MP2 STUDY OF THREE TOP INTERNAL ROTATIONS IN B(OH)3 MOLECULE.

<u>ULADZIMIR SAPESHKA</u>, *Physics, University of Illinois at Chicago, Chicago, IL, USA*; GEORGE PITSE-VICH, ALEX MALEVICH, ANDREI OSTYAKOV, *Physics, Belarusian State University, Minsk, Belarus.*

Boric acid B(OH)₃, as a boron containing molecule, is of interest due to being essential micronutrient for a plant growth. In addition, it is a molecule containing three equivalent internal tops which are hydroxyl groups. As a rigid object, this molecule belongs to C_{3H} point group, but due to internal rotation B(OH)₃ is actually a non-rigid molecule. Therefore, belongs to $D_{3H}(M)$ molecular symmetry group. High symmetry of this molecule lets us reduce the volume in $3D(\gamma_1, \gamma_2, \gamma_3)$ phase space (here γ_i is a torsional coordinate for *i*-hydroxyl group) in which potential energy and kinematic coefficients have been calculated. Then the entire $3D(\gamma_1, \gamma_2, \gamma_3)$ phase space was filled by using symmetry operations. All calculations were performed at the MP2/cc-pVQZ level of theory. The calculated 2D PES projections on γ_2, γ_3 plane of the boric acid molecule are shown in Fig. 1. One can observe that for the $\gamma_1 = 0^{\circ}$ global minimum located near $\gamma_2 = \gamma_3 = 0^{\circ}$ while for $\gamma_1 = 180^{\circ}$ global minimum appears near $\gamma_2 = \gamma_3 = 180^{\circ}$. The values of the energies of the stationary torsional states were calculated too.

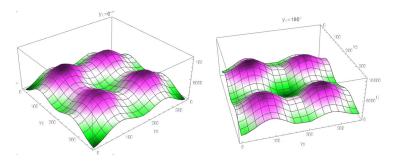


Fig. 1 Calculated at MP2/cc-pVQZ level of theory 2D PES for $\gamma_1 = 0^{\circ}$ on the left and $\gamma_1 = 180^{\circ}$ on the right.