THE PURE ROTATIONAL SPECTRUM OF THE SiP RADICAL $(X^2\Pi_i)$

MARK BURTON, Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; PHILLIP M. SHERIDAN, Department of Chemistry and Biochemistry, Canisius College, Buffalo, NY, USA; LUCY M. ZIURYS, Department of Chemistry and Biochemistry; Department of Astronomy, Arizona Radio Observatory, University of Arizona, Tuscon, AZ, USA.

The millimeter-wave spectrum of the SiP radical in its $X^2\Pi_i$ ground electronic state has been recorded using direct absorption spectroscopy in the frequency range 151-532 GHz. The species was synthesized in an AC discharge by the reaction of SiH₄ and red phosphorous, in argon carrier gas. Both lambda-doubling and hyperfine splittings, from the phosphorus nuclear spin (I=1/2), were observed in both spin-orbit ladders, $\Omega=3/2$ and 1/2. The $\Omega=1/2$ ladder appears to be perturbed, presumably by the nearby $A^2\Sigma$ state, as suggested by previous optical data. The data were analyzed with a Hund's case (a) Hamiltonian, establishing global spectroscopic constants. A deperturbation analysis was also conducted, further refining the Π - Σ interaction.