97<br>.44<br>3.88<br>.75<br>.66                                                  | .82<br>.28<br>.15<br>.32                                                    | .17<br>.16<br>3.73<br>.43<br>.09                                             | .48<br>.44<br>.35<br>.65<br>.65                                                              | 3,1<br>4,3<br>2,2<br>6,4<br>5,6<br>6,7                                            | .6<br>.7<br>.3<br>.5                                         | 4.3<br>3.9<br>2.3<br>5,9<br>6.8                                              |
| 16<br>17<br>18<br>19<br>20<br>21<br>22                         |             | 150<br>170<br>822<br>340<br>230<br>180                                                  | 70<br>120<br>83<br>110<br>86<br>76                                    | 120<br>179<br>90<br>160<br>120                                            | .07<br>,86<br>.87<br>.99<br>.25<br>.89                                   | .14<br>.11<br>.24<br>.12<br>.12                                        | .97<br>.44<br>3.88<br>.75<br>.66<br>1.30<br>2.93                                  | .80<br>.28<br>.15<br>.32<br>.57<br>1.28<br>2.98                             | .17<br>.16<br>3.73<br>.43<br>.e9<br>.02                                      | .48<br>.4a<br>.3b<br>.6b<br>.66<br>.78                                                       | 3.1<br>4.3<br>2.2<br>6.4<br>5.6<br>6.7<br>9.4                                     | .6<br>.7<br>.3<br>.5<br>.6                                   | 4,3<br>3,9<br>2,3<br>5,9<br>6,0<br>9,8<br>7,7                                |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23                   |             | 150<br>170<br>822<br>340<br>230<br>180<br>270                                           | 70<br>120<br>83<br>110<br>86<br>76<br>170                             | 120<br>170<br>90<br>160<br>120<br>110                                     | .07<br>.96<br>.97<br>.25<br>.89<br>.27                                   | .14<br>.12<br>.12<br>.12<br>.19<br>.10                                 | .97<br>.44<br>3.88<br>.75<br>.66<br>1.30<br>2.93                                  | .82<br>.28<br>.15<br>.32<br>.57<br>1.28<br>2.90<br>1,72                     | .17<br>.16<br>3,73<br>.43<br>.e9<br>.02<br>.03                               | .48<br>.4a<br>.3b<br>.6b<br>.6b<br>.76<br>.91                                                | 3,1<br>4,3<br>2,2<br>6,4<br>5,6<br>6,7<br>9,4<br>7,7                              | .6<br>.7<br>.3<br>.5<br>.6                                   | 4,3<br>3,9<br>2,3<br>5,9<br>6.8<br>9,8<br>7,7                                |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24             |             | 150<br>170<br>822<br>340<br>230<br>180<br>270<br>310                                    | 70<br>120<br>63<br>110<br>66<br>76<br>170<br>140                      | 120<br>178<br>98<br>160<br>120<br>110<br>180                              | .07<br>.96<br>.97<br>.25<br>.89<br>.27<br>.18                            | .14<br>.12<br>.12<br>.12<br>.10<br>.10                                 | .97<br>.44<br>3.88<br>.75<br>.66<br>1.30<br>2.93<br>1.88<br>2.96                  | .80<br>.28<br>.15<br>.32<br>.57<br>1.28<br>2.98                             | .17<br>.16<br>3.73<br>.43<br>.09<br>.02<br>.03<br>.16                        | .48<br>.44<br>.36<br>.66<br>.76<br>.91<br>.66                                                | 3.1<br>4.3<br>2.2<br>6.4<br>5.6<br>6.7<br>9.4<br>7.7<br>8.2                       | .6<br>.7<br>.3<br>.5<br>.6<br>.9<br>.9                       | 4,3<br>3,9<br>2,3<br>5,9<br>6,0<br>9,8<br>7,7<br>8,2                         |
| 16<br>17<br>18<br>19<br>21<br>22<br>23<br>25<br>25             |             | 150<br>170<br>822<br>340<br>230<br>180<br>270<br>310<br>270                             | 70<br>120<br>63<br>110<br>66<br>76<br>170<br>140<br>160               | 120<br>178<br>98<br>160<br>120<br>110<br>180<br>180                       | .07<br>.96<br>.97<br>.25<br>.89<br>.27                                   | .14                                                                    | .97<br>.44<br>3.88<br>.75<br>.66<br>1.39<br>1.98<br>2.93<br>1.98                  | .82<br>.28<br>.15<br>.32<br>.57<br>1.28<br>2.90<br>1,72                     | .17<br>.16<br>3.73<br>.43<br>.09<br>.02<br>.03<br>.16                        | .48<br>.44<br>.36<br>.66<br>.76<br>.91<br>.66<br>1.07                                        | 3,1<br>4,3<br>2,2<br>6,4<br>6,7<br>9,4<br>7,7<br>8,2                              | .67<br>.35<br>.66<br>.99<br>1,22<br>1,7                      | 4,3<br>3,9<br>2,3<br>5,9<br>6,0<br>9,8<br>7,7<br>8,2<br>10                   |
| 16<br>17<br>18<br>19<br>21<br>22<br>23<br>23<br>25<br>27       |             | 150<br>178<br>820<br>340<br>230<br>180<br>270<br>310<br>270<br>220                      | 70<br>120<br>83<br>110<br>86<br>76<br>170<br>140<br>160               | 120<br>178<br>98<br>160<br>120<br>110<br>180<br>198<br>200                | .07<br>.96<br>.87<br>.25<br>.89<br>.27<br>.18                            | .14<br>.11<br>.04<br>.12<br>.10<br>.10<br>.12<br>.12                   | .97<br>.44<br>3,88<br>.75<br>.66<br>1.30<br>2.93<br>1.88<br>2.93<br>4.34<br>7.61  | .82<br>.25<br>.152<br>.57<br>1.28<br>2.72<br>2.92<br>2.92<br>2.92           | .17<br>.16<br>3.73<br>.43<br>.69<br>.02<br>.03<br>.16                        | .48<br>.44<br>.36<br>.66<br>.76<br>.91<br>.66<br>1.27<br>1.29                                | 3,1<br>4,3<br>2.2<br>6,4<br>5.8<br>6.7<br>9.4<br>7.7<br>8.2<br>9.3<br>11,4        | .6<br>.7<br>.3<br>.5<br>.6<br>.9<br>1,2<br>1.2               | 4,3<br>3,9<br>2,3<br>5,9<br>6.0<br>9,8<br>7,7<br>8,2<br>18<br>19             |
| 16<br>17<br>18<br>19<br>21<br>22<br>23<br>22<br>26<br>27<br>28 |             | 150<br>178<br>828<br>348<br>238<br>278<br>318<br>278<br>278<br>228                      | 70<br>120<br>83<br>11P<br>86<br>76<br>17P<br>14P<br>16P<br>200        | 120<br>179<br>160<br>120<br>110<br>180<br>180<br>180<br>200               | 07<br>.07<br>.07<br>.07<br>.07<br>.07<br>.07<br>.07<br>.07<br>.07        | .14<br>.11<br>.04<br>.12<br>.12<br>.10<br>.12<br>.12<br>.12            | .97<br>.44<br>3.88<br>.75<br>1.30<br>2.93<br>1.88<br>2.96<br>4.34<br>7.61         | .80<br>.28<br>.152<br>.377<br>1.28<br>2.98<br>1.72<br>2.96<br>4.254<br>9.59 | .17<br>.16<br>3.73<br>.43<br>.02<br>.03<br>.16<br>.06<br>.07                 | .48<br>.44<br>.56<br>.66<br>.76<br>.91<br>.66<br>1.07<br>1.09<br>1.34                        | 3,1<br>4,3<br>2,2<br>5,6<br>6,7<br>9,4<br>7,7<br>8,2<br>9,3<br>11,4               | .6<br>.7<br>.3<br>.5<br>.6<br>.9<br>.9<br>1,2<br>1,2         | 4,3<br>3,9<br>2,3<br>5,9<br>6,8<br>9,8<br>7,7<br>8,2<br>18<br>19<br>25       |
| 167<br>1189<br>2123<br>223<br>223<br>223<br>223<br>223<br>223  |             | 150<br>170<br>822<br>340<br>230<br>270<br>270<br>270<br>220<br>240                      | 70<br>120<br>83<br>110<br>86<br>70<br>140<br>160<br>160<br>240        | 120<br>170<br>90<br>160<br>110<br>180<br>190<br>200<br>240                | 07<br>.967<br>.97<br>.95<br>.27<br>.18<br>.31<br>.92<br>.92<br>1,10      | .14                                                                    | .97<br>.44<br>3.88<br>.75<br>1.30<br>2.98<br>2.98<br>2.98<br>4.34<br>7.61<br>9.55 | .82<br>.28<br>.152<br>.57<br>1.92<br>1.92<br>4.55<br>9.52                   | .17<br>.173<br>.499<br>.003<br>.004<br>.005<br>.006<br>.006<br>.007          | . 48<br>. 48<br>. 50<br>. 60<br>. 60<br>. 91<br>. 66<br>1 . 87<br>1 . 89<br>1 . 54           | 3,1<br>4.3<br>2.2<br>6.4<br>5.6<br>6.7<br>9.4<br>7.7<br>8.2<br>9.3<br>11,4<br>6.6 | .6<br>.7<br>.3<br>.5<br>.9<br>.9<br>1,2<br>1.7<br>4.6<br>6.6 | 4,3<br>3,9<br>2,3<br>5,9<br>6,0<br>9,8<br>7,7<br>8,2<br>18<br>19<br>25<br>22 |
| 16<br>17<br>19<br>21<br>22<br>23<br>22<br>26<br>27<br>28       |             | 150<br>170<br>820<br>340<br>230<br>180<br>270<br>310<br>270<br>220<br>200<br>240<br>240 | 70<br>120<br>63<br>110<br>66<br>76<br>140<br>160<br>200<br>240<br>120 | 120<br>170<br>90<br>160<br>120<br>110<br>180<br>190<br>200<br>200<br>240  | 07<br>.09<br>.09<br>.09<br>.09<br>.09<br>.09<br>.09<br>.09<br>.09<br>.09 | 14<br>114<br>114<br>114<br>117<br>117<br>117<br>117<br>117<br>117<br>1 | 97<br>.44<br>3.85<br>.75<br>1.33<br>1.86<br>2.98<br>4.34<br>7.61<br>9.79<br>6.55  | .82<br>.235<br>.378<br>.297<br>12.7964<br>12.7965<br>.57                    | .163<br>.749<br>.003<br>.003<br>.004<br>.005<br>.005<br>.005<br>.005<br>.005 | . 48<br>. 48<br>. 56<br>. 66<br>. 76<br>. 91<br>. 67<br>1 . 67<br>1 . 69<br>1 . 51<br>1 . 15 | 3,1<br>4,3<br>2,2<br>6,4<br>6,7<br>9,4<br>7,7<br>8,2<br>9,3<br>11,4<br>6,6<br>6,2 | .67<br>.35<br>.69<br>.92<br>1.77<br>4.66<br>32.0             | 4,3<br>3,9<br>2,3<br>5,9<br>6,0<br>9,8<br>7,7<br>8,2<br>1,9<br>25<br>22      |
| 167<br>1189<br>2123<br>223<br>223<br>223<br>223<br>223<br>223  |             | 150<br>170<br>824<br>230<br>230<br>270<br>270<br>200<br>240<br>240<br>240               | 70<br>120<br>83<br>110<br>86<br>70<br>140<br>140<br>160<br>240<br>140 | 120<br>170<br>160<br>120<br>110<br>180<br>180<br>200<br>200<br>240<br>170 | 07<br>.967<br>.97<br>.95<br>.27<br>.18<br>.31<br>.92<br>.92<br>1,10      | .14                                                                    | .97<br>.44<br>3.88<br>.75<br>1.30<br>2.98<br>2.98<br>2.98<br>4.34<br>7.61<br>9.55 | .82<br>.28<br>.152<br>.57<br>1.92<br>1.92<br>4.55<br>9.52                   | .17<br>.173<br>.499<br>.003<br>.004<br>.005<br>.006<br>.006<br>.007          | . 48<br>. 48<br>. 50<br>. 60<br>. 60<br>. 91<br>. 66<br>1 . 87<br>1 . 89<br>1 . 54           | 3,1<br>4.3<br>2.2<br>6.4<br>5.6<br>6.7<br>9.4<br>7.7<br>8.2<br>9.3<br>11,4<br>6.6 | .6<br>.7<br>.3<br>.5<br>.9<br>.9<br>1,2<br>1.7<br>4.6<br>6.6 | 4,3<br>3,9<br>2,3<br>5,9<br>6,0<br>9,8<br>7,7<br>8,2<br>18<br>19<br>25<br>22 |

K 4S TIO2

(X)

. 87

93

. 95

9 9 56

. 93

1.25

, A 7

. P.4

# ×50

4.32

3.43

3.55

4.11

2.86

4.86

4.95

4.35

6,13

P205

(1)

.08

. 33

. 93

.31

.72

.05

.01 . 9.6

<.P1

(PPH)

(NAA)

