MICROWAVE SPECTRUM OF THE METHANESULFONIC ACID - WATER COMPLEX

ANNA HUFF, NATHAN LOVE, KENNETH R. LEOPOLD, Chemistry Department, University of Minnesota, Minneapolis, MN, USA.

The methanesulfonic acid water - complex ($CH_3SO_3H-H_2O$) has been observed using pulse-nozzle Fourier transform microwave spectroscopy. The rotational spectra for the $CH_3SO_3H-D_2O$ and $CH_3SO_3D-D_2O$ isotopologues have also been obtained and analyzed. DFT calculations predict the two lowest energy conformers of $CH_3SO_3H-H_2O$ to form a strong hydrogen bond between the water molecule with the acidic proton and a second, longer hydrogen bond with one of the S=O bonds to form the 6-membered ring-like structure that is typical of oxyacid monohydrates. The observed rotational constants and isotope shifts are in best agreement with those predicted for the global minimum structure of $CH_3SO_3H-H_2O$, where the unbound H_2O hydrogen atom is oriented away from the methyl group. In contrast to the triflic acid monohydrate ($CF_3SO_3H-H_2O$) spectrum, there was no evidence of a pair of tunneling states arising from internal motion of the water. Additionally, A and E internal rotor states were not resolvable in the observed spectrum, consistent with the predicted high barrier for methyl group internal rotation (V_3 =1000 cm⁻¹).