
© 2020 Sandeep Dasgupta

SCALABLE VALIDATION OF BINARY LIFTERS

BY

SANDEEP DASGUPTA

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Vikram Adve, Chair
Professor Grigore Roşu
Professor Tao Xie
Professor R. Sekar, Stony Brook University
Dr. Alastair Reid, Google Research

Abstract

The ability to directly reason about binary machine code is desirable, not only because
it allows analyzing binaries even when the source code is not available (e.g., legacy code,
closed-source software, or malware), but also avoids the need to trust the correctness of
compilers.
Binary analysis is generally performed by existing decompiler projects by (1) converting

raw bytes from the binary into a stream of assembly instructions through disassembly, (2)
translating machine code to an intermediate representation (IR) using a binary lifter, and (3)
performing various analysis and transformations on the IR pertaining to the specific goals of
the decompiler. Many binary analysis frameworks published in academia or as open-source
code, use such a lifter as the first step in their pipeline.
Validating the correctness of binary lifters is pivotal to gain trust in binary analysis,

especially when used in scenarios where correctness is essential. Unfortunately, existing
approaches focus on validating the correctness of lifting a single instruction and do not scale
to full programs. I believe an effort in the direction would enable both the developers of
binary translators, to validate their implementation, and the clients of those translators, to
gain trust in their analysis results.
The overall goal of my work is to develop formal and informal techniques to achieve high

confidence in the correctness of binary lifting by leveraging the semantics of the languages
involved (e.g., Intel’s x86-64 and LLVM IR).
Towards that goal, I made two broad contributions. First, I defined the most complete and

thoroughly tested formal semantics of x86-64 to date. The semantics faithfully formalizes
all the non-deprecated, sequential user-level instructions of the x86-64 Haswell instruction
set architecture. The formal specification covers 3155 instruction variants, corresponding to
774 mnemonics. The semantics is fully executable and has been tested against the GCC
C-torture test suite. Moreover, each instruction is individually tested against more than
7,000 instruction-level test cases. This extensive testing paid off, revealing bugs in both
the x86-64 reference manual and other existing semantics, which are all acknowledged, and
some are fixed. Also, I illustrated potential applications of the semantics in different formal
analyses, and discuss how it can be useful for processor verification.
Second, I show that formal translation validation of single instructions for a complex ISA

like x86-64 is not only practical but can be used as a building block for scalable full-program
validation. My work is the first to do translation validation of single instructions on an

ii

architecture as extensive as x86-64, uses the most precise formal semantics available, and
has the widest coverage in terms of the number of instructions tested for correctness. Next,
we develop a novel technique that uses validated instructions to enable program-level vali-
dation, without resorting to performance-heavy semantic equivalence checking. Specifically,
I compose the validated IR sequences using a tool we develop called Compositional Lifter
to create a reference standard. The semantic equivalence check between the reference and
the lifter output is then reduced to a graph-isomorphism check through the use of semantic
preserving transformations. The translation validation of instructions in isolation revealed
29 new bugs in McSema – a mature open-source lifter from x86-64 to LLVM IR. Towards
the validation of full programs, our approach was able to prove the translational correctness
of 2254/2348 functions taken from LLVM’s single-source benchmark test-suite.

iii

Dedicated to my parents (Benu & Pratima Dasgupta), sister (Mowsumi) & love of my life,
Swetosree Sinha, for their unconditional love and support.

iv

Acknowledgments

Coming up to this point is one of the biggest challenges I have ever pursued in my life.
This thesis would not have been possible if I did not have the support of the following people.
I owe my deepest gratitude to my adviser, Professor Vikram Adve, whose guidance, pa-

tience, and encouragement have been pivotal in the successful completion of this thesis. He
is one of the nicest & smartest people I have ever met in my life. He has an ocean-deep of
patience to listen to all my ideas and never ceased to amaze me with his intelligent insights
and thoughtful suggestions. Also, it is worth mentioning the vast amount of importance
that he yields to the wellbeing of his students. I could not have imagined a better mentor
during this journey. Thanks for providing me with this lovely memories!
I owe special thanks to Theodoros Kasampalis, Nathan Dautenhahn, Will Dietz, Daejun

Park, Edward J. Schwartz, and Sushant Dinesh with whom I have collaborated at some
point for research. I have enjoyed and hugely benefited from the many discussions we
have had on our work and research life in general. I owe my thanks to all the (Ph.D.)
committee members and my colleagues in the Low-Level-Virtual-Machine (LLVM) research
group for their valuable feedback, thoughtful ideas, and insightful discussions. I am grateful
to Alastair Reid and Matthew Fernandez for their invaluable feedback. Also, I want to
thank the K-Framework team, for their technical support throughout the project, and the
Strata & Mcsema developers, for promptly confirming our reported bugs and answering all
our questions in great detail. I am indebted to the Computer Science Department at Illinois
for providing an extraordinary Ph.D. curriculum together with the flexibility conducive for
research.
A very special word of thanks goes for my parents, Benu and Pratima, who have been

supporting me unconditionally in all phases and ventures of my life and keeping me motivated
over these years. Not to mention all the sacrifices that they made so that I can have a better
place to live and a favorable environment conducive to my work. It’s my father who always
motivated me to believe in myself and had the biggest smile to know that I have made
through this journey. I am so proud to realize his dream. My mother was always around at
times I thought that it is impossible to continue and helped me to keep things in perspective.
My Sister, Mowsumi (who is like my second mother), always protected me and letting me
chase my dreams. A big thanks to you for taking care of everything back there at home
and offering me the privilege to work without worrying. I owe thanks to the love of my
life, Swetosree, for her continued and unfailing love, support, and understanding during my

v

pursuit of the Ph.D. degree that made the completion of the thesis possible. I greatly value
her contribution and deeply appreciate her belief in me. I consider myself the luckiest in the
world to have such a supportive, lovely, and caring family, standing beside me all the time
with their love and unconditional support.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Validating Binary Lifters: Motivation . 1
1.2 Correctness Challenges for Binary Lifters . 2
1.3 Overall Goal of Our Work . 5
1.4 Summary of Related Work . 6
1.5 Intuition and Summary of Our Approach . 7
1.6 Contributions . 8
1.7 Thesis Organization . 10

CHAPTER 2 RELATED WORK . 11
2.1 Validation of Binary Lifters . 11
2.2 Defining Formal Semantics of x86-64 . 13
2.3 Defining Formal Semantics of ISA (Other than x86/x86-64) 17
2.4 Translation Validation . 20

CHAPTER 3 FORMAL SEMANTICS OF X86-64 USER-LEVEL ISA 23
3.1 Approach Overview . 23
3.2 Challenges in Formalizing x86-64 . 24
3.3 Preliminaries . 25
3.4 Formalization of x86-64 Semantics . 28
3.5 Validation of Semantics . 36
3.6 Applications . 42
3.7 Limitations . 49
3.8 Lessons Learned . 49

CHAPTER 4 SCALABLE VALIDATION OF BINARY LIFTERS 53
4.1 Approach Overview . 53
4.2 Preliminaries . 56
4.3 Single-Instruction Translation Validation . 57
4.4 Program-Level Validation . 62
4.5 Evaluation . 73
4.6 Limitations . 78

CHAPTER 5 CONCLUSIONS . 80

CHAPTER 6 FUTURE DIRECTIONS . 82
6.1 Improving the Current Work . 82
6.2 Extending to Other Lifters . 84
6.3 Evaluating Correctness of Disassembler Using ISA Semantics 84

vii

APPENDIX A SINGLE INSTRUCTION TRANSLATION VALIDATION 86

REFERENCES . 95

viii

CHAPTER 1: INTRODUCTION

1.1 VALIDATING BINARY LIFTERS: MOTIVATION

Analysis and reasoning about source code are one of the most pervasive concepts in com-
puter science research. Analyzing the code to approximate the semantics of the program
helps in determining the correctness of the program w.r.t some gold standard, determining
illegal memory or control flow accesses, or proving/refuting various properties of interest
to the users. Static analysis [1], model checking [2, 3], and abstract interpretation [4] are
some of the well-known techniques used, widely and with ease, for the analysis of source
code and have been deployed in many tools and processes that improve the software qual-
ity [5, 6, 7, 8, 9, 10, 11]. All such static source code analysis techniques are designed so that
they are easier to apply, with greater precision, on human-readable source code written in
high-level languages as opposed to low-level binary code.
Analysis at the binary level is complicated because of various reasons [12] including the fact

that various source-level information, like symbol information, types, function boundaries,
and their prototypes are completely or partially lost during the compilation process. The
absence of symbol information and types in the binary code obscures the identification of
variables, which are represented by reusable registers and the memory, which is addressable
as a large continuous array. Registers and memory do not carry any type, and pointers of
any type are indistinguishable from integers. Interestingly, the ability to reason about binary
code allows analyzing the software even without the presence of source code but comes with
a price because of the challenges mentioned above.
Despite the various challenges in analyzing machine code, understanding binary code is

considered a pivotal task to guarantee the trustworthiness of critical systems spanning in
various subfields of software engineering and security tools, including binary instrumenta-
tion [13, 14, 15, 16, 17], binary re-targeting [18, 19], software hardening [20, 21, 22, 23],
software testing [24, 25, 26], CPU emulation [27, 28], automated reverse engineering [29,
30, 31, 32, 33, 34, 35], sand-boxing [36, 37, 38], profiling [39, 40], and automatic exploit
generation [41].
Indeed, there are several compelling reasons to analyze at the binary level. We enumerate

the most important ones as follows:

• One of the most favorable scenarios for doing the binary analysis is when source code
is simply not available, and working with the binary is the only viable option. Such
scenarios arise in the case of (1) legacy code when binary analysis allows to analyze

1

or re-implement (or patch) the program, or (2) malware when binary analysis helps in
security audits or malware detection [42, 43, 44, 45, 46].

• While analyzing source code, the libraries, which are not available in source format, are
often replaced by coarse grained abstractions. These abstractions are manually created
and, hence, are prone to error. In contrast, a binary analysis tool can analyze the
library code directly [47]. Programs often require using libraries written in a different
high-level language than the source program. This imposes a challenge in designing tool
for analyzing source code because multiple languages need to be supported. Operating
on the binary avoids these issues altogether since all high-level languages are translated
into a hardware-specific, but single target language with no distinction between the
source code or library code.

• There are other scenarios, e.g., security checking, high-assurance systems like aircraft,
where it is not desirable to trust the compiler, even when the source code is available.
Doing analysis directly at the binary level helps to achieve that by skipping the compi-
lation step altogether and thereby excluding the compiler’s correctness from the trusted
computing base. During the compilation process, the source code undergoes various
modifications, removal or additions, before translated to binary. Analyzing that binary
is desirable because it is closest to what is actually executed on hardware [48].

1.2 CORRECTNESS CHALLENGES FOR BINARY LIFTERS

Binary analysis is generally performed by existing decompiler projects [33, 49, 50, 51, 35]
using a three-step process.

Disassembly First, raw bytes in a binary blob are decoded, using a tool called disassem-
bler, into a stream of assembly instructions. This step recovers many high-level primitives
(like instructions, control-flow graphs, function boundaries, etc.) of the binary, which are
otherwise lost during the compilation pipeline. Since, in any binary analysis of machine
code, disassemblers represent the first link of a long chain of interconnected phases, a bug
in the disassembly module would produce dangerous cascade effects on all the subsequent
phases. Disassembly, in general, is undecidable [52]. The main reasons for such complexity
are the impossibility of separating data from code, self-modifying code (i.e., code that mod-
ifies itself at run-time), and indirect control transfers (i.e., control transfers whose target is
computed dynamically). To tackle the aforementioned problems, disassemblers assume that
specific compilers conventions are respected, adopt several heuristics [53, 54, 55, 56], and

2

work reasonably well. Nevertheless, when the code being disassembled violates the assumed
conventions, when the heuristics fail, or even worse when code is obfuscated, disassemblers
produce completely unreliable results.

Lifting Next, the assembly code is translated to an intermediate representation (IR), which
precisely represents the operational semantics of the binary code. Such a process is often
referred to as binary lifting and considered as one of the central steps in many binary
analysis [33, 49, 50, 51, 35, 57, 58, 59, 60, 31, 61, 62] and instrumentation systems [16,
27] (refer to Table 1.1). The main reason that the binary analysis frameworks lift to a

Intermediate
Representation

(IR)

Binary Analysis &
Instrumentation Projects

LLVM IR
McSema [33, 49], Dagger [63, 64], bin2llvm [65],
fcd [57], rev.ng [66], llvm-mctoll [61], reopt [67],

retdec [68], revgen [62], fracture [69]
BIL BAP [51]
VEX Angr [34, 50, 70, 71], PyVex [72], Valgrind [16]
ESIL Radare2 [35]
TCG QEMU [27]
Vine BitBlaze [58]
DBA BINSEC [73]
REIL BinNavi [74]

Microcode HexRay [59], Insight [75]
Dream Dream [32]
TSL CodeSurfer [76]

Table 1.1: Intermediate representations used in different binary analysis & instrumentation
projects

platform-independent IR is to handle the complexity and diversity of modern instruction set
architectures (ISAs) and thus enabling greater retargetability of the frameworks to multiple
ISAs. Such an IR allows implementing analysis independently of (i) names and number of
registers, (ii) instruction decoding, (iii) endianness of memory access, and (iv) instruction
side-effects.

Post-Lifting Actions Finally, various analysis and transformations are performed on
the lifted IR. This step is meant to serve one or more of the following goals: (i) recover
higher-level constructs, such as functions, stack frames, variables, and types [61, 59, 31,
32, 77, 78, 67, 62], (ii) reason about the binary code [51, 50, 35, 64], (iii) re-target to a

3

different ISA [33, 79, 80, 27, 81, 82], or (iv) instrument and recompile the binary for various
purposes [83, 27, 16, 35]. Note that, these IR-level post-lifting actions are decided entirely
by the ultimate goal of the decompilation framework.
Many binary analysis frameworks [51, 58, 33, 49, 50, 35, 57, 66] use such a lifter as a key

step in their pipeline. Developing a lifter, especially for complex modern ISAs, is challenging
and error-prone, mainly because of the following reasons:

• Manually encoding the effects of a vast number of instructions (and their variants) is
hard. For example, x86-64 ISA has a large number of instructions, partly because of
a large number of complex instructions and partly because it keeps most of the legacy
and deprecated instructions for the sake of backward compatibility. In total, the x86-
64 ISA consists of 996 unique mnemonics with 3736 variants, depending on the types
(i.e., register, memory, or constant) and the size (i.e., the bit-width) of operands.

• The informal specifications provided by the hardware manufacturers run into thou-
sands of pages [84, 85] and have ambiguities, missing specifications, or even bugs [86].
This forces the developers of the binary lifter to consult with an actual processor
implementation to clarify such details.

• Some instructions variants have divergent behaviors more than the difference of their
type and size. For example, movsd, one of the 128-bit SSE instructions, has very
different behaviors depending on whether the type of the source operand is register or
memory; it clears the higher 64 bits of the target register only when the source type
is memory. Such discrepancies prevent a naive generalization of the encoding of one
instruction variant to others.

• The x86-64 standard also admits undefined behaviors that are implementation-dependent.
Many instructions (32 out of 996 mnemonics) have undefined behaviors: their output
values of the destination register or the %rflags register are undefined in certain cases.
That is, the processor is free to choose any behavior in undefined cases. For example,
the parity flag %pf is undefined in the logical-and-not instruction andn, where the
processor implementation is allowed to either update the flag value (to 0 or 1), or keep
the previous value.

• Once such a lifter is developed, the developers then run into the problem of not hav-
ing a way to test their implementation thoroughly as generally, there are no formal,
machine-readable semantics available for automated testing. For example, despite sev-
eral explicit attempts [87, 88, 89] and other related systems [90, 49, 91, 92, 93], there

4

does not exist any complete formal semantics of x86-64 up until we define a fully
executable formal semantics of x86-64 [86].

• These lifters need to be updated and rechecked for correctness every time new instruc-
tions are added to an ISA.

1.3 OVERALL GOAL OF OUR WORK

Despite the correctness challenges in binary lifting, such lifters are sometimes used for
tasks where correctness is especially important, e.g., when looking for security vulnera-
bilities in binary code, binary emulation of one processor ISA on another, or recompiling
embedded software to run on new platforms. Any bug in the lifting would invalidate the
binary analysis results. For example, a malware analysis system might miss vulnerabilities
or a binary instrumentation system, instrumenting a buggy IR, might lead to failure or even
crash in interpreting the instrumented program. Therefore, automatic validation tools are
needed urgently to uncover hidden problems in binary lifters, which constitute the motiva-
tion and theme of our work. Beyond these more critical tasks, gaining confidence in binary
lifters through more effective testing is also generally crucial for developers of decompilers,
especially for complex ISAs.
The overall goal of our work is to develop formal and informal techniques to achieve high

confidence in the correctness of binary lifting, from a complex machine ISA (e.g., x86-64) to
a rich IR (e.g., LLVM IR), by leveraging the semantics of the languages involved.
Through the rest of this work, we fix our discussion to lifting x86-64 to LLVM IR using the

most mature, open-source lifter McSema [33]. LLVM, being an industry standard compiler
IR, many decompilation projects (refer to Table 1.1) prefer to employ LLVM as their lifted
representation mainly because it enables various “out-of-the-box” analyses and optimizations
which minimizes the effort in the post-lifting decompilation tasks. Moreover, LLVM IR is
backed-up with its formal semantic models [94, 95], which assists formal reasoning on a
program written in LLVM IR. Similarly, x86-64 instruction set architecture (ISA) is one of
the most complex and widely used ISAs on servers and desktops. Hence, it is imperative to
ensure the correctness of lifter targeting x86-64 program binary to LLVM IR. We note that
our techniques are generally applicable to verify binary lifters from any ISA, e.g., x86, ARM,
RISC-V, PowerPC, to an intermediate representation, such as LLVM IR [96], VEX IR [16]
etc., as long as the formal semantics for both the ISA and the target IR are available.

5

1.4 SUMMARY OF RELATED WORK

In this section, we would provide a brief survey of the state-of-the-art validation techniques
for binary lifting. As mentioned earlier, we would like to leverage the semantics of the source
and target languages of the translation; one of the strongest ways to formally reason about
the correctness of a lifter’s translation. Hence it is equally important to investigate upon
the current state of the available formal specifications of the concerned languages.

Existing Techniques for Validating Binary Lifters Surprisingly, there has been very
limited work to date on validating the correctness of binary decompilers, and that work has
focused on the translation of single instructions. All of this existing work falls short in at
least one of the following criteria: (i) require random test-inputs which leads to incomplete
coverage [97, 98, 99], (ii) do not scale to full program translation validation [100, 101], (iii)
require modification of the lifting frameworks under test to emit additional information
required to prove correctness [102], or (iv) need heavyweight symbolic execution to generate
verified translation [103, 104].

Existing Semantics for x86-64 Heule et al. [87] presented a formal semantics of x86-
64, but it covers only a fragment (∼47%) of all instructions; as the authors of [87] candidly
admitted, their synthesis methodology proved insufficient to add the remaining instructions
primarily due to limitations of the underlying synthesis engine. Moreover, their semantics
misses certain essential details (Section 4.1 & 3.5). Also, it would require extensive effort to
translate their instruction-level semantics to use in a full-fledged theorem prover to be able
to reason about the full functional correctness of the x86-64 binary.
Goel et al. [88, 89], on the other hand, specified a formal semantics in the ACL2 proof

assistant [105], allowing to reason about functional correctness, but their semantics covers
only a small fragment (∼33%) of all user-level instructions.
There also have been several attempts [50, 51, 35, 93] to indirectly describe the x86-64

semantics, where they define an intermediate language (IL), specify the IL semantics, and
translate x86-64 to the IL. This indirect semantics, however, may not be general enough to
be used for different types of formal analyses, since the IL might be designed with specific
purposes in mind, not to mention that the translation may miss certain important details
of the instruction behaviors. Refer to Section 2.2 for a more detailed comparison to existing
semantics.

6

1.5 INTUITION AND SUMMARY OF OUR APPROACH

Our current approach is inspired by a key observation that most of the decompilers [33,
63, 57, 66, 65, 61, 67, 68, 62, 69, 51, 34, 35, 58] are designed to perform simple instruction-
by-instruction lifting (using a fixed and canonical representation of architectural state at
the IR level), followed by standard IR optimization passes to achieve simpler IR code1. We
capitalize on this observation by deriving the following insight:
Formal translation validation of single machine instructions can be used as a building block

for scalable full-program translation validation.
With that insight, we define a fully executable formal semantics of x86-64, using K as the

language engineering framework, to assist translation validation of individual instructions.
This is the most complete formal semantics of x86-64 user-level instructions to date, which
has been thoroughly tested using synthesized test inputs and the GCC torture tests. As
our starting point, we took the semantics from Heule et al. [87] to avoid duplicating the
formalization effort. We made several corrections or improvements to this semantics to
improve both soundness and efficiency. We automatically translated their semantics into K,
and cross-checked the translated semantics against the original using an SMT solver. We
manually specified, in K, the semantics of the remaining instructions faithfully consulting
the Intel manual [84] to obtain the complete semantics. We have also illustrated several
potential uses of the semantics, which are realized by the formal analysis tools derived right
from the K specification. The K framework also enables us to represent the semantics as
SMT theories, which other projects can leverage for their purposes. We describe several
practical lessons we have learned from our experience in developing the semantics,which
could be useful for future formal specifications of processor ISAs.
Next, using the above semantics and a publicly available semantics of LLVM IR [94], we

develop a single-instruction translation validation framework. The idea is to validate the
translational correctness of a single instruction (single-instruction translation validation) by
asserting equivalence of symbolic summaries of the x86-64 instruction and the lifted LLVM
IR sequence using an SMT solver. If they are equivalent, the lifted LLVM IR sequence
is correct for the instruction, else the equivalence check fails, and the solver generates a
counter-example that we use to report a bug.
With single-instruction translation validation as building block, we propose a scalable

approach for full-program translation validation; one that does not require heavyweight
equivalence checkers or theorem provers and based on semantics-preserving transformations
and isomorphic graph matching.

1To the best of our knowledge, we have not come across a lifter which deviates from this observation.

7

Specifically, for program-level validation, we compose these validated sequences of instruc-
tions using a tool we developed, called Compositional Lifter, to form a reference translation
(T′). Next, we transform T (the IR program generated by the lifter we wish to validate) and
T′, one function at a time, using semantics-preserving transformations, to prune any syn-
tactic differences except for the names of virtual registers and the order of non-dependent
instructions. Finally, we check if the data dependence graphs corresponding to the trans-
formed function pairs F & F′, of T and T′ resp., are isomorphic in which case the two lifted
sequences (T & T′) are deemed as semantically equivalent2.

