
PROPANE ISOTOPOLOGUES: HIGH RESOLUTION SYNCHROTRON FAR-IR SPECTRA OF THE SYMMETRICALLY DEUTERATED SPECIES $\mathrm{CH_3CH_2CD_3}$, $\mathrm{CD_3CH_2CD_3}$ AND $\mathrm{C_3D_8}$. FIRST EXPERIMENTALLY DETERMINED GROUND STATE CONSTANTS FOR THESE SPECIES

STEPHEN J. DAUNT, ROBERT GRZYWACZ, Department of Physics & Astronomy, The University of Tennessee-Knoxville, Knoxville, TN, USA; COLIN WESTERN, School of Chemistry, University of Bristol, Bristol, United Kingdom; BRANT E. BILLINGHURST, JIANBAO ZHAO, EFD, Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada.

We are continuing our project of obtaining high resolution vibration-rotation spectra of propane isotopologues using the Far-IR beamline at the Canadian National Synchrotron (CLS). We have already reported on all the singly ¹³C and singly D substituted varieties as well as the 2,2-D₂ species at previous ISMS meetings (2017-19) and in a recent paper on 2-¹³C-Propane ^a. These studies have allowed us to determine ground state inertial and centrifugal distortion rotational constants for these molecules that have no pure rotational spectra in the literature except for the 6 lines reported by Lide^b in 1960 of normal propane

and two ^{13}C and D versions. In this talk we will present the high resolution spectra $(0.00096~\text{cm}^{-1})$ for the CCC skeletal bendings of $\text{CH}_3\text{CH}_2\text{CD}_3$, $\text{CD}_3\text{CH}_2\text{CD}_3$ and C_3D_8 . These studies have yielded corrected observed band origins and rotational constants for the three species. Preliminary values for each species are listed here in wavenumbers. $\text{CH}_3\text{CH}_2\text{CD}_3$: $\nu_9 = 335.664740(40)$, $A_0 = 0.8185513(12)$, $B_0 = 0.24400666(39)$, $C_0 = 0.21852642(41)$; $CD_3\text{CH}_2\text{CD}_3$: $\nu_{16} = 306.4$, $A_0 = 0.711202$, $B_0 = 0.213021$, $C_0 = 0.193244$; $C_3\text{D}_8$: $\nu_9 = 303.936065(23)$, $A_0 = 0.58742224(42)$, $B_0 = 0.20872437(23)$, $C_0 = 0.18588200(18)$.

^aDaunt, Grzywacz, Western, Lafferty, Flaud, Billinghurst, and Hutchings, J. Mol. Structure, in press (doi:10.1016/j.molstruc.2020.127851).

^bD. R. Lide, J. Chem. Physics 33, 1514-1518 (1960).

Gayles and King, Spectrochim. Acta 21, 543-557 (1965); K. M. Gough, W. F. Murphy and K. Raghavachari, J. Chem. Phys. 87, 3332-3340 (1987).