THE STRUCTURE OF ScC_2 (\tilde{X}^2A_1): A COMBINED FOURIER TRANSFORM MICROWAVE/MILLIMETER-WAVE SPECTROSCOPY AND COMPUTATIONAL STUDY

MARK BURTON, Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; QIANYI CHENG, Chemistry, University of Memphis, Memphis, Tennessee, USA; DeWAYNE T HALFEN, Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; JEFFREY HAYDEN LANE, Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA; NATHAN DeYONKER, Department of Chemistry, University of Memphis, Memphis, Tennessee, USA; LUCY M. ZI-URYS, Steward Observatory, Departments of Chemistry and Physics, University of Arizona, Tucson, AZ, USA.

Pure rotational spectra of $Sc^{13}C_2$ (\tilde{X}^2A_1) and $Sc^{12}C^{13}C$ (\tilde{X}^2A') have been obtained using Fourier Transform microwave/millimeter-wave methods. These molecules were synthesized from the combination of scandium vapor, produce via laser ablation, with mixtures of $^{13}CH_4$ or $^{13}CH_4/^{12}CH_4$, diluted in argon. The four lowest a-type rotational transitions were observed for both species in the frequency range of 14-61 GHz. Each exhibit hyperfine splittings due to the nuclear spins of ^{13}C (I=1/2) and/or Sc (I=7/2). Rotational, spin-rotation, and hyperfine parameters have been determined for these isotopologues, and a refined structure for ScC_2 established. In addition, a quartic force field was calculated for ScC_2 and its isotopologues using a highly accurate coupled cluster-based composite method, incorporating complete basis set extrapolation, scalar relativistic corrections, outer core and inner core electron correlation, and higher-order valence correlation effects. The ratio of experimental to theoretical (B+C) values is 1.005 for all calculated isotopologues, yielding a promising route towards predictive gas phase rotational spectroscopy for new metal-carbon bearing radicals.