1.6 CONTRIBUTIONS

Our contributions in this work can be broken down into two logical components, which
also follows the chronological order in which we broke down and devised tools and techniques
for solving the problem of validating binary lifters. Below we cite the primary contributions
of our work.

Defining the Most Complete Formal Semantics of x86-64 The main contribution
here is the design of a fully executable formal semantics of x86-64 using K as the language
engineering framework.

1. Complete. We present the most complete formal semantics of x86-64 to date. Specif-
ically, our semantics formalizes all the user-level instructions of the x86-64 Haswell ISA
(that is, 3155 instructions covering 774 mnemonics [84]), except deprecated ones (336

instructions), the AES cryptography extensions (35 instructions), and the system &
concurrency-specific instructions (210 instructions) (Section 3.4.1).

2. Faithful. Being executable, the semantics of each instruction has been thoroughly
tested against 7, 000+ test inputs using the co-simulation method (Section 3.5). We
further strengthened the faithfulness of our semantics by testing it using 1548 x86-64
programs from GCC C-torture tests [107].

3. Revealed bugs. Our extensive testing paid off in revealing 8 bugs [108] in Intel
manual [84] (Volume 2: March 2018), the standard document on x86-64. All these
findings were reported and acknowledged by Intel as bugs in the manual [108] and are
fixed in the latest revision. Also, we found 42 bugs in existing semantics like Strata

2This equivalence claim follows from Horwitz et al. [106] and will be elaborated in Section 4.4.2.

8

and Stoke [109, 110]. All these bugs were reported to the authors, and have been
acknowledged and some have been fixed [109]. The details are in section 3.5.

4. Usable. We illustrate the potential of our semantics to be used for formal analyses
such as deductive program verification and program equivalence checking (Section 3.6).
The K framework also enables one to represent our semantics as SMT theories, which
allows others to easily reuse our semantics for their own purposes. Indeed, we have
translated our semantics to Stoke [111] which can serve as a drop-in replacement of
Heule et al.’s semantics [87] and can immediately benefit tools built on Stoke (e.g.,
[112]).

Developing Techniques for Scalable Validation of Binary Lifters The main con-
tribution here is the development of a scalable approach to do full program level validation
that does not require any heavyweight equivalence checkers or theorem provers.

1. First single-instruction translation validation framework for x86-64. We
develop the first single instruction translation validation framework for x86-64. Our
work applies the most comprehensive formal semantics for x86-64 known to date, and
has the most comprehensive coverage in terms of the number of instructions tested
when compared to earlier work [101].

2. Single-instruction translation validation revealing bugs. The single-instruction
translation validation framework is experimentally verified to be effective in finding
bugs. In particular, we find bugs in the lifting of 29 instructions in McSema [33, 49], a
well-tested, mature [113], and open-source lifter for x86-64 to LLVM IR, clearly show-
ing the effectiveness of our technique. All of these bugs have been acknowledged by
the McSema developers, and some have been fixed.

3. Compositional Lifter. Given a lifter (D), we show that we can construct an
alternate lifter, called Compositional Lifter (D′), which essentially concatenates the
lifted IR sequences for individual instructions (which are proven correct by part 1,
above) to provide a reference translation T′. We do not provide a formal guarantee that
the above composition T′, of validated lifted IR sequences, is the correct translation of
P. However, the tool is exceedingly simple to construct and we added it to our trust
base. More importantly, the translation T′ generated by the Compositional Lifter is
syntactically very similar to the translation (say T) generated by the lifter we aim to
validate. Such code similarity serves as a foundation for scaling translation validation
to full programs.

9

4. Scalable Program-level validation. We propose a scalable approach for full-
program translation validation that does not require heavyweight equivalence checkers
or theorem provers. Our key insight is that there exists a semantics-preserving trans-
formation — dubbed a canonicalizer— for each pair of functions F and F′ of T and
T′, say canonical(F) and canonical(F′), such that, stated informally, we can
check if F and F′ are semantically equivalent by checking whether canonical(F)
and canonical(F′) have isomorphic data dependence graphs. If such a canonical-
izer exists, then we can reduce the problem of program-level semantics checking to a
much cheaper graph-isomorphism check! In this work, we construct an approximation
of a canonicalizer, called Transformer, out of a very short sequence of 17 manually
selected LLVM passes, of which 11 are transformation passes. The lifted functions F
& F′ being syntactically very close to begin with, we found such an approximation to
work quite well. For example, the data dependence graphs extracted from the opti-
mized versions when matched for graph isomorphism yield a low false-alarm rate of
7% based on our evaluation setup (Section 4.5). Moreover, we improved the match-
ing results by employing an autotuner to automatically discover pass sequences, for
each pair of F & F′, by searching over the manually-identified 17 optimization passes.
This approach reduces the false-alarm rate from 7% to 4%, and with fewer passes, on
average 8 instead of 17.

Our x86-64 formal semantics and the validation framework (built on top of the former)
are publicly available at [114] and [115] respectively.

1.7 THESIS ORGANIZATION

The remaining chapters are organized as follows. In Chapter 2, we survey the current state
of the art in validating binary lifters. We will also summarize the previous work in defining
the formal semantics of x86-64 ISA. Chapter 3 gives details on our approach in defining the
most complete formal semantics of x86-64. It elaborates on the challenges involved and how
we ensured the faithfulness of the semantics and demonstrated its applicability. Chapter 4
presents the design and evaluation of core techniques for validating binary lifters. Chapter 5
presents the key take-aways from the presented work and Chapter 6 discusses some directions
for future work. Finally, Appendix A provides a detailed description of the single-instruction
translation validation phase, emphasizing more on various aspects of its design.

10

CHAPTER 2: RELATED WORK

This chapter gives context to this thesis by giving a literature review of the topics relevant
to the presentation. The topics mainly include the state-of-the-art validation techniques for
binary lifting and the current state of the available formal semantics of x86-64 ISA. Moreover,
we would like to detail some of the pioneering work in the field of translation validation for
compiler transformations. We note that the basic concepts of translation validation, when
applied to validating binary lifting, will remain the same.

2.1 VALIDATION OF BINARY LIFTERS

Given the importance of establishing the faithfulness of the binary lifters, there exists a
couple of efforts towards that direction, which we will elaborate on next. All the previous
approaches can be broadly categorized to be based on (1) Simulation-testing, and (2) Formal
Methods.

2.1.1 Testing-based Approaches

This approach is similar to black-box testing in software engineering. Most notable works
include Martignoni et al. [97, 98, 100] and Chen et al. [99].
Martignoni et al. [97, 98] propose hardware-cosimulation based testing on QEMU [27]

and Bochs [80]. Specifically, they compared the state between actual CPU and IA-32 CPU
emulator (under test) after executing randomly selected test-inputs on randomly chosen in-
structions to discover any semantic deviations. Although, a scalable and straightforward
approach, it’s effectiveness is limited because many semantics bugs in binary lifters are trig-
gered upon a specific input and exercising all such corner inputs, using randomly generated
test-cases, is impractical.
In general, such testing based approaches are unsuitable for validating whole program (or

even basic block) translations because even a correctly translated program may not always
produce exactly the same output as the original program due to the differences in modeling
of the architectural states in the translated program (or basic block) vs the original program.
Although it is possible to engineer out such architecture-state-comparison problems, but still
these approaches might not detect some intermediate mistranslated instructions which are
course corrected at the end. As an example, suppose a register is assigned values twice in a
program, and the first assignment is mistranslated, but the second assignment statement is

11

translated correctly. Comparing the architecture states at the end of the program (or basic
block) may not discover the mistranslation.
Chen et al. [99] proposed validating the static binary translator LLBT [79] and the hy-

brid binary translator [116], re-targeting ARM programs to x86 programs. First, an ARM
program is translated offline to x86 program (via an intermediate translation to LLVM IR).
Next, the translated x86 binary is executed directly on a x86 system while the original
ARM binary runs on the QEMU emulator. During run time, both the ARM binary and the
translated x86 binary produce a sequence of architecture states, which are compared at the
granularity of single instruction after solving the architecture-state-comparison problem, as
mentioned above. The validator is evaluated using the ARM code compiled from EEMBC
1.1 benchmark. Like the previous approach, the validation of single instruction’s translation
is based on testing and hence shares the same limitation of not being exhaustive.
Martignoni et al. [100] validate a “buggier and less complete” Lo-Fi emulator [27] by gen-

erating high-fidelity test-inputs creating using symbolic execution of a “faithful and more
complete” (in terms of IA-32 ISA) Hi-Fi emulator[80] implementation of an instruction se-
mantics. They execute each test instruction twice, once on a real hardware and next on the
Lo-Fi emulator, and comparing the output states. However, the work [100] does not aim to
validate the translation of full programs, which is one of our primary contributions. Note
that an approach as above cannot scale naturally to binary function validation because a set
of high-coverage test-inputs for all the constituent instructions of a function cannot trivially
derive high-coverage test-inputs for the whole function.
Schwartz et al. [31] proposed control-flow structure recovery by employing semantics pre-

venting schema and tested their binary-to-C decompiler, Phoenix on a set of 107 real world
programs from GNU coreutils. Along similar lines, Yakdan et al. [32] presented a decompiler,
DREAM, to offer a goto-free output. DREAM uses a novel pattern independent control-
flow structuring algorithm that can recover the control constructs in binary programs and
produce structured decompiled code without any goto statement. The correctness of their
approach is demonstrated using GNU coreutils.

2.1.2 Formal Methods based Approaches

The following are the efforts to establish formal guarantees for binary translations using
formal methods.
The closest work to ours in finding instruction-level bugs is MeanDiff [101], which pro-

posed an N-version IR testing to validate three binary lifters, BAP [51], BINSEC [73], and
PyVEX [72] by comparing their translation of a single binary instruction to BIL, DBA, and

12

VEX IRs respectively. The IRs are first converted to some unified IR representations, one
at a time. The resulting IRs are then symbolically executed to generate symbolic summaries
for comparison using an SMT solver. First, we formally validate the translation of an in-
struction, using a thoroughly-tested semantics [86], as opposed to comparing the translation
to other potentially incorrect translations. Second, the IRs they support are simpler than
LLVM and so it is unclear whether the approach would be effective if LLVM had to be
translated to the unified representation. Third, we perform program-level validation, which
is not addressed by MeanDiff.
Interestingly, the MeanDiff paper [101] says that one motivation for relying on differential

testing was that no formal specification of x86-64 ISA was available at the time. We do not
have that limitation because we have developed a formal and thoroughly tested x86-64 ISA
specification [86, 117], and made it publicly available.
The work closest to ours, in terms of the goals, is the translation verifier, Reopt-vcg [102],

which addresses verification challenges specific to the translator Reopt [67]. The verifier,
which validates translations at basic-block level, is assisted by various manually written
annotations, which are prone to errors. In future, they aim to generate such annotations
automatically by instrumenting the lifter. Our approach does not need any such annotations,
avoiding the overhead of maintaining instrumentation patches whenever the lifter is modified.
Moreover, the validator uses the semantics of a small subset of x86-64, which limits its
applicability to small programs. We incorporate a fairly complete x86-64 semantics [86],
allowing translation validation for larger and more diverse programs.
Myreen et al. [103, 104, 118] (and later improved by Fox [119] w.r.t. the tool support) pre-

sented “decompilation into logic” — a framework for verified decompilation, where machine
code is decompiled into tail-recursive functions defined in the language of the HOL4 theorem
prover [120]. The decompiler proves a theorem stating that the function accurately describes
the effect of the given machine code. Sewell at al. [121] proved correctness of compilation
of the seL4 microkernel from C source down to ARM machine code by building on a formal
model of ARM code generated by extending the above work of Myreen. Such a verified
(de)compiler includes critical design decisions which need to be incorporated early in the
design phase with the goal of verification in mind, and cannot easily be applied retroactively
in existing (de)compilers.

2.2 DEFINING FORMAL SEMANTICS OF x86-64

There have been many projects that host a formal semantics of x86-64 either as their
main contribution or as part of their infrastructure. This section summarizes such previous

13

Figure 2.1: Projects hosting x86-64 ISA semantics. “Ideal” serves as a hypothetical baseline
supporting all user-level and system-level instructions.

work and compares it to our formal semantics based on three directions that reflect the pri-
mary contributions of our work: completeness, in terms of supported user-level instructions;
faithfulness, in terms of whether it is executable and hence can be evaluated with real code
execution; and generality, in terms of its applicability to formal reasoning techniques.
Figure 2.1 shows a quick overview of the instruction coverage of our work compare against

other related projects. The x-axis shows the various projects hosting x86-64 semantics,
with “Ideal” being a hypothetical baseline project supporting all user-level and system-level
instructions. The y-axis shows the percentage of instructions covered. For example the
hypothetical “Ideal” project which supports all the instructions (user- plus system-level)
with 95% of instructions being user-level and 5% of total instructions system-level. Our
current work is the bar on the extreme right and the percentage of user level instruction
that we formalize is pretty good as compared to other projects. However, we do not support
system-level instruction, where as the x86-64 semantics in ACL2 [88] does support a subset
of it. Moreover, we fall short of full 100% user-level coverage by 11%, which includes 10%

deprecated (MMX and x87) and 1% cryptography and concurrency related instructions.
Strata [87] uses program synthesis to generate the instruction semantics of X86-64 as SMT

bit-vector formulas. Automatically learning the formal semantics of 60% of the target x86-
64 ISA is impressive, and we leverage this result in our work. However, the other 40% of

14

the user-level instructions are not straightforward to automatically learn by their algorithm,
mainly due to limitations of the underlying synthesis engine. Moreover, the specifications
are executable only for non-floating-point (FP) instructions.
A contemporary work by Roessle et al. [112] presents a method to extract the big step se-

mantics of a binary program using the small step instruction semantics extracted mostly from
Strata1 plus some manually drafted support for branching instructions and stack operations.
Like Strata, their specification is executable only for the non-floating-point instructions.
Moreover, their work does not aim for completeness of semantics, one of our primary goals.
Goel et al. [88] use the ACL2 theorem prover [105] to model the x86-64 ISA and they

support 33% of all user-level instructions [122], plus some system-level instructions, paging,
and segmentation. This list is far from a complete semantic definition of x86-64, but it is
still the state-of-the-art in terms of formal analysis applied directly to x86-64 code. It is also
an executable definition as demonstrated by its use for simulations. In our work, we do not
leverage this definition, since Strata has defined many more instructions.
The CompCert verified compiler [90] includes semantics definitions for all intermediate and

target languages used within the compiler, including a definition for 32-bit x86 assembly.
The definition is specified in Coq [123] and has been used in a formal setting for proving
the correctness of CompCert’s compilation step to assembly, as well as outside CompCert,
e.g., in proofs relating to the certified concurrent OS kernel CertiKOS [124]. However, this
definition focuses on the 32-bit x86 instruction set, which is a subset of the x86-64 instruction
set. Moreover, it is part of the trust base for CompCert and it is not clear whether or how it
has been tested against an actual processor, whereas Strata and ours have been extensively
tested.
TSL [91] is a system that can auto-generate tools for various machine code analyses given

a semantics definition of the machine language written in the TSL specification. Such a
semantics definition for the integer instructions (i.e., no floating-point instructions) of the
32-bit x86 instruction set is given as part of the project. It is used to generate various tools,
including a machine code synthesizer [125]. This definition, to our knowledge, has not been
used for formal verification proofs, i.e., to prove whether a given x86 program meets its
specification.
Our semantics, like all the other work cited above, uses a sequential consistency memory

model, and not weaker memory models. Existing efforts to specify weaker memory models
for x86-64 such as Owens et al. [126] and Sarkar et al. [127], however, suffer from their
limited support for instruction semantics (i.e., they consider only a small subset of 32-

1There are some minor omissions on immediate instructions with 8-bit operands for which Strata learns
256 brute force formulas.

15

bit x86 instruction set). We believe that integrating these two complementary efforts is
a promising direction toward rigorously reasoning about real-world programs running on
modern multiprocessors (e.g., using the Sail framework as we will describe below).
Sail is another language semantics framework, tailored for describing an instruction-set

architecture semantics. Sail has been used to specify the semantics of ARMv8-A, RISC-
V, and CHERI-MIPS [128], as well as the semantics of a small subset of x86 [129]. Sail
is similar to the K framework we employed, but K is far more general-purpose than Sail.
Also, the Sail x86 semantics is much more limited than ours. It describes the semantics of a
fragment of 32-bit user-mode x86 instructions, while ours covers also the 64-bit counterpart
as well as the floating-point instructions. Sail, however, allows us to integrate a semantic
definition with their relaxed memory models [130, 131] for concurrency semantics. We believe
that (automatically) translating our semantics into Sail2 is a promising direction to obtain
concurrency semantics and thus enable concurrency reasoning for x86 programs, which we
leave as future work.
Degenbaev [134] formally specify the x86 instruction set architecture as part of the Verisoft

XT project. The specification is developed to serve three primary goals: (1) to prove the
correctness of a concurrent program for all possible interleavings, (2) to ensure the security of
the hypervisor, and (3) to prove that the hypervisor emulates the guest instructions correctly.
Unlike the scope of our model, their specification covers parts of system programming,
concurrency, memory protection and virtualization related instructions. Their support for
user level instructions, which is the main focus of our work, is quite limited. The work
laid out a technique that could potentially validate their specification [34, Chapter 19]. Our
semantics, being executable, is thoroughly tested using cosimulation against hardware where
we executed the instructions twice, once on a real hardware and next on the interpreter
provided by our model and the outputs are compared. Also, we validated our semantics
by comparing it with related projects [87, 135] hosting x86-64 semantics. The co-simulation
testing involves testing each supported instruction using 7000+ test-inputs, and testing 1548

programs from GCC C-torture tests [107].
Overall, the key differentiator of our effort compared to the existing work, as cited above,

is that our semantics achieves (A) completeness of supported user-level instructions, (B)
faithfulness, and (C) applicability to formal reasoning analyses. In Section 3.8, we elaborate
on our novel approaches that allow us to achieve this unique combination.

2Indeed, the Sail ARMv8-A semantics is automatically generated from the ARM-internal specification of
ARMv8-A [132] written in the ARM’s architecture specification language, ASL [133], by using the ASL-to-
Sail translator [128].

16

There are various binary analysis projects that target x86-64 binaries and lift them to a
higher-level representation more suitable for the specific analysis. These include Angr [34]
using the VEX IR of Valgrind [16], the QEMU [27] emulator using the TCG IR, the software
fault isolation tool RockSalt [136] using its own RTL DSL, the disassembler and binary
analyzer Radare2 [35] using the ESIL IR [137], the binary analysis tool BAP [51] using the
BIL IR, and the static binary translator Remill [33] using LLVM IR [96]. We refer to these
semantics as indirect because they give the semantics of the x86-64 binary via the translation
to their IR, as opposed to a direct semantics such as ours and the others cited earlier. A
direct semantics has significant advantages over an indirect semantics. For example, without
the direct semantics of x86-64, we cannot even formulate the correctness of a translator from
x86-64 to the IR. Analogously, many programming languages (C, C++, Java, etc.) have
been given direct semantics, instead of indirect semantics by translation to other languages,
for formal reasoning at the desired language granularity.
Hasabnis et al. [92, 93] also present an indirect semantics of x86-64, but in contrast to

other indirect semantics, they use machine learning [92] and symbolic execution [93] to au-
tomatically learn the translation of x86-64 instructions to their IR, by extracting knowledge
from the hard-coded translation logic of compilers such as GCC. However, as they admit-
ted [93], their semantics omits some important details of x86-64 semantics (e.g., the effect of
various instructions on CPU flags), and thus is not sufficient to serve as a solid foundation
for rigorous formal analyses of x86-64 binary.

2.3 DEFINING FORMAL SEMANTICS OF ISA (OTHER THAN X86/x86-64)

Formal specification of instruction sets are critical in directly reasoning about low-level
machine code [86, 89, 88, 112], verifying computer processor architectures [138, 139, 132, 140],
compilers [141, 90, 142, 143], verifying assembly language functions against a specifica-
tion [144], binary rewriting across architectures [82], verified binary decompilation [145,
78, 146, 103], abstract interpretation of binaries [147, 148], automated testcase genera-
tion [149, 100], synthesis of instruction semantics [87], and formalizing multiprocessor mem-
ory models [127, 126]. There exist a number of notable specifications of ISAs (e.g., RISC-
V [128, 90, 141], MIPS [128, 119], CHERI-MIPS [128], PowerPC [143, 91, 90], SPARC [91],
ARM [150, 151, 152, 119, 140, 132, 153, 154] etc.) other than x86/x86-64 that have hit
many of the same problems that we and others in the x86-64 community have had to deal
with. In this section, we will be focusing on some of the notable formal models of Arm [85]
architecture, which is indeed comparable to x86-64 w.r.t. its size and complexity, and their
similarities or dissimilarities with our model.

