PARA-ORTHO H2 CONVERSION BY COLLISIONS WITH O2; A FIRST PRINCIPLES APPROACH

AD VAN DER AVOIRD, Theoretical Chemistry, Radboud University, Nijmegen, Netherlands.

It is well known among spectroscopists that two modifications of hydrogen exist: para- H_2 and ortho- H_2 . Pure para- H_2 can be produced by leading 'normal' H_2 , a 1:3 para:ortho mixture, over an iron-containing catalyst at low temperature, and can be kept for a long time also at higher temperature in specially prepared gas cylinders. It is perhaps less well known that para-ortho H_2 conversion is also accelerated by interactions with paramagnetic molecules, such as O_2 .

An important application of para- H_2 is in NMR spectroscopy and its imaging variant, MRI. By adding para- H_2 to the sample the sensitivity of NMR can be increased by four orders of magnitude through a phenomenon called para-hydrogen induced polarization (PHIP). The para-ortho H_2 conversion by O_2 was recently measured in view of this application.[1]

Two mechanisms have been suggested for the para-ortho H_2 conversion by collisions with O_2 . The first one, proposed in 1933 by Eugene Wigner,[2] is the magnetic dipole-dipole coupling between the electron spin of O_2 and the nuclear spins of the two protons in H_2 . In asymmetric collisions this coupling makes the two H-nuclei inequivalent and mixes the nuclear spin functions of para- and ortho- H_2 , as well as their rotational states with even and odd j values. Another mechanism, proposed by Minaev and Ågren[3] in 1995, is that the overlap of the O_2 and H_2 wavefunctions in a collision complex transfers some of the spin density of O_2 to the wavefunction of H_2 . The spin densities induced at the two H-nuclei may be different, which causes a different hyperfine interaction through the Fermi contact term. Wigner made a crude estimate of the para-ortho H_2 conversion rate with the use of some kinetic gas data. Minaev and Ågren suggested, however, that the second mechanism is much more effective.

We investigated the para-ortho H_2 conversion by collisions with O_2 by a first principles approach. Both mechanisms are included: the corresponding coupling terms are quantitatively evaluated as a function of the geometry of the O_2 - H_2 collision complex by means of *ab initio* electronic structure calculations. Then they are included in nearly exact quantum mechanical coupled-channels scattering calculations for the collisions between O_2 and H_2 , which yield the para-ortho H_2 conversion cross sections and the rate coefficients for a range of temperatures. The conversion rate at room temperature is compared with the value measured in H_2 - O_2 gas mixtures.[1]

[1] S. Wagner, Magn. Reson. Mater. Phys., Biol. Med. **27**, 195 (2014). [2] E. Wigner, Z. Phys. Chem. B **23**, 28 (1933). [3] B. F. Minaev and H. Ågren, J. Phys. Chem **99**, 8936 (1995).