STRUCTURE OF THE MODEL GRIGNARD-TYPE REAGENT CIZnCH $_3$ (\tilde{X}^1A_1) BY MILLIMETER-WAVE SPECTROSCOPY

MARK BURTON, Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; NAZIFA TABASSUM, Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA; LUCY M. ZIURYS, Department of Chemistry and Biochemistry; Department of Astronomy, Arizona Radio Observatory, University of Arizona, Tuscon, AZ, USA.

Pure rotational spectra of the 37 ClZnCH $_3$, ClZnCD $_3$, and ClZn 13 CH $_3$ isotopologues of monomeric ClZnCH $_3$ (\tilde{X}^1A_1) have been recorded using millimeter-wave direct absorption techniques in the frequency range 263 – 303 GHz. These species were synthesized in the gas phase in a DC discharge by the reaction of zinc vapor, produced in a Broida-type oven, with 37 ClCH $_3$ (in natural chlorine abundance), ClCD $_3$, or Cl 13 CH $_3$. The data for each isotopologue were analyzed with a symmetric top Hamiltonian and rotational and centrifugal constants determined. In combination with previous measurements of Cl 64 ZnCH $_3$, Cl 66 ZnCH $_3$, and Cl 68 ZnCH $_3$, an $r_m^{(2)}$ structure was determined for this organozinc compound. The bond lengths were calculated to be $r_{Cl-Zn}=2.0831(1)$ Å, $r_{Zn-C}=1.9085(1)$ Å, and $r_{C-H}=1.1806(5)$ Å. The H-C-H bond angle was found to be 110.5° – slightly larger than that in methane. These data serve to benchmark future structure calculations of organozinc compounds, which are widely used in organic synthesis.