17

Fox and others from the University of Cambridge have a long history of contribution in
formalizing the semantics of multiple versions of the Arm processor architecture [150, 151]
using HOL4 proof system [120]. The semantics is used for a long time to propel verification
efforts in various domains including formal verification of ARM processor [155, 156], de-
compilation [119, 103, 104], microkernels [121], hypervisors [157] and compilers [141, 143].
The specification, in its current form [151], is tested systematically against actual hard-
ware for all usermode, integer instructions against three actual processors. However, the
semantics precludes the full scope of the specification involving floating point and vector
instructions, exceptions, interrupts, privilege checks, virtual memory, etc. Flur et al. [154]
presents concurrency models for the the ARMv8 architecture and combines that with a
complete application-level non-FP/SIMD ISA semantics. The former are validated by dis-
cussion with ARM and by black-box litmus testing; the latter by single-instruction testing.
The specifications are written in Sail [128].
Like the above approaches [154, 151], our x86-64 model is tested against actual processors

using directed tests. However, unlike [151], our semantics is not defined using a language
of a theorem prover, but using K framework, which is comparatively much simpler and
intuitive to write the semantics of a language. This is evident from the major sizable language
semantics defined in K so far, which served as a great source of inspiration for our semantics:
C [158], PHP [159], Python [160], Java [161], and JavaScript [162]. All these semantics are
executable and they have been validated by a large volume of tests, and demonstrated their
usefulness in formal analysis using the tools (auto-)generated by the K framework, similar to
our x86-64 semantics. Moreover, unlike the language of a theorem prover which is usable to
those familiar with the particular theorem prover, the K specifications does not compromise
much on the readability of the specifications as evident from the fact that K specification has
be used for formal documentation purposes [163] in the domain of blockchain. Sail [128],
on the other hand, is a promising language semantics framework, tailored for describing an
instruction-set architecture semantics and has been successfully used to specify the semantics
of ARMv8-A, RISC-V, and CHERI-MIPS [128], as well as the semantics of a small subset of
x86 [129]. Sail is similar to the K framework in the sense that it can auto-generate artifacts
for runtime (emulators) and formal analysis tools given the specification of a language.
One of the key differences is that K is far more general-purpose than Sail. Sail, however,
allows us to integrate a semantic definition with their relaxed memory models [130, 131, 154]
for concurrency semantics. We believe that (automatically) translating our semantics into

18

Sail3 is a promising direction to obtain concurrency semantics and thus enable concurrency
reasoning for x86-64 programs, which we leave as future work.
Unsurprisingly, creating a high-coverage and trustworthy specification from the documen-

tation is hard because of the sheer size of instruction set and the fact that such documents
are often informal. This is made even harder as those documentations are subjected to reg-
ular extensions or corrections. Reid [164, 153, 140, 132] made an noteworthy contribution
to cope up with the problem by creating a methodology to automatically develop high qual-
ity processor, machine-readable, and executable architecture specifications from the same
materials used to generate conventional documentation [132]. The specifications are written
using an executable, strongly-typed, imperative style domain specific language (DSL) called
the Arm Architecture Specification Language (ASL) and regarded as the most complete and
throughly tested as compared to its predecessors. Such a single trusted specification has
the benefit that each time one group finds and fixes a bug in the specification, it improves
the utility of the specification for other groups. Moreover, the developed methodology in-
volves building various tool chains around the specification to read, execute and test the
specification. A major output of this work was the creation of formal specifications of Arm’s
v8-A [165] and v8-M [166] processor architectures, covering the semantics of the most secu-
rity sensitive parts of the processor: the memory and register protection mechanisms and
the exception mechanisms that trigger transitions between different modes [132]. A notable
contribution is the development and application of multiple approaches with which the spec-
ification is thoroughly tested. That broadly includes (1) testing using test suites (including
ARM’s Architecture Validition Suite hosting billions of instructions and random instruction
sequences) and simulators [132], (2) formal validation of processors against the specifica-
tion [140], and (3) formal validation of the specification itself [153]. ISA-Formal [140] (cited
at (2) above) uses mechanical translation of ARM’s Architecture Reference Manuals to Ver-
ilog allowing the use of commercial model-checkers to compare the specification against the
Verilog implementation of five ARM processors currently in development. The exercise is
found to be effective at finding micro-architecture specific bugs, and able to scale all the way
from simple 3-stage microcontrollers, through superscalar in-order processors up to out-of-
order processors. As cited at (3) above, Reid [153] further enhances the trust in the model
by writing high-level properties about the specification and formally verifying that the spec-
ification satisfies those properties. Specifically, the properties4 are derived by examination

3Indeed, the Sail ARMv8-A semantics is automatically generated from the ARM-internal specification of
ARMv8-A [132] written in the ARM’s architecture specification language, ASL [133], by using the ASL-to-
Sail translator [128].

4The properties are related to additional security features applied to ARM’s v8-M microcontroller spec-
ification involving exceptions, privilege and security.

19

of natural language text in the reference manual, by examining recently discovered specifi-
cation bugs, and by discussion with the architects of the specification. The properties are
then translated into verification conditions along with the specification (throughly tested
as part of [140, 132]) to be checked by an SMT solver. To the best of our knowledge, no
realistic architecture specification has been subjected to such an extensive testing and for-
mal verification before. Unlike the approach of defining the semantics in a custom DSL, we
chose to define our x86-64 semantics using K framework. The choice was motivated by the
fact that we do not have to worry about generating the runtime and formal analysis tooling
as they are auto-generated "correct-by-construction" from the semantics itself. This indeed
saves a lot of engineering effort in implementing the tooling from scratch. However, we note
our x86-64 model falls short of others [89, 153, 132] in two aspects: (1) we do not support
system-level instructions, and (2) the simulation speed of our model, on an average over the
supported instructions, is approximately 54 x86-64 instructions/second, which is not nearly
as optimized as other notable semantics (e.g., Goel et al. [89] executing ∼ 3.3 million x86
instructions/second and Sail [153] executing MIPS and Arm at 500, 000 − 1, 500, 000 and
53, 000 instructions /second respectively). The interpreter currently in use by our semantics
is implemented in Java and more performant back end are under development.

2.4 TRANSLATION VALIDATION

Pnueli et al. [167] proposed the idea of translation validation as a new approach to the
verification of translators (compilers, code generators). The idea is: Instead of verifying
the compiler itself, one constructs a validation tool that, after every run of the compiler,
formally confirms that the target code produced in the run is a correct translation of the
source program. One of the critical ingredients to drive the translation validation process
involves setting up a “simulation relation”. A simulation relation is a proof (or witness)
of the equivalence between two programs and is represented as a pair of correlation and
invariants. Given two programs, the correlation is a pair of program PCs or locations in the
two programs, and the invariants are predicates in terms of the program variables (i.e., states)
expected to hold at these respective PCs. A simulation relation is valid if it can be proved
inductively as follows: (1) Inductive case: For a valid simulation relation, the invariants at
each correlated location should be provable from the invariants at the predecessor correlated
locations, and (2) Base case: At the pair of entry points of the two programs, the invariants
must be provable using the equivalence condition at the input. Using the invariants of the
simulation relation, if one can prove the equivalence of the required observables at the exit
location (pair of exits of two programs), then the programs can be concluded as equivalent.

20

Translation validation has been employed heavily in the field of compiler correctness [168,
169, 170, 171, 172, 173]. Necula [170] proposed a technique where each of the original and
the optimized programs is firstly evaluated symbolically into a series of basic block transfer
functions. Next, the basic block and variable correspondence is inferred by a scanning al-
gorithm that traverses the source and target functions in parallel. This algorithm generates
both a relation between program points and the accompanying constraints, between pro-
gram variables and memory at the program point, using the previously generated transfer
functions.
Hawblitzel et al. [174] use a translation validation approach to determine whether assembly

code produced by different versions of the CLR JIT compiler are semantically equivalent and
thus report mis-compilations when there are differences. The versions include those across a
seven-month time period, across two architectures (x86 and ARM), and across optimizations
levels. The underlying validator encodes each assembly method body into a procedure in
the Boogie [175] programming language and then invokes the SymDiff symbolic differencing
tool [176] to compare the Boogie encodings for semantic equivalence. For code with loops,
the validator simply eliminates loops by unrolling them n (= 2) times, ignoring any behaviors
past the nth iteration.
The translation validation technique by Rival [177] provides a unifying framework for the

certification of compilation and of compiled programs. Similarly to Necula’s technique, the
framework is based on a symbolic representation of the semantics of the programs. Rival’s
technique extracts basic block and variable correspondence from the standard debugging in-
formation if no optimizations are applied. However, when some optimizations are involved in
the compilation, the optimizing phase has to be instrumented further to debug the optimized
code and generate the correspondence between the original and the optimized programs.
During our initial attempt to solve the problem of translation validation of the lifting of

x86-64 program, we tried to borrow insights from the above mentioned efforts. However, to
be effective, we believe our validator should not instrument the lifter mainly because lifters
in an early development phase are updated and improved at a frantic pace. Without instru-
mentation, such simulation relations can be inferred by collecting constraints from the input
and output programs using symbolic-execution (as demonstrated in Necula’s work [170]).
First, in the context of translation validation of binary lifting, such inference is not straight-
forward mainly because the two program (x86-64 binary and lifted IR) are structurally very
different with potentially different number of basic blocks. For example, instructions like
adcq generate additional basic blocks upon lifting, which are not explicit in the binary
program. Indeed, a similar challenge poses a hard requirement of branch equivalence in Nec-
ula’s approach. Second, checking program equivalence, in general, is an undecidable problem

21

and using symbolic execution is very expensive. Hence, any solution which can avoid such
overhead is of great importance in serving a practical validation approach. Consequently,
we decided to move away from simulation-based validation approaches.
Value-graph translation validation for LLVM has been performed previously in two inde-

pendent efforts, LLVM-MD [171] and Peggy [172] and it is imperative to differentiate our
approach of establishing equivalence between two LLVM IR programs from such existing,
similar approaches for validating LLVM IR-to-IR optimization passes. Like our approach,
they move away from simulation proofs, and instead use graph isomorphism techniques to
prove equivalence. Both LLVM-MD [171] and Peggy [172] build graphs of expressions for
each program, transform the graphs via a series of “expert-provided” rewrite rules, and check
for equality. The rewrite-rules mimic various compiler-IR optimizations and hence the tech-
nique is precise when the output program is an optimization of the input program and the
optimizations are captured by the rewrite rules.
Compared to these approaches, our canonicalizer is simpler, requires no additional imple-

mentation effort, re-uses off-the-shelf, well-tested compiler passes, and still proves to be very
effective in reducing two programs to isomorphic graphs, as demonstrated by our evaluations
(refer to section 4.5).

22

CHAPTER 3: FORMAL SEMANTICS OF x86-64 USER-LEVEL ISA

In this chapter, we will present our published contribution [86] of the most complete and
thoroughly tested formal semantics of x86-64 assembly instructions to date. Our semantics
faithfully formalizes all the non-deprecated, sequential user-level instructions of the x86-64
Haswell instruction set architecture. This totals 3155 instruction variants, corresponding to
774 mnemonics. The semantics is fully executable and has been tested against more than
7,000 instruction-level test cases and the GCC torture test suite. This extensive testing paid
off, revealing bugs in both the x86-64 reference manual and other existing semantics. We
will also illustrate potential applications of our semantics in different formal analyses, such
as symbolic execution, deductive verification, and translation validation, and discuss how it
can be useful for processor verification.
The developed semantics is for the assembly language notation of the binary program

and do not include a formal model of the binary instruction decoder. As a result, any
binary analysis using our formalism requires, as a prerequisite, converting the binary to
the supported mnemonic notation using an off-the-shelf disassembler. This limitation is
eliminated by a follow-up work [117], not included in the current thesis presentation, where
we formally specify an x86-64 instruction decoder. We note that all future references of
x86-64 “program(s)” or “instructions(s)”, in the context of the presented x86-64 model, are
meant to refer to the “assembly language programs(s)” or “assembly instruction(s)”.

3.1 APPROACH OVERVIEW

We employed the K framework [178] (Section 3.3.2) as our formalism medium to lever-
age its capability of deriving various correct-by-construction formal analysis tools directly
from the language semantics. We took Heule et al. [87]’s semantics (Section 3.3.3) as our
starting point to avoid duplicating the formalization effort. We made several corrections or
improvements to this semantics, to improve both soundness and efficiency. We automati-
cally translated their semantics into K, and cross-checked the translated semantics against
the original using an SMT solver. We manually specified the semantics of the remaining
instructions faithfully consulting the Intel manual [84] to obtain the complete semantics. A
manual specification may sound like a daunting effort at first, but the fact that (1) x86-64
is largely stable and changes slowly over time, and (2) the state-of-the-art synthesis tech-
niques for language semantics (notably, Strata [87] and Hasabnis et al. [92, 93]) suffer from
scalability and/or faithfulness issues (see Section 3.4.2 and Section 2.2 for details), makes

23

the effort worth undertaking. Moreover, an important message of this work is that complete
formal semantics of x86 is possible, and that is not only useful in itself but also to generate
formal analysis tools.
Like closely related previous work [88, 87], we omit the relaxed memory model of x86-

64 and thus the concurrency-related operations. Modelling concurrency is a complex but
relatively orthogonal problem in the presence of small-step operational semantics, as shown
in prior work [127, 126], where they have integrated their memory model with a small subset
of 32-bit x86 instruction set. We believe that integrating such a memory model into our
instruction semantics is a promising direction toward rigorously reasoning about real-world
programs running on modern multiprocessors. We leave it for future work.

3.2 CHALLENGES IN FORMALIZING x86-64

Size and Complexity The x86-64 ISA has a large number of instructions, partly because
of a large number of complex instructions and partly because it keeps most of the legacy
and deprecated instructions (∼ 336+) for the sake of backwards compatibility. It consists of
996 mnemonics, and each mnemonic admits several variants, depending on the types (i.e.,
register, memory, or constant) and the size (i.e., the bit-width) of operands.

Inconsistent Instruction Variants Some variants have divergent behaviors more than
the difference of their type and size. For example, movsd, one of the 128-bit SSE instructions,
has very different behaviors depending on whether the type of the source operand is register
or memory; it clears the higher 64 bits of the target register only when the source type is
memory. Indeed, we revealed bugs in other semantics due to their incorrect generalization
of the variants’ behavior (Details in Section 4.1, Instruction Variants).

Ambiguous Documentation The x86-64 reference manual informally explains the in-
struction behaviors, leaving certain details unspecified or ambiguous, which required us to
consult with an actual processor implementation to clarify such details. Completely formal-
izing the vast number of instructions with carefully identifying all the corner cases from the
informal document, thus, is highly non-trivial.

Undefined Behaviors The x86-64 standard also admits undefined behaviors that are
implementation-dependent. Many instructions (321 out of 996 mnemonics) have undefined

1These numbers are obtained by parsing the official manual “Volume 2: Instruction Set Reference” and
cross checked with projects [135, 179] investing similar efforts.

24

behaviors: their output values of the destination register or the %rflags register are un-
defined in certain cases. That is, the processor is free to choose any behavior in undefined
cases.
Many existing semantics, however, simply “define” the undefined behaviors by following a

specific behavior taken by a processor implementation. This approach is problematic because
they do not capture all possible behaviors of different processor implementations. Indeed,
we found discrepancies between existing semantics in specifying the undefined behaviors,
where different semantics are valid only for different groups of processors. That is, such
semantics are not adequate to formally reason about universal properties (e.g., portability)
of a program that need to be satisfied for all standard-conforming processors. For example,
the parity flag %pf is undefined in the logical-and-not instruction andn, where the processor
implementation is allowed to either update the flag value (to 0 or 1), or keep the previous
value. We found, e.g., that Remill [49] updates the flag with 0, whereas Radare [35] keeps
it unmodified. Identifying and faithfully specifying all of the undefined behaviors, thus, are
desirable but challenging.
In our semantics, we faithfully modeled the undefined value as a unique symbol (called

undef) whose value is nondeterministically decided each time within the proper range.
These nondeterministic values are enough to capture and formally reason about all possi-
ble behaviors of the instructions for different processors (and even any future, standard-
conforming processor). While performing instruction-level testing (Section 3.5), we consider
the undef symbol to be matched with any concrete value provided by the hardware, so that
we can test the instructions modulo the undefined behaviors.

3.3 PRELIMINARIES

First, we briefly explain pieces of x86-64 ISA necessary for our presentation. We also talk
about K framework, a semantics engineering tool which we chose to formalize our semantics
into and Strata which we use for our baseline semantics.

3.3.1 x86-64 Instruction Set Architecture

x86-64 is the 64-bit extension of x86, a family of backward-compatible ISAs. We briefly
explain some details of the architecture.
x86-64 has the sixteen 64-bit general purpose registers (%rax–%rdx, %rsi, %rdi, %rsp,

%rbp, %r8–%r15), and the two 64-bit special registers (%rip and %rflags). The lower
32-, 16- and 8-bit portions of the register are referenced by the sub-register variants, e.g.,

25

%eax, %ax, and %al for %rax, respectively. The Haswell x86-64 ISA additionally has
sixteen 256-bit SIMD registers (%ymm0–%ymm15) along with the lower 128-bit sub-register
variants (%xmm0–%xmm15).
The %rflags register stores the current state of the processor. Specifically, for example,

the status flags such as the carry flag (cf), the parity flag (pf), the adjust flag (af), the zero
flag (zf), and the sign flag (sf) are stored in %rflags. These status flags are set according
to the result of arithmetic and logical instructions. These status flags used mostly in user-
level x86-64 programs, and updated by arithmetic-logical instructions according to the result
of the operation. Many control transfer instructions, e.g. jz, jge etc., are performed based
on the values of these flags.
x86-64 ISA supports the addressing mode expressions that calculate a memory address

to be read or written to. The addressing modes are used as the source or the destina-
tion of instructions that access the memory. The addressing mode expressions can be gen-
eralized as: base + index × stride + offset. In the assembly code, for example,
-4(%rax, %rbx, 8) denotes the address mode expression “%rax + %rbx× 8− 4”.
The ISA has three types of instructions depending on the types of their operands: reg-

ister instructions (with only register operands), memory instructions (with address mode
operands), and immediate instructions (with constant operands). The same mnemonic can
be used for the different types of instructions. For example, the mnemonic add can be used
for the register instructions (e.g., addq %rax, %rbx2), the memory instructions (e.g.,
addq -4(%rax), %rbx), and the immediate instructions (e.g., addq $1, %rbx).

3.3.2 K Framework

K [178] is a framework for defining formal language semantics. Given a syntax and a
semantics of a language, K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers, at no additional cost. Using
the interpreter, one can test their semantics immediately, which significantly increases the
efficiency of semantics developments. Furthermore, the formal analysis tools facilitate formal
reasoning about the given language semantics. This helps in terms of both applicability of
the semantics and engineering the semantics itself.
We refer the reader to [178, 181] for details. In a nutshell, in K, a language syntax

is given using conventional Backus-Naur Form (BNF). A language semantics is given as a
parametric transition system, specifically a set of reduction rules over configurations, whichK

2Throughout the presentation we will be using the AT&T assembly syntax [180] where the destination
operand comes after source operands.

26

makes heavy use of.A configuration can be regarded as a snapshot of the program execution:
it includes the remaining program, together with all the necessary semantic information
to execute it. K configurations are organized as nested cell structures, whose leaves hold
basic data organized in lists, maps, sets, etc. Cells can be referred to by their name; their
order is irrelevant. In the contxt of x86-64, each cell in configuration represents a semantic
component, such as the memory or the registers. A special cell, named k, contains a list
of computations to be executed. A computation is essentially a program fragment, while
the original program is flattened into a sequence of computations. A rule describes a one-
step transition between configurations, giving semantics to language constructs. Rules are
modular; they mention only relevant cells that are needed in each rule, making many rules
far more concise and easy to read than in some other formalisms.
One of the most appealing aspects of K is its modularity. It is very rarely the case that one

needs to touch existing rules in order to add a new feature to the language. This is achieved
by structuring the configuration as nested cells and by requiring the language designer to
mention only the cells that are needed in each rule, and only the needed portions of those
cells. This modularity makes for compact and human readable semantics, and also helps
with the overall effectiveness of the semantics development.

3.3.3 Strata Project

Strata [87] automatically synthesized formal semantics of 1905 instruction variants (repre-
senting 466 unique mnemonics) of the x86-64 Haswell ISA. The algorithm to learn the formal
semantics of an instruction, say IS, starts with a small set of instructions, called base set B,
whose semantics are known and trusted; a set of test inputs T, and the output behavior of IS
obtained by executing IS on T. Then Stoke [135] is used to synthesize instruction sequences
which contain instructions from B and match the behavior of IS for all test cases in T. Given
two such generated instruction sequences IS and IS′, their equivalence is decided using an
SMT solver and the trusted and known semantics from the base set. If the two sequences
are semantically distinct, then the model produced by the SMT solver is used to obtain
an input t that distinguishes IS and IS′, and t is added to T. This process of synthesiz-
ing instruction sequence candidates and accepting or rejecting them based on equivalence
checking with previous candidates, is repeated until a threshold is reached, which in their
implementation is based on the number of accepted instruction sequences.
Using the above technique, they first came up with the semantics of 692 register and 120

immediate instructions. Then they used “generalization” of the register instructions to get a
total support count of 1905. Generalization is based on their hypothesis that the memory or

27

immediate variants will behave identically with corresponding register variant (other than
where the inputs come from) and hence can use the same formula as register variants. They
validate this hypothesis using random testing.
For each instruction, Strata manifested its semantics in terms of two related artifacts.

The first artifact is an instruction sequence and the second is a set of SMT formulas in
the bit-vector theory, one for each output register. The second is obtained by symbolically
executing the first.

3.4 FORMALIZATION OF x86-64 SEMANTICS

This section presents how we get the complete semantics of all the user-level instructions.
Section 3.4.1 details the scope of our work. Section 4.1 mentions how we leverage the infor-
mation available in Strata, our baseline semantics. Section 3.4.3 explains how we formalize
our model in K.

3.4.1 Scope of the Work

We support all but a few non-deprecated user-level instructions. The support includes
3155 total variants of the Haswell x86-64 ISA (representing 774 out of 996 unique mnemon-
ics). The entire implementation took 8 man-months, with the lead author having prior
experience in binary decompilation and strong familiarity with the x86-64 architecture and
documentation. Below is a summary of the instruction categories that we support.

• General-Purpose: These implement data-movement, arithmetic, logic, control-flow,
string operations (including fast- and repeated- string operations).

• Streaming SIMD Extensions (SSE) & subsequent extensions (SSE-2, SSE-3, SSE-4.1,
SSE-4.2): Instructions in this category operate on integer, string or floating-point
values stored in 128-bit xmm registers. Among other things, the category features
instructions related to conversions between integer and floating-point values with se-
lectable rounding mode, and string processing.

• Advanced Vector Extensions (AVX) & subsequent extensions (Fused-Multiply-Add (FMA)
& AVX2): These instructions operate on integer or floating-point values stored in
256-bit ymm registers; a majority of which are promoted from SSE instruction sets.
Additionally, the category features enhanced functionalities specific to AVX & AVX2,

28

like broadcast/permute, vector shift, and non-contiguous data fetch operations on data
elements.

• 16-bit Floating-Point Conversion (or F16C): These instructions implement conver-
sions between single-precision (32-bit) and half-precision (16-bit) floating-point values.

Instructions which are not included in the current scope of work are:

• System-level instructions, which are related to the operating system, protection levels,
I/O, cache lines, and other supervisor instructions;

• x87 & MMX instructions, consisting of legacy floating-point and vector operations,
respectively, which are now superseded by SSE;

• Concurrency-related operations, including atomic operations and fences; and

• Cryptography instructions, which support cryptographic processing specified by Ad-
vanced Encryption Standard (AES).

We note that while there is no inherent limitation in supporting the above instructions with
our approach, the system-level instructions require to formulate an abstraction of different
architectures and operating systems, which is a significant effort that is orthogonal to the
presented effort of formalizing the user-level instructions. Nevertheless, K framework makes
it easy to add additional state components without modifying rules for operations that do
not require those components. We expect our approach to work equally well compared with
existing approaches, such as [89], which implements a subset of system-level instructions.
On the other hand, the cryptography instructions are omitted mainly because they are not
given a high priority.