228

292

150

150

960

349

242

210

262

| SAMPLE<br>NO.                                                        | GEOL.<br>NO. | OEPTH<br>(FT) | BA<br>(PP4)                                                                                | BE<br>(RPH)<br>(DE=D).                                                               |                                                              | H<br>(PPM)                                                                              | 8R<br>(PPP)                                                               | CE<br>(PPM)                                                                                      | C\$<br>(PPM)                                                                     | CR<br>(PPH)<br>(NAA)                                                              | CR<br>(PPH)<br>(OE-D)                                      | C4<br>(PPM)<br>(OE=P)                                                                      | CO<br>(PPM)<br>(NAA)                                                 | CU<br>(PF4)<br>(OE+D)                                                                  |
|----------------------------------------------------------------------|--------------|---------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                      | 91110112     |               | 289                                                                                        | 2,8                                                                                  | 4.4                                                          | 168                                                                                     | 8.1                                                                       | 7.5                                                                                              | 8.1                                                                              | 117                                                                               | 102                                                        | 152                                                                                        | 10                                                                   | 9,6                                                                                    |
| 15<br>16                                                             |              | 1589.4        | 360                                                                                        | 5,2                                                                                  | 2.5                                                          | 189                                                                                     | 8,1                                                                       | 117                                                                                              | 4,9                                                                              | 95                                                                                | 89                                                         | 84                                                                                         | 6,6                                                                  | 5,5                                                                                    |
| 17                                                                   |              | 1602.0        | 420<br>410                                                                                 | 2.1                                                                                  | 2.6                                                          | 188<br>118                                                                              | 11<br>8.5                                                                 | 8 8<br>9 9                                                                                       | 5,2                                                                              | 94<br>110                                                                         | 78<br>84                                                   | 96<br>122                                                                                  | 6.2                                                                  | 4,4<br>6,4                                                                             |
| 18                                                                   |              | 1631.6        | 430                                                                                        | 2,,7                                                                                 | 3.2<br>3.2                                                   | 72                                                                                      | <b>€</b> 4                                                                | 62                                                                                               | 8.5<br>5.0                                                                       | 63                                                                                | 44                                                         | 66                                                                                         | 8,9<br>7,1                                                           | 7,1                                                                                    |
| 19                                                                   |              | 1647.4        | 466                                                                                        | 5.² ę<br>. •                                                                         | 4.4                                                          | 130                                                                                     | 6.4                                                                       | 91                                                                                               | 16                                                                               | 120                                                                               | 80                                                         | 117                                                                                        | 13                                                                   | 11                                                                                     |
| 56                                                                   |              | 1656.2        | 580                                                                                        | 5.8                                                                                  | 3.5                                                          | 122                                                                                     | 7                                                                         | 99                                                                                               | 10                                                                               | 118                                                                               | 79                                                         | 95                                                                                         | 16                                                                   | 13                                                                                     |
| 51                                                                   |              | 1657.6        | 530                                                                                        | 3.0                                                                                  | 3.4                                                          | 160                                                                                     | 5.8                                                                       | 8.4                                                                                              | 11                                                                               | 117                                                                               | 7.8                                                        | 97                                                                                         | 15                                                                   | 14                                                                                     |
| 55                                                                   |              | 1667,5        | 576                                                                                        | 3.7                                                                                  | 5.6                                                          | 176                                                                                     | 6.0                                                                       | 89                                                                                               | 13                                                                               | 148                                                                               | 92                                                         | 130                                                                                        | 18                                                                   | 15                                                                                     |
| 23                                                                   |              | 1678.5        | 550                                                                                        | 3.6                                                                                  | 5,1                                                          | 148                                                                                     | 8.5                                                                       | 86                                                                                               | 14                                                                               | 118                                                                               | 93                                                         | 132                                                                                        | 14                                                                   | 12                                                                                     |
| 24                                                                   |              | 1688.7        | 666                                                                                        | 3.4                                                                                  | 5.5                                                          | 142                                                                                     | 9.4                                                                       | 86                                                                                               | 13                                                                               | 152                                                                               | 100                                                        | 143                                                                                        | 16                                                                   | 14                                                                                     |
| 25                                                                   |              | 1698.2        | 582                                                                                        | 2.9                                                                                  | 4.6                                                          | 150                                                                                     | 6.7                                                                       | 79                                                                                               | 12                                                                               | 120                                                                               | 95                                                         | 110                                                                                        | 16                                                                   | 15                                                                                     |
| 56                                                                   |              | 1712.2        | 810                                                                                        | 2,9                                                                                  | 5.4                                                          | 140                                                                                     | 7                                                                         | 86                                                                                               | 11                                                                               | 110                                                                               | 98                                                         | 110                                                                                        | 25                                                                   | 26                                                                                     |
| 27                                                                   |              | 1723.4        | 1233                                                                                       | 3,2                                                                                  | 5.1                                                          | 128                                                                                     | <8                                                                        | 120                                                                                              | 9.5                                                                              | 94                                                                                | 73                                                         | 96                                                                                         | 44                                                                   | 47                                                                                     |
| 28                                                                   | 17L1         | 1730.6        | 728                                                                                        | 3.9                                                                                  | 4.4                                                          | 138                                                                                     | 9                                                                         | В3                                                                                               | 6.4                                                                              | 94                                                                                | 74                                                         | 84                                                                                         | 26                                                                   | 21                                                                                     |
| 29                                                                   | 18L1         | 1740.2        | 650                                                                                        | 3.5                                                                                  | 3,7                                                          | 137                                                                                     | <7                                                                        | 5 R                                                                                              | 6.5                                                                              | 69                                                                                | 67                                                         | 70                                                                                         | 52                                                                   | 2 R                                                                                    |
| 30                                                                   |              | 1753.5        | 659                                                                                        | 3.7                                                                                  | 4.6                                                          | 125                                                                                     | 9,3                                                                       | 71                                                                                               | 6.4                                                                              | 71                                                                                | 67                                                         | 83                                                                                         | 28                                                                   | 9.6                                                                                    |
| 31                                                                   |              | 1763.3        | 468                                                                                        | 3.2                                                                                  | 3.7                                                          | 149                                                                                     | 9,4                                                                       | 54                                                                                               | 6.1                                                                              | 8 🕫                                                                               | 66                                                         | 9 0                                                                                        | 18                                                                   | 56                                                                                     |
| 35                                                                   | 2111         | 1776.2        | 418                                                                                        | 4.8                                                                                  | 4.5                                                          | 586                                                                                     | 6.7                                                                       | 55                                                                                               | 8.4                                                                              | 85                                                                                | 100                                                        | 126                                                                                        | - 12                                                                 | 16                                                                                     |
|                                                                      |              |               | EO<br>(PPM)                                                                                | CU<br>(PPR)                                                                          | CU<br>(PPM)                                                  | DY<br>(PPM)                                                                             | Ευ<br>(PPH)                                                               | F                                                                                                | GD<br>(PPM)                                                                      | GA<br>(PP4)                                                                       | GE                                                         | HF                                                                                         | <br>РВ                                                               | . LA                                                                                   |
|                                                                      |              |               | (DE-P)                                                                                     | (OE-D)                                                                               | (OE-P)                                                       | •                                                                                       | •                                                                         |                                                                                                  | (884)                                                                            | (PP3)                                                                             | (PPM)<br>(DE-D)                                            | (PPM)                                                                                      | (PPH)<br>(DE-P)                                                      | (PPH)                                                                                  |
| 502014                                                               |              |               |                                                                                            |                                                                                      | (OE-P)                                                       | •                                                                                       | •                                                                         |                                                                                                  | 2.7                                                                              | 16                                                                                |                                                            | (PP#)                                                                                      |                                                                      | (PPH)<br>                                                                              |
| 502014<br>15                                                         |              |               |                                                                                            | (OE-D)                                                                               | (OE-P)                                                       |                                                                                         |                                                                           |                                                                                                  |                                                                                  |                                                                                   | (DE-D)                                                     |                                                                                            | (DE-P)                                                               |                                                                                        |
| 15<br>16                                                             |              | • • • • • • • | 9,1                                                                                        | (OE=0)                                                                               | (0E-P)                                                       | 5,6                                                                                     | 1,1                                                                       | 920                                                                                              | 2,7                                                                              | 16                                                                                | (0E-0)<br>2.5<br>4.6<br>4.6                                | 6,7                                                                                        | (DE-P)<br>5,8                                                        | 36                                                                                     |
| 15<br>16<br>17                                                       |              |               | 9,1<br>5,8<br>5,4<br>6,7                                                                   | (OE-0)<br>5.1<br>16<br>6.6<br>6.9                                                    | (OE-P)<br>13<br>32<br>14<br>13                               | 5,6<br>9,8<br>6,1<br>6,9                                                                | 1.1<br>3,0<br>1.1<br>1.5                                                  | 920                                                                                              | 2.7<br>2.7<br>2.8<br>3.0                                                         | 16<br>12<br>14                                                                    | (OE-D)<br>2.5<br>4.6<br>4.2<br>4.3                         | 6.7<br>11<br>11                                                                            | (DE-P)<br>5,8<br>8,1                                                 | 36<br>45<br>37<br>4P                                                                   |
| 15<br>16<br>17<br>18                                                 |              | ••••          | 9,1<br>5,6<br>5,4<br>6,7<br>5,1                                                            | (OE-D)<br>5.1<br>16<br>6.6<br>6.9<br>6.8                                             | (OE-P)<br>13<br>32<br>14<br>13                               | 5,6<br>9,8<br>6,1<br>6,9<br>6,5                                                         | 1.1<br>3.0<br>1.1<br>1.5                                                  | 920<br>810<br>375<br>505<br>570                                                                  | 2.7<br>2.7<br>2.0<br>3.0<br>2.2                                                  | 16<br>12<br>14<br>16<br>8.2                                                       | (OE-D)<br>2.5<br>4.6<br>4.8<br>4.3                         | 6.7<br>11<br>11<br>11<br>5.0                                                               | (DE-P)<br>5,8<br>8,1<br><2.3<br><2.4<br><2.4                         | 36<br>45<br>37<br>4P<br>34                                                             |
| 15<br>16<br>17<br>18<br>19                                           |              | •••••         | 9,1<br>5,6<br>5,4<br>6,7<br>5,1                                                            | 5.1<br>16.6<br>6.9<br>6.8                                                            | 13<br>32<br>14<br>13<br>11<br>20                             | 5,6<br>9,8<br>6,1<br>6,9<br>6,5<br>4,5                                                  | 1.1<br>3.0<br>1.1<br>1.5<br>1.8                                           | 920<br>810<br>375<br>505<br>570<br>560                                                           | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.8                                           | 16<br>12<br>14<br>16<br>8.2<br>2?                                                 | (DE-D) 2,5 4,6 4,2 4,3 <,4 1,8                             | 6.7<br>11<br>11<br>11<br>6.6<br>7.6                                                        | (DE-P) 5,8 8,1 <2,3 <2,4 <2,4 <2,3                                   | 36<br>45<br>37<br>4P<br>34                                                             |
| 15<br>16<br>17<br>18<br>19<br>20                                     |              | •••••         | 9,1<br>5,6<br>5,4<br>6,7<br>5,1<br>13                                                      | 5.1<br>16.6<br>6.9<br>6.8<br>8.4                                                     | 13<br>32<br>14<br>13<br>11<br>29<br>24                       | 5,6<br>9,8<br>6,1<br>6,9<br>6,5<br>4,5<br>6,3                                           | 1.1<br>3.0<br>1.1<br>1.5<br>1.6<br>1.2                                    | 920<br>810<br>375<br>505<br>570<br>560<br>685                                                    | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.0<br>2.2                                    | 16<br>12<br>14<br>16<br>8.2<br>22                                                 | (OE-D)  2.5 4.6 4.2 4.3 <.4 1.8 2.7                        | 6.7<br>11<br>11<br>11<br>6.6<br>7.6<br>8.6                                                 | (DE-P)  5,8 8,1 <2,3 <2,4 <2,4 <2,4 <2,4                             | 36<br>45<br>37<br>4P<br>34<br>39                                                       |
| 15<br>16<br>17<br>18<br>19<br>20<br>21                               |              |               | 9,1<br>5,6<br>5,4<br>6,7<br>5,1<br>13                                                      | (OE-D)<br>5.1<br>16.<br>6.6<br>6.9<br>6.8<br>8.4<br>13                               | (OE-P)<br>13<br>32<br>14<br>13<br>11<br>29<br>24<br>32       | 5,6<br>9,8<br>6,1<br>6,9<br>6,5<br>4,5<br>6,3                                           | 1.1<br>3.0<br>1.1<br>1.5<br>1.8<br>1.2<br>1.3                             | 920<br>8:0<br>375<br>505<br>570<br>560<br>600                                                    | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.0<br>2.2                                    | 16<br>12<br>14<br>16<br>8.2<br>27<br>25                                           | (DE-D)  2.5  4.6  4.2  4.3  <.4  1.8  2.7  2,4             | 6.7<br>11<br>11<br>11<br>6.0<br>7.6<br>8.6<br>7.1                                          | (DE-P)<br>5,8<br>8.1<br><2.3<br><2.4<br><2.4<br><2.4<br><2.4<br><2.3 | 36<br>45<br>37<br>4P<br>34<br>39<br>43                                                 |
| 15<br>16<br>17<br>18<br>19<br>20<br>21                               |              |               | 9.1<br>5.8<br>5.4<br>6.7<br>5.1<br>13<br>135<br>12                                         | (OE+D)<br>5.1<br>16.<br>6.6<br>6.9<br>6.8<br>13.                                     | (OE-P)  13 32 14 13 11 20 24 32 63                           | 5,6<br>9,8<br>6,1<br>6,9<br>6,5<br>4,5<br>6,3<br>4,1                                    | 1.1<br>3.0<br>1.1<br>1.5<br>1.8<br>1.2<br>1.3<br>1,3                      | 920<br>8:0<br>375<br>505<br>570<br>560<br>685<br>680<br>910                                      | 2.7<br>2.7<br>2.9<br>3.9<br>2.2<br>2.0<br>2.2<br>2.3<br>2.2                      | 16<br>12<br>14<br>16<br>8.2<br>2?<br>25<br>18<br>24                               | (OE-D)  2.5 4.6 4.9 4.3 < ,4 1.8 2.7 2.4 2.8               | 6,7<br>11<br>11<br>11<br>6,6<br>7,1<br>5,1                                                 | 5,8<br>8,1<br><2,3<br><2,4<br><2,4<br><2,3<br>35                     | 36<br>45<br>37<br>4P<br>34<br>39<br>43<br>34                                           |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22                         |              |               | 9.1<br>5.6<br>5.4<br>6.7<br>5.1<br>13<br>35<br>22                                          | (OE-D)<br>11.<br>6.6<br>6.9<br>6.8<br>8.4<br>13.                                     | (OE-P)<br>13<br>32<br>14<br>13<br>11<br>20<br>24<br>32<br>63 | 5.6<br>9.8<br>6.1<br>6.9<br>6.5<br>4.5<br>6.3                                           | 1.1<br>3,0<br>1.1<br>1.5<br>1.8<br>1.2<br>1.3<br>1,3                      | 920<br>8:0<br>375<br>505<br>570<br>605<br>600<br>910<br>825                                      | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.0<br>2.3<br>2.3<br>2.6                      | 16<br>12<br>14<br>16<br>8.2<br>27<br>25<br>18<br>24                               | (OE-D)  2.5 4.6 4.2 4.3 4.4 1.8 2.7 2.4 2.8 2.3            | 6.7<br>11<br>11<br>11<br>6.0<br>7.6<br>8.6<br>7.1<br>5.1                                   | (DE-P)  5.8 8.1 <2.3 <2.4 <2.3 <2.4 <2.3 <3.5 3.5 3.0                | 36<br>45<br>37<br>4P<br>34<br>39<br>43<br>34<br>35                                     |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23                   |              |               | 9.1<br>5.8<br>5.4<br>6.7<br>5.1<br>13<br>35<br>12<br>20<br>28                              | (OE-D)<br>5.1<br>16.<br>6.6<br>6.9<br>6.8<br>13<br>15                                | (OE-P) 13 32 14 13 11 20 24 32 63 45                         | 5,6<br>9,8<br>6,1<br>6,9<br>6,5<br>4,5<br>6,3<br>4,1<br>3,9<br>5,5                      | 1.1<br>3,0<br>1.1<br>1.5<br>1.8<br>1.2<br>1.3<br>1,3                      | 920<br>8:00<br>375<br>525<br>570<br>685<br>686<br>910<br>825                                     | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.0<br>2.2<br>2.3<br>2.2<br>2.2               | 16<br>12<br>14<br>16<br>8.2<br>27<br>25<br>18<br>24<br>26                         | (OE-D)  2.5 4.6 4.2 4.3 4,4 1.8 2.7 2.4 2.8 2.3            | 6.7<br>11<br>11<br>11<br>8.0<br>7.6<br>8.6<br>7.1<br>5.1                                   | (DE-P)  5.8 8.1 <2.3 <2.4 <2.3 <2.4 <2.3 <2.5 2.4 <2.3 35 32         | 36<br>45<br>37<br>4P<br>39<br>43<br>39<br>43<br>34<br>35<br>39                         |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24             |              |               | 9.1<br>5.8<br>6.7<br>5.1<br>13<br>35<br>12<br>20<br>28<br>28                               | (OE-D)<br>5.1<br>6.6<br>6.9<br>6.8<br>7.4<br>19<br>34<br>28<br>32                    | (OE-P)  13 32 14 13 11 20 24 32 63 45 39 54                  | 5.6<br>9.8<br>6.1<br>6.9<br>6.5<br>6.3<br>4.1<br>3.9<br>5.5                             | 1.1<br>3,0<br>1.1<br>1.5<br>1.8<br>1.2<br>1.3<br>1,3<br>1.2               | 920<br>8:0<br>375<br>505<br>570<br>685<br>680<br>910<br>825<br>940<br>815                        | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.2<br>2.3<br>2.2<br>2.3                      | 16<br>12<br>14<br>16<br>8.2<br>23<br>25<br>18<br>24<br>26<br>25                   | (OE-D)  2.5 4.6 4.2 4.3 4.4 1.8 2.7 2.4 2.8 2.8            | 6.7<br>11<br>11<br>11<br>6.6<br>7.6<br>8.6<br>7.1<br>5.1<br>5.1                            | (DE-P)  5.8 6.1 42.3 42.4 42.4 42.3 35 36 24                         | 36<br>45<br>37<br>4P<br>34<br>39<br>43<br>34<br>35<br>37                               |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25       |              |               | 9.1<br>5.8<br>6.7<br>5.1<br>13<br>35<br>12<br>20<br>20<br>28<br>23<br>17                   | (OE-D)<br>5.1<br>16.6<br>6.6<br>6.8<br>8.4<br>13<br>14<br>29<br>28<br>34<br>29       | (OE-P)  13 32 14 13 11 20 24 32 63 45 39                     | 5,6<br>9,8<br>6,1<br>6,5<br>4,5<br>6,3<br>4,1<br>3,9<br>5,5<br>4,5                      | 1.1<br>3.0<br>1.1<br>1.5<br>1.8<br>1.2<br>1.3<br>1.2<br>1.4<br>1.1        | 920<br>810<br>375<br>505<br>500<br>605<br>600<br>600<br>910<br>825<br>940<br>815<br>945          | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3               | 16<br>12<br>14<br>16<br>8.2<br>27<br>25<br>18<br>24<br>26<br>25<br>22             | (OE-D)  2.5 4.6 4.2 4.3 4.4 1.8 2.7 2.8 2.8 2.3 6.5 1.5    | 6.7<br>11<br>11<br>11<br>15<br>6.6<br>7.6<br>8.6<br>7.1<br>5.1<br>5.4<br>4.8<br>4.8        | (DE-P)  5.8 8.1 <2.3 <2.4 <2.3 <2.4 <2.3 <2.4 <2.3 35 30 24 17       | 36<br>45<br>37<br>4P<br>34<br>39<br>43<br>35<br>39<br>37<br>37                         |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>25<br>26<br>27 |              |               | 9,1<br>5,8<br>5,4<br>6,7<br>5,1<br>13<br>35<br>12<br>20<br>23<br>17<br>32<br>45            | (OE-D)<br>5.1<br>6.6<br>6.9<br>6.8<br>15<br>15<br>20<br>20<br>28<br>32<br>59         | (OE-P)  13 32 14 13 11 20 24 32 63 45 39 54 74 262           | 5,6<br>9,8<br>6,1<br>6,9<br>6,5<br>4,5<br>6,3<br>4,1<br>3,9<br>5,5<br>4,5<br>5,1<br>6,7 | 1.1<br>3.0<br>1.1<br>1.5<br>1.8<br>1.2<br>1.3<br>1,2<br>1,4               | 920<br>810<br>375<br>507<br>508<br>608<br>607<br>825<br>940<br>815<br>947<br>675                 | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.0<br>2.2<br>2.3<br>2.2<br>2.3<br>2.2<br>2.3 | 16<br>12<br>14<br>16<br>8.2<br>27<br>25<br>18<br>24<br>26<br>25<br>22             | (OE-D)  2.5 4.6 4.9 4.3 < ,4 1.8 2.7 2.4 2.8 2.3 6.1.5 1.2 | 6.7<br>11<br>11<br>11<br>11<br>6.6<br>7.6<br>8.6<br>7.1<br>5.1<br>5.4<br>4.8<br>4.8<br>6.1 | (DE-P)  5,8 8.1 <2.3 <2.4 <2.3 <2.4 <2.3 <2.4 <2.3 35 30 24 17 37 54 | 36<br>45<br>37<br>4P<br>34<br>39<br>43<br>34<br>35<br>39<br>37<br>30<br>33             |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>23<br>24<br>25<br>27<br>28 |              |               | 9.1<br>5.8<br>5.7<br>5.1<br>13<br>15<br>12<br>20<br>23<br>17<br>32<br>45                   | (OE-D)<br>5-1<br>16-6<br>6-9<br>6-8<br>17<br>17<br>32<br>28<br>32<br>59<br>158<br>55 | (OE-P)  13 32 14 13 11 20 24 32 63 45 39 54 74 262 78        | 5.6<br>9.8<br>6.1<br>6.9<br>6.5<br>6.3<br>4,1<br>3.9<br>5.5<br>4,5<br>5.1<br>5.7        | 1.1<br>3.0<br>1.1<br>1.5<br>1.8<br>1.2<br>1.3<br>1.3<br>1.2<br>1.1        | 928<br>818<br>375<br>525<br>570<br>685<br>685<br>686<br>918<br>825<br>948<br>815<br>9475<br>1088 | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.2<br>2.3<br>2.2<br>2.3<br>2.2<br>2.3        | 16<br>12<br>14<br>16<br>8.2<br>25<br>18<br>24<br>26<br>25<br>22<br>21             | (OE-D)  2.5 4.6 4.2 4.3 4,4 1.8 2.7 2.4 2.8 2.3 6 1.5 1.2  | 6.7<br>11<br>11<br>11<br>6.0<br>7.6<br>8.6<br>7.1<br>5.1<br>4.8<br>4.8<br>4.8              | (DE-P)  5.8  8.1  2.3  42.4  42.3  42.3  42.3  52.4  17  54  18      | 36<br>45<br>37<br>4P<br>34<br>39<br>43<br>34<br>35<br>39<br>37<br>30<br>33<br>33<br>33 |
| 15<br>16<br>17<br>18<br>20<br>21<br>22<br>23<br>25<br>26<br>27<br>28 |              |               | 9.1<br>5.8<br>6.7<br>5.1<br>13<br>15<br>12<br>20<br>20<br>23<br>17<br>32<br>45<br>23<br>29 | (OE-D) 1.1 1.6 6.6 6.9 8.4 1.7 1.9 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7       | (OE-P)  13 32 14 13 11 20 24 32 63 45 39 54 74 260 78        | 5.6<br>9.8<br>6.1<br>6.9<br>6.5<br>6.3<br>4.1<br>3.9<br>5.5<br>5.1<br>5.1<br>6.7        | 1.1<br>3.0<br>1.1<br>1.5<br>1.8<br>1.2<br>1.3<br>1.2<br>1.4<br>1.1<br>1.2 | 920<br>8:0<br>375<br>525<br>570<br>685<br>680<br>910<br>825<br>940<br>815<br>945<br>1000<br>643  | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.3<br>2.2<br>2.3<br>2.2<br>2.3<br>2.2<br>2.3 | 16<br>12<br>14<br>16<br>8.2<br>23<br>25<br>18<br>24<br>26<br>25<br>22<br>21<br>14 | (OE-D)  2.5 4.6 4.2 4.3 4.8 2.7 2.4 2.8 2.5 1.5 1.2 1.5    | 6.7<br>11<br>11<br>6.6<br>7.6<br>8.6<br>7.1<br>5.1<br>5.1<br>4.8<br>4.8<br>6.1             | (DE-P)  5.8 6.1 42.3 42.4 42.4 42.3 35 36 24 17 37 54 18 19          | 36<br>45<br>37<br>4P<br>34<br>39<br>43<br>34<br>35<br>37<br>37<br>34<br>33<br>33<br>31 |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>23<br>24<br>25<br>27<br>28 |              |               | 9.1<br>5.8<br>5.7<br>5.1<br>13<br>15<br>12<br>20<br>23<br>17<br>32<br>45                   | (OE-D)<br>5-1<br>16-6<br>6-9<br>6-8<br>17<br>17<br>32<br>28<br>32<br>59<br>158<br>55 | (OE-P)  13 32 14 13 11 20 24 32 63 45 39 54 74 262 78        | 5.6<br>9.8<br>6.1<br>6.9<br>6.5<br>6.3<br>4,1<br>3.9<br>5.5<br>4,5<br>5.1<br>5.7        | 1.1<br>3.0<br>1.1<br>1.5<br>1.8<br>1.2<br>1.3<br>1.3<br>1.2<br>1.1        | 928<br>818<br>375<br>525<br>570<br>685<br>685<br>686<br>918<br>825<br>948<br>815<br>9475<br>1088 | 2.7<br>2.7<br>2.0<br>3.0<br>2.2<br>2.2<br>2.3<br>2.2<br>2.3<br>2.2<br>2.3        | 16<br>12<br>14<br>16<br>8.2<br>25<br>18<br>24<br>26<br>25<br>22<br>21             | (OE-D)  2.5 4.6 4.2 4.3 4,4 1.8 2.7 2.4 2.8 2.3 6 1.5 1.2  | 6.7<br>11<br>11<br>11<br>6.0<br>7.6<br>8.6<br>7.1<br>5.1<br>4.8<br>4.8<br>4.8              | (DE-P)  5.8  8.1  2.3  42.4  42.3  42.3  42.3  52.4  17  54  18      | 36<br>45<br>37<br>4P<br>34<br>39<br>43<br>34<br>35<br>39<br>37<br>30<br>33<br>33<br>33 |

