
HIGH-RESOLUTION FAR INFRARED SPECTROSCOPY AND ANALYSES OF TRIOXANE

CYRIL RICHARD, VINCENT BOUDON, Laboratoire ICB, CNRS/Université de Bourgogne, DIJON, France; OLIVIER PIRALI, Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud, Orsay, France; PIERRE ASSELIN, CNRS, De la Molécule aux Nano-Objets: Réactivité, Interactions, Spectroscopies, MONARIS, Sorbonne Université, PARIS, France.

Trioxane, $(H_2CO)_3$, is a symmetric top that belongs to the C_{3v} symmetry group. The molecule owns 20 fundamental modes that are dispatched as 7 symmetric vibrations of type A1, 3 vibrations of type A2 and 10 doubly degenerate vibrations of type E.

Infrared spectra of trioxane have been recorded in the 50–650 cm⁻¹ range using a high resolution Bruker IFS 125 interferometer located at the AILES beamline of the SOLEIL synchrotron facility. Owing to its higher brilliance in the far-

infrared region, the SOLEIL synchrotron radiation was used to improve the signal-to-noise ratio of the spectrum at the maximal resolution of $0.001~\rm cm^{-1}$.

We present here a detailed analysis and modeling of intense OCO deformation ν_7 and ν_{19} modes as well as weaker CH₂ torsion ν_{20} mode and its first overtone $2\nu_{20}$. Thanks to the formalism and programs developed in Dijon, we could determine accurately the effective Hamiltonian parameters for these 3 modes.