3.4.2 Overview of the Approach

Briefly, our approach is as follows. We first defined the machine configuration and un-
derlying infrastructure in the K framework, in order to define, execute and test the x86-64
semantics. To leverage previous work as much as possible, we took the semantic rules of
all the instructions supported in Strata, which amounts to about 60% of the instructions in
scope, in the form of SMT formulas. We corrected, improved or simplified many of the base-
line rules. We then translated these SMT formulas from Strata into K rules using a script,
and tested the resulting rules by comparing with the Strata rules using Z3. These steps give

29

us a validated initial set of semantic rules in K for about 60% of the target instructions (our
“baseline” set).
We attempted to extend the stratification approach in Strata to define additional rules

automatically, in two ways: (i) augmenting their base set B, and (ii) constraining the search
space manually using knowledge of instruction behaviors. Both these attempts failed; they
worked only for a few instructions, but in general, we found them to be impractical. Specif-
ically, we added 58 base instructions to the base set, and learned the semantics of 70 new
instructions, which are variants of the added instructions, in 20 minutes, but no more even
after we kept running for two days. Also, we tried constraining the search space by manually
populating it with relevant instructions. The lesson we learned from these experiments is,
getting the right set of base instructions or a constrained search space for a complex instruc-
tion need an insight about the semantics of that instruction itself. We found that the effort
to extract such information from the manual is about the same as manually defining that
instruction.
We then manually added K rules for the remaining 40% of the target instructions by

systematically translating their description of the Intel manual into K rules, in some cases
cross-referencing against semantics available in Stoke. The outcome was a complete formal
specification of user-level x86-64 in K.
We validated this semantics in three ways, as described in Section 3.5. First, we use the K

interpreter to execute the semantics of each instruction for 7,000+ test inputs (each input is a
processor state configuration) and compared the output directly with the hardware behavior
for the same instruction. Second, we repeated this experiment using the applicable programs
in the GCC C-torture tests [107]. Third, we compared against the semantics defined in the
Stoke project for about 330 instructions that were omitted in Strata (thus not included in
our baseline), using an SMT solver.
These validation experiments uncovered bugs in the Intel manual, in Strata’s simplification

rules, and in the Stoke semantics. All these bugs were reported to the authors, and most
have been acknowledged and some have been fixed. The details are in Section 3.5.

3.4.3 Program Configuration

Defining a language semantics in K requires defining the program configuration, the se-
mantics of how programs are evaluated (i.e., the execution environment), and the semantics
of the statements or instructions. We begin with the configuration.
The K configuration of a running x86-64 program is shown in Figure 3.1. The cells are

represented using angle brackets. The outer > cell contains the cells used during program

30

〈
〈K〉 k 〈IDregname 7→ Value〉 regstate 〈Address 7→ Value〉memstate · · ·

〉
T

Figure 3.1: Program Configuration

evaluation. The inner k cell contains a list of computations to be executed. Below we
describe the two other inner cells.3

Register State. The regstate cell contains a map from registers or flag names to values.
Note that, all the values or addresses, stored in registers, memory (described next) or flags,
are represented as bit-vectors which are depicted as VW, and interpreted as a bit-vector
of size W and value V. The register names include the sixteen general purpose registers,
%rip, and the sixteen SIMD registers. The value mapped to a register name is a 64-width
bit-vector (or a 256-width one for the SIMD registers). Values for sub-register variants are
derived from the register values by extracting the relevant bits. We store individual flag
names (mapped to a bit-vector value of width 1) as opposed to a 64-bit rflags register.
Every access (read/write) of %rflags retrieves the entries in the regstate map for the
individual flags.
Memory State. Our memory model is inspired by previous efforts [91, 158]. The

memstate cell is a map from 64-bit addresses to bytes, which specifies the byte-addressable
memory4, but our implementation is flexible enough to use alternative memory representa-
tions with addressing of 2-byte or 4-byte quantities. Our memory layout is “flat”, in which
all available memory locations can be addressed, but we do have logical partitions of the
memory into sections like code, data and stack5. The following is an example snapshot of a
memory state, holding a 4-bytes integer value 65535:〈

4 7→ byte(0, 6553532) 5 7→ byte(1, 6553532)

6 7→ byte(2, 6553532) 7 7→ byte(3, 6553532)

〉
memstate

Here the memory address 4 stores the 0th byte of the bit-vector 6553532, the address
5 stores the 1st byte, and so on. When memory is read, requested bytes are aggregated
according to the size of the memory access.

3We omit other auxiliary cells (marked by “ · · · ”) for the simplicity of the presentation.
4Byte-addressability allows the model to specify both aligned and unaligned accesses in the same principle.
5These abstractions help in logical partitioning of the K memstate cell into nested cells like text, data

and stack. For example, while executing x86-64 programs, the code (resp., data) section of the binary
code is stored in text (resp., data) cells, and the local variables are allocated in stack cell. We note that
these abstractions are purely cosmetic and can be skipped without affecting the faithfulness of the model.

31

3.4.4 Semantics of Execution Environment

We now give the reader a flavor of our semantics, by discussing a few of the roughly
5, 200 rules6 that we defined to model the entire semantics. We first explain the semantics
of the execution environment, which involves all the machinery used for executing x86-64
programs. We will explain the semantics of individual instructions in the next section.
The execution of an x86-64 program begins with initialization of the configuration with

the following contents of the k cell.

<k> $PGM:Instructions y fetch </k>

The symbol y is used to separate the computations in the k cell and “:T” to represent the
type of a term.
Concisely, the semantics of execution of an x86-64 program involves initializing the memory

by reading the program instructions ($PGM), from the k cell, one at a time until all the
instructions are loaded in memory. The memory-loaded instructions are then fetched one at
a time, using the fetch computation, to get executed. The instruction to be executed next
is pointed to by the instruction pointer register %rip.
Next, we describe the rule applied to initialize memory with instructions one at a time.

rule <k> OpC:Mnemonic OpR:Operands ⇒</k>

<memstate> M:Map ⇒ M[L ← (OpC OpR)] </memstate>

<nextloc> L:Address ⇒ L + instrSize(OpC OpR) </nextloc>

The k cell contains the instruction to be processed next. Mnemonic and Operands denote
the types of the terms used to represent an instruction. The ‘⇒’ symbol represents a
reduction (i.e., a transition relation). A cell without the ‘⇒’ symbol means that it is read
but not changed by the rule. K allows us to use “.” to represent an empty computation
and “...” to match the portions of a cell that are neither read nor written by the rule. The
above rule essentially stores each instruction in memory, which is modeled as a map, at an
address L given by the nextloc7 cell. Subsequently, the nextloc cell gets updated to
an appropriate address used for storing the next instruction. Once the entire program is
loaded, the fetch-and-execute cycle starts, which is realized by the following rule:

rule <k> fetch ⇒ exec(OpC OpR) y fetch ... </k>

<memstate>... L 7→ (OpC OpR) ...</memstate>

<regstate>... "RIP" 7→ (L ⇒ L + instrSize(OpC OpR)) ...</regstate>

6Each rule is 17 LOC on average, and the total size is 15 KB of text.
7The nextloc cell is a auxiliary cell that holds the next memory location to store an instruction, which

we omit in the program configuration (Figure 3.1) for the sake of simplicity.

32

The rule above says that if the next thing to be evaluated is a fetch computation (referred in
the rule as fetch), then one should match %rip in the environment to find its value L in
regstate, where L is matched in memstate to find the mapped instruction. The mapped
instruction is then put at the head of the k cell to be computed next, using a rule exec for
execution (defined later), along with the fetch computation to be executed in order. The
rule also updates the value of %rip to point to the following instruction. The execution will
be terminated when there is no instruction stored in the memory at the address pointed to
by %rip.8

3.4.5 Semantics of Individual Instructions

Here we explain how we define the semantics of an instruction in K using a running
example of logical-and-not andnq -4(%rsp), %rbx, %rax, which performs a bitwise
logical AND of inverted source register operand (%rbx) with the source memory operand
(-4(%rsp)) and writes the result to destination register %rax. Additionally the instruction
affects all the 6 status flags (%sf, %zf, %of, %cf, %af and %pf).
The semantics of most of the instructions can be modeled broadly in 3 phases: (1) read

the data from source operand(s), which could be a register, memory or constant value;
(2) operate on the data based on the mnemonic; and (3) write the result(s) to destination
operand(s), which could be a register or memory. An instruction may exercise some or all
of the above phases.

Read from Source Operand(s) Instruction in the running example reads from register
(%rbx) and memory (-4(%rsp)) operands. A read from register is modeled as a lookup
with register name in the regstate map and subsequent read of the mapped value or, for
a sub-register, a portion of it. The semantics of register read can be defined as:

rule <k> getRegisterVal(R:R64) ⇒ BVr ...</k>

<regstate>... R 7→ BVr ...</regstate>

In the context of the running example, this rule is applied when the current computation
(at top of the k cell) is a 64-bit register lookup, appeared as getRegisterVal(%rbx),
and regstate contains a register with name “RBX”. This rule resolves the register lookup
to the mapped bit-vector value BVr (or BVRBX for the running example).

8While initializing the stack section of memory, we store an invalid address just before the entry-point
function as return address. When the entry point function returned, the invalid return address is popped
out of the stack and stored in %rip leading to program termination.

33

A read from memory involves computing the effective address in the memory, looking-up
that address in memory, and reading requested bytes from memory if the memory access is
within allowed range. The following rule is applied to compute the effective address:

rule <k>

(Offset:Int (R:R64)):Mem ⇒ (Offset64 + BVr):Address

...</k>

<regstate> ... R 7→ BVr ... </regstate>

The term to the left of ⇒ shows the memory addressing expression, of type Mem, at the
top of k cell, which gets reduced to an effective memory address (or EA). The EA for the
memory operand used in the running example is (64’-4 + BVrsp) and is used to do memory
read access. The rule for memory read access is responsible to read a memory value of
requested number of bits (64-bits for the current example) starting from the EA.

Operate on Data The rules for operating on operands will be different for each instruc-
tion based on the mnemonic. For example, the mnemonic andnq requires logical-and-not
operation to be computed on the operands.

Write to Destination Operand(s) The example instruction writes the result to a desti-
nation register %rax. Also, the flags sf and zf are updated based on the result; of and cf
are cleared, and af and pf are undefined. The rule, as shown below, realizes the destination
write operation, where memVal64 and BVr represents the 64-bit data values evaluated using
the respective rules for reading register and memory operands (mentioned above).

rule <k>

exec(andnq memVal64, BVr, R:R64) ⇒ .

...</k>

<regstate>

"R" 7→ _ ⇒ (∼BVr & MemVal64)

"SF" 7→ (∼BVr & MemVal64)[63:63]

"ZF" 7→ (∼BVr & MemVal64) = 064 ? 11 : 01

"OF" 7→ 01

"CF" 7→ 01

"AF" 7→ undef // af and

"PF" 7→ undef // pf are undefined.

...</regstate>

The operator “[i:j]” extracts bits i down to j from a bit-vector of size n, yielding another bit-
vector of size i - j + 1, assuming that n > i ≥ j ≥ 0. The operator “&” implements bit-wise
“and” operation. The rule associated with memory write is similar to that for memory read
and is skipped here.

34

A x86-64 program is modeled as a list of instructions and its semantics is given by com-
posing the semantics of its constituents.

3.4.6 Constructing the x86-64 Semantics

Systematic Translation of Strata Rules to K As mentioned in the introduction, we
leverage the Strata [87] semantics to develop our complete semantics, to minimize the overall
effort. We systematically translated their semantics into K. Specifically, Strata offers the
semantics of 1905 instruction variants as SMT formulas specifying the behavior of output
registers. For each instruction, we converted the SMT formulas that Strata provides to a K
specification using a simple script (∼500 LOC). The ease of this porting is facilitated by the
fact that SMT-LIB expressions use s-expression (or "symbolic-expression") notation [182]
which eases the parsing effort significantly.
To validate the translation, we generated SMT formulas from the translated K specifica-

tions (using APIs provided by the K framework), and use the Z3 SMT solver to check their
equivalence to the corresponding formulas provided by Strata. While translating and vali-
dating their semantics, we found various issues that we had to fix to establish our baseline
semantics. Below we describe the issues we found in Strata.

Status Flags We found that Strata omitted to specify the %af flag behaviors, as the flag
is not commonly used. However, we faithfully specified the semantics of all the status flags
in the %rflags register, even if some of them are not commonly used, since they may affect
the overall program’s behavior in some tricky cases, and we do not want to miss any of such
details when formally reasoning about the x86-64 programs.

Instruction Variants Strata essentially provides the semantics of the register instruc-
tions, assuming that the semantics of the memory and immediate instruction variants can
be obtained by generalizing the register instructions9. However, we found that certain mem-
ory instructions cannot be inferred by simply generalizing their corresponding register in-
structions. For example, for movsd, one of the 128-bit SSE instructions, its register variant
has quite different semantics from the memory variant. Figure 3.2 shows their pseudo-code
semantics, where only the memory instruction clears the higher 64 bits of the destination
register. This behavior cannot be inferred from the register variant that does not touch the

9Generalization is based on a hypothesis that the memory or immediate variants will behave identically,
on their operands, with corresponding register variant.

35

Semantics of Register Variant
(movsd %xmm1, %xmm)

Semantics of Memory Variant
(movsd (%rax), %xmm0)

S1. XMM0[63:0] ← XMM1[63:0] S1. XMM0[63:0] ← MEM_ADDR[63:0]
S2. XMM0[127:64] (Unmodified) S2. XMM0[127:64] ← 0

Figure 3.2: Pseudo-code semantics of the register and memory variants of movsd

higher bits at all. We found that another 128-bit SSE instruction, movss, has the same gen-
eralization issue. For the other instructions, we obtained the memory and immediate variants
by generalizing the register variants, and validated the generalization by co-simulating the
inferred semantics against a processor.

Immediate Instruction Variants There are 118 immediate instruction variants (over the
8-bit constants) that do not have corresponding register instructions. For those immediate
instructions, Strata provides the instruction semantics for each individual constant, resulting
in 30,208 (= 118×256) formulae10 for the immediate instructions’ semantics. We generalized
the set of formulae for each immediate instruction into a single semantic rule. We validated
our generalization by cross-checking the generalized semantics with the original using the
SMT solver.

Formula Simplification Due to the nature of the stratification, Strata provides complex
formulae for certain instructions. We simplified those complex formulae by either applying
additional 13+ simplification rules (Figure 3.3 mentions some of those) than what Strata
originally had or manually translating into simpler ones. Then we validated the simplification
by checking the equivalence between them using the SMT solver. For example, the original
Strata-provided formula for shrxl %edx, %ecx, %ebx consists of 8971 terms (including
the operator symbols), but we could simplify it to a formula consisting of only 7 terms.

3.5 VALIDATION OF SEMANTICS

A formal semantics is of limited use if one cannot generate confidence in its correctness.
In this section, we describe how we establish that confidence in our model.

10Indeed, Strata explicitly provides only 19,783 formulae by randomly sampling ∼168 constants out of 256,
in average, for each immediate instruction, assuming that the remaining 10,425 formulae can be inferred.

36

/* Assume

** A, B, C, D are symbolic bit-vector values of width W,

** NW denotes a constant bit-vector value of width W & integer value N,

** Cond is a symbolic boolean value,

** I, J & K are symbolic integers s.t. K ≥ J ≥ I ≥ 0.

**
** A ◦ B denote bit-vector concatenation.

** A[J:I] denotes bitvector-extract operation (assuming that J & I are within A’s bounds).

** ’+’ denote addition over bit-vectors.

** ’⊗’ denote any of xor, or, add operators.

*/

/* Eliminate redundant uninterpreted functions */
• add_double(0W, A) ≡ A if A ≡ concat(0X, NY) s.t. X + Y = W

/* Distribute over if-then-else */
• (Cond ? A : B) [J:I] ≡ (Cond ? A[J:I] : B[J:I])
• X ◦ (Cond ? A : B) ≡ (Cond ? X ◦ A : X ◦ B)
• (Cond ? A : B) ⊗ (Cond ? C : D) ≡ (Cond ? A ⊗ B : C ⊗ D)

/* Distribute extract over addition */
• (A + B) [J:0] ≡ A[J:0] + B[J:0]

/* Merge consecutive concatenations */
• (A[K][J] ◦ (A[J][I] ◦ C)) ≡ A[K:I] ◦ C

Figure 3.3: Additional simplification rules over bit-vector logic

3.5.1 Co-Simulations against Hardware

One way of establishing trust in a specification is by testing specifications against ex-
isting implementations [128, 154, 151, 88, 132, 183, 87]. Empowered by the fact that we
can directly execute the semantics using the K framework, we validated our model by co-
simulating it against a real machine. During co-simulation, we execute a machine program
on the processor as well as on our K model and compare the execution results after every
instruction. In this work, we co-simulated our model against two Intel implementations that
were available to the authors at the time of writing: “Intel Xeon CPU E3-1505M v6” and
“Intel Xeon CPU E5-2640 v4”. We admit that testing the model against other hardwares
(such as AMD) would contribute to more thorough validation of our model, having the po-
tential of revealing flaws in those implementations and/or additional imperfections in the
manual as well, which we leave as future work.
We first describe our test-infrastructure and then talk about individual validation experi-

ments and results.

Test Harness During co-simulations, we need to make sure that the program must be
instrumented similarly both on our model and the real hardware. We use the GNU Debug-
ger [184] to instrument programs on hardware. We developed instrumentation tools based
on K framework to gain similar capabilities for our model. Using these tools we can record

37

the output state (including memory) after the execution of each instruction. To facilitate
debugging, in the event when the output states do not match, we developed a tool which
points to the first instant when the output states diverge and this saves debugging time.
The co-simulation experiments are done in the following two phases: (1) Instruction level

validation: testing individual instructions, and (2) Program level validation: testing a com-
bination of instructions as a part of real-world programs.

Instruction Level Validation The goal here is to execute individual instructions both
on hardware and our model using test inputs and then compare the output states.
K already has matured library support for bit-vector, integer and floating-point theories.

We use bit-vectors to implement the values stored in registers or memory. Depending upon
an instruction mnemonic, these values can be interpreted as integers (signed/unsigned) or
floating-point values (with various precisions). We augmented the library support in K
framework to interpret these bit-vectors accordingly. With that support, we can execute and
hence test instructions implementing various floating-point operations including conversions
(to and from integer/floating-point values) with selectable rounding modes (e.g. Nearest,
+Inf, -Inf and Truncate).

Test Inputs A test input is a CPU state which includes values for all registers, flags and
memory. Our test input set contains more than 7, 000 inputs, obtained from the following
sources:

1. In section 3.3.3, we mentioned that Strata starts its algorithm with a set of test inputs
which keeps on augmenting itself during the process of stratification. We used the final
augmented test-suite of 6630 test inputs,

2. While testing instructions implementing floating-point operations, we found that many
of the test inputs are representing a NaN or Infinity and it makes no sense to test with
such instances. We did our best effort by manually generating more than 100 unique
floating-point values by consulting the IEEE floating-point arithmetic standard [185],

3. We used the (∼100) test-inputs offered by Remill [49], and

4. We manually implemented a regression test-suite worth of around 200 test-inputs which
we accumulated over the course of the project.

The above test-inputs are publicly available at [186, 187]. Note that, each instruction
semantics consists of one or more semantic rules, where those rules cover different cases of

38

the instruction behaviors (including the undefined ones). We ensure that our test inputs
are sufficient enough to trigger all of the semantic rules, achieving the full “semantic-rule”
coverage.

Results For each immediate instruction with a constant operand of size 8-bits, we tested
all the 256 variants of the instruction using the above set of test inputs. There are 62

immediate instructions with a constant operand width larger than 8-bits. Testing with all
possible values of the constant (which could be 232 for a 32-bit constant) is impractical, so
we limited the constant operand to the first 256 values and other interesting values like all
ones, setting or resetting the bits at the byte/word/quad-word boundaries etc.
Our current implementation of the fused-multiply-add operation11 incorrectly rounds the

operation twice (after multiplication and addition) as opposed to once. As a result, we
encountered floating-point precision issues while testing instructions implementing those
operations (for example vfmadd132pd). This is a limitation of the underlying K library
and more details about this limitation can be found in Section 3.7.
While performing the validation tests, we encountered various cases where the output state

obtained by executing the semantics on our model does not agree with that of the hardware
execution. The instruction semantics in our model is either based on the Strata project (for
the part we borrowed) or on the Intel manual. A difference in the output state could mean
a bug in Strata’s instruction semantics or in our interpretation of the Intel manual or in the
Intel manual itself. We found many bugs in our interpretation which we fixed, but in other
cases, we found issues in Intel manual and Strata project.

Inconsistencies Found in the Intel Manual Here are inconsistencies found during
development and testing. According to the manual, the semantics of vpsravd %xmm3,

%xmm2, %xmm1 seems to depend on the lower 100 bits of %xmm3, whereas the actual hard-
ware execution suggests that it should depend on the lower 128 bits. Similar inconsisten-
cies are found in instructions with mnemonics vpsllvd, vpsllvq, vpsravd. Also, we
found misleading typos related to instructions with opcodes vpsravw, vpsravd, vpsravq,
packsswb. All these findings were reported and acknowledged by Intel as issues in the man-
ual [108] (Volume 2: March 2018) and are fixed in the latest revision.

11According to the standard IEEE-754-2008 [185] (Definition 2.1.28), the operation
fused-multiply-add(x, y, z) computes x × y + z as if with unbounded range and precision,
rounding only once to the destination format.

39

Inconsistencies Found in Strata’s Simplification Rules While testing the instruc-
tions specifications borrowed from Strata, we found inconsistent behaviors with the actual
hardware. Moreover, the inconsistencies were discovered in the formulas of floating-point
instructions. This is not surprising because Strata models the floating-point instructions as
uninterpreted functions which cannot be executed or tested on hardware. Their semantics
are executable in our definition though, and thus we were able to test them thoroughly.
Note that Strata generates the formulas for these instructions by symbolically executing
the corresponding learned instruction sequences followed by a formula simplification pass.
Therefore, errors in those formulas can be due to bugs either in the symbolic execution
engine or in the simplification stage. Our testing shows that the second is true with the
following evidence. The simplification rule add_double(A, 0) == A does not hold for
A = −0.0. Same for add_single. These were reported [188]. Also, the simplification rule
sub_double(A, A) == 0 does not hold for A = NaN . Same is true for sub_single.
We found this bug in the branch of Stoke which is used in Strata. But this has been already
fixed in the latest Stoke branch.