CHEMICAL DATA ON SANGAMON COUNTY, ILLINOIS CORE

| BAMF_E<br>ND,                                                                                                                          | GEDL,<br>NO. | DEPTH<br>(FT)    | LU<br>(PPM)                                                                                                                   | MO<br>(PPM)<br>(GE=D)                                                 | NI<br>(PPH)<br>(GE+O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NI<br>(PPM)<br>(OE=P)                                                            | NI<br>(PPM)<br>(NAA)                                          | RB<br>(PP4)                                                              | <b>3</b> н<br>(РРН)                                            | 5C<br>(PPM)                                                                       | AG<br>(PPM)<br>(GE-P)                                                  | 5P<br>(PP*)<br>(OE-D)                                                                                                      | T#<br>(PPM)                                                                                        | T8<br>(PPM) |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                        | 01 ILE : L2  | 1576,8           | .4                                                                                                                            | < <u> </u>                                                            | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55                                                                               | 49                                                            | 169                                                                      | 5,3                                                            | 15                                                                                | < .8                                                                   | 73                                                                                                                         | 1,3                                                                                                | , 8         |
| 15                                                                                                                                     |              | 1589.4           | .7                                                                                                                            | <1                                                                    | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                                               | 5 4                                                           | 119                                                                      | 1 4                                                            | 10                                                                                | ∢ ,8                                                                   | 91                                                                                                                         | 1.0                                                                                                | 1.8         |
| 16                                                                                                                                     |              | 1665.8           | .6                                                                                                                            | <1                                                                    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                                                                               | 40                                                            | 110                                                                      | 6.1                                                            | 11                                                                                | < ,8                                                                   | 91                                                                                                                         | 1.5                                                                                                | 1.0         |
| 17                                                                                                                                     |              | 1615.1           | . 6                                                                                                                           | < 1                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31                                                                               | 33                                                            | 176                                                                      | 6,5                                                            | 15                                                                                | ۵, ه                                                                   | 62                                                                                                                         | 5.8                                                                                                | 1,1         |
| 18                                                                                                                                     |              | 1631.6           | . 5                                                                                                                           | 4,1                                                                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51                                                                               | 1.8                                                           | 166                                                                      | 7.8                                                            | 1 2                                                                               | ₹ .8                                                                   | 190                                                                                                                        | 1.2                                                                                                | 1,3         |
| 19                                                                                                                                     |              | 1647,4           | . 4                                                                                                                           | <1 _                                                                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                                                                               | 46                                                            | 269                                                                      | 6.1                                                            | 19                                                                                | ٠, ٥                                                                   | 94                                                                                                                         | 1.6                                                                                                | 1,0         |
| 51<br>56                                                                                                                               |              | 1656.2           | . 5                                                                                                                           | 7                                                                     | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                               | 64                                                            | 206                                                                      | 6.7                                                            | 19                                                                                | < .8                                                                   | 89                                                                                                                         | 1.5                                                                                                | , 9         |
| 55                                                                                                                                     |              | 1657.6           | • 4                                                                                                                           | 16                                                                    | 3 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5?                                                                               | 43                                                            | 190                                                                      | 5.9                                                            | 16                                                                                | < ,8                                                                   | 6.0                                                                                                                        | 1.7                                                                                                | 1,1         |
| 5.2                                                                                                                                    |              | 1667.5           | • 4                                                                                                                           | 0.7                                                                   | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104                                                                              | 83<br>78                                                      | 272                                                                      | 6.6                                                            | 20                                                                                | ٠.8                                                                    | 72<br>75                                                                                                                   | 1.7                                                                                                | • 9         |
| 24                                                                                                                                     |              | 1678.6           | • 5                                                                                                                           | 1.5                                                                   | 55<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.5                                                                              | 7 B                                                           | 530                                                                      | 5.7                                                            | 23                                                                                | < .6                                                                   | 87                                                                                                                         | 1.6                                                                                                | .8          |
| 25                                                                                                                                     |              |                  | , 4                                                                                                                           | 4.6                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102                                                                              | 7 K                                                           | 272                                                                      | 6.0                                                            | 25                                                                                | < .B                                                                   | -                                                                                                                          | 1.5                                                                                                | • 9         |
| 36                                                                                                                                     |              | 1698.2<br>1710.0 | . 3                                                                                                                           | 21                                                                    | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.6                                                                              |                                                               | 356                                                                      | 6.3                                                            | 21                                                                                | 4 . 6                                                                  | 72                                                                                                                         | 1.4                                                                                                | • 9         |
| 27                                                                                                                                     |              | 1723.4           | . 4                                                                                                                           | 82                                                                    | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94                                                                               | 91                                                            | 535                                                                      | 6.0                                                            | 55                                                                                | 4 .7                                                                   | 63                                                                                                                         | 1.2                                                                                                | . 9         |
| 28                                                                                                                                     |              | 1732.6           | • •                                                                                                                           | 96<br>39                                                              | 79<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 132                                                                              | 120                                                           | 515                                                                      | 13                                                             | 51                                                                                | < ,7                                                                   | 64                                                                                                                         | 1.6                                                                                                | 1,2         |
| 50                                                                                                                                     |              |                  | . 3                                                                                                                           | -                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                | 50                                                            | 172                                                                      | 18                                                             | 16                                                                                | < .7                                                                   | 64                                                                                                                         | 1.2                                                                                                | 1.0         |
| 50                                                                                                                                     |              | 1740.2           |                                                                                                                               | 47                                                                    | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 76                                                                             | 45                                                            | 148                                                                      | 4.2                                                            | 15                                                                                | 4 .7                                                                   | 69                                                                                                                         | 1.0                                                                                                | • 7         |
| 51                                                                                                                                     |              | 1753.5           | • 4                                                                                                                           | 67                                                                    | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96                                                                               | 58                                                            | 130                                                                      | 8.2                                                            | 16                                                                                | 4 ,7                                                                   | 63                                                                                                                         | 1.0                                                                                                | . 8         |
| 52                                                                                                                                     |              | 1763.3<br>1776.2 | . 3                                                                                                                           | 29<br>22                                                              | 61<br>: 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68<br>152                                                                        | 69<br>118                                                     | 130<br>160                                                               | 5.4<br>5.8                                                     | 15<br>18                                                                          | 8. <b>&gt;</b>                                                         | 80<br>69                                                                                                                   | 1.2                                                                                                | , 7<br>, 6  |
|                                                                                                                                        |              |                  | TH                                                                                                                            | SN                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y5                                                                               | ZN                                                            | ZN                                                                       | ZN                                                             | ZR                                                                                |                                                                        | '500 DEG.                                                                                                                  | ND ND                                                                                              |             |
|                                                                                                                                        |              |                  | (PPH)                                                                                                                         | (PPM)<br>(OE→D)                                                       | (PP4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (PPM)                                                                            | (PPM)<br>(OE=P)                                               | · (PPH)<br>(NAA)                                                         | (PPH)<br>(DE-D)                                                | (PPM)<br>(OE-D)                                                                   | (PPH)<br>(DE=P)                                                        | 43H<br>(%)                                                                                                                 | (PPH)                                                                                              |             |
| 36614                                                                                                                                  |              |                  |                                                                                                                               | (0E=D)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |                                                               | (NAA)                                                                    |                                                                | (0E-0)                                                                            |                                                                        | (X)                                                                                                                        |                                                                                                    |             |
| 30214<br>15                                                                                                                            | i.           | ·                | (PPM)<br>.2<br>.1                                                                                                             | (0E-D)                                                                | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,4                                                                              | (0E-P)                                                        | (NAA)                                                                    | (DE-D)                                                         | (OE-D)                                                                            | (DE-P)                                                                 |                                                                                                                            | (PPH)<br>                                                                                          | ,,          |
| 15<br>16                                                                                                                               | :            | i                | .2<br>.1<br>.2                                                                                                                | 3,9<br>1,7                                                            | <b>4</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  | (OE-P)                                                        | (AAN)<br>59                                                              | (DE-D)                                                         | (OE-D)                                                                            | (DE-P)                                                                 | (¥)<br>96,58                                                                                                               | 18                                                                                                 |             |
| 15<br>16<br>17                                                                                                                         | <u>:</u> .   | ·                | .2<br>.1<br>.2                                                                                                                | 3,9<br>1,7<br>2,6<br>2,3                                              | <5<br><6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,4<br>3,8                                                                       | (0E-P)<br>48<br>57                                            | 92<br>51                                                                 | (OE-D)<br>59<br>3e<br>13e<br>49                                | (0E-D)<br>240<br>325                                                              | (DE-P)<br>478<br>718                                                   | (%)<br>96,58<br>97.89                                                                                                      | 18<br>54                                                                                           | ,,,,        |
| 15<br>16<br>17<br>18                                                                                                                   | <u>:</u> .   | <del>.</del>     | .2<br>.1<br>.2                                                                                                                | 3,9<br>1,7<br>2,6<br>2,3                                              | <5<br><6<br><5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,4<br>3,8<br>3,1                                                                | (0E-P)<br>48<br>57<br>189                                     | 92<br>51<br>118                                                          | (OE-D)<br>59<br>30<br>130                                      | (0E-0)<br>240<br>325<br>425                                                       | (DE-P)<br>478<br>718<br>578                                            | (%)<br>96,50<br>97,09<br>97,35                                                                                             | 18<br>54<br>25                                                                                     |             |
| 15<br>16<br>17<br>18<br>19                                                                                                             | <u>.</u>     | ·                | .2<br>.1<br>.2<br>.6<br>9.8                                                                                                   | (OE-D)<br>3,9<br>1,7<br>2,6<br>2,3<br>,7<br>5,2                       | <5<br><6<br><5<br><5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,4<br>3,8<br>3,1<br>3,3                                                         | (OE-P)<br>48<br>57<br>189<br>49                               | 92<br>51<br>116<br>71                                                    | (OE-D)<br>59<br>3e<br>13e<br>49                                | (OE-O)<br>240<br>325<br>425<br>400                                                | (DE-P)<br>478<br>719<br>578<br>489                                     | (%)<br>96,50<br>97,09<br>97,35<br>98,50                                                                                    | 18<br>54<br>25<br>44                                                                               |             |
| 15<br>16<br>17<br>18<br>19                                                                                                             | <del>-</del> |                  | .2<br>.1<br>.2<br>.6<br>9.8<br>.4                                                                                             | 3,9<br>1,7<br>2,6<br>2,3                                              | <5<br><6<br><5<br><5<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,4<br>3,8<br>3,1<br>3,3<br>3,0                                                  | (OE-P)<br>48<br>57<br>18P<br>40<br>59                         | 92<br>51<br>118<br>71<br>35                                              | (OE-D)<br>59<br>30<br>130<br>49<br>5.5                         | (0E-0)<br>240<br>325<br>425<br>400<br>610                                         | 0E-P) 478 718 578 488 468 468 338                                      | 96,50<br>97,09<br>97,35<br>98,50<br>98,85<br>96,44<br>97,40                                                                | 18<br>54<br>25<br>44<br>32<br>16                                                                   | •••••       |
| 15<br>16<br>17<br>18<br>19<br>20                                                                                                       | <u>-</u>     |                  | .2<br>.1<br>.2<br>.6<br>.9 .8<br>.4                                                                                           | 3,9<br>1,7<br>2.6<br>2,3<br>.7<br>5,2<br>4.7<br>3,8                   | <5<br><6<br><5<br><5<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4<br>3.8<br>3.1<br>3.3<br>3.0<br>2.6<br>2.8                                    | (OE-P)  48 57 189 49 59                                       | 92<br>51<br>118<br>71<br>35                                              | 59<br>38<br>138<br>49<br>5,5                                   | (OE-D)<br>240<br>325<br>425<br>400<br>610<br>280                                  | (DE-P)  478  718  578  488  468                                        | 96,50<br>97,09<br>97,35<br>98,50<br>98,85<br>96,44<br>97,40<br>95,30                                                       | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>52                                                       |             |
| 15<br>16<br>17<br>18<br>19<br>20<br>21                                                                                                 | <del></del>  | ·                | .2<br>.1<br>.2<br>.6<br>.9,8<br>.4                                                                                            | 3.9<br>1,7<br>2.6<br>2,3<br>-7<br>5.2<br>4.7<br>3,8<br>9,1            | <5<br><6<br><5<br><5<br><4<br><6<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4<br>3,8<br>3,1<br>3,3<br>3,0<br>2,6<br>2,8                                    | (OE-P)  48 57 189 49 59 32 110                                | 92<br>51<br>118<br>71<br>35<br>180                                       | 59<br>30<br>130<br>49<br>5,5<br>29                             | (OE-D)<br>240<br>325<br>425<br>400<br>610<br>280<br>310                           | 0E-P) 478 718 578 488 468 468 338                                      | 96,50<br>97,09<br>97,35<br>98,50<br>98,85<br>96,44<br>97,40                                                                | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>52<br>35                                                 |             |
| 15<br>16<br>17<br>18<br>19<br>22<br>23                                                                                                 | <del></del>  | i                | .2<br>.1<br>.2<br>.6<br>.9,8<br>.4<br>.5<br>.4                                                                                | (OE-D) 3.9 1.7 2.6 2.3 .7 5.2 4.7 3.8 9.1 7.2                         | <5<br><6<br><5<br><5<br><4<br><4<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4<br>3.8<br>3.1<br>3.3<br>3.0<br>2.6<br>2.8                                    | (OE-P)<br>                                                    | (NAA)<br>92<br>51<br>118<br>71<br>35<br>180<br>150                       | (OE-D)<br>59<br>30<br>130<br>49<br>5.5<br>29<br>83             | (0E-0)<br>240<br>325<br>425<br>425<br>426<br>610<br>286<br>310<br>250             | (DE-P)<br>478<br>718<br>578<br>488<br>468<br>468<br>338<br>298         | 96,50<br>97,09<br>97,35<br>98,50<br>98,85<br>96,44<br>97,40<br>95,30                                                       | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>52                                                       |             |
| 15<br>17<br>16<br>19<br>21<br>21<br>23<br>24                                                                                           |              | :                | .2<br>.1<br>.2<br>.6<br>.9<br>.8<br>.4<br>.5<br>.4<br>.5<br>.4<br>.5                                                          | [OE-D) 3.9 1,7 2.6 2,3 .7 5.2 4.7 3,6 9.1 7.2 8.5                     | <5 <6 <5 <4 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 < | 2,4<br>3,8<br>3,1<br>3,3<br>3,0<br>2,6<br>2,6<br>2,4<br>2,4<br>2,3               | (OE-P)  48 57 189 49 59 32 110 848 188 188 188                | (NAA)<br>92<br>51<br>11P<br>71<br>35<br>180<br>150<br>1290<br>120<br>128 | (OE-D) 59 58 138 49 5.5 29 63 928 75 97                        | (OE - O)  240 325 425 400 610 280 310 250 210 220                                 | (DE-P)  478  718  570  488  466  466  338  296  380  280               | 96,50<br>97,09<br>97,35<br>98,50<br>98,65<br>96,44<br>97,40<br>95,30<br>95,30<br>95,30                                     | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>52<br>35<br>ND(<10)<br>21                                |             |
| 15<br>17<br>18<br>19<br>22<br>23<br>25<br>25                                                                                           | <del></del>  |                  | .2<br>.1<br>.2<br>.6<br>.9 .8<br>.5<br>.4<br>.5<br>.5<br>.15                                                                  | (OE-D) 3.9 1.7 2.6 2.3 .7 5.2 4.7 3.6 9.1 7.2 8.5                     | <5<br><5<br><5<br><4<br><4<br><6<br><4<br><6<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4<br>3.8<br>3.1<br>3.3<br>3.6<br>2.6<br>2.4<br>2.3<br>2.4<br>2.3               | (OE-P)  48 57 187 48 59 32 118 842 128 128                    | (NAA)  72 51 116 71 35 180 150 1290 1290 120 120 170                     | (OE-D)  59  38  138  49  5.5  29  75  97  58                   | (OE - O)  240 325 425 400 610 286 310 250 210 250 210 200 150                     | (DE-P)  ATB  718  578  488  468  468  338  298  388  288  288  288     | (%)<br>97.89<br>97.35<br>98.50<br>98.85<br>96.44<br>95.30<br>95.30<br>95.30<br>95.30                                       | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>52<br>35<br>ND (<18)<br>21<br>ND (<28)                   |             |
| 167 178 199 223 245 26                                                                                                                 | <del></del>  | . <u></u> :      | .2<br>.1<br>.2<br>.6<br>.9,8<br>.4<br>.5<br>.4<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5                                      | (OE-D) 3,7 2,6 2,3 5,2 4,7 3,6 7,2 6,5 4,1 3,6                        | <5 <6 <5 <4 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 <46 < | 2,4<br>3,8<br>3,1<br>3,3<br>3,0<br>2,6<br>2,6<br>2,4<br>2,4<br>2,3               | (OE-P)  48 57 189 49 59 32 110 848 188 188 188                | (NAA)<br>92<br>51<br>11P<br>71<br>35<br>180<br>150<br>1290<br>120<br>128 | (OE-D) 59 58 138 49 5.5 29 63 928 75 97                        | (OE - O)  240 325 425 400 610 280 310 250 210 220                                 | (DE-P)  478  718  570  488  466  466  338  296  380  280               | 96,50<br>97,09<br>97,35<br>98,50<br>98,65<br>96,44<br>97,40<br>95,30<br>95,30<br>95,30                                     | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>52<br>35<br>ND(<10)<br>21                                |             |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26                                                                   | <del></del>  | . <u></u> :      | .2<br>.1<br>.2<br>.6<br>.9<br>.8<br>.4<br>.5<br>.4<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5                                        | (OE-D) 3,9 1,7 2,6 2,3 7 5,2 4,7 3,6 9,1 7,2 8,5 4,1 3,6 3,7          | <5<br><5<br><5<br><4<br><4<br><6<br><4<br><6<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4<br>3.8<br>3.1<br>3.3<br>3.6<br>2.6<br>2.4<br>2.3<br>2.4<br>2.3               | (OE-P)  48 57 187 48 59 32 118 842 128 128                    | (NAA)  72 51 116 71 35 180 150 1290 1290 120 120 170                     | (OE-D)  59  38  138  49  5.5  29  75  97  58                   | (OE - O)  240 325 425 400 610 286 310 250 210 250 210 200 150                     | (DE-P)  ATB  718  578  488  468  468  338  298  388  288  288  288     | (%)<br>97.89<br>97.35<br>98.50<br>98.85<br>96.44<br>95.30<br>95.30<br>95.30<br>95.30                                       | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>52<br>35<br>ND (<18)<br>21<br>ND (<28)                   |             |
| 15<br>16<br>17<br>18<br>19<br>22<br>23<br>25<br>27<br>28<br>27<br>28                                                                   |              |                  | .2<br>.1<br>.2<br>.6<br>.9<br>.8<br>.4<br>.5<br>.4<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5                      | [OE-D) 3.9 1.7 2.6 2.3 7.7 5.2 4.7 3.8 9.1 7.2 8.5 4.1 3.8 3.7 4.9    | <5<br><5<br><5<br><4<br><4<br><4<br><6<br><4<br><4<br><6<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4<br>3.8<br>3.1<br>3.3<br>3.6<br>2.6<br>2.4<br>2.3<br>2.2<br>2.3               | (OE-P)  48 57 187 48 59 32 110 842 120 120 130 130 130 270    | (NAA)  92 51 110 71 35 180 150 120 120 120 120 120 170 280               | (OE-D)  59 30 130 49 5.5 29 83 920 75 97 58 99                 | (OE-O) 240 325 425 400 610 280 250 250 250 260 260 150 150 150                    | (DE-P)  478 718 578 488 468 338 298 388 288 288 288                    | 95,30<br>95,50<br>97,29<br>97,35<br>98,50<br>98,44<br>97,40<br>95,30<br>95,30<br>95,30<br>93,60<br>93,60                   | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>35<br>ND(<10)<br>21<br>ND(<20)<br>35                     |             |
| 15<br>16<br>17<br>18<br>19<br>22<br>23<br>45<br>54<br>27<br>89                                                                         | <del></del>  | ·i               | .2<br>.1<br>.2<br>.6<br>.9 .8<br>.4<br>.5<br>.4<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5 | (OE-D) 3,9 1,7 2,6 2,3 7 5,2 4,7 3,6 9,1 7,2 8,5 4,1 3,6 3,7          | <5<br><5<br><5<br><4<br><6<br><4<br><6<br><4<br><1<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4<br>3.8<br>3.1<br>3.3<br>3.0<br>2.6<br>2.6<br>2.3<br>2.4<br>2.2<br>2.2<br>2.3 | (OE-P)  48 57 189 40 32 110 840 120 120 130 160 170 100       | (NAA)  92 51 11.6 71 35 180 150 1290 120 120 110 170 280 140             | (OE-D) 59 50 130 49 5.5 29 63 920 75 97 56 99 170 66           | (OE-O) 240 325 425 400 610 280 250 210 250 210 200 150 130 170                    | (DE-P)  478  718  578  488  468  338  298  388  288  288  288  288  28 | (%)<br>96.50<br>97.29<br>97.35<br>98.50<br>98.64<br>97.40<br>95.30<br>93.50<br>93.60<br>93.10<br>87.10<br>87.60            | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>35<br>ND (<18)<br>21<br>ND (<28)<br>35                   |             |
| 15<br>16<br>17<br>18<br>19<br>22<br>23<br>25<br>26<br>27<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | <del></del>  | :_               | .2<br>.1<br>.2<br>.6<br>.9<br>.8<br>.4<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5          | (OE-D) 3,7 2,6 2,3 5,2 4,7 3,6 7,2 8,5 4,1 3,6 3,7 4,9 5,2            | <5<br><5<br><5<br><4<br><6<br><4<br><6<br><4<br><6<br><4<br>5<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.4<br>3.8<br>3.1<br>3.3<br>3.6<br>2.6<br>2.4<br>2.3<br>2.2<br>2.3               | (OE-P)  48 57 189 48 59 32 110 848 120 120 130 166 270 100 55 | (NAA)  92 51 11P 71 35 180 150 1290 128 110 170 280 140 95               | (OE-D)  59 30 130 49 5.5 29 83 920 75 97 58 99 170 86 53 92 35 | (OE - O)  240 325 425 426 426 426 426 250 250 210 250 210 250 150 150 130 150 130 | (DE-P)  478 718 578 488 468 338 298 388 288 288 288 288 288 288        | 90,50<br>97,29<br>97,35<br>98,50<br>98,44<br>97,40<br>95,30<br>95,30<br>93,60<br>93,10<br>93,10<br>85,80<br>88,90<br>98,40 | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>35<br>ND (<10)<br>21<br>ND (<20)<br>35<br>55<br>43<br>27 |             |
| 15<br>16<br>17<br>18<br>19<br>21<br>22<br>23<br>45<br>27<br>28<br>29<br>28                                                             |              |                  | .2<br>.1<br>.2<br>.6<br>.9 .8<br>.4<br>.5<br>.4<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5 | [OE-D) 3.9 1.7 2.6 2.3 .7 5.2 4.7 3.8 9.1 7.2 8.5 4.1 3.8 3.7 4.9 4.9 | <5<br><5<br><5<br><4<br><4<br><4<br><6<br><4<br><6<br><4<br><11<br>22<br>31<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.4<br>3.8<br>3.1<br>3.3<br>3.6<br>2.6<br>2.4<br>2.3<br>2.2<br>2.3<br>3.3        | (OE-P)  48 57 189 48 59 32 110 848 188 189 169 278 109 278    | (NAA)  92 51 11.7 71 35 180 150 120 120 120 110 128 110 140 140 150      | (OE-D)  59 30 130 49 5.5 29 63 920 75 97 56 99 170 66 53 92    | (OE-O) 240 325 400 610 280 250 210 250 210 250 150 170 170                        | (DE-P)  ATE  718  578  488  468  338  298  388  288  288  288  288  28 | (%)<br>97.09<br>97.09<br>98.50<br>98.85<br>96.40<br>95.30<br>95.30<br>95.30<br>95.30<br>95.30<br>95.30<br>95.30            | 18<br>54<br>25<br>44<br>32<br>16<br>42<br>52<br>35<br>ND (<18)<br>21<br>ND (<28)<br>35<br>55       |             |

