OBSERVATION AND SPECTRAL ANALYSIS OF THE A Ω =1 – X Ω =0 $^+$ ELECTRONIC TRANSITION OF DIATOMIC PLATINUM SULFIDE, PtS, BY INTRACAVITY LASER ABSORPTION SPECTROSCOPY WITH FOURIER TRANSFORM DETECTION (ILS-FTS)

<u>LEAH C O'BRIEN</u>, Department of Chemistry, Southern Illinois University, Edwardsville, IL, USA; JACK C HARMS, JAMES J O'BRIEN, Chemistry and Biochemistry, University of Missouri, St. Louis, MO, USA; WENLI ZOU, Institute of Modern Physics, Northwest University, Xi'an, China.

Using ILS-FTS, we have recorded the A Ω =1 – X Ω =0 $^+$ transition of diatomic PtS. Strong bands were observed at 15,520 and 15,910 cm $^{-1}$, which have been identified as the (0,0) and (1,0) vibrational bands. The P- and R-branches show a regular pattern for the 194 PtS, 195 PtS, 196 PtS and 198 PtS isotopologues, but quite interestingly the Q-branch shows significant hyperfine splitting for 195 PtS. Although P- and R-branches were easily assigned based on the known ground state constants, the Q-branch seems to be perturbed, requiring q, q_D, and q_H parameters to achieve only a sub-par fit. This indicates the presence of a nearby Ω =0 $^-$ state that is perturbing the f-levels in the A Ω =1 state. A successful deperturbation analysis and fit were performed in PGOPHER, and molecular constants for the A Ω =1 and perturbing Ω =0 $^-$ states were obtained. High-level ab initio calculations support this assignment and predict an Ω =0 $^-$ state in close proximity to the A state. Results and discussion of this analysis will be presented.