Program Level Validation The goal here is to test the combination of instructions as
part of real-world programs and we chose to use GCC C-torture tests [107] for this purpose.
Specifically, we used the tests inside the “testsuite/gcc.c-torture/execute” directory for GCC
version 8.1.0. There are originally 1576 tests, which we compiled using the GCC switches
“-O0 -march=haswell -S -mlong-double-64 -mno-80387”. The last two switches
avoid generating x87 instructions that are not in the scope of work. We had to exclude 6 pro-
grams containing system-level instruction prefetchnta, which require modeling caches,
which we currently do not support. Many test-cases involve C-library functions, related to
I/O operations (e.g., printf, scanf) and heap allocation (e.g., malloc, free), which
we modeled in K. We implemented the I/O related library functions, covering most of the
their documented functionality, using K buitin I/O operators and the heap allocation re-
lated functions on top of our memory model. Note that most of such library functions use
systems calls (e.g., open, write, sbrk etc.) which we do not support. As a consequence,
we cannot execute the native x86-64 implementation of those library functions. Hence, we
implemented simpler alternative models of those. As our support of C-library functions
is not exhaustive, we have to exclude 22 programs containing un-supported functions like
vfprintf and vsprintf, which we plan to support in future. This brings us to a grand
total of 1548 viable tests, which are all tested. Out of those, we found that there are 293

cases where floating-point instructions are used covering 35 unique floating-point operations.
Moreover, all the test-cases together cover about 963 instruction variants, covering 30% of

40

our supported instructions. As before, we executed each program on the processor as well
as on our model and compared the output state after every instruction, which matches in
all the cases12.

3.5.2 Comparing with Stoke

Stoke [135]13 contains manually written semantics for ∼1764 x86-64 instruction variants,
a large fraction (81%) of which is also supported by Strata. The remaining fraction is
exclusive to Stoke. Comparing with Stoke provides an additional crosscheck on our model.
Moreover, these manually written formulas are based on a similar model of the CPU state
to ours, which makes it easier to compare them against ours by using an SMT solver. While
doing so we found inconsistencies between the two formalisms in a total of 16 mnemonics
(42 instruction variants), and after careful analysis, identified these as errors in the Stoke
specification of instruction semantics, as follows.

Inconsistencies Found in Stoke

1. For instructions like addsubpd %xmm1, %xmm2 , the order of addition and subtrac-
tion specified by Stoke is opposite to the one specified in the Intel Manual. Same is
true with the mnemonic addsubps. (Found in 12 instruction variants.)

2. The instruction pslld %xmm1, %xmm2 implements a logical left shift of packed data
by a count specified in %xmm1. Stoke’s specification vectorized the operand %xmm1

which is incorrect according to the manual. Similar issues were found in instructions
implementing the logical right shift operations on packed data. (Found in 18 instruc-
tions.)

3. Instructions cvtsi2sdl %eax, %xmm1 & vcvtsi2sdl %eax, %xmm0, %xmm1

are respectively SSE- and AVX-versions of the instruction to convert a double-word (32-
bit) integer to a scalar single-precision floating-point value. According to the manual,
in the AVX-version, the destination bits 127 − 64 of the register %xmm1 are updated
to the corresponding bits in the first source operand %xmm0. This is in contrast to
the SSE-version of the instruction where the destination bits 127 − 64 should remain
unmodified. Stoke specifies the semantics of the AVX-version similar to the SSE-
version, which is incorrect. (Found in 4 instruction variants.)

12Note that none of test-cases include floating-point instructions implementing fused-multiply-addition,
which we already acknowledged to have precision issues.

13Recall that Stoke is a stochastic super-optimizer leveraged by Strata for stochastic search.

41

4. Some instructions, like imulb %al, which drive flag registers to an undefined state
are not modeled correctly in Stoke. (found in 8 instruction variants)

All these errors were reported and confirmed [109, 110].

3.6 APPLICATIONS

In this section, we illustrate a few applications of our formal semantics, in addition to
the reference model mentioned in the previous section. Our goal here is to explain that our
semantics can be used for formal reasoning of x86-64 programs for a wide variety of purposes.
For this reason, the applications are illustrative only, not meant to serve as a comprehensive
evaluation or make any claim of scalability. Moreover, the reported performance of the
applications is not optimized14, and there is room for improvement, e.g., by providing custom
abstractions and lemmas specific to x86-64, similarly to [189]. However, we believe that
each application has the potential to be leveraged into a standalone tool, with its own user
interface and case studies, but this is not our goal here. In fact, thanks to the language-
parametric nature of K, none of these reasoning approaches can be regarded as novel per
se, because they are already used in the context of other languages defined in K and their
implementation is language-semantics agnostic. We begin with a discussion of a use case for
hardware verification.

3.6.1 Validating Processor Hardware

Verification is considered one of the most (if not the most) important challenges in modern
processor design, for several reasons: (i) the enormous state spaces of modern systems; (ii)
the lack of formal specifications in the state-of-practice, (iii) generating high-quality test
inputs for simulation, (iv) quantifying/analyzing the extent of coverage of simulation, and
(v) generating a complete set of properties for checking. For all these reasons, verification
is estimated to use 70% of the resources and time, while design takes only 30% [190].
A fully executable formal ISA-level specification such as the one developed here can im-

prove the state of practice in verification by providing a reliable specification of the functional
behavior of hardware with respect to observable states. This increases confidence in the in-
put tests, for both directed and random test generation. High confidence tests can reduce
time and increase focus during debugging, triage and diagnosis efforts.

14All these applications are realized based on the generic tools offered by the employed K semantic frame-
work and we do not work for improving their runtime, which is not impressive at time of implementation.

42

Second, since our method can symbolically execute instructions, it can be used to generate
input tests that have high coverage. While such analyses have been done at the detailed RTL
level [191, 192, 193, 139, 140, 194, 155, 138], there exists limited similar line of work at the
x86-64 ISA level15. The most significant advantage of such symbolic execution is the ability
to detect corner case or hard to detect bugs [191, 195]. This is analogous to finding security
vulnerabilities due to corner-case software bugs, illustrated in Section 3.6.3, but applied
to the hardware implementation instead of software. We expect that ISA level symbolic
analysis will uncover such subtle and complex bugs due to the higher level of abstraction
and greater scalability (in terms of execution lengths) than the RTL analyses.
A closely related challenge is checking the accuracy of ISA specifications, including ref-

erence manuals. By using such manual specifications to construct a formal specification,
we may uncover errors in the manual specifications. This is explicitly demonstrated by the
two bugs we discovered in the Intel x86-64 manual while performing the instruction-level
validation tests described in Section 3.5. These bugs were discovered as a result of running
test cases using both the formal semantics generated by reading the manuals and the hard-
ware, and finding a mismatch, then checking the manual specification carefully to determine
whether the bug lies in the manuals or in the hardware. At this point, it is imperative to cite
the pioneering work by Alastair Reid [164] to mechanically transform the ARM processor
specifications from documents intended for human consumption into trustworthy machine-
readable specifications, which is heavily tested using billions of instructions from official
ARM conformance tests [132]. The trust in the auto-generated specs is further enhanced
by formally verifying the specification itself (Reid et al. [153]), where they develop high-
level properties about the specification by translating natural language text in the reference
manual to their property notation and formally verify that the specification satisfies those
properties.
Given the formal semantics, a far more valuable strategy would be to automatically gen-

erate human-readable documentation from the formal specification. A basic version of this
strategy is likely quite feasible today [163, 196], and we hope that much more sophisticated
versions that synthesize illustrative examples and even explanatory text automatically could
be possible soon, given the ongoing advances in concolic test generation, program synthesis,
and natural language processing.

15It is worth mentioning the work by Martignoni et al. [100] about test-case generation for 32-bit x86
ISA by symbolically executing the instruction implementations in bochs [80] binary emulator. However,
floating-point instructions are excluded because the underlying symbolic execution engine does not support
them.

43

int s = 0; int n = N;
while (n > 0) { s = s + n; n = n - 1; }
return s;

(a) C source code

movl %edi, -20 (%rbp) # %edi holds N
movl $0, -4 (%rbp) # s = 0
movl -20(%rbp), %eax
movl %eax, -8(%rbp) # n = N
L3: # loop header

cmpl $0, -8(%rbp) # check n <= 0
jle L2 # if n <= 0, then jump to end, else continue
movl -8(%rbp), %eax # n > 0 at this point
addl %eax, -4(%rbp) # s = s + n
decl -8(%rbp) # n = n - 1
jmp L3 # jump back to loop header

L2:
movl -4(%rbp), %eax # n <= 0 at this point
ret

(b) x86-64 assembly code

Figure 3.4: sum-to-n program

3.6.2 Program Verification

The K framework provides a language-parametric, reachability logic theorem prover [197,
198]. We instantiated it with our semantics to generate a correct-by-construction deductive
verifier for x86-64 programs. Here, the functional correctness properties are specified as
reachability specifications, essentially a pair of pre- and post-conditions for each function.
The derived x86-64 verifier uses a sound and relatively complete proof system to prove the
given specifications w.r.t. the x86-64 semantics. Like in other deductive verifiers, repetitive
constructs such as loops and recursive functions need to be annotated with invariants. The
verifier is automatic: it requires only the program, its specification, and the invariants.
To demonstrate that our semantics can be used to verify x86-64 programs, we use the

x86-64 verifier to prove the functional correctness of the sum-to-n program as shown in
Figure 3.4. It takes N as input and returns the sum from 1 to N . The functional correctness
can be essentially described as: %rax =

∑N
1 n = N(N + 1)/2. We present the actual

specification that is fed to the x86-64 verifier. The specification has two parts: the top-level
specification and the loop invariant.

44

<regstate>...
"RDI" 7→ N64
"RBP" 7→ 5664
"RIP" 7→ (064 => -164)
"RAX" 7→ (_ => N*(N+1)

2 64
)

...</regstate>
<memstate>...

// -8(%rbp): n
48 7→ (byte(0,_) => byte(0, 032))
49 7→ (byte(0,_) => byte(1, 032))
50 7→ (byte(0,_) => byte(2, 032))
51 7→ (byte(0,_) => byte(3, 032))
// -4(%rbp): s
52 7→ (byte(0,_) => byte(0, N*(N+1)

2 32
))

· · ·
55 7→ (byte(0,_) => byte(3, N*(N+1)

2 32
))

...</memstate>
requires N ≥ 0 and N < 2^31 and (N*(N+1))/2 < 2^31

(a) Top-level specification

<regstate>... "RIP" 7→ (L3 => L2) ...</regstate>
<memstate>...

// -8(%rbp): n
48 7→ (byte(0, A) => byte(0, 032))
49 7→ (byte(1, A) => byte(1, 032))
50 7→ (byte(2, A) => byte(2, 032))
51 7→ (byte(3, A) => byte(3, 032))
// -4(%rbp): s
52 7→ (byte(0, B) => byte(0, B+ A*(A+1)

2 32
))

· · ·
55 7→ (byte(3, B) => byte(3, B+ A*(A+1)

2 32
))

...</memstate>
requires A >= 0 and A < 2^31 and B >= 0 and B < 2^31

and B + ((A * (A + 1)) / 2) >= 0
and B + ((A * (A + 1)) / 2) < 2^31

(b) Loop invariant

Figure 3.5: Specification of sum-to-n program

45

Figure 3.5(a) shows the functional correctness specification of the sum-to-n program.
The regstate cell specifies the relevant registers used in the program, omitting the irrele-
vant ones denoted by “...”. Specifically, it specifies that %rdi holds the valueN without being
updated during the program execution, and %rax, which is pre-conditioned on any symbolic
value (denoted by mi(64, _:Int):MInt), is ensured to have the expected return value.
The memstate cell specifies the relevant part of the memory omitting others (denoted by

“...”). It specifies the stack memory addresses -8(%rbp) and -4(%rbp) corresponding to
n and s, respectively. Specifically, the stack memory addresses -4(%rbp) and -8(%rbp)
start with any state and ensures to have respectively the correct sum and 0 when the program
terminates. The requires clause specifies the condition of N that prevents the arithmetic
overflow. Figure 3.5(b) shows the loop invariant specification. It specifies the behavior of an
arbitrary loop iteration. That is, assuming the values of n and s be A and B, resp., in the
beginning of an arbitrary loop iteration, it specifies their final values in the end of the entire
loop execution, which are 0 and B + A(A+ 1)/2, respectively. Note that when A = N and
B = 0, i.e., the first loop iteration, the loop invariant captures the entire loop behavior. The
K verifier takes a minute16 to verify the sum-to-n assembly code satisfies the functional
correctness specification.

3.6.3 Symbolic Execution

K automatically derives a correct-by-construction symbolic execution engine from the
given semantics. Being instantiated with our semantics, the engine can be used to symboli-
cally execute and explore all possible paths in the given x86-64 program. In this section, we
demonstrate how this capability can be used to find a security vulnerability.
Consider the code snippet of the HiStar [199] kernel, as shown in Figure 3.6(a)17, in

which the KLEE [200] team found a security vulnerability. The safe_addptr function
is supposed to compute the sum of two arguments a and b, setting the flag argument of
when the arithmetic overflow occurs during the addition. That is, one of the functional
correctness properties is that “*of = 1 if a+b > r”, where + is the mathematical addition
(with no overflow). The functional correctness, however, is not satisfied when the source
code is compiled to a 32-bit target, since the size of r becomes 32-bit (uintptr_t) while

16The application is for illustrative purpose and evaluating its scalability is left to future work. However,
we note that the reported verification time would not be a major concern for scalability because of the
modularity of deductive verification.

17For the simplicity of the presentation, in Figure 3.6(b), we highlight only the key computations of the
assembly compiled from the source. However, in our experiment, the full unmodified compilation is used for
the symbolic execution.

46

uintptr_t safe_addptr(int *of, uint64_t a, uint64_t b) {
uintptr_t r = a + b;
if (r < a) { *of = 1; return r; } // "error state"
else { return r; } } // "safe state"

(a) C source code

Address %ebp + 12 contains 64-bit value ’a’
Adress %ebp + 20 contains 64-bit value ’b’
Let a[31:0]: lower 32 bits of ’a’
b[31:0]: lower 32 bits of ’b’

pushl %ebp
movl %esp, %ebp
subl $32, %esp
movl 12(%ebp), %eax
movl %eax, -24(%ebp) # a[31:0] stored in -24(%ebp)
movl 16(%ebp), %eax
movl %eax, -20(%ebp) # a[63:32] stored in -20(%ebp)
movl 20(%ebp), %eax
movl %eax, -32(%ebp) # b[31:0] stored in -32(%ebp)
movl 24(%ebp), %eax
movl %eax, -28(%ebp) # b[63:32] stored in -28(%ebp)
movl -24(%ebp), %edx # a[31:0] moved to %edx
movl -32(%ebp), %eax # b[31:0] moved to %eax
addl %edx, %eax # r = a[31:0] + b[31:0]
movl %eax, -4(%ebp) # store r at -4(%ebp)
movl -4(%ebp), %eax
movl $0, %edx # check if (032 ◦ r) < a
cmpl -24(%ebp), %eax # ◦: denotes concatenation
movl %edx, %eax
sbbl -20(%ebp), %eax
jnc .L2
movl 8(%ebp), %eax # true branch: "error state"
movl $1, (%eax) # set *of to 1 and %eax to r
movl -4(%ebp), %eax # prepare return value r
jmp .L3
.L2:
movl -4(%ebp), %eax # else branch: "safe state"; prepare return value r
.L3:
leave
ret

(b) x86-64 assembly code in a 32-bit target

Figure 3.6: A security vulnerability in the HiStar kernel

47

int popcnt(uint64_t x) {
int res = 0;
for (; x > 0; x >>= 1) { res += x & 0x1ull; }
return res; }

Figure 3.7: popcnt program

the sizes of a and b are still 64-bit (uint64_t).18 A suggested fix [200] is to change the
conditional expression from r < a to r < a || r < b.
Using the symbolic execution engine derived from our semantics, we could find (in ∼80

seconds) that, in the assembly code as shown in Figure 3.6(b), there exists a path that
reaches L2 (i.e., the else branch) even if the addition overflow occurs. The (simplified) path
condition provided by the symbolic execution engine is a+b ≥ 232 ∧ (a+b mod 232) ≥ a,
where 0 ≤ a < 264 and 0 ≤ b < 264. We asked Z3 to solve the above path condition and
it returned a solution (i.e., a concrete input to trigger the security vulnerability): a =
0x00000000ffffffff and b = 0xffffffff00000000.

3.6.4 Translation Validation of Optimizations

K also provides a program equivalence checker that can be used for the translation vali-
dation of compiler optimizations. We derived an x86-64 program equivalence checker from
our semantics and used it to validate different optimizations. Figure 3.7 shows a program
that we considered, popcnt, which counts the number of set bits in the given input.
We compiled the program with different optimizations: the GCC compiler optimizations

(-O0, -O1, -O2, and -O3), and the Stoke super-optimization. On top of the baseline (-O0),
the -O1 optimization produces a code obtained by performing the mem2reg optimization,
the -O2 optimization produces one by factoring out the common statement over different
branches,19 and the -O3 optimization produces the same code with -O2. The Stoke super-
optimization translates the assembly code into a single instruction: popcnt %rdi, %rax,
where %rdi and %rax correspond to the input and the return values, respectively.
We validated these optimizations by checking the equivalence between the optimized pro-

grams. The equivalence checker symbolically executes each program and compares their
return values (i.e., the symbolic expression of the %rax register value) using Z3. It is able to

18The function call safe_addptr(*of, address, size) is used to validate that an user is allowed
to access the memory range specified by the arguments address and size. The access is denied if an
overflow occurs. A bug in the overflow detection might be exploited by an attacker to gain an access to a
memory region beyond the control of the running process.

19Specifically, by performing the common subexpression elimination, followed by certain statement re-
ordering optimization, followed by the strength reduction.

48

prove successfully that all optimization variants are equivalent, i.e., to check the correctness
of all these optimizations on popcnt.
Note that the symbolic execution of the popcnt program does not require an additional

annotation about the loop because the number of loop iterations is bound to a constant (i.e.,
the bit-size of the input, 64).20 In general, however, the equivalence checker may require us
to provide an additional annotation about loops, which can be automatically generated by
augmenting the underlying compiler.

3.7 LIMITATIONS

Our limitations mostly include missing features of the x86-64 and execution environment,
as follows.
Floating-Point Operations. Our testing shows that we have FP precision issues with

instructions implementing the fused-multiply-add operation. This is because the current
K’s floating-point library [201] implementation lacks support of the FMA capabilities of
GNU MPFR library [202], which we plan to include in future.
Exceptions. We do not support exceptions, including the FP exceptions. Moreover, we

do not distinguish between quiet and signaling NaN, i.e. all NaNs are quiet in our model.
When the exception condition is encountered, execution proceeds after setting the exception
flag.
Concurrency. Like the closest previous work [88, 87], we do not model concurrent seman-

tics or the relaxed memory model as defined by other previous work [127, 126]. Our design,
being parameterized on memory model, is amenable to accommodate others’, which we plan
to achieve in future.
Instruction Decoding. The instruction decoding semantics is not modeled in the cur-

rent work. However, we want to note that we have formalized the Intel XED disassembler
algorithm, and we are working on formalizing the instruction decoding.

3.8 LESSONS LEARNED

Here we present the lessons we learned during our semantics development, identifying
important aspects to be considered, and clarifying best practices for developing a large ISA

20However, an additional annotation about the loop (i.e., a loop invariant) can be provided to improve
the symbolic execution performance. For example, symbolic execution of the popcnt program without the
loop invariant requires to iterate the loop 64 times, which takes ∼20 minutes, but it can be reduced to a
minute if the loop invariant is provided.

49

semantics. We also discuss the novel aspects of our semantics development approach that
allow us to obtain a complete and faithful semantics with a practical amount of effort.

Automatic semantics synthesis Most previous efforts in formalizing x86-64 semantics
can be categorized based on whether the underlying approach is fully manual [88, 91, 90, 129]
or fully automatic [87, 112, 92, 93]. We note that none of these approaches, when used
in isolation, sufficiently scale to a complete and faithful semantics, as much as ours that
combines these complementary approaches so that they benefit from each other.
Section 3.4.2 reports the challenges we encountered in achieving fully automatic synthesis

of the entire x86-64 semantics. Specifically, in a vast instruction set like x86-64, it is common
that many instructions can be grouped together where the instructions of each group are
similar to each other except for a few differences. An automatic synthesis technique leverag-
ing such a group, such as the stratification approach [87], would effectively synthesize such
instruction variants’ semantics, provided that the semantics of representative instructions in
each group are given in advance.21 The problem, however, is that it is non-trivial to prop-
erly partition all the instructions into such groups, providing the representative instruction
semantics for each group, without a priori knowledge about the semantics of all instructions.
The stratification approach [87] had been proposed to solve this dilemma, but it turned
out to be not sufficient, leaving a substantial part of semantics unspecified. The vanilla
stratification approach [87] turned out to be not sufficient to solve this dilemma, leaving
a substantial part of the semantics unspecified. Thus, we decided to manually provide the
information about the partition and representatives, for which we had to consult the manual
to obtain knowledge about the remaining part of semantics. Once we obtained the required
knowledge, however, we realized that it would be more straightforward to directly turn the
knowledge into the semantics than going through the synthesis process, and thus we ended
up manually specifying the remaining part of the semantics.
Another important step of the semantics synthesis is post-processing. The generated

semantics is often verbose and not necessarily human-readable. The post-processing step is
desired to simplify the generated semantics to be succinct, which helps to increase the human-
readability as well as to improve the efficiency when being employed in other applications
(e.g., the size of SMT formula encoding can be reduced, which can reduce the burden of SMT
solvers). For our semantics development, we have written dozens of simplification rules that
are fed to the K framework to simplify the synthesized semantics further (Section 4.1).

21For certain complex instructions, the size of their group is very small (i.e., they are quite different to
each other), and thus the automatic synthesis would not yield a sufficient gain over the effort of specifying
the semantics of their representatives, but we found that the number of such isolated instructions of x86-64
is small.

50

Modeling and executing implementation-dependent behaviors The x86-64 ISA
standard admits implementation-dependent behaviors for certain operations on certain input
patterns, that is, each processor implementation can freely choose the execution behavior for
each such case (Section 3.2). Faithfully modeling the implementation-dependent behaviors
is necessary for the correctness of the semantics. For example, as mentioned in Section 3.5.2,
Stoke [135] does not faithfully model such behaviors, causing certain errors in their semantics
that we revealed [110].
There are two natural, faithful ways of specifying implementation dependent behaviors.