NO - NOT DETECTED

| SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |        |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                      |                                                                                        |                                                                                                                              |                                                                                                                            |                                                                                                                                                   |                                                                                         |                                                                |                                                                              |                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | DEPIH  | 2105                                                                                                                                                                 | *F503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                            | FE AS                                                                                |                                                                                        | CAC                                                                                                                          | NA 45                                                                                                                      | K 5 O                                                                                                                                             | K AS                                                                                    | TICS                                                           | P2C5                                                                         | PN:                                                                      |
| ٠,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO.      | (FT)   | (x)                                                                                                                                                                  | " አገ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (%)                                                                                                                                                        | 1 FE203                                                                              | (X)                                                                                    | ( <b>x</b> )                                                                                                                 | # 4450                                                                                                                     | (x1                                                                                                                                               | X K50                                                                                   | (1)                                                            | (x)                                                                          | (PPH)                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |        |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (XPF)                                                                                                                                                      | (AAN)                                                                                |                                                                                        |                                                                                                                              | (NAA) .                                                                                                                    |                                                                                                                                                   | (                                                                                       |                                                                |                                                                              | (NAA)                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65116115 |        | 13,31                                                                                                                                                                | 2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.36                                                                                                                                                       | 1.17                                                                                 | 2,07                                                                                   | 47.90                                                                                                                        | 1,52                                                                                                                       | .7b                                                                                                                                               | .83                                                                                     | .89                                                            | .861                                                                         | 824                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02116512 |        | 67,95                                                                                                                                                                | 16.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.13                                                                                                                                                       | 4.87                                                                                 | 2.45                                                                                   | 1.70                                                                                                                         | . 80                                                                                                                       | 4.45                                                                                                                                              | 5.10                                                                                    | . 89                                                           | .03                                                                          | 368                                                                      |
| 68848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 651F66F5 | 3061.1 | 69.77                                                                                                                                                                | 17.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.24                                                                                                                                                       | 4,31                                                                                 | 2.07                                                                                   | 1.24                                                                                                                         | . 81                                                                                                                       | 4.37                                                                                                                                              | 4.89                                                                                    | .89                                                            | 30                                                                           | 410                                                                      |
| 00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65116311 | 3105.8 | 55.41                                                                                                                                                                | .71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,76                                                                                                                                                        | . 49                                                                                 | 2.29                                                                                   | 27.94                                                                                                                        | 943                                                                                                                        | . 89                                                                                                                                              | . PI 9 7                                                                                | < .21                                                          | .67                                                                          | 2436                                                                     |
| 20051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 021L01C1 | 3211.4 | 77.71                                                                                                                                                                | 15,59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.63                                                                                                                                                       | 3.79                                                                                 | 1.29                                                                                   | .17                                                                                                                          | . 95                                                                                                                       | 4.28                                                                                                                                              | 4.31                                                                                    | . 93                                                           | .03                                                                          | 230                                                                      |
| 2252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NSILRECT | 3821:4 | 78.38                                                                                                                                                                | 15.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.23                                                                                                                                                       | 3.87                                                                                 | 1.53                                                                                   | .27                                                                                                                          | . 98                                                                                                                       | 4.23                                                                                                                                              | 4.54                                                                                    | 95                                                             | P 4                                                                          | 246                                                                      |
| e e u 5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WSILW3C1 | 3241,3 | 61,63                                                                                                                                                                | 21.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.2%                                                                                                                                                       | 4,94                                                                                 | 1.27                                                                                   | 1.38                                                                                                                         | .63                                                                                                                        | 3.66                                                                                                                                              | 3.54                                                                                    | .69                                                            | . 71                                                                         | 376                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | USILEACT |        | 61,24                                                                                                                                                                | 17.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.58                                                                                                                                                       | 7.42                                                                                 | .79                                                                                    | ,73                                                                                                                          | .56                                                                                                                        | 3.39                                                                                                                                              | 3.55                                                                                    |                                                                | <.01                                                                         | 286                                                                      |
| 48455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 251F84C5 | 3:59.5 | 56.48                                                                                                                                                                | 1.1,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.27                                                                                                                                                       | 5.67                                                                                 | 1.94                                                                                   | 2.44                                                                                                                         | .59                                                                                                                        | 3.73                                                                                                                                              | 3.74                                                                                    | .74                                                            | .04                                                                          | 520                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02IL05C1 |        | 56,69                                                                                                                                                                | 1.3,79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.52                                                                                                                                                       | 5.04                                                                                 | . 90                                                                                   | .86                                                                                                                          | . 46                                                                                                                       | 4.19                                                                                                                                              | 4.16                                                                                    | .74                                                            | . 06                                                                         | 346                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 851F36C1 |        | 57,79                                                                                                                                                                | 1.4.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.52                                                                                                                                                       | 5,56                                                                                 | 1.19                                                                                   | . 4 4                                                                                                                        | .72                                                                                                                        | 4.51                                                                                                                                              | 4.57                                                                                    | .85                                                            | .08                                                                          | 210                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 051F61C1 |        | 56,67                                                                                                                                                                | 14.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.55                                                                                                                                                       | 5.74                                                                                 | 1.24                                                                                   | . 97                                                                                                                         | .76                                                                                                                        | 4.45                                                                                                                                              | 4.48                                                                                    | . 42                                                           | . P 6                                                                        | 342                                                                      |
| 20059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 021L#8C1 | 3096.5 | 55,51                                                                                                                                                                | 17,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.24                                                                                                                                                       | 5.00                                                                                 | 1,69                                                                                   | ,77                                                                                                                          | .73                                                                                                                        | 4.94                                                                                                                                              | 4.88                                                                                    | .88                                                            | 13.                                                                          | 337                                                                      |
| 60045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 031L01L1 | 4444   | 42,19                                                                                                                                                                | 11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.46                                                                                                                                                       | 2,56                                                                                 | 1,65                                                                                   | 23,58                                                                                                                        | . 47                                                                                                                       | 2.98                                                                                                                                              | 3.17                                                                                    | . 47                                                           | . 1 1                                                                        | 1600                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03IL07L1 |        | 68,75                                                                                                                                                                | 11,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.42                                                                                                                                                       | 5.44                                                                                 | 1.77                                                                                   | 1.84                                                                                                                         | .75                                                                                                                        | 2.98                                                                                                                                              | 3,35                                                                                    | .62                                                            | . 66                                                                         | 439                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 031L12L1 |        | 66,73                                                                                                                                                                | 14.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.13                                                                                                                                                       | 4.73                                                                                 | 1.52                                                                                   | 1.07                                                                                                                         | .74                                                                                                                        | 3.77                                                                                                                                              | 4.32                                                                                    | ,67                                                            | . 86                                                                         | 348                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63175671 |        | 66.28                                                                                                                                                                | 17.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.16                                                                                                                                                       | 2,92                                                                                 | 2.24                                                                                   | 2.74                                                                                                                         | 91                                                                                                                         | 4.76                                                                                                                                              | 5,31                                                                                    | .82                                                            | . 8.8                                                                        | 266                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63115673 |        | 59,86                                                                                                                                                                | 14.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.47                                                                                                                                                       | 3,39                                                                                 | 3.76                                                                                   | 5.86                                                                                                                         | . 63                                                                                                                       | 3.88                                                                                                                                              | 4.35                                                                                    | .68                                                            | . 0.7                                                                        | 616                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 631F53F1 |        | 62,39                                                                                                                                                                | 15.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.23                                                                                                                                                       | 3,54                                                                                 | 2.86                                                                                   | 3.93                                                                                                                         | .74                                                                                                                        | 3.65                                                                                                                                              | 3.98                                                                                    | .60                                                            | .10                                                                          | 593                                                                      |
| 16.66.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83115611 | 4735   | 64,76                                                                                                                                                                | 15,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.46                                                                                                                                                       | 2.33                                                                                 | 3.32                                                                                   | 4,59                                                                                                                         | .58                                                                                                                        | 3.89                                                                                                                                              | 4.21                                                                                    | •55                                                            | . 14                                                                         | 598                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |        | MN;                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            | 5                                                                                    | :                                                                                      | TOTAL                                                                                                                        | DRGANIC                                                                                                                    | INORG                                                                                                                                             | i                                                                                       | TOTAL                                                          | 38                                                                           |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |        | (PP4)<br>(OE=P)                                                                                                                                                      | (PPM)<br>(Di+D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (PPM)<br>(OE=P)                                                                                                                                            | (x)                                                                                  | (1)                                                                                    |                                                                                                                              | C (X)                                                                                                                      | C (x)                                                                                                                                             | (1)                                                                                     | CEC MED/1296                                                   | (PPM)                                                                        | (PPM)                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |        |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                      |                                                                                        |                                                                                                                              |                                                                                                                            |                                                                                                                                                   |                                                                                         |                                                                |                                                                              |                                                                          |
| P6538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        | 780                                                                                                                                                                  | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.2                                                                                                                                                        | .08                                                                                  | .08                                                                                    | 12.68                                                                                                                        | .67                                                                                                                        | 10.01                                                                                                                                             | .55                                                                                     | 1.2                                                            | .5                                                                           | ,5                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |        | 780<br>350                                                                                                                                                           | 32<br>1 o e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82                                                                                                                                                         |                                                                                      | . P.B<br>. A 7                                                                         | 12.68                                                                                                                        | .67<br>3,43                                                                                                                | 10.01                                                                                                                                             |                                                                                         | 1.2<br>5.6                                                     | .5<br>1.8                                                                    | ,5<br>21                                                                 |
| 26639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ı        |        |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                          | .97                                                                                  | .07                                                                                    |                                                                                                                              | 3.43                                                                                                                       | .53                                                                                                                                               | 1.81                                                                                    |                                                                | 1.8                                                                          |                                                                          |
| 20039<br>20040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı<br>L   |        | 350                                                                                                                                                                  | 1 > 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 197                                                                                                                                                        |                                                                                      |                                                                                        | 3.96                                                                                                                         |                                                                                                                            |                                                                                                                                                   |                                                                                         | 5.6                                                            |                                                                              | 21                                                                       |
| 20039<br>20040<br>20041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ı        |        | 350<br>380                                                                                                                                                           | 1 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 192                                                                                                                                                        | .97<br>.83                                                                           | .01<br>.96                                                                             | 3.96                                                                                                                         | 3.43                                                                                                                       | .53<br>.34                                                                                                                                        | 1.81                                                                                    | 5.6<br>4.8                                                     | 1.8                                                                          | 21<br>17                                                                 |
| 20039<br>20041<br>20041<br>20051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |        | 350<br>380<br>1000<br>197<br>200                                                                                                                                     | 150<br>130<br>24<br>250<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 197<br>198<br>12                                                                                                                                           | .97<br>.83<br>.30                                                                    | .07<br>.96<br>.08                                                                      | 3.96<br>2.94<br>6.49<br>1.62<br>2.41                                                                                         | 3.43<br>2.60<br>.35<br>1.61<br>2.37                                                                                        | .53<br>.34<br>6.14                                                                                                                                | 1.01<br>.79<br>.31                                                                      | 5.6<br>4.8<br>.2<br>4.7<br>4.6                                 | 1.8                                                                          | 21<br>17<br>2.6<br>21<br>9.7                                             |
| 20039<br>20041<br>20041<br>20051<br>20053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        | 350<br>380<br>1007<br>197<br>207<br>312                                                                                                                              | 1 3 P<br>1 3 P<br>2 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 192                                                                                                                                                        | .97<br>.83<br>.30<br>.67<br>.42                                                      | .06<br>.08                                                                             | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95                                                                                 | 3.43<br>2.60<br>.35<br>1.61<br>2.37<br>7.54                                                                                | .53<br>.34<br>6.14                                                                                                                                | 1.01<br>.79<br>.31                                                                      | 5.6<br>4.8<br>.2<br>4.7<br>4.6<br>4.7                          | 1.8                                                                          | 21<br>17<br>2.6<br>27<br>9.7                                             |
| 20039<br>20041<br>20051<br>20053<br>20053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        | 350<br>320<br>1002<br>192<br>202<br>312<br>232                                                                                                                       | 150<br>130<br>24<br>200<br>150<br>155<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 197<br>198<br>12<br>227<br>209<br>193<br>183                                                                                                               | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69                                      | .07<br>.06<br>.08                                                                      | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95<br>8.77                                                                         | 3.43<br>2.69<br>.35<br>1.61<br>2.37<br>7.54<br>8.51                                                                        | .53<br>.34<br>6.14<br>.91<br>.94<br>.41                                                                                                           | 1.01<br>.79<br>.31<br>.81<br>.58<br>.88                                                 | 5.6<br>4.8<br>.2<br>4.7<br>4.6<br>4.7<br>4.7                   | 1.8                                                                          | 21<br>17<br>2.6<br>27<br>9.7<br>41                                       |
| 20039<br>20041<br>20041<br>20051<br>20053<br>20053<br>20053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |        | 350<br>320<br>1002<br>192<br>202<br>312<br>232<br>359                                                                                                                | 100<br>140<br>24<br>200<br>150<br>155<br>165<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 197<br>198<br>12<br>227<br>208<br>198<br>188<br>188                                                                                                        | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69<br>1.23                              | .07<br>.96<br>.08<br>.12<br>.08                                                        | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95<br>8.77<br>9.28                                                                 | 3.43<br>2.69<br>.35<br>1.61<br>2.37<br>7.54<br>8.51<br>8.45                                                                | .53<br>.34<br>6.14<br>.91<br>.94<br>.41<br>.26                                                                                                    | 1.01<br>.79<br>.31<br>.81<br>.58<br>.88<br>1.51                                         | 5.6<br>4.8<br>.2<br>4.7<br>4.6<br>4.7<br>4.7<br>5.1            | 1.8                                                                          | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40                           |
| 20039<br>20041<br>20051<br>20051<br>20053<br>20053<br>20055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |        | 350<br>320<br>1000<br>197<br>207<br>317<br>237<br>350<br>257                                                                                                         | 100<br>140<br>24<br>200<br>150<br>155<br>140<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 197<br>198<br>12<br>227<br>208<br>198<br>188<br>168<br>220                                                                                                 | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69<br>1.23                              | .07<br>.06<br>.08<br>.12<br>.08<br>.05<br>.05                                          | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95<br>8.77<br>9.28<br>9.45                                                         | 3,43<br>2,60<br>.35<br>1,61<br>2,37<br>7,54<br>6,51<br>6,45<br>9,21                                                        | .53<br>.34<br>6.14<br>.01<br>.04<br>.41<br>.26<br>.83                                                                                             | 1.81<br>.79<br>.31<br>.81<br>.58<br>.88<br>1.51<br>1.19                                 | 5.6<br>4.8<br>.2<br>4.7<br>4.6<br>4.7<br>4.7                   | 1.8<br>.9<br>.2<br>1,3<br>.9<br>3.9<br>5.5<br>4.2<br>3,7                     | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40<br>37                     |
| 20039<br>20041<br>20041<br>20051<br>20052<br>20053<br>20054<br>20056<br>2056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        | 350<br>380<br>1000<br>190<br>200<br>310<br>230<br>350<br>250<br>240                                                                                                  | 150<br>140<br>24<br>250<br>150<br>155<br>140<br>240<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 197<br>197<br>12<br>227<br>207<br>197<br>187<br>187<br>220<br>220                                                                                          | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69<br>1.23<br>1.24                      | .07<br>.06<br>.08<br>.12<br>.08<br>.05<br>.05<br>.05                                   | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95<br>8.77<br>9.28<br>7.25                                                         | 3.43<br>2.60<br>.35<br>1.61<br>2.37<br>7.54<br>8.51<br>8.45<br>9.21<br>7.12                                                | .53<br>.34<br>6.14<br>.01<br>.04<br>.04<br>.04<br>.04<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05                       | 1.01<br>.79<br>.31<br>.81<br>.58<br>.68<br>1.51<br>1.19<br>1.42                         | 5.6<br>4.8<br>4.7<br>4.6<br>4.7<br>4.7<br>5.1                  | 1,8<br>,9<br>1,3<br>3,9<br>5,5<br>4,2<br>3,7                                 | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40<br>37<br>37               |
| 20039<br>20041<br>20051<br>20053<br>20053<br>20053<br>20055<br>20055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        | 350<br>340<br>1002<br>197<br>202<br>312<br>237<br>350<br>257<br>240<br>327                                                                                           | 150<br>130<br>24<br>250<br>150<br>155<br>140<br>240<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 197<br>198<br>12<br>227<br>208<br>193<br>187<br>168<br>228<br>228                                                                                          | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69<br>1.23<br>1.24<br>.87               | .07<br>.06<br>.08<br>.12<br>.05<br>.05<br>.05<br>.04                                   | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95<br>8.77<br>9.28<br>9.45<br>7.25<br>4.47                                         | 3,43<br>2,60<br>.35<br>1.61<br>2.37<br>7.54<br>8.51<br>8.45<br>9.21<br>7.12<br>4.27                                        | .53<br>.34<br>6.14<br>.01<br>.04<br>.41<br>.26<br>.83<br>.24                                                                                      | 1.01<br>.79<br>.31<br>.81<br>.58<br>.68<br>1.51<br>1.19<br>1.42<br>1.18                 | 5.6<br>4.8<br>2<br>4.7<br>4.6<br>7<br>4.7<br>5.1<br>4.7<br>5.1 | 1.8<br>.9<br>.2<br>1,3<br>3.9<br>5.5<br>4.2<br>3,7<br>3.2                    | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40<br>37<br>32<br>21.        |
| 22039<br>22039<br>22039<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>22031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031<br>20031 |          |        | 350<br>380<br>1000<br>190<br>200<br>310<br>230<br>350<br>250<br>240                                                                                                  | 150<br>140<br>24<br>250<br>150<br>155<br>140<br>240<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 197<br>197<br>12<br>227<br>207<br>197<br>187<br>187<br>220<br>220                                                                                          | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69<br>1.23<br>1.24                      | .07<br>.06<br>.08<br>.12<br>.08<br>.05<br>.05<br>.05                                   | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95<br>8.77<br>9.28<br>7.25                                                         | 3.43<br>2.60<br>.35<br>1.61<br>2.37<br>7.54<br>8.51<br>8.45<br>9.21<br>7.12                                                | .53<br>.34<br>6.14<br>.01<br>.04<br>.04<br>.04<br>.04<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05                       | 1.01<br>.79<br>.31<br>.81<br>.58<br>.68<br>1.51<br>1.19<br>1.42                         | 5.6<br>4.8<br>4.7<br>4.6<br>4.7<br>4.7<br>5.1                  | 1,8<br>,9<br>1,3<br>3,9<br>5,5<br>4,2<br>3,7                                 | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40<br>37<br>37               |
| 20039<br>20041<br>20041<br>20051<br>20053<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |        | 350<br>370<br>1002<br>197<br>202<br>312<br>237<br>350<br>250<br>250<br>270<br>860                                                                                    | 2.4<br>2.4<br>2.5<br>1.5<br>1.4<br>2.4<br>2.4<br>2.4<br>2.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 197<br>198<br>12<br>227<br>209<br>193<br>189<br>189<br>220<br>220<br>170<br>190                                                                            | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69<br>1.23<br>1.24<br>.72<br>.80        | .07<br>.08<br>.12<br>.08<br>.05<br>.05<br>.04<br>.04<br>.05                            | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95<br>8.77<br>9.28<br>9.45<br>7.25<br>4.47<br>6.36                                 | 3,43<br>2,60<br>.35<br>1,61<br>2,37<br>7,54<br>8,51<br>8,45<br>9,21<br>4,27<br>6,17                                        | .53<br>.34<br>6.14<br>.01<br>.04<br>.04<br>.26<br>.83<br>.25<br>.13                                                                               | 1.01<br>.79<br>.31<br>.81<br>.58<br>.88<br>1.51<br>1.19<br>1.42<br>1.18<br>1.12<br>1.72 | 5.6<br>4.8<br>2<br>4.7<br>4.6<br>7<br>4.7<br>5.1<br>4.7<br>5.1 | 1.8<br>.9<br>1,3<br>3.9<br>5.5<br>4.7<br>3.7<br>3.7<br>3.7                   | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40<br>37<br>32<br>21,        |
| 20039<br>20039<br>20041<br>20051<br>20053<br>20053<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        | 350<br>370<br>1002<br>197<br>207<br>312<br>237<br>350<br>257<br>240<br>327<br>270<br>867<br>318                                                                      | 2.50<br>1.50<br>2.50<br>1.55<br>1.40<br>2.40<br>2.50<br>1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 197<br>198<br>12<br>227<br>200<br>198<br>169<br>220<br>220<br>170<br>190                                                                                   | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69<br>1.23<br>1.24<br>.87<br>.72<br>.80 | .07<br>.068<br>.12<br>.085<br>.055<br>.044<br>.075<br>.076                             | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95<br>8.77<br>9.28<br>9.45<br>7.25<br>7.25<br>4.47<br>6.36                         | 3,43<br>2.60<br>.35<br>1.61<br>2.37<br>7.54<br>8.51<br>8.45<br>9.21<br>7.12<br>4.22<br>6.17                                | .53<br>.34<br>6.14<br>.91<br>.04<br>.26<br>.83<br>.24<br>.13<br>.25<br>.19                                                                        | 1.01<br>.79<br>.31<br>.81<br>.58<br>1.51<br>1.19<br>1.42<br>1.18<br>1.12<br>1.72        | 5.6<br>4.8<br>2<br>4.7<br>4.6<br>7<br>4.7<br>5.1<br>4.7<br>5.1 | 1.8<br>.92<br>1,39<br>5.5<br>4.2<br>3,72<br>1.7<br>3.0<br>3.0                | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40<br>37<br>32<br>21.<br>21. |
| 20039<br>20041<br>20051<br>20053<br>20053<br>20053<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |        | 350<br>370<br>1002<br>197<br>203<br>317<br>233<br>357<br>253<br>240<br>303<br>270<br>867<br>310<br>257                                                               | 2 PP 150 155 140 220 155 140 155 155 155 155 155 155 155 155 155 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 197<br>197<br>197<br>227<br>200<br>197<br>187<br>180<br>220<br>170<br>190                                                                                  | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.49<br>1.23<br>1.24<br>.87<br>.72<br>.80 | .07<br>.08<br>.1855<br>.085<br>.085<br>.085<br>.085<br>.085<br>.085                    | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95<br>8.77<br>9.28<br>9.45<br>7.25<br>4.36<br>5.93<br>6.36                         | 3,43<br>2,60<br>.35<br>1,61<br>2,37<br>7,54<br>8,51<br>8,45<br>9,21<br>7,122<br>4,17                                       | .53<br>.34<br>6.14<br>.91<br>.94<br>.41<br>.83<br>.24<br>.13<br>.19                                                                               | 1.01<br>.79<br>.31<br>.81<br>.58<br>.68<br>1.51<br>1.19<br>1.42<br>1.18<br>1.12<br>1.72 | 5.6<br>4.8<br>2<br>4.7<br>4.6<br>7<br>4.7<br>5.1<br>4.7<br>5.1 | 1,8<br>,9<br>2<br>1,3<br>,9<br>3,9<br>5,5<br>4,2<br>3,7<br>3,2<br>1,7<br>3,8 | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40<br>37<br>32<br>21.<br>21. |
| 22039<br>20041<br>20051<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20053<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |        | 350<br>370<br>1002<br>197<br>202<br>312<br>237<br>257<br>240<br>327<br>270<br>867<br>318<br>258<br>210                                                               | 2 P P 1555 140 C 2 2 5 5 1 6 5 5 1 6 5 5 1 6 5 5 1 6 5 5 1 6 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 5 | 197<br>198<br>12<br>227<br>200<br>198<br>180<br>220<br>170<br>190<br>150<br>150<br>150<br>200<br>200                                                       | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69<br>1.23<br>1.24<br>.62               | .07<br>.068<br>.1885<br>.085<br>.085<br>.085<br>.085<br>.085<br>.085<br>.085           | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.25<br>8.77<br>9.45<br>7.25<br>4.47<br>6.36<br>5.93<br>9.94<br>8.61                 | 3,43<br>2,60<br>.35<br>1,61<br>2,37<br>7,54<br>8,51<br>8,45<br>9,21<br>7,12<br>4,27<br>6,17<br>,86<br>9,43<br>8,53         | .53<br>.34<br>.01<br>.01<br>.04<br>.04<br>.04<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05                               | 1.01<br>.79<br>.31<br>.51<br>.58<br>1.51<br>1.19<br>1.18<br>1.12<br>1.72                | 5.6<br>4.8<br>2<br>4.7<br>4.6<br>7<br>4.7<br>5.1<br>4.7<br>5.1 | 1,8<br>,9<br>2<br>1,3<br>,9<br>3,9<br>5,5<br>4,2<br>3,7<br>3,2<br>1,7<br>3,8 | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40<br>37<br>32<br>21.<br>21. |
| 22239<br>22239<br>22239<br>22239<br>22239<br>22239<br>22239<br>22239<br>22339<br>22339<br>22339<br>22339<br>22339<br>22339<br>22339<br>22339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>2339<br>23                                                                                                                                                                                                                                                                                                                                                        |          |        | 350<br>370<br>1002<br>197<br>202<br>312<br>232<br>350<br>250<br>250<br>250<br>270<br>860<br>310<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>25 | 250<br>250<br>250<br>155<br>140<br>240<br>250<br>155<br>140<br>250<br>155<br>160<br>165<br>260<br>165<br>260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 197<br>198<br>12<br>227<br>208<br>198<br>188<br>228<br>228<br>179<br>190<br>158<br>190<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2 | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69<br>1.23<br>1.24<br>.72<br>.80<br>.80 | .07<br>.08<br>.18<br>.08<br>.08<br>.08<br>.08<br>.08<br>.08<br>.08<br>.08<br>.08<br>.0 | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.95<br>8.77<br>9.28<br>9.45<br>7.25<br>4.47<br>6.36<br>5.93<br>9.94<br>6.98<br>5.93 | 3,43<br>2,60<br>.35<br>1,61<br>2,37<br>7,54<br>8,51<br>8,45<br>9,21<br>4,27<br>6,17<br>.86<br>9,40<br>8,52<br>1,93<br>3,51 | .53<br>.53<br>.53<br>.6.14<br>.01<br>.041<br>.041<br>.041<br>.026<br>.033<br>.034<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035 | 1.01<br>.79<br>.31<br>.81<br>.58<br>.59<br>1.19<br>1.19<br>1.12<br>1.12<br>1.12<br>1.12 | 5.6<br>4.8<br>2<br>4.7<br>4.6<br>7<br>4.7<br>5.1<br>4.7<br>5.1 | 1.8<br>.9<br>2<br>1,3<br>.9<br>5.5<br>4.2<br>3.7<br>1.7<br>3.8               | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40<br>37<br>32<br>21.<br>21. |
| 500238<br>500239<br>500041<br>500051<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053<br>500053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        | 350<br>370<br>1002<br>197<br>202<br>312<br>237<br>257<br>240<br>327<br>270<br>867<br>318<br>258<br>210                                                               | 2 P P 1555 140 C 2 2 5 5 1 6 5 5 1 6 5 5 1 6 5 5 1 6 5 5 1 6 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 1 6 5 5 5 5 | 197<br>198<br>12<br>227<br>200<br>198<br>180<br>220<br>170<br>190<br>150<br>150<br>150<br>200<br>200                                                       | .97<br>.83<br>.30<br>.67<br>.42<br>1.19<br>1.69<br>1.23<br>1.24<br>.62               | .07<br>.068<br>.1885<br>.085<br>.085<br>.085<br>.085<br>.085<br>.085<br>.085           | 3.96<br>2.94<br>6.49<br>1.62<br>2.41<br>7.25<br>8.77<br>9.45<br>7.25<br>4.47<br>6.36<br>5.93<br>9.94<br>8.61                 | 3,43<br>2,60<br>.35<br>1,61<br>2,37<br>7,54<br>8,51<br>8,45<br>9,21<br>7,12<br>4,27<br>6,17<br>,86<br>9,43<br>8,53         | .53<br>.34<br>.01<br>.01<br>.04<br>.04<br>.04<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05<br>.05                               | 1.01<br>.79<br>.31<br>.51<br>.58<br>1.51<br>1.19<br>1.18<br>1.12<br>1.72                | 5.6<br>4.8<br>2<br>4.7<br>4.6<br>7<br>4.7<br>5.1<br>4.7<br>5.1 | 1,8<br>,9<br>2<br>1,3<br>,9<br>3,9<br>5,5<br>4,2<br>3,7<br>3,2<br>1,7<br>3,8 | 21<br>17<br>2.6<br>27<br>9.7<br>41<br>64<br>40<br>37<br>32<br>21.<br>21. |

| SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GEOL.           | DEPTH   | 64                                                                                  | BE                                                                                              | BE                                                                      | +                                                                                | A.P.                                                                     | C E                                                                                                       | C 5                                                                                    | CH                                                                            | CR                                                                                                                   | CR                                                                             | c <sub>o</sub>                                                           | CO                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO.             | (FT)    | (PPH)                                                                               | (PPM)                                                                                           | (PPH)                                                                   | (PPH)                                                                            | (PPH)                                                                    | [PP#)                                                                                                     | (PP*)                                                                                  | (PPM)                                                                         | (PPH)                                                                                                                | (PPH)                                                                          | (PPM)                                                                    | (PPH)                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •               |         |                                                                                     | (CE=0)                                                                                          | (OE-P)                                                                  |                                                                                  | •                                                                        |                                                                                                           |                                                                                        | (NAA)                                                                         | (OE-D)                                                                                                               | (OE-P)                                                                         | (NAA)                                                                    | (0E-0)                                                                     |  |
| 0P038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESILBILS        | 3209.5  | <6?                                                                                 | <1                                                                                              | < .87                                                                   | 24                                                                               |                                                                          | 25                                                                                                        | 1.6                                                                                    | 3.5                                                                           | 26                                                                                                                   | 22                                                                             | 4.3                                                                      | 12                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ESILOSLE        |         | 632                                                                                 | 2.6                                                                                             | 5.4                                                                     | 162                                                                              | <b>&lt;</b> 7                                                            | 71                                                                                                        | 7.2                                                                                    | 5.5                                                                           | 9.5                                                                                                                  | 110                                                                            | 17                                                                       | Ş                                                                          |  |
| 88999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESILAPES        | 3281,1  | 532                                                                                 | 5.2                                                                                             | د . 5                                                                   | 154                                                                              | < 4                                                                      | 74                                                                                                        | 6.8                                                                                    | 98                                                                            | 91                                                                                                                   | 110                                                                            | 14                                                                       | 17                                                                         |  |
| 00.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65110911        | 3105,8  | <60                                                                                 | <1                                                                                              | < .87                                                                   | 6.6                                                                              | <4                                                                       | 7 1                                                                                                       | . 5                                                                                    | 5.7                                                                           | 8,5                                                                                                                  | <9.5                                                                           | 1 1                                                                      | 15                                                                         |  |
| 89851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85116101        | 3011.4  | 470                                                                                 | 2,5                                                                                             | 4.9                                                                     | 160                                                                              | <b>∢</b> 6                                                               | 71                                                                                                        | 6.2                                                                                    | 77                                                                            | 92                                                                                                                   | 129                                                                            | 19                                                                       | 23                                                                         |  |
| 00052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESIF65CI        | 3721.4  | 340                                                                                 | 2.4                                                                                             | 4.5                                                                     | 162                                                                              | ۵                                                                        | 87                                                                                                        | 7.9                                                                                    | P. 4                                                                          | 95                                                                                                                   | 122                                                                            | 12                                                                       | 1.2                                                                        |  |
| 0P353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESIF63C1        | 3,43,3  | 452                                                                                 | 3.0                                                                                             | 4.7                                                                     | 129                                                                              | 4                                                                        | 63                                                                                                        | 6.5                                                                                    | 6.7                                                                           | 67                                                                                                                   | 80                                                                             | 25                                                                       | 3 5                                                                        |  |
| P0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRILEACT        | 3253,2  | 524                                                                                 | 3.5                                                                                             | 4.6                                                                     | 122                                                                              | 4                                                                        | 75                                                                                                        | 6.2                                                                                    | 64                                                                            | 6.4                                                                                                                  | R 5                                                                            | 31                                                                       | 31                                                                         |  |
| Ø2255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESIL@4CS        | 3059.5  | 518                                                                                 | 3,1                                                                                             | 4.9                                                                     | 120                                                                              | 4                                                                        | 75                                                                                                        | 6.4                                                                                    | 7 ?                                                                           | 15                                                                                                                   | 69                                                                             | 27                                                                       | 3.5                                                                        |  |
| 66836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E2ILP5C1        | 3:65,3  | 572                                                                                 | 2.9                                                                                             | 5.2                                                                     | 15%                                                                              | 3                                                                        | 79                                                                                                        | 6.9                                                                                    | 65                                                                            | 79                                                                                                                   | 99                                                                             | 24                                                                       | 28                                                                         |  |
| 88857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13447IS4        | 3273,4  | 65W                                                                                 | 3.4                                                                                             | 5.2                                                                     | 160                                                                              | < 4                                                                      | 95                                                                                                        | 8,2                                                                                    | 8.14                                                                          | 79                                                                                                                   | 100                                                                            | 25                                                                       | 56                                                                         |  |
| PPHSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESILP7C1        | .3885,5 | 432                                                                                 | 2.7                                                                                             | 4.5                                                                     | 150                                                                              | 5                                                                        | 7 1                                                                                                       | 7.2                                                                                    | 8 2                                                                           | 97                                                                                                                   | 112                                                                            | 55                                                                       | 21                                                                         |  |
| 655259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ESIFCSCI        | 3096.5  | 588                                                                                 | 3.4                                                                                             | 5.6                                                                     | 258                                                                              | <5                                                                       | 74                                                                                                        | 8.4                                                                                    | 7 9                                                                           | 92                                                                                                                   | 116                                                                            | 51                                                                       | 53                                                                         |  |
| 86695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESILAILI        | 4482    | 268                                                                                 | .84                                                                                             | 2.9                                                                     | 192                                                                              | <4                                                                       | 41                                                                                                        | a# I                                                                                   | 58                                                                            | 62                                                                                                                   | 8.8                                                                            | 13                                                                       | 22                                                                         |  |
| 800003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>@31La7L1</b> | 4542    | 666                                                                                 | 3.1                                                                                             | 4.8                                                                     | 142                                                                              | <b>&lt;</b> 5                                                            | 76                                                                                                        | 5.2                                                                                    | 63                                                                            | 55                                                                                                                   | 53                                                                             | 27                                                                       | 56                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E31F15F1        |         | 663                                                                                 | 3.4                                                                                             | 5.2                                                                     | 152                                                                              | < 4                                                                      | 72                                                                                                        | 6.5                                                                                    | 92                                                                            | 77                                                                                                                   | 8 1                                                                            | 25                                                                       | 56                                                                         |  |
| 22045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E3IL20L1        | 4673    | 487                                                                                 | 2.6                                                                                             | 5.2                                                                     | 286                                                                              | 2                                                                        | 112                                                                                                       | 9.7                                                                                    | 118                                                                           | 112                                                                                                                  | 136                                                                            | 15                                                                       | 16                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63115613        |         | 450                                                                                 | 2.3                                                                                             | 4,4                                                                     | 250                                                                              | 4                                                                        | 77                                                                                                        | 7.9                                                                                    | 137                                                                           | 168                                                                                                                  | 110                                                                            | 13                                                                       | 15                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 631L23L1        |         | 388                                                                                 | 2.4                                                                                             | 4.3                                                                     | 152                                                                              | 3                                                                        | 51                                                                                                        | 6.6                                                                                    | 77                                                                            | 67                                                                                                                   | 75                                                                             | 5.0                                                                      | 21                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23IL26L1        |         | 426                                                                                 | 2.7                                                                                             | 4.6                                                                     | 223                                                                              | <7                                                                       | 73                                                                                                        | 8.1                                                                                    | 93                                                                            | 8.5                                                                                                                  | 91                                                                             | 19                                                                       | 19                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         | CC<br>(PPM)                                                                         | CU<br>(PPH)                                                                                     | CU<br>(PP≅)                                                             | DY<br>(PPM)                                                                      | EU<br>(PPM)                                                              | F<br>(PPM)                                                                                                | G.A<br>(₽₽Ч)                                                                           | GF<br>(PPM)                                                                   | GE<br>(PPP)                                                                                                          | HF<br>(PPM)                                                                    | PB<br>(PPH)                                                              | LA<br>(PPM)                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         | (OE=P)                                                                              | (DE=0)-                                                                                         | (OE-P)                                                                  | •                                                                                |                                                                          |                                                                                                           |                                                                                        | (0£=0)                                                                        | (DE=P)                                                                                                               |                                                                                | (DE-P)                                                                   |                                                                            |  |
| 00238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |         | (OE-P)                                                                              |                                                                                                 | (OE-P)                                                                  |                                                                                  |                                                                          | 536                                                                                                       | 4                                                                                      |                                                                               | (∩E-P)<br>≪7.5                                                                                                       |                                                                                |                                                                          | 17                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         |                                                                                     | 15                                                                                              |                                                                         | 4.8                                                                              | .9<br>1.2                                                                | 968<br>53 <i>b</i>                                                                                        | 4<br>24                                                                                | •                                                                             |                                                                                                                      |                                                                                | (0E-P)                                                                   | 17<br>38                                                                   |  |
| C0239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |         | <3.4                                                                                |                                                                                                 | (OE-P)                                                                  | 4.¢<br>5.2                                                                       | 1.2                                                                      |                                                                                                           |                                                                                        | <1,<br>6,4                                                                    | <7.5                                                                                                                 | . 8                                                                            | (OE-P)<br><2,4                                                           |                                                                            |  |
| 68639<br>66646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |         | <3.4<br>23                                                                          | 12<br>53                                                                                        | (OE-P)<br>6.1<br>68                                                     | 4.8                                                                              |                                                                          | 968                                                                                                       | 24                                                                                     | <1,                                                                           | <7.5<br><7,3                                                                                                         | . 8<br>5. 6                                                                    | (0E-P)<br><2,4<br>9,0                                                    | 3.8                                                                        |  |
| 60239<br>00242<br>00241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •••••           |         | 43.4<br>23<br>26                                                                    | 12<br>53<br>47<br>3.7                                                                           | (QE-P)<br>6,1<br>68<br>55<br><1,4                                       | 4.8<br>5.2<br>7.6<br>3.2                                                         | 1.2                                                                      | 968<br>1835                                                                                               | 24<br>24                                                                               | <1,<br>6.4<br>6.7<br>5.6                                                      | <7.5<br><7,3<br><7,3                                                                                                 | .8<br>5.6<br>4,8                                                               | (DE-P)<br><2,4<br>9.0<br>8,2                                             | 38<br>39                                                                   |  |
| 60239<br>60242<br>60241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |         | <3.4<br>23<br>26<br>7.6                                                             | 12<br>53<br>47<br>3.7                                                                           | (OE-P)<br>6,1<br>68<br>55                                               | 4.8<br>5.2<br>7.6<br>3.2<br>5.3                                                  | 1.2                                                                      | 968<br>1935<br>1968                                                                                       | 24<br>24<br>.5                                                                         | <1,<br>6,4<br>6,7<br>5,0                                                      | <7.5<br><7,3<br><7,3<br><7,5                                                                                         | .8<br>5.8<br>4,8                                                               | (OE-P)<br><2,4<br>9.0<br>8,2<br><2,4                                     | 38<br>39<br>6                                                              |  |
| 00039<br>00040<br>100041<br>100051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |         | <3.4<br>23<br>26<br>7.6                                                             | 12<br>53<br>47<br>3.7                                                                           | (QE-P)<br>6,1<br>67<br>55<br><1,4<br>45,                                | 4.8<br>5.2<br>7.6<br>3.2<br>5.3<br>6.5                                           | 1.2                                                                      | 968<br>1835<br>1868<br>825                                                                                | 24<br>24<br>.5                                                                         | <1,<br>6.4<br>6.7<br>5.6                                                      | <7.5<br><7,3<br><7,3<br><7,5<br><7.5                                                                                 | .8<br>5.8<br>4,8<br>.6                                                         | <2.4<br>9.0<br>8.2<br><2.4                                               | 38<br>39<br>6                                                              |  |
| 00039<br>00040<br>00041<br>00041<br>00051<br>00053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |         | <3.4<br>23<br>26<br>7,6<br>37<br>15                                                 | 12<br>53<br>47<br>3.7<br>38<br>32                                                               | (QE-P)<br>6,1<br>67<br>55<br><1,4                                       | 4.8<br>5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.7                                    | 1.2                                                                      | 968<br>1835<br>1868<br>825<br>738                                                                         | 24<br>24<br>.5<br>22<br>27                                                             | <1,<br>6.4<br>6.7<br>5.0<br>2.3<br>2.4<br>2.5                                 | <7.5<br><7,3<br><7,3<br><7,5<br><7.5                                                                                 | .8<br>5.6<br>4,8<br>.6<br>5.5<br>6.8                                           | <2.4<br>9.0<br>8.2<br><2.4<br>6.3                                        | 38<br>39<br>6                                                              |  |
| C0239<br>00242<br>00241<br>CP251<br>90252<br>90253<br>90254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ••••    | <3.4<br>23<br>26<br>7.6<br>37<br>15<br>46                                           | 12<br>53<br>47<br>3.7<br>38<br>32<br>74                                                         | (OE-P)  6.1 67 55 <1.4 45 40 62                                         | 4.8<br>5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.7                                    | 1.2                                                                      | 968<br>1835<br>1868<br>825<br>738<br>858                                                                  | 24<br>24<br>.5<br>22<br>22                                                             | <1,<br>6.4<br>6.7<br>5.0<br>2.3<br>2.4                                        | <7.5<br><7,3<br><7,3<br><7,5<br><7.5<br><7.3<br><7.2<br><6.8                                                         | .8<br>5.6<br>4,8<br>.6<br>5.5<br>6.8<br>3.7                                    | <2.4<br>9.0<br>8.2<br><2.4<br>8.3<br>11                                  | 38<br>39<br>6<br>41<br>41<br>34                                            |  |
| 00239<br>00242<br>00241<br>00241<br>00251<br>00252<br>00253<br>00254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |         | 33.4<br>23<br>26<br>7.6<br>37<br>15<br>46<br>41                                     | 12<br>53<br>47<br>3.7<br>38<br>32<br>74<br>82                                                   | (OE-P)  6,1 67 55 <1.4 45 40 82 8A                                      | 4.0<br>5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.7<br>5.6<br>5.8                      | 1.2<br>1.4<br>.3<br>1.0<br>1.2<br>1.1<br>1.1                             | 950<br>1935<br>1960<br>825<br>732<br>859<br>895                                                           | 24<br>24<br>.5<br>22<br>28<br>17                                                       | <1,<br>6.4<br>6.7<br>5.0<br>2.3<br>2.4<br>2.5<br>2.3<br>1.6                   | <7.5<br><7.3<br><7.3<br><7.5<br><7.5<br><7.2<br><6.8<br><6.7                                                         | .8<br>5.6<br>4,8<br>.6<br>5.5<br>6.8<br>3.7                                    | (OE-P)  <2.4  9.0  8.2  <2.4  6.3  11  12                                | 38<br>39<br>6<br>41<br>41<br>34<br>32                                      |  |
| C0239<br>00242<br>00241<br>CP251<br>00252<br>00253<br>00253<br>00255<br>00255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |         | <3.4<br>23<br>26<br>7.6<br>37<br>15<br>46<br>41<br>33                               | 12<br>53<br>47<br>3.7<br>38<br>32<br>74<br>82<br>76                                             | (OE-P)  6,1 67 55 <1.4 45 40 88 78                                      | 4.0<br>5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.7<br>5.6<br>7.1                      | 1.2<br>1.4<br>.3<br>1.0<br>1.2<br>1.1<br>1.1<br>1.3                      | 950<br>1935<br>1963<br>825<br>732<br>859<br>895                                                           | 24<br>24<br>.5<br>22<br>28<br>17<br>17                                                 | <1,<br>6,4<br>6,7<br>5,6<br>2,3<br>2,4<br>2,5<br>1,8                          | <7.5<br><7,3<br><7,3<br><7.5<br><7.3<br><7.5<br><6.8<br><6.7<br><6.7                                                 | 5.5<br>5.8<br>5.5<br>6.8<br>3.7<br>4.0<br>3.8                                  | (OE-P)  <2,4  9,0  8,2 <2,4  8,3 11 12 19 12                             | 38<br>39<br>6<br>41<br>41<br>34<br>32<br>37                                |  |
| C0239<br>00242<br>00241<br>CP251<br>60252<br>60253<br>60253<br>60255<br>60255<br>60257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |         | 33, 4<br>23<br>26<br>7, 6<br>37<br>15<br>46<br>41<br>33<br>36                       | 12<br>53<br>47<br>3.7<br>38<br>32<br>74<br>82<br>76                                             | (OE-P)  6.1 67 55 <1.4 45 40 82 87 78                                   | 4.0<br>5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.7<br>5.6<br>5.8                      | 1.2<br>1.4<br>.3<br>1.0<br>1.2<br>1.1<br>1.1                             | 962<br>1235<br>1863<br>825<br>732<br>858<br>895<br>982                                                    | 24<br>24<br>.5<br>22<br>27<br>17<br>17<br>19<br>24                                     | <1,<br>6.4<br>6.7<br>5.0<br>2.3<br>2.4<br>2.5<br>2.3<br>1.6                   | <7.5<br><7,3<br><7,3<br><7.5<br><7.6<br><7.2<br><6.8<br><6.7<br><6.7                                                 | 5.6<br>4,8<br>.6<br>5.5<br>6.8<br>3.7<br>4.0<br>3.8                            | (OE-P)  <2,4 9,0 8,2 <2,4  6,3 11 12 19 12 12                            | 38<br>39<br>6<br>41<br>41<br>34<br>32<br>37<br>38                          |  |
| E0239 00242 00241 CP251 00252 00253 00253 00255 00255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |         | 33.4<br>23<br>24<br>7,6<br>37<br>15<br>46<br>41<br>33<br>36<br>39                   | 12<br>53<br>47<br>3.7<br>38<br>32<br>74<br>82<br>76<br>100<br>87                                | (OE-P)  6.1  6.7  55  <1.4  45  40  82  8A  78  99                      | 5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.7<br>5.6<br>5.6                             | 1.2<br>1.4<br>.3<br>1.0<br>1.2<br>1.1<br>1.1<br>1.3<br>1.5               | 968<br>1735<br>1868<br>825<br>738<br>859<br>859<br>895<br>982<br>982<br>982                               | 24<br>24<br>.5<br>22<br>27<br>17<br>17<br>19<br>24<br>23                               | <1,<br>6.4<br>6.7<br>5.0<br>2.3<br>2.4<br>2.5<br>2.3<br>1.8                   | <7.5<br><7,3<br><7,3<br><7.5<br><7.3<br><7.2<br><6.8<br><6.7<br><6.7<br><6.6                                         | 5.6<br>5.5<br>6.8<br>3.7<br>4.8<br>3.4<br>4.5                                  | (OE-P)  <2.4  9.0  8.2  <2.4  6.3  11  12  19  12  16                    | 38<br>39<br>6<br>41<br>34<br>32<br>37<br>38<br>63                          |  |
| COC39 00044 00041 CPC51 00053 00055 00055 00055 00055 00055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         | 33.4<br>23.4<br>24.7.6<br>37.5<br>46.41<br>33.3<br>36.39<br>34.36                   | 12<br>53<br>47<br>3.7<br>38<br>32<br>74<br>82<br>76<br>100<br>87<br>68<br>97                    | (OE-P)  6.1  67  55  <1.4  45  40  82  8A  78  99  74  97               | 5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.7<br>5.8<br>7.1<br>6.4<br>5.9               | 1.2<br>1.4<br>.3<br>1.0<br>1.2<br>1.1<br>1.3<br>1.5<br>1.6               | 962<br>1735<br>1862<br>825<br>732<br>858<br>895<br>982<br>982<br>883<br>883<br>883<br>883<br>883          | 24<br>24<br>.5<br>22<br>27<br>17<br>17<br>19<br>24<br>23<br>18                         | 2.3<br>2.4<br>2.5<br>2.3<br>1.6<br>1.7<br>2.2                                 | <7.5<br><7,3<br><7,5<br><7.5<br><7.2<br><6.8<br><6.7<br><6.6<br><6.8<br><7.2                                         | .8<br>5.6<br>4,8<br>.6<br>5.5<br>6.8<br>3.7<br>4.8<br>3.8<br>3.4<br>4.5<br>3.5 | (OE-P)  <2,4 9,0 8,2 <2,4 6,3 11 12 12 18 16                             | 38<br>39<br>6<br>41<br>34<br>32<br>37<br>38<br>63<br>38                    |  |
| 00039<br>00044<br>00041<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00024<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025<br>00025  |                 |         | 33.4<br>23.2<br>24.7,6<br>37.15<br>42.41<br>33.3<br>36.39<br>34.32                  | 12<br>53<br>47<br>3.7<br>38<br>32<br>74<br>87<br>160<br>87<br>60<br>97                          | (OE-P)  6.1  6.1  55  <1.4  45  40  82  8A  78  99  74  97              | 5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.7<br>5.6<br>5.8<br>7.1<br>6.4<br>5.5<br>7.1 | 1.2<br>1.4<br>.3<br>1.6<br>1.2<br>1.1<br>1.3<br>1.5<br>1.6<br>1.2        | 968<br>1935<br>1968<br>825<br>732<br>859<br>895<br>982<br>982<br>986<br>868<br>875<br>1965<br>1965        | 24<br>24<br>.5<br>22<br>27<br>17<br>17<br>19<br>24<br>23<br>18<br>26                   | <1, 6.4<br>6.7<br>5.0<br>2.3<br>2.4<br>2.5<br>2.3<br>1.6<br>1.7<br>2.0<br>2.2 | <7.5<br><7,3<br><7,3<br><7,5<br><7.3<br><7.2<br><6.8<br><6.7<br><6.6<br><6.8<br><7.2<br><6.8<br><7.3<br><7.3         | 3.4<br>4.5<br>5.5<br>6.8<br>3.7<br>4.0<br>3.4<br>4.5<br>4.5<br>3.5             | (OE-P)  <2.4  9.0  8.2  <2.4  6.3  11  12  19  12  16  16  22  3.6       | 38<br>39<br>6<br>61<br>41<br>34<br>32<br>37<br>38<br>63<br>38<br>61        |  |
| C0239 00244 00241 C0255 00255 00255 00255 00256 00256 00242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         | 33, 4<br>23<br>26<br>7, 6<br>37<br>15<br>46<br>41<br>33<br>36<br>39<br>34<br>36     | 12<br>53<br>47<br>3.7<br>38<br>32<br>74<br>82<br>76<br>100<br>87<br>69<br>97                    | (GE-P)  6,1  67  55  41.4  45  48  88  78  99  74  97                   | 5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.6<br>5.6<br>7.1<br>6.5<br>5.9               | 1.2<br>1.4<br>.3<br>1.0<br>1.2<br>1.1<br>1.3<br>1.5<br>1.6<br>1.2<br>1.3 | 962<br>1735<br>1862<br>825<br>732<br>859<br>982<br>982<br>982<br>983<br>850<br>1851                       | 24<br>24<br>.5<br>22<br>27<br>17<br>17<br>19<br>24<br>23<br>18<br>26                   | <1, 6.4<br>6.7<br>5.2<br>2.3<br>2.4<br>2.5<br>2.3<br>1.6<br>1.7<br>2.2<br>2.2 | <7.5<br><7,3<br><7,3<br><7.5<br><7.3<br><7.2<br><6.8<br><6.7<br><6.6<br><7.3<br><6.6<br><7.3<br><6.6                 | 3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8             | (OE-P)  <2,4 9,0 8,2 <2,4 6,3 11 12 13 14 15 16 22 3,8                   | 38<br>39<br>6<br>41<br>34<br>32<br>37<br>38<br>63<br>38<br>61              |  |
| CRC39 00044 00041 CRC55 000554 000555 000655 000655 000656 000656 000656 000656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         | <33,4 23 26 7,6 37 15 46 41 33 36 39 34 36 39 34 36 39 34 38                        | 12<br>53<br>47<br>3.7<br>38<br>32<br>74<br>87<br>68<br>67<br>69<br>75                           | (OE-P)  6.1  6.1  55  <1.4  45  40  82  8A  78  99  74  97              | 5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.6<br>5.6<br>7.1<br>6.4<br>5.9<br>4.9        | 1.2<br>1.4<br>.3<br>1.0<br>1.2<br>1.1<br>1.3<br>1.5<br>1.6<br>1.3        | 968<br>1935<br>1968<br>825<br>732<br>859<br>895<br>982<br>982<br>986<br>868<br>875<br>1965<br>1965        | 24<br>24<br>.5<br>22<br>27<br>17<br>17<br>19<br>24<br>23<br>18<br>26                   | 21, 6.4<br>6.7<br>5.0<br>2.3<br>2.9<br>2.5<br>2.3<br>1.6<br>1.7<br>2.0<br>2.2 | <7.5<br><7,3<br><7,3<br><7,5<br><7.2<br><6.8<br><6.7<br><6.6<br><7.3<br><7.2<br><6.6<br><7.3<br><6.6<br><7.3<br><6.6 | 5.6<br>5.5<br>6.8<br>3.6<br>3.6<br>3.6<br>3.6<br>3.5<br>3.5                    | (OE-P)  <2.4  9.0  8.2  <2.4  6.3  11  12  19  12  16  16  22  3.6       | 38<br>39<br>6<br>61<br>41<br>34<br>32<br>37<br>38<br>63<br>38<br>61        |  |
| 000440<br>000440<br>000440<br>00055<br>00055<br>00055<br>00055<br>00055<br>00055<br>000445<br>000445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |         | 33.4<br>23.4<br>24.7.6<br>37.5<br>46.41<br>33.3<br>36.39<br>34.36<br>39.34<br>36.39 | 12<br>53<br>47<br>3.7<br>38<br>32<br>74<br>82<br>76<br>100<br>87<br>69<br>97                    | (GE-P)  6.1  67  55  <1.4  45  40  82  8A  78  99  96  74  97           | 5.2<br>7.62<br>7.62<br>5.7<br>5.8<br>7.1<br>6.45<br>5.9<br>4.9<br>4.9<br>4.9     | 1.2<br>1.4<br>2<br>1.2<br>1.1<br>1.3<br>1.5<br>1.6<br>1.2<br>1.3         | 968<br>1935<br>1962<br>825<br>732<br>859<br>895<br>982<br>982<br>988<br>858<br>31851<br>578<br>828        | 24<br>24<br>.5<br>22<br>22<br>17<br>17<br>19<br>24<br>23<br>16<br>26                   | 2.3<br>2.4<br>2.5<br>2.3<br>1.6<br>1.7<br>2.2<br>3.7<br>7.8<br>8.0<br>8.9     | <7.5<br><7,3<br><7,5<br><7.2<br><6.8<br><6.7<br><6.6<br><6.8<br><7.2<br><6.6<br><7.3<br><6.6<br><7.3<br><6.6         | 3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8             | (OE-P)  <2.4  9.0  8.2  <2.4  6.3  11  12  13  16  22  3.6  14  10       | 38<br>39<br>6<br>41<br>34<br>32<br>37<br>38<br>63<br>38<br>63<br>38<br>61  |  |
| 00238<br>500239<br>600249<br>600241<br>60025<br>60025<br>60025<br>60025<br>60025<br>60025<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>60024<br>600 |                 |         | <33,4 23 26 7,6 37 15 46 41 33 36 39 34 36 39 34 36 39 34 38                        | 12<br>53<br>47<br>3.7<br>38<br>32<br>74<br>82<br>76<br>100<br>87<br>68<br>97<br>34<br>75<br>100 | (OE-P)  6.1  6.1  55  <1.4  45  40  82  8A  78  99  74  97  35  86  102 | 5.2<br>7.6<br>3.2<br>5.3<br>6.5<br>5.6<br>5.6<br>7.1<br>6.4<br>5.9<br>4.9        | 1.2<br>1.4<br>.3<br>1.0<br>1.2<br>1.1<br>1.3<br>1.5<br>1.6<br>1.3        | 968<br>1935<br>1968<br>825<br>732<br>859<br>982<br>982<br>982<br>982<br>982<br>1951<br>579<br>502<br>1990 | 24<br>24<br>.5<br>22<br>27<br>17<br>17<br>19<br>24<br>23<br>16<br>26<br>15<br>17<br>21 | 21, 6.4<br>6.7<br>5.0<br>2.3<br>2.9<br>2.5<br>2.3<br>1.6<br>1.7<br>2.0<br>2.2 | <7.5<br><7,3<br><7,3<br><7,5<br><7.2<br><6.8<br><6.7<br><6.6<br><7.3<br><7.2<br><6.6<br><7.3<br><6.6<br><7.3<br><6.6 | 3.4<br>4.5<br>3.4<br>3.4<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5      | (OE-P)  <  9.0  8.2  <  8.3  11  12  13  14  15  16  22  3.8  14  17  13 | 38<br>39<br>61<br>31<br>32<br>37<br>38<br>63<br>38<br>61<br>31<br>31<br>32 |  |

| NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEDL.<br>NO, | CEPTH<br>(FT) | LU<br>(PPH)                                                               | MC<br>(PPM)<br>(OE=D)                                                                  | PPM)<br>(NAA)                                                        | NI<br>(PPH)<br>(OE=D)                                                                                                 | NI<br>(PPM)<br>(QE=P)                                                                                        | %]<br>(PPM)<br>(MAA)                                | R3<br>(PP™)                                                                     | SM<br>(PPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SC<br>(PP")                                                                                                                    | AG<br>(PPM)<br>(OE-P)                                                        | SR<br>(PP#)<br>(NAA)                                                                                                                 | 5R<br>(PPH)<br>(OE=U)                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SSIFBIFS     |               | , 2                                                                       | 9,5                                                                                    | ND                                                                   | 19                                                                                                                    | 13                                                                                                           | 10                                                  | 31                                                                              | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.1                                                                                                                            | < .8                                                                         | 94                                                                                                                                   | 236                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85168265     | - • -         | , 4                                                                       | 18,                                                                                    | 5.0                                                                  | 6.4                                                                                                                   | 9.5                                                                                                          | 76                                                  | 177                                                                             | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                                                                                             | < .8                                                                         |                                                                                                                                      | 100                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 651F69F5     |               | .5                                                                        | 3.7                                                                                    | NO                                                                   | ع ه                                                                                                                   | 71                                                                                                           | 54                                                  | 152                                                                             | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26                                                                                                                             | < .8                                                                         | 30                                                                                                                                   | 130                                                                                                                                                                                         |
| 06601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85116911     | 3185.4        | . 67                                                                      | 5,5                                                                                    | ND                                                                   | 15                                                                                                                    | 15                                                                                                           | 9                                                   | < 3%                                                                            | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .6                                                                                                                             | < .8                                                                         | 140                                                                                                                                  | 130                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 651F61C1     |               | .3                                                                        | 3.1                                                                                    | ND                                                                   | 83                                                                                                                    | 148                                                                                                          | 67                                                  | 140                                                                             | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                             | < .8                                                                         | 135                                                                                                                                  | 100                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 851F85C1     |               | . 4                                                                       | . 9                                                                                    | ND                                                                   | 4 &                                                                                                                   | 63                                                                                                           | 34                                                  | 150                                                                             | h . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                             | < .8                                                                         | 129                                                                                                                                  | 90                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 051F63C1     |               | , 3                                                                       | ·52                                                                                    | 81                                                                   | 73                                                                                                                    | 123                                                                                                          | 64                                                  | 110                                                                             | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                             | < .7                                                                         |                                                                                                                                      | 65                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 021L04C1     |               | . 3                                                                       | 74                                                                                     | 77                                                                   | 74                                                                                                                    | 100                                                                                                          | 85                                                  | 150                                                                             | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                             | < .7                                                                         |                                                                                                                                      | 52                                                                                                                                                                                          |
| 10855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02112402     | 3259.5        | . 4                                                                       | 55                                                                                     | 88                                                                   | AP                                                                                                                    | 100                                                                                                          | 69                                                  | 137                                                                             | B.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                             | < .7                                                                         | 100                                                                                                                                  | 6.6                                                                                                                                                                                         |
| 12656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P21LP5C1     | 3045,3        | . 4                                                                       | 89                                                                                     | 112                                                                  | 168                                                                                                                   | 136                                                                                                          | 84                                                  | 130                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                             | < .7                                                                         | 97                                                                                                                                   | 72                                                                                                                                                                                          |
| 10057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65116901     | 3073,6        | . 4                                                                       | 6 A                                                                                    | 112                                                                  | 100                                                                                                                   | 160                                                                                                          | 99                                                  | 162                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                                                                                                             | < .8                                                                         | 149                                                                                                                                  | 95                                                                                                                                                                                          |
| 2258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRILETCE     | 3285.5        | ۰                                                                         | 1 9                                                                                    | 24                                                                   | 63                                                                                                                    | 110                                                                                                          | 36                                                  | 170                                                                             | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                                                                                             | < .A                                                                         | •                                                                                                                                    | 95                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 021L28Ci     |               | . 4                                                                       | 35                                                                                     | 77                                                                   | 69                                                                                                                    | 110                                                                                                          | 73                                                  | 164                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                             | < ,6                                                                         | 196                                                                                                                                  | 100                                                                                                                                                                                         |
| 6005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e31Le1L1     | 3824          | . 3                                                                       | 5.6                                                                                    | ND                                                                   | 62                                                                                                                    | 7.8                                                                                                          |                                                     | 110                                                                             | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 12                                                                                                                           | < .6                                                                         | 92                                                                                                                                   | 250                                                                                                                                                                                         |
| 2203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 231L27L1     | 454C          | . 4                                                                       | 133                                                                                    | 142                                                                  | 8.2                                                                                                                   | 130                                                                                                          | 95                                                  | 130                                                                             | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                             | < .7                                                                         | 172                                                                                                                                  | 99                                                                                                                                                                                          |
| 2204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D31L12L1     | 4592          | ٠                                                                         | 89                                                                                     | 83                                                                   | 95                                                                                                                    | 130                                                                                                          | 150                                                 | 160                                                                             | و ع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                             | < ,7                                                                         | 200                                                                                                                                  | 98                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 031L27L1     |               | . 4                                                                       | 5.7                                                                                    | 37                                                                   | 68                                                                                                                    | 94                                                                                                           | 99                                                  | 500                                                                             | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.5                                                                                                                            | < A                                                                          | 50                                                                                                                                   | 112                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 831L27L3     | -             | . 4                                                                       | 13                                                                                     | 20                                                                   | 72                                                                                                                    | 95                                                                                                           | 180                                                 | 168                                                                             | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | έè                                                                                                                             | < .8                                                                         | 200                                                                                                                                  | 140                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 031L23L1     |               | . 3                                                                       | 29                                                                                     | 52                                                                   | 68                                                                                                                    | 100                                                                                                          | 95                                                  | 130                                                                             | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                             | < .8                                                                         |                                                                                                                                      | 98                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 831r59F1     |               | . 5                                                                       | 56                                                                                     | 56                                                                   | 180                                                                                                                   | 210                                                                                                          | 190                                                 | 178                                                                             | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                             | 4 .7                                                                         | 189                                                                                                                                  | 98                                                                                                                                                                                          |
| ·:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               |                                                                           |                                                                                        |                                                                      |                                                                                                                       |                                                                                                              |                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                |                                                                              |                                                                                                                                      |                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |               | . ТА<br>(РРМ)                                                             | TB<br>(PPM)                                                                            | ŢΗ<br>(₽₽™)                                                          | SN<br>(PPM)<br>(OE=D)                                                                                                 | 3N<br>(PPM)<br>(DE=P)                                                                                        | (PP")                                               | YB<br>(PPM)                                                                     | ZN<br>(PPM)<br>(OE+P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7N<br>(PPM)<br>(NAA)                                                                                                           | (PPH)<br>(OE-D)                                                              |                                                                                                                                      | ZR<br>(PPM)<br>(OE-P)                                                                                                                                                                       |
| 2038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |               | (PP#)                                                                     | (PPH)                                                                                  | (PP")                                                                | (PPH)                                                                                                                 | (PPM)<br>(OE-P)                                                                                              |                                                     | (PPM)                                                                           | (PPM)<br>(OE+P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (PPM)                                                                                                                          | (PPH)                                                                        | (PPH)<br>(OE=D)                                                                                                                      | (PPM)                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |               | (PPM)<br>.3                                                               | ((PPM)<br>,6                                                                           | (PPM)                                                                | (PPM)<br>(OE-D)<br>4.4                                                                                                | (PPM)<br>(OE=P)                                                                                              | (PP4)<br>                                           | (PPM)                                                                           | (PPM)<br>(OE+P)<br><2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (PPM)<br>(NAA)<br>42                                                                                                           | (PPH)<br>(OE-D)                                                              | (PPH)<br>(OE-D)                                                                                                                      | (PPM)<br>(OE-P)                                                                                                                                                                             |
| 8839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |               | (PPM)<br>.3<br>1.6                                                        | (PPH)<br>,6<br>,7                                                                      | 1.9                                                                  | (PPM)<br>(OE-D)<br>4.4<br>10,                                                                                         | (PPM)<br>(OE-P)<br>41.8<br>5.2                                                                               | (PP4)                                               | (PPM)<br>1.0<br>2.4                                                             | (PPM)<br>(OE+P)<br><2.1<br>26P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (PPM)<br>(NAA)<br>42<br>290                                                                                                    | (PPH)<br>(OE-D)<br>4.7<br>332                                                | (PPH)<br>(OE-D)<br>81<br>140                                                                                                         | (PPM)<br>(OE-P)<br>87<br>348                                                                                                                                                                |
| 0039<br>0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |               | (PPM)<br>.3                                                               | ((PPM)<br>,6                                                                           | (PPM)                                                                | (PPM)<br>(OE-D)<br>4.4                                                                                                | (PPM)<br>(OE=P)                                                                                              | (PP4)<br><3<br>11                                   | (PPM)                                                                           | (PPM)<br>(OE+P)<br><2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (PPM)<br>(NAA)<br>42                                                                                                           | (PPM)<br>(OE-D)                                                              | (PPH)<br>(CE-D)                                                                                                                      | (PPM)<br>(OE-P)                                                                                                                                                                             |
| 0039<br>0040<br>0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | _:            | (PPM)<br>.3<br>1.6<br>1.2                                                 | ,6<br>,7<br>,8                                                                         | (PP")<br>1.9<br>12<br>11                                             | (PPM)<br>(OE=D)<br>4.4<br>10.<br>12.                                                                                  | (PPM)<br>(OE-P)<br><1.8<br>5.2<br>5.7                                                                        | (PP")<br><3<br>11<br>8                              | (PPM) 1.0 2.4 2.0                                                               | (PPM)<br>(OE-P)<br><2.1<br>26P<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (PPM)<br>(NAA)<br>42<br>290<br>13P                                                                                             | (PPH)<br>(OE-D)<br>4.7<br>332<br>43                                          | (PPH)<br>(OE-D)<br>81<br>140<br>155                                                                                                  | (PPM)<br>(OE-P)<br>87<br>348<br>349                                                                                                                                                         |
| 0039<br>0040<br>0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |               | (PPM) .3 1.6 1.2 < .1 1.3                                                 | ,6<br>,7<br>,8<br>,3                                                                   | 1.9<br>12<br>11                                                      | (PPM)<br>(OE-D)<br>4.4<br>10.<br>12.<br>< ,7                                                                          | (PPM)<br>(OE=P)<br><1.8<br>5.2<br>5.7<br><1.8                                                                | (PP")                                               | (PPM) 1.0 2.4 2.0 .3                                                            | (PPM)<br>(OE-P)<br><2.1<br>26P<br>61<br><2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (PPM)<br>(NAA)<br>42<br>290<br>130<br>34                                                                                       | (PPH)<br>(OE-D)<br>                                                          | (PPH)<br>(OE=0)<br>81<br>140<br>155<br>37                                                                                            | (PPM)<br>(OE-P)<br>87<br>348<br>349<br>27                                                                                                                                                   |
| 0041<br>0041<br>0051<br>0052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | <u></u>       | (PPM) .3 1.6 1.2 < .1 1.3 1.2                                             | .6<br>.7<br>.8<br>.3                                                                   | 1.9<br>12<br>11<br>.4                                                | (PPM)<br>(OE-D)<br>4.4<br>10.<br>12.<br>< .7<br>7.5<br>7.4                                                            | (PPM)<br>(OE-P)<br><1.8<br>5.2<br>5.7<br><1.8<br>6.1<br>5.8                                                  | (PPM)                                               | 1.0<br>2.4<br>2.0<br>.3<br>2.1<br>2.5                                           | (PPM)<br>(OE-P)<br><2.1<br>26P<br>61<br><2.1<br>48P<br>41P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (PP*)<br>(NAA)<br>                                                                                                             | (PPH)<br>(OE-D)<br>                                                          | (PPH)<br>(DE-D)<br>81<br>140<br>155<br>37<br>190<br>200                                                                              | (PPM)<br>(OE-P)<br>87<br>340<br>340<br>27<br>370<br>400                                                                                                                                     |
| 0039<br>2042<br>2041<br>2051<br>2052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |               | ,3<br>1,6<br>1,2<br>< ,1<br>1,3<br>1,2                                    | ,6<br>,7<br>,8<br>,3                                                                   | 1.9<br>12<br>11<br>.4<br>12<br>12                                    | (PPM)<br>(OE-D)<br>4.4<br>10.<br>12.<br>< .7<br>7.5<br>7.4<br>5.8                                                     | (PPM)<br>(OE-P)<br>                                                                                          | <pre></pre>                                         | (PPM) 1.0 2.4 2.0 3 2.1 2.5                                                     | (PPM)<br>(OE-P)<br><2.1<br>26P<br>61<br><2.1<br>48P<br>41P<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (PPM)<br>(NAA)<br>42<br>290<br>130<br>34<br>260<br>220<br>91                                                                   | (PPH)<br>(OE-D)<br>4.7<br>332<br>43<br>3.5<br>470<br>430<br>180              | (PPH)<br>(OE+D)<br>81<br>140<br>155<br>37<br>190<br>200<br>120                                                                       | (PPM)<br>(OE-P)<br>87<br>340<br>340<br>27<br>370<br>480<br>270                                                                                                                              |
| 0041<br>0041<br>0051<br>0052<br>0053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | <u></u>       | (PPH)  .3 1.6 1.2 <.1 1.3 1.2 .8 1.6                                      | (PPH) ,6 ,7 ,8 ,3                                                                      | 1.9<br>12<br>11<br>12<br>12<br>12<br>10                              | (PPH)<br>(OE-D)<br>4.4<br>10.<br>12.<br><,7<br>7,5<br>7,4<br>5.8<br>3,9                                               | (PPM)<br>(OE-P)<br>                                                                                          | (PP*)                                               | (PPM)  1.0 2.4 2.6 .3 2.1 2.5 1.9 2.0                                           | (PPM)<br>(OE-P)<br><2.1<br>26P<br>61<br><2.1<br>48P<br>41P<br>150<br>16P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (PPM)<br>(NAA)<br>42<br>290<br>130<br>34<br>260<br>220<br>91                                                                   | (PPM)<br>(OE-D)<br>4.7<br>332<br>43<br>3.5<br>47P<br>43P<br>18P<br>175       | (PPH)<br>(OE-D)<br>81<br>140<br>155<br>37<br>190<br>200<br>120<br>115                                                                | (PPM)<br>(OE-P)<br>87<br>340<br>340<br>27<br>376<br>400<br>270<br>250                                                                                                                       |
| 0041<br>0041<br>0041<br>0051<br>0052<br>0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | <u></u>       | (PPM)  , 3 1,6 1,2 < ,1 1,3 1,2 ,8 1,0                                    | ((PPH))  .6 .7 .8 .36 .8 .7 .8 .8 .7 .8 .8 .7 .8 .8                                    | 1.9<br>12<br>11<br>.4<br>12<br>12<br>12<br>10<br>11                  | (PPM)<br>(OE-D)<br>4.4<br>10.<br>12.<br><,7<br>7.5<br>7.8<br>5.8<br>3.9<br>6.7                                        | (PPM)<br>(OE-P)<br>                                                                                          | (PP")                                               | (PPM)  1.0 2.4 2.0 .3 2.1 2.5 1.9 2.0 2.4                                       | (PPH)<br>(OE-P)<br>(Z-1<br>26P<br>61<br>(Z-1<br>48P<br>41P<br>15P<br>16P<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (PPM)<br>(NAA)<br>42<br>290<br>130<br>34<br>260<br>220<br>91<br>86                                                             | (PPM)<br>(OE-D)<br>4.7<br>332<br>43<br>3.5<br>478<br>438<br>189<br>175<br>38 | (PPH)<br>(OE-D)<br>81<br>140<br>155<br>37<br>19P<br>20R<br>12P<br>115<br>13R                                                         | (PPM)<br>(OE-P)<br>87<br>340<br>340<br>27<br>370<br>400<br>270<br>250<br>270                                                                                                                |
| 0041<br>0041<br>0041<br>0051<br>0053<br>0054<br>0055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | <u></u>       | (PPM)  .3 1.6 1.2 4.1 1.3 1.2 .8 1.6 1.0 1.0                              | ((PPH))  ,6 ,7 ,8 ,3 .6 ,8 ,7 ,6                                                       | (PP*)  1.9  12  11  12  12  12  10  11  11  11                       | (PPM)<br>(OE-D)<br>10.<br>12.<br><.7<br>7.5<br>7.4<br>5.8<br>3.9<br>6.7                                               | (PPM)<br>(OE-P)<br>                                                                                          | (PP")  43 11 8 45 7 23 25 27 29                     | (PPM)  1.0 2.4 2.0 .3 2.1 2.5 1.9 2.0 2.4 2.3                                   | (PPM)<br>(OE-P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (PPM)<br>(NAA)<br>42<br>290<br>13P<br>34<br>260<br>220<br>91<br>66<br>29<br>150                                                | (PPM)<br>(OE-D)<br>                                                          | (PPH)<br>(OE-D)<br>81<br>140<br>155<br>37<br>190<br>200<br>120<br>115<br>130<br>110                                                  | (PPM)<br>(OE-P)<br>67<br>340<br>340<br>27<br>370<br>480<br>270<br>250<br>270<br>300                                                                                                         |
| 2039<br>2042<br>2041<br>2051<br>2053<br>2054<br>2055<br>2056<br>2056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |               | (PPM)  .3 1.6 1.2 <.1 1.3 1.2 .8 1.0 1.0 1.0 1.2                          | ((PPH))<br>,6<br>,7<br>,8<br>,3<br>,6<br>,8<br>,7<br>,6<br>,8                          | (PP")  1.9  12  11  12  12  10  11  11  11                           | (PPH)<br>(OE-D)<br>4.4<br>10.<br>12.<br><.7<br>7.5<br>7.4<br>5.8<br>3.9<br>6.7<br>10                                  | (PPM)<br>(OE-P)<br>41.8<br>5.2<br>5.7<br><1.8<br>6.1<br>5.8<br>3.0<br>2.2<br>3.6                             | (PP")  43 11 8 45 7 23 25 27 29 26                  | (PPM)  1.0 2.4 2.e .3 2.1 2.5 1.9 2.0 2.4 2.2                                   | (PPM)<br>(OE-P)<br>42.1<br>26P<br>61<br>42.1<br>48P<br>41P<br>150<br>16P<br>31<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (PPM)<br>(NAA)<br>42<br>290<br>130<br>34<br>260<br>220<br>91<br>86<br>29<br>110                                                | (PPM)<br>(OE-D)<br>                                                          | (PPH)<br>(OE-D)<br>81<br>140<br>155<br>37<br>190<br>200<br>115<br>130<br>115<br>130                                                  | (PPM)<br>(OE-P)<br>87<br>340<br>34P<br>27<br>370<br>400<br>270<br>250<br>270<br>250<br>270<br>300<br>300                                                                                    |
| 2039<br>2041<br>2041<br>2051<br>2053<br>2054<br>2055<br>2055<br>2055<br>2055<br>2055<br>2055<br>2055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | <u></u>       | (PPM)  .3 1.6 1.2 4.1 1.3 1.2 .8 1.6 1.0 1.0                              | ((PPH))  ,6 ,7 ,8 ,3 .6 ,8 ,7 ,6                                                       | (PP*)  1.9  12  11  12  12  12  10  11  11  11                       | (PPM)<br>(OE-D)<br>10.<br>12.<br><.7<br>7.5<br>7.4<br>5.8<br>3.9<br>6.7                                               | (PPM)<br>(OE-P)<br>                                                                                          | (PP")  43 11 8 45 7 23 25 27 29                     | (PPM)  1.0 2.4 2.0 .3 2.1 2.5 1.9 2.0 2.4 2.3                                   | (PPM)<br>(OE-P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (PPM)<br>(NAA)<br>42<br>290<br>13P<br>34<br>260<br>220<br>91<br>66<br>29<br>150                                                | (PPM)<br>(OE-D)<br>                                                          | (PPH)<br>(OE-D)<br>81<br>140<br>155<br>37<br>190<br>200<br>120<br>115<br>130<br>110                                                  | (PPM)<br>(OE-P)<br>67<br>340<br>340<br>27<br>370<br>480<br>270<br>250<br>270<br>300                                                                                                         |
| 20239<br>2044<br>20041<br>20051<br>20052<br>20054<br>20054<br>20054<br>20055<br>20056<br>20056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | <u>·</u>      | (PPM)  .3 1.6 1.2 <.1 1.3 1.2 .8 1.0 1.0 1.0 1.2 1.2                      | ((PPH)) ,6 ,7 ,8 ,3 ,6 ,8 ,7 ,6 ,8 ,9 ,9                                               | (PP")  1.9  12  11  12  12  10  11  11  14  12  13                   | (PPH)<br>(OE-D)<br>4.4<br>10.<br>12.<br><.7<br>7.5<br>7.6<br>3.9<br>6.7<br>10<br>11                                   | (PPM)<br>(OE-P)<br>41.8<br>5.2<br>5.7<br><1.8<br>6.1<br>5.8<br>3.0<br>2.2<br>3.6<br>3.3<br>6.2<br>6.3        | (PP")  43 11 8 45 7 23 25 27 29 26 49 18            | 1.0<br>2.4<br>2.6<br>.3<br>2.1<br>2.5<br>1.9<br>2.4<br>2.4<br>2.3<br>2.4<br>2.2 | (PPM)<br>(OE-P)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (PPM)<br>(NAA)<br>42<br>290<br>130<br>34<br>260<br>220<br>66<br>291<br>66<br>29<br>110<br>92                                   | (PPM)<br>(OE-D)<br>                                                          | (PPM)<br>(OE-D)<br>81<br>140<br>155<br>37<br>190<br>200<br>115<br>110<br>110<br>110<br>110<br>110                                    | (PPM)<br>(OE-P)<br>87<br>340<br>347<br>27<br>376<br>482<br>278<br>250<br>279<br>309<br>349<br>360                                                                                           |
| 20041<br>20041<br>20041<br>20052<br>20053<br>20053<br>20054<br>20055<br>20055<br>20055<br>20055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | <u>-</u>      | (PPM)  .3 1.6 1.2 <.1 1.3 1.2 .8 1.0 1.0 1.0 1.2 1.2 1.2 .5               | ((PPN)) ,6 ,7 ,8 ,3 ,6 ,8 ,7 ,6 ,8 ,9 ,9                                               | (PP")  1.9  12  11  12  12  12  13  14  12  13  6.8                  | (PPH)<br>(OE-D)<br>4.4<br>10.<br>12.<br><.7<br>7.5<br>7.4<br>5.8<br>3.9<br>6.7<br>10<br>11                            | (PPM)<br>(OE-P)<br>                                                                                          | (PP")  43 11 8 45 7 23 25 27 29 26 49 18            | (PPM)  1.0 2.4 2.6 3 2.1 2.5 1.9 2.0 2.4 2.3 2.3 2.4 2.2 2.3                    | (PPM)<br>(OE-P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (PPM)<br>(NAA)<br>42<br>290<br>130<br>34<br>260<br>220<br>91<br>66<br>29<br>150<br>110<br>92<br>91                             | (PPM)<br>(OE-D)<br>                                                          | (PPM)<br>(OE-D)<br>81<br>140<br>155<br>37<br>19P<br>20P<br>115<br>13P<br>11P<br>13P<br>11P                                           | (PPM)<br>(OE-P)<br>87<br>340<br>340<br>27<br>370<br>480<br>270<br>250<br>270<br>300<br>340<br>300                                                                                           |
| 98239<br>98048<br>20041<br>20041<br>20053<br>20053<br>20053<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>20055<br>2005<br>2005<br>2005<br>2006<br>2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | <u>.</u>      | (PPM)  .3 1.6 1.2 <.1 1.3 1.2 .8 1.0 1.0 1.0 1.0 1.2 1.2 1.2              | ((PPN)) -6 -7 -8 -3 -6 -8 -7 -6 -8 -9 -9 -9 -7 -8                                      | (PP") 1.9 12 11 12 12 12 10 11 11 11 11 14 12 13                     | (PPH)<br>(OE-D)<br>4.4<br>10.<br>12.<br><.7<br>7.5<br>7.8<br>3.9<br>6.7<br>10<br>10<br>11<br>13                       | (PPM)<br>(OE-P)<br>                                                                                          | (PP*)  43 11 8 45 7 23 25 27 29 26 49 18            | (PPM)  1.0 2.4 2.0 3 2.1 2.5 1.9 2.4 2.3 2.4 2.3                                | (PPH)<br>(OE-P)<br>(OE-P)<br>(2.1<br>26P<br>61<br>(2.1<br>48P<br>41C<br>150<br>16C<br>157<br>120<br>157<br>127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (PPM)<br>(NAA)<br>42<br>290<br>130<br>34<br>260<br>220<br>91<br>66<br>29<br>150<br>110<br>92<br>91                             | (PPM)<br>(OE-D)<br>                                                          | (PPM)<br>(OE-D)<br>                                                                                                                  | (PPM)<br>(OE-P)<br>87<br>340<br>340<br>27<br>370<br>270<br>270<br>270<br>300<br>340<br>300                                                                                                  |
| 0041<br>0041<br>0041<br>0053<br>0053<br>0055<br>0055<br>0055<br>0055<br>0055<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | ·             | (PPM)  .3 1.6 1.2 .1 1.3 1.2 .8 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.1 1.0       | ((PPN)) .6 .7 .8 .3 .6 .8 .7 .6 .8 .9 .9 .7 .8                                         | (PP*)  1.9  12  11  12  12  10  11  11  11  11  13  6.8  9.6  11     | (PPM)<br>(OE-D)<br>4.4<br>10.<br>12.<br><.7<br>7.5<br>7.4<br>5.8<br>3.9<br>6.7<br>10<br>11<br>13                      | (PPM)<br>(OE-P)<br>                                                                                          | (PP*)  43 11 8 45 7 25 27 29 26 49 18 40 29         | (PPM)  1.0 2.4 2.0 3 2.1 2.5 1.0 2.4 2.3 2.4 2.3 2.4 2.3 2.2 2.3                | (PPM)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE-P)<br>(OE | (PPM)<br>(NAA)<br>290<br>130<br>34<br>260<br>220<br>91<br>86<br>29<br>158<br>110<br>92<br>91                                   | (PPM)<br>(OE-D)<br>                                                          | (PPH)<br>(OE-D)<br>81<br>140<br>155<br>37<br>19P<br>200<br>115<br>13P<br>119<br>119<br>119<br>119<br>119                             | (PPM)<br>(OE-P)<br>87<br>340<br>340<br>27<br>370<br>400<br>270<br>250<br>270<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>34                                           |
| 00390041<br>10041<br>10041<br>1005334<br>1005334<br>100557<br>100557<br>100557<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657<br>100657 | •            |               | (PPM)  .3 1.6 1.2 .1 1.3 1.2 .8 1.0 1.0 1.0 1.2 1.2 1.2 1.1 1.0 1.3       | ((PPM)) ,6 ,7 ,8 ,3 ,6 ,8 ,7 ,6 ,8 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9              | (PP*)  1.9  12  11  12  12  10  11  11  14  12  13  6.8  9.6         | (PPH)<br>(OE-D)<br>4.4<br>10.<br>12.<br><.7<br>7.5<br>7.6<br>3.9<br>6.7<br>10<br>11<br>13<br>6.9<br>3.6<br>22.        | (PPM)<br>(OE-P)<br>41.8<br>5.2<br>5.7<br>41.8<br>6.1<br>5.8<br>3.0<br>2.2<br>3.6<br>3.3<br>6.2<br>6.3<br>5.8 | (PP")  43 11 8 45 7 23 25 27 29 26 49 18 3 40 29 11 | (PPM)  1.0 2.4 2.6 3 2.1 2.5 1.9 2.4 2.3 2.4 2.2 2.3 1.6 2.3 2.4                | (PPM)<br>(OE-P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (PPM)<br>(NAA)<br>                                                                                                             | (PPM)<br>(OE-D)<br>                                                          | (PPM)<br>(OE-D)<br>81<br>140<br>155<br>37<br>190<br>200<br>115<br>130<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110 | (PPM)<br>(OE-P)<br>87<br>340<br>347<br>27<br>370<br>480<br>270<br>250<br>270<br>340<br>340<br>340<br>340<br>360<br>360<br>270<br>260<br>360<br>360                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |               | (PPM)  .3 1.6 1.2 4.1 1.3 1.2 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.1 | ((PPH))  .6 .7 .8 .3 .6 .8 .9 .7 .6 .8 .9 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 | (PPW)  1.9  12  11  12  12  10  11  11  11  14  12  13  6.8  9.6  11 | (PPH)<br>(OE-D)<br>4.4<br>10.<br>12.<br><.7<br>7.5<br>7.4<br>5.8<br>3.9<br>6.7<br>10<br>11<br>13<br>6.9<br>3.6<br>22. | (PPM)<br>(OE-P)<br>                                                                                          | (PP")                                               | (PPM)  1.0 2.4 2.6 3 2.1 2.5 1.6 2.3 2.3 2.4 2.2 2.3 2.4 2.2 2.3                | (PPH)<br>(OE-P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (PPM)<br>(NAA)<br>42<br>290<br>130<br>34<br>260<br>220<br>91<br>66<br>29<br>150<br>91<br>127<br>89<br>137<br>137<br>160<br>200 | (PPM)<br>(OE-D)<br>                                                          | (PPH)<br>(OE-D)<br>81<br>140<br>155<br>37<br>19P<br>20P<br>115<br>13P<br>11P<br>185<br>12P<br>11P                                    | (PPM)<br>(OE-P)<br>87<br>340<br>340<br>27<br>370<br>270<br>250<br>270<br>300<br>340<br>300<br>230<br>240<br>250<br>270<br>260<br>260<br>260<br>260<br>260<br>260<br>260<br>260<br>260<br>26 |
| 982398289888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               | (PPM)  .3 1.6 1.2 .1 1.3 1.2 .8 1.0 1.0 1.0 1.2 1.2 1.2 1.1 1.0 1.3       | ((PPM)) ,6 ,7 ,8 ,3 ,6 ,8 ,7 ,6 ,8 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9              | (PP*)  1.9  12  11  12  12  10  11  11  14  12  13  6.8  9.6         | (PPH)<br>(OE-D)<br>4.4<br>10.<br>12.<br><.7<br>7.5<br>7.6<br>3.9<br>6.7<br>10<br>11<br>13<br>6.9<br>3.6<br>22.        | (PPM)<br>(OE-P)<br>41.8<br>5.2<br>5.7<br>41.8<br>6.1<br>5.8<br>3.0<br>2.2<br>3.6<br>3.3<br>6.2<br>6.3<br>5.8 | (PP")  43 11 8 45 7 23 25 27 29 26 49 18 3 40 29 11 | (PPM)  1.0 2.4 2.6 3 2.1 2.5 1.9 2.4 2.3 2.4 2.2 2.3 1.6 2.3 2.4                | (PPM)<br>(OE-P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (PPM)<br>(NAA)<br>                                                                                                             | (PPM)<br>(OE-D)<br>                                                          | (PPM)<br>(OE-D)<br>81<br>140<br>155<br>37<br>190<br>200<br>115<br>130<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110 | (PPM)<br>(OE-P)<br>87<br>340<br>340<br>27<br>370<br>250<br>270<br>250<br>270<br>330<br>340<br>380<br>230<br>340<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>36        |