One is to parameterize the semantics over the implementation-dependent behaviors, and
later instantiate it with a profile that describes specific behaviors taken by the processor of
interest. This approach is desirable for validating the semantics using concrete execution.
Another is to introduce non-determinism in the semantics, which captures a set of different
possible behaviors in a single semantics, which is desirable during symbolic interpretation of
the ISA code. We note that most of other existing direct x86-64 semantics employ approaches
similar to the ones described above, faithfully modeling the implementation-dependent be-
haviors. For example, Goel et al. [89] models such behaviors using a constraint function which
is guaranteed to be unique and non-deterministic, while they employ the aforementioned
profile-based approach for concrete execution. TSL [91] makes both approaches available,
from which their users can choose.
In our semantics, we faithfully modeled the undefined value as a unique symbol (called

undef) whose value is non- deterministically decided each time within the proper range. For
validating the semantics, we concretely executed the semantics while the non-deterministic
behaviors are represented symbolically using the undef symbol and then we checked if the
hardware output is matched by (an instance of) the simulated output.

Employing multiple semantic engineering frameworks We found that employing
multiple semantic frameworks is helpful. Specifically, we employed the two semantic frame-
works, K and Stoke, where we enjoyed all of their (executive) benefits that make it easier
for us to write and validate the semantics, and utilize the semantics in various applications.
For example, we wrote the semantics of certain complicated instructions (e.g., pcmpestri,
pcmpestrm, and pclmulqdq) in K, as K provides an easy way to specify behaviors with
multiple cases, while Stoke would have required us to write a big nested if-then-else expres-
sion, which is not convenient. As another example of the benefits, we used Stoke to validate
most of our instruction semantics as Stoke provides an infrastructure22 for hardware co-

22Indeed, we contributed to their infrastructure as well [111, 203].

51

simulation, whereas we employed K to validate the semantics of floating-point instructions
as Stoke does not support executing floating-point operations while K does.
In order to use the two frameworks interchangeably, we developed a translator between

the semantics of the two frameworks. To check the correctness of the translation, we verified
equivalence between the original and the translated semantics for each instruction using the
Z3 SMT solver.
To summarize, employing multiple frameworks with validated translation between them

improved both the ease of specification (using K) and ease of validation (using Strata),
which expedited our semantics development process and thus significantly contributed to the
completeness of our semantics. Moreover, we immediately benefit from all of their formal
analysis tools, increasing the applicability of the semantics in various formal reasoning tasks.
Existing semantics development efforts (e.g., [88, 87]), however, employ a single framework
without utilizing the potential of other frameworks, which otherwise might have improved
completeness and/or faithfulness of their semantics with the same amount of effort.

52

CHAPTER 4: SCALABLE VALIDATION OF BINARY LIFTERS

In this chapter, we present our published contribution [146] to show that formal translation
validation of single instructions for x86-64 is not only practical, but can be used as a building
block for a scalable solution to full-program translation validation eliminating the expense
of heavyweight equivalence checking.
The rest of this chapter proceeds as follows. The next section gives a high-level overview

of our approach. Section 4.2 gives some background on building blocks used in our work.
Section 4.3 describes our approach for formal single-instruction Translation Validation. Sec-
tion 4.4 describes how we scale to full-program Translation Validation. Section 4.5 describes
our experimental evaluation, including the bugs in McSema uncovered by our work, and the
effectiveness of full-program Translation Validation. Section 4.6 briefly discusses some of the
key limitations of this work to date, along with avenues for future work.

4.1 APPROACH OVERVIEW

In this section, we provide a high-level overview of the two main components of our
approach, i.e., single-instruction translation validation and program-level validation. Before
we begin, we first describe the scope to which our approach is currently applicable.
Applicability of our Approach. Our techniques are generally applicable to verify

binary lifters from any ISA, e.g., x86, ARM, RISC-V, PowerPC, to an intermediate rep-
resentation, such as LLVM IR [96], VEX IR [16] etc., as long as (a) formal semantics for
both the ISA 1 and the target languages are available, and (b) the target language can be
transformed to a canonical representation through a series of semantics-preserving transfor-
mations. Through the rest of this work, we fix our discussion to lifting x86-64 to LLVM
IR using the most mature, open-source lifter McSema [33]. Our canonicalizer is approx-
imated using a subset of LLVM optimization passes. LLVM, being an industry standard
compiler IR, many decompilation projects [33, 49, 57, 67, 61] prefer to employ LLVM as
their lifted representation mainly because it enables various “out-of-the-box” analyses and
optimizations which minimizes the effort in the post-lifting decompilation tasks. Moreover,
LLVM IR is backed-up with its formal semantic models [94, 95] which assists formal rea-

1Fortunately, this is not a bottleneck for some of the widely used ISAs as they are already backed-up
with formally specified semantics (e.g. x86 [91, 90, 204], ARM [128, 205, 156], RISC-V [204, 90], CHERI-
MIPS [128], PowerPC [90, 91]). For x86-64 ISA, despite several explicit attempts [87, 88, 89] and other
related systems [90, 49, 91, 92, 93], there does not exist any complete formal semantics of x86-64 up until
we define a fully executable formal semantics of x86-64 [86] (refer chapter 3).

53

x86-64
Instruction, I (of P)

Lifter,D
(under test)

IR Sequence, S

Symbolic Ex.
w/ x86-64 model

Symbolic Ex.
w/ IR model

Verification Condition Generator

Z3 Solver

R == unsat
Report
Bug

(a) Single Instruction Validation

Symbolic
Summary

(summx86−64)

Symbolic
Summary
(summir)

Verification Condition
z3.solve(summaryx86−64 6= summaryir)

R

no

Database,Store
(I,S), ...

yes

x86-64 Program, P

Compositional
Lifter,D′

Lifter,D
(under test)

Transformer Transformer

Matcher

M == equiv

(b) Program-level Validation

Potential Bug

X

Proposed IR, T ′ Lifted IR, T

Canonical
IR, N ′

Canonical
IR, N

Matcher Results, M

no yes

Address Reloc.
info. R of P

Figure 4.1: Overview diagram of the translation validation framework

soning on program written in LLVM IR. Similarly, x86-64 instruction set architecture (ISA)
is one of the most complex and widely used ISAs on servers and desktops. Hence, it is
imperative to ensure the correctness of lifter targeting x86-64 program binary to LLVM IR.
Other notable lifters [57, 66] from x86-64 to LLVM IR may be directly supported in our
framework through minimal engineering effort. Additionally, we restrict our work to the
common case of compiler-generated binaries, and we do not consider binaries that are de-
liberately obfuscated to deter reverse engineering, which is in-line with previous work on
translation validation. Lastly, as we aim to validate the lifted code and do not focus on
finding bugs lower in the pipeline, e.g., in the loading and disassembly of binaries. This is
orthogonal to our work and has been shown to be relatively mature for the typical case of
compiler-generated binaries [206].
Our overall approach is a composition of two techniques, as shown in Figure 4.1, to validate

the translation of an x86-64 program P to a lifted LLVM IR program T using a lifter D.

54

Single-Instruction Translation Validation The goal of single-instruction translation
validation, as shown in Figure 4.1(a), is to formally validate the translation of individual
instructions of P in isolation using the following steps: (i) Each x86-64 instruction I is lifted
to an LLVM IR sequence S using the lifter D (McSema in our case), (ii) Next, we identify
the input/output variable correspondence between I and S, i.e., we determine a mapping of
registers/memory in I to IR entities in S, (iii) Using the formal semantics of the x86-64 and
IR, we perform symbolic execution to generate symbolic summaries for I and S, (iv) Lastly,
we say S is the correct translation of I if the corresponding summaries are semantically
equivalent. We employ the Z3 [207] solver for the equivalence checks. If the two summaries
mismatch, meaning we find a bug, which is then reported. Otherwise, we add the pair
<I,S> to a database (called Store), keyed by I, allowing reuse of the validation result.
Program-Level Validation The program-level validation, as shown in Figure 4.1(b),

aims to validate that the lifted LLVM program T, generated by a lifter D, is the correct
translation of binary program P. The key idea behind the validation strategy is to pro-
pose an alternate LLVM program T′ as a reference translation to be compared against T.
The translation T′ is generated using a tool we developed, called Compositional Lifter, by
carefully composing the validated lifted IR sequences corresponding to the individual binary
instructions of P. The validated IR sequences are provided by the single-instruction transla-
tion validation technique above. The composition T′ preserves the data- & control-flow of the
original binary-program P and, more importantly, is syntactically very close to the original
lifted IR T.
Next, we seek to compare T and T′ one function at a time. Towards that goal, we use a

set of 17 manually discovered LLVM optimization passes to close the syntactic gap between
every pair of corresponding functions, F & F′ of T & T′ resp., except for the names of virtual
registers and the order of non-dependent instructions. We compare the data dependence
graphs extracted from the optimized pair of functions by a Matcher based on graph iso-
morphism (refer to Section 4.4.2). The isomorphism of data dependence graphs, for each
pair of optimized functions, implies that the original lifted IR T is semantically equivalent
to the reference translation T′, and therefore T is the correct lifting of the input binary
program. Otherwise, the automatic validation fails, and mismatch reported as a potential
bug for further analysis. The reason that we can get false alarms (i.e., even if F and F′ are
semantically equivalent, the data dependence graphs extracted from their optimized versions
are not isomorphic) because the selected LLVM passes may not be effective in reducing F
and F′ to isomorphic graphs.
Composing the Techniques In essence, the two techniques are independent, and their

results do not depend on the other, with one minor caveat: the results from program-level

55

validation, either a complete equivalence match, or a potential mismatch, are not sound
until the IR instruction sequences used to construct T′ are validated by the single-instruction
translation validation. However, the ordering between the two techniques does not matter,
i.e., single-instruction translation validation may be done offline; either ahead of time, when
composing instruction during program-level validation, or done in a batch after program-level
validation.

4.2 PRELIMINARIES

In this section, we provide background on various pieces used in our work: (i) The binary
lifter under test, McSema, (ii) The formal x86-64 semantics, and (iii) The formal LLVM IR
semantics.

McSema McSema [33] is the most mature, well tested, open-source lifter to raise binaries
from x86-64 instructions to LLVM bitcode. At a high level, McSema is split into two parts:
(a) front end, and (b) back end. The front end is responsible for parsing, loading, and
disassembling a binary and exports an interface to the back end to query for the required
information, e.g., the defined symbols, sizes of various binary sections, instruction listings,
etc. The back end then uses this information and Remill [49] library to lift the individual
instructions. McSema supports multiple different front ends with IDA Pro being the most
robust, and supported option.
Conceptually, the implementation of McSema’s back end is fairly straightforward: Mc-

Sema exposes all of the architecture state, i.e., the program registers, conditional flags, and
program memory, through an LLVM struct, aptly named State, which is passed as an argu-
ment to every lifted function. McSema simply scans through the disassembly of the binary
and lifts each instruction one by one, emitting code to read and/or update the members of
the struct based on the semantics of the lifted instruction. In essence, the code lifted by
McSema simply encodes the operational semantics of the binary in LLVM IR.

x86-64 Formal Semantics Our current work uses state-of-the-art x86-64 semantics, de-
veloped in our previous open-sourced work [86], which presented the most complete, thor-
oughly tested formal semantics of x86-64 to date, and faithfully formalizes all non-deprecated,
sequential user-level instructions of x86-64 Haswell instruction set architecture. The speci-
fication covers 774 mnemonics, and each mnemonic admits several variants (3155 in total),
depending on the types (i.e., register, memory, or constant) and the size (i.e., the bit-width)

56

of operands. The semantics, defined in K [178], is executable (i.e. allows concrete execution),
and comes with a symbolic execution engine automatically generated by the K framework2.

LLVM IR Formal Semantics We use the LLVM formal semantics [94], defined in K,
which models LLVM types (integers, composite arrays, structs and their corresponding point-
ers), the getelementptr instruction (used to compute the address of an element nested
within a aggregate data-structure), integer arithmetic & comparison operators, memory
operations (load, store, and alloca), control flow instructions for unconditional and
conditional branches, as well as function calls and returns. However, the semantics does
not support floating-point, vector types, and most LLVM intrinsic functions. As a result,
we cannot validate the translation validation of certain binary instructions whose lifted IR
includes such unsupported constructs. This is a limitation of the available LLVM semantics
and not a limitation of our work.

4.3 SINGLE-INSTRUCTION TRANSLATION VALIDATION

The single-instruction translation validation is responsible for validating the lifting (using
McSema) of an x86-64 instruction I to LLVM IR sequence S. This is achieved by (1)
Establishing variable correspondence between I and S, (2) Generating symbolic summaries
individually for I and S for each output variable, (3) Generating verification conditions
meant to establish semantic equivalence between the corresponding pair of summaries, and
solving those using an SMT solver (Z3). Next, we describe each one of these steps.

(1) Establishing variable correspondence: “Variable correspondence” between I and S
refers to identifying the correspondence between the input/output variables of I and those
of S. By input (resp., output) variables of an instruction we mean implicit and explicit
register/memory/flags which are read (resp., written). By input (resp., output) variables
of an lifted IR sequence S we mean the IR variables which are used to simulate the input
(resp., output) variables of I. This information is valuable in setting up pre-conditions over
corresponding input variables and post-conditions over output variables, thereby assisting
the equivalence proofs between I and S.
As described in Section 4.2, McSema models the hardware architecture state using a State

structure which holds all the simulated hardware registers at different offsets in the structure.
2Given a syntax and a semantics of a language, K automatically generates a parser, an interpreter, a

symbolic execution engine, as well as formal analysis tools such as model checkers and deductive program
verifiers, at no additional effort.

57

Hence, the input and output variables in the context of McSema are particular struct fields,
identified by constant offsets. As an example, for an instruction adcq %rax, %rbx, the
input variables are %cf, %rax & %rbx, and output variables are %rbx, %cf, %pf, %sf,
%zf, %of, and %af. Figure 4.2 shows how these input/output registers are mapped to the
McSema State structure in lifted LLVM code.

// State structure type with irrelevant fields replaced with “. . .”.
// The nested type “struct.GPR”, at offset 6, models the general-purpose
// simulated registers. Similarly, the type “struct.ArithFlags”, at offset 2,
// models the simulated status flags.
%struct.State 7→ type { %struct.ArchState, ...,

%struct.ArithFlags,..., ..., ..., %struct.GPR, ...}

// Pointers to simulated registers (or flags) are computed using LLVM’s
// getelementptr instruction. The constant operands m and n are offsets
// to index to the different nested elements of an object pointed to
// by a base pointer “%state” of the above type, denoting field
// n within the nested struct at field m of structure “%struct.State”.
getelementptr inbounds %struct.State, %struct.State* %state, i64 0,

i32 m, i32 n, i32 0, i32 0

// Mapping of various simulated registers to getelementptr offsets.
rax 7→ m = 6 n = 1; rbx 7→ m = 6 n = 3
cf 7→ m = 1 n = 1; pf 7→ m = 1 n = 3
af 7→ m = 1 n = 5; zf 7→ m = 1 n = 7
sf 7→ m = 1 n = 9; of 7→ m = 1 n = 13

Figure 4.2: The mapping of input/output registers of adcq %rax, %rbx to the McSema
State structure

We use the above architectural state representation of McSema to infer how the hardware
registers or flags in the binary instruction corresponds to the simulated version of those in
the corresponding lifted IR3.

(2) Generating symbolic summaries: The K framework takes the K-specification of
x86-64 (resp., LLVM IR) as input and automatically generates a symbolic execution engine
which we leverage to do symbolic execution of an x86-64 instruction (resp., the correspond-
ing lifted LLVM IR sequence). The result of symbolic execution on an x86-64 instruction
(resp., the corresponding lifted IR) is a set of summaries capturing the output behaviors
corresponding to each register, flag, and clobbered memory (resp., the simulated version
of those in the lifted IR), expressed using K builtin operators such as add, concat and

3Like McSema, fcd [57] has a similar approach to model the architectural state and infer variable cor-
respondence. In case of Rev.Ng [66], the architecture registers are modeled as LLVM globals and variable
correspondence refers to the mapping between x86-64 registers with those globals.

58

extract, over the symbolic values assigned to the input variables. For the running exam-
ple of adcq %rax, %rbx, Figure 4.3 shows the symbolic summary corresponding to the
output register %rbx4 (summaries of other registers and flags are omitted).

// V_CF1, V_RAX64 and V_RBX64 are the symbolic values
// assigned to input variables. The subscript denotes
// the bit-width of the value. "extract" returns bits
// 1..64, where bit 0 is the most significant bit.
extract (

add (
(#if eq (V_CF1 , 11) #then

add (concat (01 , V_RAX64) , 165)
#else

concat (01 , V_RAX64)
#fi)
, concat (01 , V_RBX64),
)

1 , 65)

Figure 4.3: The symbolic summary corresponding to the output register %rbx of instruction
adcq %rax, %rbx

Similar symbolic summaries will be obtained for the simulated registers and flags in the
lifter IR sequence, which is omitted as well for brevity.
Most x86-64 instructions require a bounded (and small) number of operations. However,

the x86-64 ISA includes instructions with Repeat String Operation Prefix (e.g. rep, repz
etc.) to repeat a string instruction the number of times specified in the count register or until
the indicated condition by the prefix is no longer met. That is, their specification involves
a loop that the symbolic execution must handle. Conceptually, such loops can be realized
using a for loop with index as the loop count decreasing by one in every iteration and the
body consists of a if check which can break the loop if the indicated condition is met or the
index reduces to zero. These loops are bounded by the maximum value the count register
can hold and are simple as the index cannot change in any other ways; thus the x86-64
instruction will trivially terminate. In order to prove the equivalence of the translation of
such an instruction, we first set up the precondition asserting that the register or memory
value, corresponding to the loop trip count, and the corresponding simulated register in lifted
IR are equivalent. Next, we symbolically execute the instruction and its corresponding lifted
IR with a symbolic input state and comparing the summaries (using solver checks) of any
single ith iteration of the two loops. This suffices to establish equivalence between the two

4All the values or addresses stored in registers, memory or flags are implemented as bit-vectors and
represented as VW to be interpreted as a bit-vector of size W and value V .

59

loops, by co-inductive reasoning [208] to check the behavior of corresponding loops evolves
in lock-step, and the fact that such loops are bounded by a constant thus must terminate 5.

(3) Generating & Solving the verification conditions: First, we convert the sum-
maries written in K builtin operators to SMTLIB expressions. Given two symbolic sum-
maries summaryrbxx86−64 and summaryrbxir , for output x86-64 register %rbx and corresponding
simulated register, we emit a satisfiability query as follows, to be solved by an SMT solver
like Z3,

(assert (not (= summaryrbx
x86−64 summaryrbx

ir)))

Similar queries are generated for all registers, flags, and clobbered memory. Moreover, we
add pre-conditions asserting the equivalence of input symbolic values assigned to the input
variables of the binary instruction and its corresponding variables in the lifted IR. Note that
we generate queries for all registers/flags, not just the ones clobbered because the registers
and flags not modified by the instruction should have equivalent summaries (which is the
unmodified value of the symbolic input value).
The verification condition queries are then dispatched to the Z3 solver to prove equivalence

between corresponding summaries. When the query of non-equivalence is satisfiable, the
solver generates an example which can be used as a test input to trigger the mismatch. Any
such mismatches are regarded as bugs in McSema and reported along with the associated
test inputs.
Even though we are using solver checks during the first phase, this should not hamper the

scalability of our program validation pipeline for the following reasons. First, the instruction-
level validation is done for each instruction. Thus its verification condition is much simpler
than that of whole program-level validation. Second, the validation result of each instruction
can be reused within a program or across different programs; thus the validation cost can
be amortized, or done offline. Note that the reuse of validation results is facilitated by the
Store database (Figure 4.1).

Single-instruction translation validation of control-flow instructions: The single-
instruction translation validation for control-flow instructions, e.g., jump (conditional/un-
conditional) and call, is critical in ensuring that the control-flow of the binary program is pre-
served in the McSema-lifted program. A conditional jump instruction, e.g., jcc rel-offset

at program counter pc, evaluates the condition code cc as an appropriate expression over
5We manually inspect that the symbolic summaries corresponding to the loop trip count decrements by

one in every iteration when the indicated condition is not met. Also, the count register is not modified in
any other way.

60

the status flags, and updates the %rip with either the address of the target instruction
(pc + rel-offset) or of the fall-through instruction (pc + sizeof(jcc)). Such an
instruction is lifted to LLVM IR code with three goals: (1) computing the condition code
value, %cond, matching the value of cc; (2) updating the value of the simulated register
corresponding to %rip; and (3) transferring control-flow to the appropriate basic block,
using an LLVM branch instruction (e.g., br i1 %cond, label <LT>, label <LF>),
based on value of %cond.
The goals of single-instruction translation validation for the running example of jcc

are twofold: (A) to ensure that the update of %rip by the binary instruction and of the
corresponding simulated register in lifted LLVM IR are equivalent, and (B) the LLVM br

instruction should preserve the control-flow semantics of the corresponding binary instruc-
tion, i.e., the jcc and br instructions should evaluate equivalent conditions (i.e., cc ' value
of %cond) and based on it’s evaluation the control should jump to corresponding targets,
i.e., if %cond is true, then the basic block with label LT should begin with an instruc-
tion corresponding to the target instruction at pc + rel-offset, else the basic block
with label LF should begin with an instruction corresponding to the target instruction at
pc + sizeof(jcc).
To ensure (A), we symbolically execute jcc (resp., corresponding lifted IR) with concrete

pc assigned to the %rip (resp., corresponding simulated resister) and symbolic values as-
signed to the status flags (resp., corresponding simulated flags) affected by the condition
code cc (resp., %cond). We compare the resulting symbolic summaries, for the register
%rip and its simulated counterpart, for equivalence using a solver preconditioned on the
equivalence of respective symbolic inputs.
To achieve (B), we exploit the observation that the lifted IR encodes the target addresses

of jcc instruction (or the potential values of %rip) in the branch labels of the LLVM br

instruction6. An example of label LT is %block-4004b4, where 4004b4 is the target
address when the condition code cc is satisfied. Moreover, we define an auxiliary state
in LLVM semantics which captures the embedded address of the current block label. A
simplified version of the syntax and semantics of this state cell (aux-currentBlock) is
shown in Figure 4.4. The symbolic execution of the lifted IR, as mentioned above, provides
the summary of this special state, which is compared for equivalence with the summary of
%rip with similar preconditions, as mentioned above.
The single-instruction translation validation of other control flow instructions (like uncon-

ditional jump and call) are handled similarly.
6Similarly, for call instruction, the name of the lifted function call encodes the target address of the

callee.