# CHEMICAL DATA ON EFFINGHAM COUNTY (SSIL) AND MPITE COUNTY (SSIL), ILLINOIS CORES

| BAMPLE | GEOL.    | DEPTH  | Ser DEG. | ND       |  |
|--------|----------|--------|----------|----------|--|
| NO.    | NO.      | (FT)   | ASH:     | (PPH)    |  |
|        | NO.      | (1)    | (3)      | (FFE)    |  |
|        |          |        | (4)      |          |  |
| Sugala | NSILEILE | 3349 5 | 99,56    |          |  |
|        | SSIFN2F5 |        | 96.73    | 4.9      |  |
|        | BSIF89F5 |        | 97.43    | • •      |  |
|        |          |        |          | 39       |  |
| ורמטטכ | 851LB9L1 | 2162.0 | 99,65    | 37       |  |
| 30005t | BSILEICI | 3011.4 | 96.58    | 1.9      |  |
|        | BSILASCI |        | 96.83    | 19       |  |
|        | 021L03C1 |        | 92.22    | 23       |  |
|        | E51C04C1 |        | 89,50    | 26       |  |
|        | MZILG4C2 |        | 89.48    | 35.      |  |
|        | M21L05C1 |        | 88.39    | ā5.      |  |
|        | 25114961 |        | 96.45    | 25.      |  |
|        | 621L6761 |        |          | 28       |  |
|        |          |        | 93.50    |          |  |
| YC3386 | 651F08C1 | 3446.5 | 91.24    | 1:5:     |  |
| 500042 | PBILAILI | 4480   | 96.86    | 9 0.     |  |
|        | 031L27L1 |        | 88.27    | <u> </u> |  |
|        | 03111211 |        | 88.65    | 21       |  |
|        | 831L28L1 |        | 95.18    | 71.      |  |
|        | 031L28L3 |        | 91.33    | 31       |  |
|        | e31L23L1 |        | 92.52    | 18       |  |
|        | 03IL26L1 |        | 88.09    | 45       |  |

ND . NIT DETECTED

## Development of Separation Methods

#### Progress

Investigations have continued on the development of methods which can be utilized to demineralize shales. Standard float-sink procedures, the Humphrey Spiral, and froth flotation procedures did not produce an organic fraction deemed satisfactory for this study. Funds have just become available for the purchase of zonal centrifugation equipment, considered necessary for such separations.

However, results of the investigation have led to development of the following scheme which should yield valuable information:

- 1. Pulverize shale to less than 325 mesh
- React sample with 1N  $\mathrm{NH_4AC}$  for exchangeable cations React sample with 1N  $\mathrm{HCI}$  to remove chelated elements
- 4. Reflux sample with benzene and methyl alcohol to extract bitumens
- 5. Reflux sample with HNO, to remove pyrite etc.
- 6. React sample with HF to remove silicates
- 7. Reflux sample with HCl to remove fluorides
- 8. Float residue at 1.40 specific gravity to remove insoluble titanium minerals

This procedure will yield significant information about the associations of various elements. Optimization of the scheme is still necessary, but until zonal centrifugation equipment is received, it seems to be a reasonable approach. Data, however, will need careful and, perhaps, qualified interpretation.

## Characterization of Elemental Concentrations in Separated Shale Fractions

## Progress

Data collected thus far indicate that very few elements show a significant concentration in the shale organic-rich fraction. Most elements are depleted to about 5-10% of concentration found in the whole shale material.

Most of the data acquired so far have been from developmental procedure. and from fractions of different samples. During the next quarter, the procedure outlined above will be applied to fractions of the same shale samples and should allow a much improved characterization of elemental associations.

# MODE OF OCCURRENCE AND RELATIVE DISTRIBUTION OF HYDROCARBON PHASES IN SHALE

#### Introduction

Determine the character of off-gases from approximately 10-foot intervals in cores collected in the Illinois Basin. In addition, determine the relative distribution of hydrocarbons in ten specially prepared core samples, which are the same as those in previous unit. Preserve the samples in airtight containers and subsequently analyze them for evolved gases; highly volatile, low-molecular weight liquids; medium-volatile hydrocarbons; and solvent-extracted, low volatile hydrocarbons using GC-MS methods. Determine non-volatile, high-molecular weight hydrocarbons by GC analysis of shale pyrolytic products.

Determine the carbon isotopic composition of methane in off-gases from core samples whenever sufficient methane can be collected. Compare this data to other pertinent data such as gas composition and vitrinite reflectance for the purpose of making interpretations as to the origin and maturity of the gas. Perform laboratory experiments to study the relative effects and significance of chemical and isotopic fractionation that occur as gas is released from core samples.

Data accumulated can be evaluated to gain a better understanding of the origin, migration, and location of natural gas associated with the shales.

## Released Gas Analysis

#### Progress

Studies of released gases from all cores collected in the Illinois Basin have been completed, and no new core samples have become available.

## Medium Volatile Hydrocarbon Analyses

### Progress

Progress on this project has been minimal due to the delay in purchase of necessary gas chromatographic equipment. Word has been received indicating that funds are being made available. In the interim the bidding process for the equipment has been completed and the final orders have been prepared.

The project is 7 to 8 months behind schedule. However, with limited equipment already available, the preliminary analysis of two standard black shale samples has been started. Other samples (2) are being prepared for analysis.

## Low-Volatile Hydrocarbon Analysis

(See Medium Volatile above.)

# Isotopic Analysis of Off-Gases

No additional cores have been made available containing sufficient methane for an isotopic analysis.

## Laboratory Study of Chemical and Isotopic Fractionation

(Titled "Carbon-13/Carbon-12 Studies" in January 1978 Report)

# Progress

The core sample that was pressurized with natural gas at 1000 psi continued to outgas for more than 6 months after the pressure was released. Because the oth samples from this core stopped outgassing a few weeks after they were initially collected, it is apparent that the initial pressure within this core was much lower than that used in this experiment. Future experiments will be carried out at much lower pressures.

The results of the analyses of the gas released from the pressurized shale samples are summarized in figure 1 as a function of the time (in days) after the initial pressure release (a detailed description of the procedure was given in the last annual report). Outgassing had essentially stopped when the last gas sample shown on figure 1 was collected. After this gas sample was collected, the core sample was partially evacuated (to 20" of mercury). Although the pressure is building, it is very slow implying that there is very little gas left in the shale.

The data show that the first gas released (after the initial pressure bleed down) was depleted in methane relative to the gas that was injected. This is not entirely what would be expected. As discussed in the annual report, it is believed that the gas had not equilibrated with the shale before degassing was initiated. Also, all of the gas samples are depleted in  ${\rm CH}_4$  relative to the initial gas indicating that there must have been a significant loss of  ${\rm CH}_4$ -rich gas sometime during the experiment. Therefore there must have been a leak in the system, possibly of molecular size such that  ${\rm CH}_4$  was lost preferentially.

The isotopic data are also not entirely understood. Figure 1 shows that all of the offgas is isotopically lighter than the initial gas. During the period from 10 to 25 days after the initial pressure leak, there was an increase in the  $\delta C^{13}$  value for methane. This may have been the period during which the leakage occurred. Although there was a small leak detected later in the experiment, this leak does not appear to explain the changes observed.

In an attempt to eliminate some of the problems encountered, future experiments will be carried out using 3/4-inch diameter cores instead of the 4-inch core used in this experiment. Several cores will be pressurized simultaneously and the pressure vessels will be kept submerged in water so that leaks can be detected. These samples will then be degassed after having been pressurized for different lengths of time.

## Problems

Continuation of the degasification experiments awaits release of funds for the purchase of some necessary equipment.

# ADSORPTION/DESORPTION STUDIES OF GASES THROUGH SHALES

## Introduction

With nitrogen and carbon dioxide, determine internal surface area on shale core samples; on selected samples, use methane as the adsorbate (sorbate) at pressures within the range of 1 to 80 atmospheres. Comparison of these properties in gas-producing and non-gas-producing shales will be mdade to determine the relationship of shale physical properties to gas recovery.

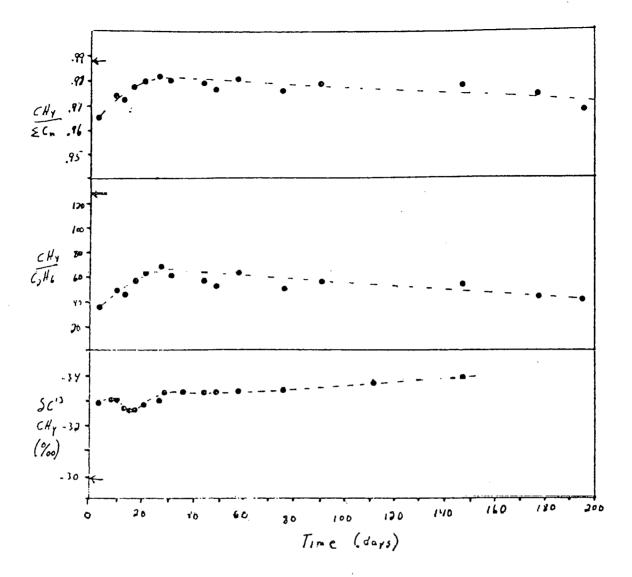



Fig. 1. Composition of off-gas during degasification experiments. Arrows indicate the composition of the gas originally injected.

## Internal Surface Area Measurement

#### Progress

Internal surface area measurements with carbon dioxide and nitrogen as adsorbates were completed on twenty-two samples from a Tazewell County, Illinois core. Values were reported in our February, 1978 monthly report. The organic carbon content of samples from this core was relatively low. As a consequence, there was little plugging of pores by organic matter. Internal surface area values using nitrogen as the adsorbate were similar to those obtained with carbon dioxide as the adsorbate.

Samples from the Illinois Basin follow the same pattern. With increasing organic carbon content there is increased pore-plugging in the shales, leading to low internal surface area values (less than  $5 \text{ m}^2/\text{g}$ ) from nitrogen adsorption, whereas the internal surface area values from carbon dioxide remain large (up to  $39 \text{ m}^2/\text{g}$ ).

We recently studied some samples with high organic matter content from the Appalachian Basin that did not behave similarly. They were supplied by Dr. J. Barry Maynard (University of Cincinnati). Values are shown in the accompanying table 1.

The first eight samples in the table do not exhibit the afore-mentioned anomalous characteristic. Although fluctuations in both CO<sub>2</sub> and N<sub>2</sub> values occur, N<sub>2</sub> generally has more difficulty in permeating the shales than does CO<sub>2</sub> due to the partial clogging of pores with organic matter. In contrast, the Wise Co., VA shale samples are just as permeable to N<sub>2</sub> as they are to CO<sub>2</sub>. (Note the low CO<sub>2</sub>/N<sub>2</sub> ratios of about 1.0.) The Wise Co. samples are dark, and very likely contain relatively high carbon percentages. This kind of behavior has not been observed in Illinois Basin samples which contain high organic carbon contents, although it is typical behavior for northern Illinois Basin samples which are gray and contain little organic matter.

As we reported at the First Eastern Gas Shales Symposium (Morgantown - October 17, 18, 19, 1977),  $N_2$  internal surface area values can be markedly increased for dark samples from the Illinois Basin without significantly changing the  $CO_2$  ISA values. This was accomplished by outgassing the samples at  $300^{\circ}$ C, while losing approximately 6% of the volatile matter.

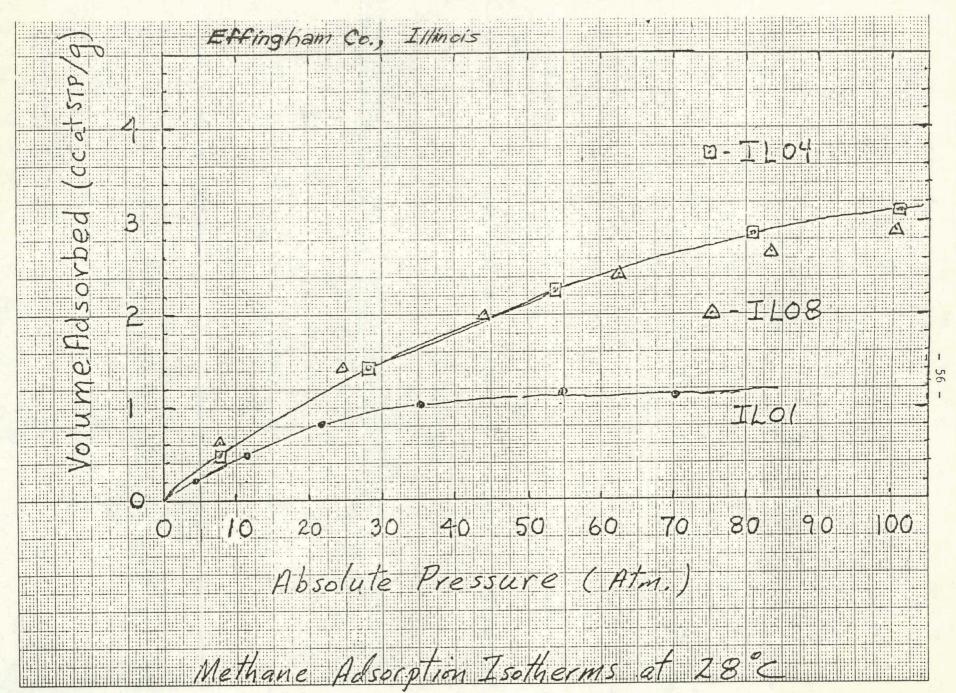
Deeper burial depth, with the consequent higher temperatures for the Wise Co. samples, may have induced a greater loss of low molecular weight volatile matter resulting in a more mature shale than those from the Illinois Basin and the first eight samples shown in the table. However, we have examined one sample from a deep core near the center of the Illinois Basin (White Co., Ill.) - the sample coming from 4673 feet, which is a comparable depth as present to those from Wise Co., Va - and found that the N2 ISA was 2.55 m $^2$ /g, the CO2 ISA was 12.9 m $^2$ /g, and the CO2/N2 ISA ratio was about 5.0. Thus, it is likely that this burial depth is still insufficient to open the pores in the White Co. sample to the same extent as in the Wise Co. samples. Perhaps the Wise Co. samples were at one time more deeply buried than at present, or perhaps there have been forces at work which have generated still greater temperatures in the shale than mere depth of burial would indicate.

Table 1. Internal Surface Area Values for Selected Samples from the Appalachian Basin

|     | Appalachian Basin  |                        | <u> </u>               |                                 |
|-----|--------------------|------------------------|------------------------|---------------------------------|
|     | Sample             | CO <sub>2</sub> ISA    | N <sub>2</sub> ISA     | CO <sub>2</sub> /N <sub>2</sub> |
| Ку. | PM 214             | 21.3 m <sup>2</sup> /g | 1.64 m <sup>2</sup> /g | 13.0                            |
| Ку. | PM 234             | 13.0                   | 1.3                    | 10.0                            |
| Ку. | Perry Co., 2375    | 26.2                   | 2.62                   | 10.0                            |
| Ку. | Perry Co., 2399    | 8.63                   | 2.32                   | 3.7                             |
| Ку. | Perry Co., 2410    | 16.0                   | 2.43                   | 6.6                             |
| Ку. | Martin Co., 2432.8 | 11.6                   | 4.88                   | 2.4                             |
| Ку. | Martin Co., 2488.4 | 16.2                   | 3.28                   | 4.9                             |
| ку. | Martin Co., 2504.8 | 12.95                  | 2.47                   | 5.2                             |
| Va. | Wise Co., 4870.0   | 22.4                   | 18.3                   | 1.2                             |
| Va. | Wise Co., 4878.3   | 28.4                   | 22.2                   | 1.3                             |
| ٧a. | Wise Co., 4887.8   | 27.7                   | 22.7                   | 1.2                             |
| Va. | Wise Co., 4896.1   | 28.4                   | 24.6                   | 1.15                            |
| Va. | Wise Co., 4907.5   | 23.4                   | 19.5                   | 1.2                             |
| Va. | Wise Co., 4916.5   | 24.4                   | 20.4                   | 1.2                             |
| Va. | Wise Co., 4925.4   | 14.8                   | 11.1                   | 1.3                             |
| ۷a. | Wise Co., 4935.2   | 14.5                   | 11.9                   | 1.2                             |

Studies at present are being made on thirty samples from Henderson County, Illinois. Data for these samples will appear in the April monthly report.

SDO-1 standard shale sample gave the following values:


CO<sub>2</sub> ISA = 36.4 m<sup>2</sup>/g N<sub>2</sub> ISA = 4.57 m<sup>2</sup>/g CO<sub>2</sub>/N<sub>2</sub> ISA =  $\sim$ 8

## Methane Adsorption Isotherms

# Progress

Methane adsorption isotherms at high pressures (1 to 80 atmospheres and, in some cases, up to 100 atmospheres) are being obtained on selected shale samples from different cores. Selections are based on variations in the internal surface area measurements made with nitrogen and carbon dioxide. These measurements are non-routine because the diffusion rate of methane into the fine pore structures of samples containing relatively high organic matter contents is low, and several hours are needed for equilibrium to be reached at each experimental pressure. Thus far, nine samples have been evaluated - three from the Christian Co., Ky core, three from the Sangamon Co., Ill core, and three from Effingham Co., Ill core (shown on fig. 2). Greater adsorption of methane at increased pressures is shown by samples containing the higher organic carbon contents. We do not know at this time how much of this increased adsorption is associated with ultramicroporosity (greater surface area) and how much may be associated with increased solubility of methane in the organic matter phases that are present.

To help in this regard, we are obtaining for comparative purposes the methane adsorption isotherms for molecular sieves having different pore sizes. We are also studying the diffusion kinetics of methane from the shales by reducing the pressure (from an initial 80 atmospheres) to 1 atmosphere rather suddenly, and then measuring the release rate while maintaining atmospheric pressure. Sufficient data have not yet been generated for formal presentation.



#### INFORMATION

# DATA COMPILATION

## Data Encoding

### Progress

The Illinois Survey has been designated to receive all data on the DOE Eastern Gas Shales Project that pertain to the Illinois Basin. Some of the data may be sent on to Petroleum Information. A total of six contractors, including the Illinois Survey, plus the U.S. Geological Survey, are generating or gathering data pertaining to the Illinois Basin. Encoding forms in use at the Illinois Survey are being sent to the contractors for their use, if they so desire. MINERS can accept any file format, however.

Mound Laboratory is the only contractor to have sent any data so far. Some determinations on a Kentucky core were sent to the Illinois Survey on a floppy disk.

## MINERAL RESOURCES EVALUATION SYSTEM (MINERS)

#### Introduction

This project involves the development of a Mineral Resources Evaluation System that will store all the data related to Illinois State Geological Survey ctudies of the Nevonian black shale of the Illinois Basin, and retrieve, process in many ways, and display in various ways these data.

## File Generation and Maintenance

#### Progress

The end of the time period covered in this quarterly report is also a milestone. Completion of this portion of MINERS was scheduled for the end of March 1978. Most of the programming required for file generation and maintenance has been completed, and most of it tested. However, we are about 10 percent behind and are still coding some routines.

We have not encountered any problems that present hurdles and are not concerned with the slippage in schedule.

Design of the data base, the record management routines, and file management routines are completed and in most cases tested. Only the operating system interface, and the routines which communicate with the IBM-360 system tables and are written in ASSEMBLER LANGUAGE, are incomplete.

# Retrieval

# Progress

Many of the routines used in file generation are also used in retrieval. Hence, about one-half the expected programming has already been completed.

|                                                                                                |                      | HEPOR         | T FOR MONTH END                       | DING                            |                              |                                       |
|------------------------------------------------------------------------------------------------|----------------------|---------------|---------------------------------------|---------------------------------|------------------------------|---------------------------------------|
| CONTRACTOR FINANCIAL MANAGEMENT F                                                              | REPORT               | Fel           | bruary 28, 19                         | 78                              |                              |                                       |
| to: U.S. Department of Energy                                                                  | FROM Robert          | E. Bergstro   | 00                                    | 2. CONT                         | RACT VALUE                   |                                       |
| Contract Division                                                                              |                      | F. Shimp      |                                       | s                               |                              |                                       |
| Research Contracts, Procedures and<br>Reports Branch<br>P.O. Pox E. Oak Ridge, Tennessee 37830 | Illino               |               | logical Surve<br>61801                |                                 | LIMITATION                   | · · · · · · · · · · · · · · · · · · · |
| Ia. TYPE                                                                                       |                      | D. NO         |                                       |                                 | CE AMOUNTS BIL               | LED                                   |
| 1 DESCRIP CONTRACT                                                                             |                      | EY-           | 76-C-05-5203                          | \$                              |                              |                                       |
| CONTRACT: Geology, Geochemistry Devonian Black Shale                                           | Suchasures Po        | 0.0 M         | PREPAR<br>DATE 4/6/7                  | 1                               | L PAYMENTS REC               | EIVED                                 |
|                                                                                                | 7 003-3              | INCURRED.     | E. ESTIMATE                           |                                 | TO COMPLETE                  |                                       |
| 6 REPORTING CATEGORY                                                                           | DUPING<br>MONTH<br>M | TO DATE<br>b. | SVUSEQUENT<br>MONTH                   | BALANCE OF<br>FISCAL YEAR<br>b. | BALANCE OF<br>CONTRACT<br>C. | 9. ESTIMATED                          |
| Salaries, wages                                                                                | \$ 16,362.22         | \$ 83,471.38  | \$ 16,500.00                          | \$-14,602.05                    |                              |                                       |
| Indirect cost                                                                                  | 10,635.44            | 54,256.39     | 10,700.00                             | 9,008.89                        | !                            |                                       |
| Fringe benefits                                                                                | 844.24               | 5,929.71      | 1,100.00                              | 17,509.81                       | <u> </u>                     |                                       |
| Commodities, materials, supplies                                                               | 592.80               | 4,244.55      | 700.00                                | 1,233.27                        |                              |                                       |
| Travel                                                                                         |                      | 2,229.74      | 300.00                                | -1,681.82                       | :<br>:                       |                                       |
| Equipment                                                                                      | -                    | 3,576.77      | 4,000.00                              | 27,183,73                       |                              |                                       |
| Laboratory preparation                                                                         | ļ                    | 1,011.30      | 500.00                                | 1,988.60                        |                              |                                       |
| Computer                                                                                       | 1,415.29             | 5,296.23      | 1,000.00                              | 3,968.99                        |                              | -                                     |
| Contractual                                                                                    | ļ                    |               | · · · · · · · · · · · · · · · · · · · |                                 |                              |                                       |
| Nuclear reactor                                                                                |                      | <u> </u>      | _                                     | 665.00                          |                              |                                       |
| Mass spectrograph                                                                              |                      |               |                                       | 4,800.00                        |                              |                                       |
| Telecommunications                                                                             | 63.13                | 189.70        | 40.00                                 | 60.30                           | <u> </u>                     |                                       |
| Totals                                                                                         | \$29,912.12          | \$160,205.77  | \$ 34,840.00                          | \$29,650.40                     |                              |                                       |