61

// snippet of the LLVM configuration cell
syntax LocalID ::= localID(String)
<control>

<currentBlock> LocalID </currentBlock>
// The following is the newly introduced auxiliary state cell
<aux-currentBlock> mi(64, I:Int) </aux-currentBlock>

</control>

// The following rule is for conditional branch when the value of the branch condition cond
// is evaluated as false, in which case the control jumps to the basic block with label Lbl.
// The basic block, Lbl, hosts instructions Insts followed by terminator instruction TermInst
// like branch, return etc. The cell "basicBlocks" includes a mapping from basic-block labels to
// the details about the corresponding basic block. The cell "currentBlock" stores the label of
// the current basic block.
rule <k>

brCond(cond:Int, _:LocalID, Lbl:LocalID) => Insts ~> TermInst
</k>

<basicBlocks>...
Lbl |-> bb(Lbl, Insts:Instructions, TermInst:TerminatorInstruction)

...</basicBlocks>
<currentBlock> CurrentLbl:LocalID => Lbl </currentBlock>
<aux-currentBlock>

// ExtractAddrFromBlockLbl is a K-function which converts block labels
// like %block-4004b4 to 4004b4
_ => mi(64, String2Int(ExtractAddrFromBlockLbl(Lbl)))

</aux-currentBlock>
requires cond ==Int 0

Figure 4.4: Syntax and semantics of the auxiliary state cell used to capture the the embedded
address of the current block label.

4.4 PROGRAM-LEVEL VALIDATION

The goal of program-level validation is to validate the translation of the input x86-64
program P to the McSema-lifted LLVM IR program T. Towards that goal, the first step is to
construct an alternative program T′ generated using the Compositional Lifter (Section 4.4.1),
which is then compared with T using the Matcher (Section 4.4.2).

4.4.1 Compositional Lifter

The Compositional Lifter is responsible for generating the proposed LLVM IR T′ by com-
posing the validated McSema-lifted IR sequences of the constituent binary instructions of
the x86-64 program P. Importantly, the Compositional Lifter design (Algorithm 4.1) is
simple and took us about three man-weeks to implement, mainly because it reuses the indi-
vidual instruction translations performed by McSema. These are separately validated using
single-instruction translation validation, as described in the previous section.
P is disassembled to identify function boundaries, and to decode instructions. If the

decoded instruction I is already in Store, then its corresponding (validated) IR sequence is
reused (line 13). Otherwise, I is lifted (using McSema) (line 5) to generate an LLVM IR

62

sequence that is going to be validated using Phase 1 (lines 6-11). The validated IR sequences
are then composed (line 15) following the data- and control-flow order of the binary program
P.

Algorithm 4.1: Compositional Lifting
Inputs :

P: x86-64 binary program.
Store: Validated pairs (<I, S>) of instruction I and lifted IR sequence S.

(possibly empty)
R: Address Relocation information of binary P.

Output: Lifted IR Program T′

1 T ′ ← φ
2 foreach function F in P do
3 foreach instruction I in F do
4 if I not in Store then
5 S ← McSema (I)
6 Perform Translation Validation of I and S (Phase 1)
7 if Validation successful then
8 Add < I, S > to Store
9 else

10 Report Bug

11 else
12 Extract S from Store for I

13 T ′ ← Compose(T ′, S, R)

14 return T ′

The “Compose” step The code listings below explain the step “Compose” (line 15 in
Algorithm 4.1) using an example. Listing 4.1 shows a binary code snippet which is lifted
to LLVM IR using Compositional Lifter, shown at Listing 4.2. The parts irrelevant for the
current exposition are omitted using “. . . ”. In the lifted IR, we have LLVM function calls one
for each binary instruction. The callee (not shown in the listing below) includes the same
validated IR sequence, implementing the operational semantics of an instruction, obtained
during single-instruction translation validation.

63

...

400494: mov %edi,-0x8(%rbp)

400497: cmpl $0x1,-0x8(%rbp)

40049b: jge 4004ad

4004a1: movl $0x1,-0x4(%rbp)

4004a8: jmpq 4004b4

4004ad: movl $0x0,-0x4(%rbp)

...

Listing 4.1: Binary code snippet

define ... @composedFunc(%struct.State* %st, ...) {

...

<glue code>

; function sub_movl__edi__MINUS0x8__rbp_ implements

; the operational semantics of mov %edi,-0x8(%rbp).

; Same is true for the subsequently called functions.

... = call ... @sub_movl__edi__MINUS0x8__rbp_(...)

<glue code>

; Code: cmpl $0x1,-0x8(%rbp), RIP: 400497, bytes: 4

... = call ... @sub__cmpl__0x1__MINUS0x8__rbp_(...)

<glue code>

; Code: jge 4004ad, RIP: 40049b, bytes: 6

... = call ... @sub_jge_4004ad(...)

; %cond stores condition-code value computed in the

; previous instruction.

br i1 %cond, label %block-4004ad, label %block-4004a1

block-4004a1:

<glue code>

; Code: movl $0x1, -0x4(%rbp), RIP: 4004a1, bytes: 7

... = call ... @sub_movl__0x1__MINUS0x4__rbp_(...)

<glue code>

; Code: jmpq 4004b4, RIP: 4004a8, bytes: 5

... = call ... @sub_jmpq_.L_4004b4(...)

br label %block-4004b4

block-4004ad:

<glue code>

; Code: movl $0x0, -0x4(%rbp), RIP: 4004ad, bytes: 7

... = call ... @sub_movl__0x0__MINUS0x4__rbp_(...)

...

}

Listing 4.2: LLVM IR lifted using Compositional Lifter

For a control-flow instruction, like jump (resp., call), in addition to appending the (vali-
dated) IR sequence for the instruction, we generated the LLVM br (resp., call) instruction
for the control-flow to jump to block(s) of code corresponding to the jump (resp., call) target
address(es). Additionally, we have to use some logic, called glue-code, which is used to stitch
the arguments and return-values of the called functions to the McSema State structure
which is passed as an argument to the parent composedFunc. Note that this glue-code is
specific to McSema (or, generally speaking, the lifter under test) and will be different for
other lifters.

64

Below we provide details of the step “Compose” using a few example binary instructions.
The composed program is initially empty. Upon encountering a function label, we append
the following code to it7, with irrelevant arguments omitted using “. . . ”.

define %struct.Mem* @composedFunc(%struct.State* %st, ..., %struct.Mem* %mem)

{}

For an instruction adcq %rax, %rbx, McSema generates the following IR sequence
when lifted in isolation, with irrelevant code portions omitted using “. . . ”.

define internal %struct.Mem* @ADCImpl(

%struct.Mem*, %struct.State*, i64*, i64, i64) {

; Does adc computation and updates destination RBX

; and flags (omitted for brevity)

}

define %struct.Mem* @sub_adcq_rax_rbx(%struct.State* %st, ...,

%struct.Mem* %mem) {

%RIP = getelementptr ..., %st, ... ; compute simulated RIP addr

%RAX = getelementptr ..., %st, ... ; compute simulated RAX addr

%RBX = getelementptr ..., %st, ... ; compute simulated RBX addr

%VAL_RBX = load i64, i64* %RBX

%VAL_RAX = load i64, i64* %RAX

; RIP update based on instruction size

%VAL_RIP = load i64, i64* %RIP

%UPDATED_RIP = add i64 %VAL_RIP, 3 ; instr. len=3 bytes

store i64 %UPDATED_RIP, i64* %RIP

%retval = call %struct.Mem* @ADCImpl(

%struct.Mem* %mem, %struct.State* %st, i64* %RBX,

i64 %VAL_RBX, i64 %VAL_RAX)

ret %struct.Mem* %retval

}

The above sequence is then validated using single-instruction translation validation unless
it is already validated. Next, the validated IR sequence is appended to the composed program
as shown below.

7mem is pointer to an opaque struct type which together with return type allows ordering of memory
operations if required.

65

define %struct.Mem* @composedFunc(%struct.State* %st, ...,

%struct.Mem* %mem) {

%MEM = alloca %struct.Mem*

store %struct.Mem* %mem, %struct.Mem** %MEM

; Code: adcq %rax, %rbx

%loadMem = load %struct.Mem*, %struct.Mem** %MEM

%retval = call %struct.Mem* @sub_adcq_rax_rbx(

%struct.State* %st, i64 0, %struct.Mem* %loadMem)

store %struct.Mem* %retval, %struct.Mem** %MEM

ret %struct.Mem* retval

}

; Definitions of called functions omitted for brevity

A similar composition happens for all the non control-flow instructions. For a control-
flow instruction, like jump (resp., call), as mentioned earlier, in addition to appending the
(validated) IR sequence for the instruction, we need to generate the LLVM br (resp., call)
instruction for the control-flow to jump to block(s) of code corresponding to the jump (resp.,
call) target address(es). The composition for instructions accessing data-section are handled
differently and elaborated next.

Composing data-section access instructions Instructions accessing the data section,
like movq 0x602040, %rdi with the first operand being an address, cannot be lifted
correctly in isolation because McSema does not have the full-program context to determine
if the immediate operand is an integer or address. Depending on which section of the
isolated binary executable the address belongs, it can be interpreted as a integer or an
address8. However, the problem is the program-level validation may not use that lifting
because the interpretations of the immediate operand, when lifted in isolation versus when
lifted with full-program context, might be different. As a result, the composed IR, which
consumes the translations of instructions in isolation, will be different from the one lifted by
McSema. Upon optimization using LLVM passes, two such IRs will be optimized differently
and eventually fail to match even when the translation of McSema is correct.
To aid in testing, we compile binaries with options to retain auxiliary information. To

disambiguate between cases where an immediate operand is a reference into the data section
(e.g., an int*) v/s a scalar (e.g., an int), we use relocation information, denoted by R

8During single-instruction translation validation, we validated the behavior of such instructions for both
the possibilities of the constant operand by forcing the constant to belong to .data or .text section of
the isolated binary.

66

in algorithm 4.1. Every immediate operand that is a reference has a corresponding entry
in the relocation table. We allow McSema to incorrectly lift such instructions in isolation
when invoked by algorithm 4.1, and then we course-correct the lifted IR by consulting the
relocation information, R.
For example, the incorrect IR generated by McSema when lifting movq 0x602040, %rdi

in isolation is:

define %struct.Mem* @sub_movq_0x602040___rdi(%struct.State* %st, ...,

%struct.Mem* %mem) {

...

%retval = call %struct.Mem* @MOVImpl(

%struct.Mem* %mem, %struct.State* %st,

; data-section addr 0x602040

; lifted as a constant

%i64* %RDI, i64 6299712)

ret %struct.Mem* %retval

}

The address relocation information in the binary allows us to identify the address and
correct the lifted output as shown below:

%G_0x602040_type = type <{ [8 x i8] }>

@G_0x602040= global %G_0x602040_type zeroinitializer

define %struct.Mem* @sub_movq_0x602040___rdi(%struct.State* %st, ...,

%struct.Mem* %mem) {

...

%retval = call %struct.Mem* @MOVImpl(

%struct.Mem* %mem, %struct.State* %st,

%i64* %RDI, i64 ptrtoint(%G_0x602040_type* @G_0x602040 to i64))

ret %struct.Mem* %retval

}

We reiterate that Compositional Lifter only uses relocation information to strengthen
the generated golden reference, T′, when such information is available, e.g., during test or
development time. This allows for a tighter specification, allowing our technique to find
bugs (e.g., if the lifter is not able to correctly disambiguate an address from a integer) at
testing that would otherwise be missed. During the use of Compositional Lifter in the field
to validate the lifting of McSema on an unknown, blackbox binary, we can function without
the additional information, at the cost of potentially missing bugs described above. Note
that this is a fundamental limitation because x86-64 semantics for an instruction has no

67

notion of types, and therefore T′, which is based on x86-64 semantics, should allow for the
ambiguity and cannot enforce stricter type requirements. McSema, on the other hand, is
never given this additional information as it is expected to work in the field where relocation
information is rarely available, except in library code.

4.4.2 Transformer & Matcher

Algorithm 4.2 summarizes our overall strategy to check equivalence between the IRs gen-
erated by McSema (T) and Compositional Lifter (T′). Due to the nature of the composition,
T & T′ are structurally very similar. We build on this observation to develop an inexpen-
sive semantic equivalence checker that does not require heavyweight symbolic execution or
theorem proving, instead using graph isomorphism, assisted by semantics-preserving trans-
formations (lines 2-3). The algorithm is realized by a tool we develop called the Matcher
(line 4).
At first, the function pair (F & F′) is transformed to (FN , F′N), using LLVM optimization

passes9, to prune any syntactic differences except for the names of virtual registers and the
order of non-dependent instructions. There is clearly some important relationship between
the syntactic code differences in T and T′ and the choice of optimization passes with the
aim of exploiting those differences. As a few examples of syntactic differences: (1) Program
counter updates like %rip − C (C being a positive constant) are lifted in T′ using addition
(%rip + (−C)) versus subtraction used in T, and (2) As an optimization, T hoists the address
computations of simulated registers to the entry block which are then dereferenced at every
use-site. On the other hand, in T′, such addresses are both recomputed and dereferenced
at every use-site. Above syntactic differences are eliminated using (1) -instcombine (a
peephole optimization pass on LLVM IR), and (2) -early-cse or -licm respectively.
Next, the Matcher algorithm works on data dependence graphs, GFN & GF′N , generated

from FN & F′N . A vertex of the graph represents an LLVM instruction, and an edge between
two vertices captures SSA def-use edges or memory dependence edges between LLVM load
and store instructions, extracted from LLVM MemorySSA [209] analysis. If the Matcher
fails to match T & T′, there may be a bug in the lifter.

Checking Graph Isomorphism Our algorithm to check the isomorphism of GFN & GF′N
is built on a subgraph-isomorphism algorithm from Saltz et al. [210], named dual-simulation

9The pass sequence (-mem2reg -licm -gvn -early-cse -globalopt -simplifycfg -basicaa -aa -memdep -dse
-deadargelim -libcalls-shrinkwrap -tailcallelim -simplifycfg -basicaa -aa -instcombine) is determined by man-
ually pruning the LLVM -O3 sequence.

68

Algorithm 4.2: Matcher Strategy
Inputs : T: McSema-lifted IR.

T′: Compositional Lifter lifted IR.
Output: True =⇒ T & T′ semantically equivalent

False =⇒ T & T′ may-be non-equivalent

1 foreach corresponding function pair (F,F′) in (T, T′) do
2 FN = Transformer (F)
3 F′N = Transformer (F′)
4 if !Matcher(FN , F′N) then

// A potential bug in McSema while lifting F
5 return false

6 return true

(refer Algorithm 4.3). The algorithm, in general, first retrieves an initial potential-match
set, Φ, for each vertex in one graph based on semantic and/or neighborhood information in
the other graph. In our case, the initial potential-match set for a vertex IN in GFN contains
all the vertices in GF′N which satisfy the following three criteria: (1) they have the same
instruction opcode, (2) they have identical constant operands, if any, and (3) they have the
same number of outgoing data dependence edges10 as IN . Then, the algorithm iteratively
prunes out elements from the potential match set of each vertex based on its parents/child
relations until it reaches a fixed-point. Our overall algorithm, Matcher, checks that the
graphs GFN and GF′N are isomorphic and the instructions corresponding to the matching
vertices are identical w.r.t. the instruction opcode and constant operands (note that all
other operands are SSA variables, and so are validated by graph isomorphism).

Soundness of Equivalence via Graph Isomorphism Our argument that isomorphism
of GFN & GF′N implies semantic equivalence of the functions F and F′ is based on the pio-
neering work by Horwitz et al., which proved that if the program dependence graphs of two
programs are isomorphic then the programs are “strongly” semantically equivalent [106]. Our
dependence graph representations GFN and GF′N , which we check for isomorphism, only in-
clude the data dependences, and not the control dependences. Note, however, that the close
structural similarity between the functions, F & F′, ensures the required equivalence of all
control flow, as explained below. There is one minor exception to control-flow equivalence,
which introduces no semantic differences between the programs, and is addressed below. We

10Checking outgoing but not the incoming edges is a design choice. The latter check will constrain the
average size of the sets even more which in turn improve the runtime of the algorithm, but will not affect
the soundness of the matcher in any way.

69

Algorithm 4.3: Dual Simulation
Inputs :

GFN : data-dependence graph of N.
GF′N : data-dependence graph of N′.

Output: Check if GFN is subgraph-isomorphic to GF′N
1 changed ← true
2 while changed do
3 changed ← false
4 for u ← GFN do
5 for u′ ← GFN .adj(u) do
6 φ′(u′) ← ∅
7 for v ← φ(u) do
8 φv(u′) ← GFN .adj(v) ∩ φ(u′)
9 if φv(u′) = ∅ then

10 remove v from φ(u)
11 if φ(u) = ∅ then
12 return ∅
13 changed ← true

14 φ′(u′) ← φ′(u′) ∩ φv(u′)

15 if φ′(u′) = ∅ then
16 return ∅
17 if φ′(u′) is smaller than φ(u′) then
18 changed ← true

19 φ(u′) ← φ(u′) ∩ φ′(u′)

20 return ∅

first assume this exception does not occur, and informally prove semantic equivalence in
three simple steps, as follows.
Let PDG(f) denote the program dependence graph of a function f.
(A) The control flow graphs (CFGs) of F and F′ are isomorphic: F and F′ are both

obtained by lifting the same binary, via instruction-by-instruction lifting (using identical IR
sequences for each one). For F, we check that the order of lifted IR sequences is the same
as the order of binary instructions within each corresponding basic block11. For F′, such an

11The checker is based on the fact that, for each binary instruction, McSema uses a specific templatized
function in its lifting which realizes the operational semantics of that instruction. The implementation of the
checker involves (1) Identifying the mapping between a binary instruction and the corresponding templatized
function. Given the fact that (a) the lifted IR sequence S, for each binary instruction I, in F′ is generated
by McSema and hence includes the corresponding templatized function, and (b) S is the correct translation
of I by virtue of the single-instruction translation validation, we identified the mapping by following how

70

order is already preserved assuming the correctness of D′. The control-flow edges are verified
to be identical by the single-instruction translation validation of control-flow instructions
(Section 4.3). Together, these facts ensure isomorphism of the CFGs of F & F′. We note that
the requirement to preserve the order is stricter than necessary because data-independent
instructions can be reordered safely.
(B) The control dependence graphs of F and F′ are isomorphic: This is straight-

forward to derive using (A) and the definitions of control flow and control dependence [211],
and we omit the explanation.
(C) If the data dependence graphs GFN & GF′N are isomorphic, then PDG(FN)

and PDG(F′N) are isomorphic: By definition, the nodes of GFN are identical to the nodes
of PDG(FN), and similarly for GF′N and PDG(F′N). The edges of a PDG are simply the union
of the control dependence edges and the data dependence edges. Combining (B) with the
isomorphism of GFN & GF′N , it follows directly that PDG(FN) and PDG(F′N) are isomorphic.
The one exception mentioned above is that, as a custom optimization, some address com-

putations for simulated registers are hoisted to the entry block by McSema (i.e., in F), to
be reused by later instructions throughout the function, whereas this hoisting does not hap-
pen in F′. The addresses are computed using LLVM’s getelementptr instructions whose
operands are immutable throughout the function in both F and F′ (the State pointer (Sec-
tion 4.3) and some constant arguments). As a result, the results of these computations are
unaffected by their location in the code. One requirement is that these address computa-
tions must dominate their uses since their results are assigned to SSA values: this property is
enforced by McSema by running the LLVM verify pass (which we also consider trusted).
Together with the isomorphism of the data dependence graphs, this guarantees that the
potential difference in locations of these instructions does not introduce any differences in
any uses of those values, and thus no differences in the semantics of the two functions.
Note that the entire above argument (indeed, the theorem of Horwitz, et al. [106]) is

independent of the precision of any static analysis used to identify memory dependences.
A highly imprecise analysis (e.g., one that says every store-load or store-store pair may be
aliased) might lead to a failure to prove isomorphism between T and T′, but will not claim
isomorphism if the two programs are not equivalent. In practice, we find in our experiments,
described in Section 4.5, that the memory dependence edges from such a highly imprecise
analysis do indeed reduce the success rate of the Matcher, but only by a small amount. A
more precise analysis may improve the success rate, reducing the number of false alarms.

individual binary instructions are lifted in F′, and (2) Checking, for each corresponding basic blocks, if the
order of binary instructions matches with the order of the corresponding templatized functions in F.

71

Autotuning-based Transformer As per our matching strategy, in order to prove that
two functions F & F′ are semantically equivalent, they need to be reduced to isomorphic
graphs via semantic preserving transformations. For transformations, we initially used a cus-
tom sequence of 17 LLVM optimization passes, discovered manually by pruning the LLVM
-O3 search space. Later experimentation revealed that (1) changing the order of passes im-
proves the number of functions that are successfully proved isomorphic (the phase-ordering
problem of optimization), and (2) not all of the 17 passes are needed for every pair of func-
tions under equivalence check. These two observations motivate us to frame the problem of
selecting optimal pass sequences, one for every pair of candidate functions, as an application
of program autotuning.
We used the OpenTuner [212] framework to implement the autotuner. OpenTuner requires

the client to specify a search space to explore, and an objective function to maximize. Our
search space is all permutations of passes from the 17-length pass sequence. The objective
function in our case is to maximize the fraction of nodes in GFN (or GF′N) having non-empty
initial potential-match sets. The framework then uses various heuristic search techniques to
find the best configuration that maximizes the objective function, within a given resource
budget (a fixed number of iterations). Such an autotuning-based Transformer addresses the
phase-ordering problem, improving the Matcher results (refer to Section 4.5) by lowering the
false-alarm rate, and also by using much fewer than 17 passes on average.

Comparison with LLVM-MD & Peggy At this point, it is important to differentiate
our approach to establish equivalence between two LLVM IR programs from existing, similar
approaches for validating LLVM IR-to-IR optimization passes, e.g., LLVM-MD [171] and
Peggy [172]. Like our approach, these tools eschew simulation proofs and instead use graph
isomorphism techniques to prove equivalence. Both build graphs of expressions for each
program, transform the graphs via a series of “expert-provided” rewrite rules, and check
for equality. The rewrite-rules mimic various compiler-IR optimizations, and hence the
technique is precise when the output program is an optimization of the input program, and
the optimizations are captured by the rewrite rules.
Compared to these approaches, the implementation of our Transformer is simpler, requires

no additional implementation effort, re-uses existing, well-tested compiler passes, and still
proves to be quite effective in reducing two semantically equivalent programs to isomorphic
graphs, as demonstrated by our evaluations.

72

4.5 EVALUATION

In this section, we present the experimental evaluation of single-instruction translation
validation and program-level validation. All the experiments are run on an Intel Xeon CPU
E5-2640 v6 at 3.00GHz and an AMD EPYC 7571 at 2.7GHz. We aim to address three
questions through these experiments:

Q1. Is single-instruction validation by itself useful for finding bugs in a sophisticated de-
compiler, even though no context information is used during lifting?

Q2. What fraction of function translations are successfully proven correct by program-level
validation, and what is the false alarm rate of the tool?

Q3. What is the runtime of our Compositional Lifter and Matcher-based approach?

Q4. Is program-level validation effective at finding additional real bugs in a complex lifter
like McSema, beyond those found by single-instruction translation validation alone?
We studied this question using artificially injected bugs because all real bugs were
caught by single-instruction translation validation.

Usefulness of single-instruction translation validation: The goal here is to validate
the lifting of individual x86-64 instruction to LLVM IR sequences using McSema. Haswell
x86-64 ISA supports a total of 3736 instruction variants, of which 3155 are formally specified
in [86]. McSema supports 1922 instructions, all supported by [86]. We had to exclude 573

instruction variants because of limitations of the LLVM IR semantics [94], which does not
support vector and floating-point types and associated operations, and various intrinsic
functions12. This brings us to a total of 1349 viable instruction variants, and we apply
translation validation to each of them individually.
Out of the 1349 translation validations, 29 cases fail (hence are bugs), producing a coun-

terexample for each failure, and 6 timed out. Except for timeouts, the solver found conclusive
results in all the cases within a solver timeout of 30 secs. The solver time ranges from 0.25−
29.89 secs with median 0.46 secs. The max time, recorded for cmpxchgq %rcx, %rbx, is
because of the complex summary of the corresponding lifted IR. Another significant factor
dominating the performance of single-instruction translation validation is the time to gen-
erate the symbolic summaries. For generating those summaries we are using the symbolic
execution engines auto-generated right from the x86-64 and LLVM IR semantics. Table 4.1

12However, we support an intrinsic called llvm.ctpop by implementing it in LLVM IR. This intrinsic is
used pervasively in the lifted IR for updating the %pf flag.

73

presents the times (min/max/median/mean) spent during the different stages of the single-
instruction translation validation pipeline, viz. creating symbolic summaries, and dispatch-
ing verification queries to solver, over 1349 validations. The reported performance of the
symbolic executions are not optimized, and there is room for improvement. For example,
the current symbolic-execution engines are implemented using a Java back end and more
efficient back-ends (using LLVM & OCaml) are under development and we believe that they
will make a difference in the performance.

Symbolic Execution Time
on x86-64 instruction

(in secs)

Symbolic Execution Time
on LLVM IR

(in secs)

Solver
(in secs)

Min 102.92 99.93 0.25
Median 503.195 199.295 0.46
Max 837.22 319.57 29.89
Mean 478.8483 204.4024 0.849

Table 4.1: Distribution of time during different stages of the single-instruction translation
validation pipeline

Timeouts, declared based on a threshold of 24 hrs, correspond to paddb, psubb, and
mulq family of instructions. On further investigation, we found that 4 out of 6 timeouts
related to paddb and psubb are flaky: the Z3 solver result toggled between unknown
and unsat depending on the order in which other unrelated constraints are added (which
is a known issue [213]). By removing the unrelated constraints13, Z3 concludes them to be
equivalent. The remaining two cases (related to mulq) include solver constraints containing
bit-vector multiplication, which the state-of-the-art SMT solvers are not very efficient at
reasoning about. However, we manually inspected them to ensure that the generated code
fragments are indeed semantically equivalent.
The 29 failures along with the test cases created from Z3’s counterexamples were all

reported and subsequently confirmed as bugs [214] by the McSema developers. The following
are some brief examples of a few of the discrepancies we found.

• xaddq %rax, %rbx expects the operations (1) temp ← %rax + %rbx, (2) %rax
← %rbx, and (3) %rbx← temp, in that order. McSema performs the same operation
differently as (A) old_rbx ← %rbx, (B) temp ← %rax + %rbx, (C) %rbx ← temp,
and (D) %rax ← old_rbx. This will fail to work when the operands are the same
registers.

13The unrelated constraints refer to the verification queries related to registers/flags other than the one
under verification.

74

• For instruction andnps %xmm2, %xmm1, the Intel Manual [84] says the implemen-
tation should be %xmm1 ← ∼%xmm1 & %xmm2, whereas McSema interchanges the
source operands.

• For pmuludq %xmm2, %xmm1, both the higher and lower double-words of the source
operands need to multiply, whereas McSema multiplies just the lower double-words.

• For cmpxchgl %ecx, %ebx, McSema compares the entire 64-bit %rbx (instead of
just %ebx) with the accumulator Concat(0x00000000, %eax).

• For cmpxchgb %ah, %al, the lower 8-bits of %rax should be replaced with the
higher 8-bits at the end of the instruction, whereas McSema keeps them unchanged.

Program-level validation: Success rate and false alarms: The goal here is to vali-
date the translation of programs, one function at a time, using the Matcher strategy (Sec-
tion 4.4.2). For this purpose, we use programs from LLVM-8.0 “single-source-benchmarks”.
The benchmark suite consists of a total of 102 programs, of which 11 cannot be lifted by Mc-
Sema due to missing instruction semantics. The remaining programs contain 3062 functions
in total. We excluded 714 functions because the corresponding binary uses floating-point
instructions, which are not supported in the LLVM formal semantics and hence could not
be validated using single instruction validation. This brings us to a total of 2348 usable
functions, which we compile using Clang14 and feed the binaries to Compositional Lifter and
McSema for lifting. The source LOC of the usable functions ranges from 1− 1454, with me-
dian 18, whereas the LOC of the corresponding lifted IR (*.ll assembly files) after inlining,
obtained by lifting the binaries compiled from the source functions, ranges from 86− 32105

(median 656), with maximum LOC recorded for function “himenobmtxpa::jacobi”.
The lifted function pairs are then optimized using the pass sequence (of length 17) and fed

to the Matcher (Algorithm 4.2). Of the 2348 usable functions, the Matcher can prove the
correctness of the translations for 2189 functions using graph isomorphism, i.e., a success
rate of 93% (the inlined lifted IR ranges in size from 86−32105, with the median as 611). We
manually checked the remaining 159 and found them to be false alarms, with the following
root causes:

• Pass Selection & Phase-ordering problem (80% of false alarms): The fixed-
length pass sequence is not able to converge functions into isomorphic graphs because
either it missing some key passes or the order of application of individual passes is not

14We also used GCC-compiled binaries for the experiments, but most of them are not lifted by McSema
due to unsupported instruction semantics.

75

effective. We addressed the above problems using autotuning of the pass-sequence, as
described below.

• Difference in Lifting globals (20% of false alarms): For data section addresses,
McSema lifts a global with over-approximated size (as determined by IDA) which need
not be equal to the actual source code size, whereas our Compositional Lifter deter-
mines the size as the width of the maximum access across all the instructions accessing
that particular global. As a result, the lifted global sizes might be different from Mc-
Sema. The memory dependence edges that we extract using LLVM IR memory-ssa

analysis depend on the size of the globals, and hence the generated graphs will be
different. A more accurate memory analysis might solve these issues.

Overall, a false alarm rate of about 7% is low enough that we believe our Matcher can
be of practical use for validation and testing of a lifter. We can further reduce this rate by
addressing the phase-ordering problem using an autotuner, as described in Section 4.4.2. We
leveraged the experience and effort put into custom-designing the fixed-length pass sequence
by including the constituent passes in the search space for autotuning. We avoided crafting
the search space using all the LLVM passes (e.g., 187 passes of Clang’s −O3 pass sequence)
because our experiments showed that such a large search space was less effective at avoiding
false negatives in a fixed number of iterations.
For 2254 out of the total 2348 functions, the autotuner is able to find custom pass sequences

that lead to successful matching. These matches include 65 previously reported false alarms
(out of total 159), reducing total false alarms to 94 (or 4% of 2348). All previously positive
cases remain positive with the autotuner, as well. The autotuner runtime ranges from 10.7
secs - 19.97 mins, with a median of 6.67 mins. The length of the generated pass sequence
has distribution of [min:- 3, median:- 7, max:- 243, mean:- 8]15.
Judiciously adding LLVM passes to the search might help remove false alarms further.

We leave this as future work.

Performance of Program-level validation: The performance of this phase is dominated
by the time to run the Compositional Lifter and Matcher.
We chose to validate the individual instructions offline after program-level validation. The

number of those instructions, to be validated offline, amounts to approx. 50% of the total
1543 out of 65 newly matched cases have an auto-tuned pass sequence of length greater than 17. For those

cases, the search space, with 17 passes being ineffective, is composed differently out of multiple auto-tuned
sequences derived from the other matching cases.

76

1349 variants we validated using single-instruction translation validation; implying that only
a small subset of instructions are actually used in binary executables in practice.
The running time of the Compositional Lifter, on 2348 usable functions, ranges from

0.06s − 5.75s, with a median of 0.63s. Note that this performance depends heavily on the
availability of instructions in the Store database for reuse, which in turn depends on the
order in which the test functions are executed. For example, a large function with many
commonly occurring instructions, if lifted first using the Compositional Lifter, will populate
the Store sufficiently to create good reuse in later functions. Even with an arbitrary order
of test execution, the Store reuse found is significant. Figure 4.5 shows the distribution of
reuse percentage (both across & within functions) for an arbitrary order of lifter execution
on 2348 test-functions.

Perc. of instructions reused

#
 o

f
te

s
t−

s
u

b
je

c
ts

(f
u

n
c
ti
o

n
s
)

0 20 40 60 80 100

0

200

400

600

800

1000

2 0 11 15
38

74

186

1072

950

Figure 4.5: Distribution of reuse % by the Compositional Lifter in the Store database for an
arbitrary execution sequence on 2348 test-functions.

The running time of Matcher, primarily the graph isomorphism algorithm, on 2348 us-
able functions ranges from 0.06s − 119.63s, with a median of 4.91s. We note that, for
both Compositional Lifter & Matcher, the max time occurred for the largest function “hi-
menobmtxpa::jacobi” (32105 LLVM assembly LOC).

77

Program-level validation: Effectiveness at finding bugs: In our experiments, all real
bugs in McSema were caught by single-instruction translation validation and not program-
level validation, which may be evidence that most of the complexity in lifting, by far, lies
in lifting individual binary instructions to IR. Intuitively, this makes sense because of the
large and diverse instruction set semantics, the simplicity of the compositional step, and the
fact that every aspect of the composition logic is likely used hundreds of times per program.
Nevertheless, bugs are possible in this aspect of the lifter.
We studied the effectiveness of program-level validation in finding bugs in McSema by

artificially injecting bugs in the lifter’s implementation. The injected bugs cover the fol-
lowing aspects of McSema’s lifting: (1) Instruction lifting : McSema uses code templates
to generate IR sequences for each instruction. The injected bug forces the tool to choose
wrong templates. The injected bug is targeted to affect the translation of 491 unique instruc-
tion mnemonics that we collected from the compiled binaries of our evaluation test-suite.
(2) Inferring data-section access constants : McSema uses information from IDA [215] to
know if an immediate operand used in a data-section access instruction is a constant or
a memory address. The introduced bug forces McSema to take the wrong decision. (3)
Maintaining correct dependences among instructions : The injected bug changes the order
in which instructions are lifted, potentially violating data and control dependences between
instructions.
Each of the above bugs are injected one at a time and in combination and the resulting

buggy lifter is tested against the Compositional Lifter on the same evaluation test-suite
mentioned before. All the injected bugs are correctly detected by the Matcher, establish-
ing program-level validation as a complementary technique to single-instruction translation
validation in finding bugs during lifting.
Note that only the first of these bugs would be caught by single-instruction translation

validation: the binary instruction semantics would not match with the LLVM IR sequence
semantics in that case. The second and third cases would (in general) produce equivalent
semantics between each X86 instruction and the LLVM IR sequence, and so single-instruction
translation validation would not detect the bug.

4.6 LIMITATIONS

In this section, we discuss some limitations of our work.

Incomplete LLVM Semantics The LLVM IR semantics [94] is currently under develop-
ment and does not support all LLVM abstractions, e.g., vector and floating-point types and

78

their associated operations, and various intrinsic functions at the time of writing the thesis.
This is a limitation of existing semantics and we believe the verification of lifted instructions
that use such unsupported features will work out-of-the-box when semantic rules are added,
assuming Z3 supports the requisite features.

Formally Verifying Transformation Passes Our current implementation uses a small
number of LLVM passes (17) to improve syntactic matching between the IR generated by
McSema and by Compositional Lifter. For now, we trust the correctness of these passes to
perform only semantics-preserving transformations. We also trust the LLVM verify pass
to check SSA dominance for the McSema-lifted getelementptr instructions (discussed in
Section 4.4.2 as part of the soundness proof of the Matcher algorithm). Formally proving
correctness of arbitrary LLVM pass sequences is difficult. An alternative approach is to
develop simple graph rewrites on SSA graphs that can be composed to mimic the trans-
formations of LLVM passes and formally prove that these graph rewrites preserve program
semantics. We leave this to future work.

79

CHAPTER 5: CONCLUSIONS

Binary analysis is a crucial task to guarantee the trustworthiness of critical systems span-
ning in various subfields of software engineering and security tools, including binary instru-
mentation, binary re-targeting, software hardening, software testing, CPU emulation, auto-
mated reverse engineering, sand-boxing, profiling, and automatic exploit generation. This is
particularly necessary when the source code is not available (e.g., legacy code, closed-source
software, or malware) or when it is not desirable to trust the correctness of compilers.
The need for semi-automatic analysis techniques for binary code has led to the devel-

opment of several decompilation tools. To handle the complexity and diversity of modern
instruction set architectures (ISAs), all such tools introduced a platform-independent inter-
mediate representation that allows implementing analysis independently of (i) names and
number of registers, (ii) instruction decoding, (iii) endianness of memory access, and (iv)
instruction side-effects. Binary lifters, responsible for transforming binary code to the inter-
mediate representation, are a complex piece of software, and it is non-trivial to implement
them correctly. This is mainly because manual encoding the effects of a vast number of
instructions (including their complex side effects) is laborious and error-prone. This is made
even harder when the informal specifications provided by the hardware manufacturers run
into thousands of pages, have mistakes, or allow for implementation-dependent undefined
behaviors. Once such a lifter is developed, the developers then run into the problem of
not having a way to test their implementation thoroughly as generally, there is no formal,
machine-readable semantics available for automated testing. Lastly, to make it worse, these
lifters need to be updated and rechecked for correctness every time new instructions are
added to an ISA. Clearly, a lifter bug jeopardizes the soundness of all analyses done on the
intermediate representation, and hence the soundness of the lifter should not be foregone.
In this work, we tackle the problem of increasing the assurance of binary lifters. Specifi-

cally, we develop formal and informal techniques to achieve high confidence in the correctness
of a lifter from a complex machine ISA (e.g., x86-64) to a rich IR (e.g., LLVM IR).
Our work is inspired by a key observation that decompilers are usually designed to per-

form simple instruction-by-instruction lifting (using a fixed and canonical representation of
architectural state at the IR level), followed by standard IR optimization passes to achieve
a simpler IR code. We capitalize on this observation by exploiting the insight that for-
mal translation validation of single machine instructions can be used as a building block for
scalable full-program translation validation.

80

With that insight, we first define a fully executable formal semantics of x86-64 using K as
a language engineering framework, to assist translation validation of individual instructions.
This is the most complete formal semantics of x86-64 user-level instructions to date, which
have been thoroughly tested using synthesized test inputs and the GCC torture tests. While
defining the semantics, we found 8 bugs in the Intel manual, the standard document on
x86-64. All these findings were reported and acknowledged by Intel as bugs in the manual
and are fixed in the latest revision. Also, we found 42 bugs in existing semantics like Strata
and Stoke, which are all reported to the authors, acknowledged by them and some have been
fixed. We have also illustrated several potential uses of the semantics, which are realized
by the formal analysis tools derived right from the K specification. The K framework also
enables us to represent the semantics in SMTLIB theories, which other projects can leverage
for their purposes.
Next, we develop the first single-instruction translation validation framework for x86-64

built on top of the developed formal semantics. We validate the translational correctness
of a single instruction by asserting the equivalence of symbolic summaries of the x86-64
instruction and the lifted LLVM IR sequence using an SMT solver. If they are equivalent,
the lifted LLVM IR sequence is correct for the instruction, else the equivalence check fails,
and the solver generates a counter-example that we use to report a bug. We experimentally
verify that such single-instruction validation is effective in finding real bugs, and in particular,
we find bugs in the lifting of 29 instructions in McSema, a well-tested, actively maintained,
and open-source lifter for x86-64 to LLVM IR. The McSema developers have confirmed
all of these bugs and fixed some of them. Finally, we demonstrated that validation of
lifters without instrumentation or heavyweight equivalence checking is feasible. The design
is based on a simple insight: Formal translation validation of single machine instructions
can be used as a building block for scalable full-program validation, achieving scalability
by using symbolic execution and theorem provers only for the single-instruction case. Our
experimental evaluation shows that single instruction validation is valuable in finding real
bugs in McSema, a popular open-source lifter from x86-64 to LLVM IR. We construct an
alternate lifter by composing validated single-instruction translation sequences, with a small
amount of custom logic to handle control flow sequences and global data. To check the
McSema translation, we compare the outputs of the two lifters, using semantics-preserving
program transformations together with graph isomorphism of data dependence graphs. We
believe our approach can be easily modified to support other lifters from x86-64 to LLVM
that are designed to translate individual instructions, simply by modifying how the alternate
compositional lifter is constructed.

81

CHAPTER 6: FUTURE DIRECTIONS

This dissertation presented the need for developing scalable solutions to validate binary
to IR lifting and demonstrated some techniques and tools to achieve that. We devote this
chapter to discuss the opportunities that we foresee to improve the start-of-art in validation
binary decompilers. The opportunities include (1) improving the current work in validating
binary lifters, (2) extend and evaluate the efficacy of the current approach to other lifters,
and (3) evaluating the correctness of disassemblers using ISA semantics.

6.1 IMPROVING THE CURRENT WORK

In this section, we enlist some limitations of our work and discuss avenues to improve on
the current work targeting the performance of the single-instruction translation validation,
faithfulness of the Transformer, and efficiency of the Matcher in reducing false alarms.

Improving Single-instruction translation validation The LLVM IR semantics [94]
is currently under development and does not support all LLVM abstractions, e.g., vector
and floating-point types and their associated operations, and various intrinsic functions at
the time of implementation. This is a limitation of existing semantics, and we believe the
verification of lifted instructions that use such unsupported features will work out-of-the-box
when semantics are available.

Formally Verifying the Normalizer Our current implementation of the Transformer
uses a small number of LLVM passes to facilitate matching between the McSema generated
IR and the one proposed by Compositional Lifter. However, an unsound transformation
pass can optimize two non-equivalent functions in a way allowing the Matcher to succeed,
thereby erroneously claiming that the programs are equivalent. To prove soundness, these
passes need to be formally verified to perform only semantic preserving transformations.
Existing approaches like LLVM-MD [171] and Peggy [172] transform the graphs via a series
of “expert-provided” rewrite rules, and check for equality. The rewrite-rules mimic various
compiler-IR optimizations, and hence the technique is precise when the output program
is an optimization of the input program, and the rewrite rules capture the optimizations.
A promising approach is to develop or borrow similar simple graph transformations on
SSA graphs to mimic the transformations of LLVM passes, but formally prove that the
transformations preserve program semantics.

82

Efficient Matching Strategies In our current work, we use IR transformations, using
17 optimization passes, to prune away most of the syntactic differences of the candidate
LLVM IRs. Next, the data dependence graphs, extracted from the syntactically-close-enough
transformed outputs, are compared using isomorphic graph matching. The isomorphism of
data dependence graphs, for each pair of optimized functions, implies that the original lifted
IR T is semantically equivalent to the reference translation T′, and therefore T is the correct
lifting of the input binary program. Otherwise, the automatic validation fails, and mismatch
reported as a potential bug for further analysis. While evaluating the strategy on LLVM
“single-source-benchmark”, we found all the buggy cases to be false alarms. Investigating
those false alarms revealed that the order of the passes in the fixed-length pass sequence is
an important factor in effective IR transformation and subsequent matching. This is the
well-known pass ordering problem that we addressed using an AutoTuner [212], which uses
the manually identified 17 LLVM optimization passes as the search space to automatically
find the optimization passes effective in lowering the false-alarm rate to 4%.
The primary root cause of the remaining false alarms is that the optimization passes are

not able to converge candidate functions into isomorphic graphs. That is either due to the
absence of some relevant passes in the autotuner search space or it is the very structure of
the program, along with its alias relations between instructions, which prohibits effective
optimization. We propose the following two ways to counter the false alarms.

• Efficient Autotuning: From our experience, including relevant passes in the search
space might help match more cases; however, identifying such passes is nontrivial. We
deliberately avoided creating the search space straight out of the 187 passes of opt
-O3 pass sequence because it makes the search space too big for the autotuning to be
effective. We believe that there are research opportunities to efficiently narrow down
such an ample search space to include as many relevant passes as possible.

• Iterative Pruning based Matcher: Another future direction could be to use an
iterative matching and pruning strategy, which iteratively prunes the matched sub-
graphs and look for more isomorphic matches after canonicalizing the residual graph.
This direction is based on the insight that the residual graphs will be much straight-
forward, in terms of the aliasing relations among instructions, for the optimization
passes to canonicalize effectively. We built a prototype of the strategy which shows
promising results with small toy programs (with implementations of sorting, search-
ing algorithms & tree-traversal algorithms). We note that one of the bottlenecks in
pruning sub-graphs is the presence of spurious memory dependence edges, which might
prohibit pruning an otherwise matched sub-graph.

83

6.2 EXTENDING TO OTHER LIFTERS

Our current work focuses on McSema; however, there are other lifters [57, 66] that are not
formally verified. Extending our work to support these systems is vital for two reasons: (i)
improving the trust in binary lifters, and (ii) the improvements made to our system would
make it more generic enough for future binary lifters to get validation for (nearly) free.
To generalize the current method to a lifter translating a particular ISA to a specific IR, we

need the semantics of both the ISA and IR defined formally, which is a sufficient requirement
for single-instruction translation validation. Note that it does not matter which language
semantics engineering framework is used. We used K mainly because of familiarity and
ease-of-use. For lifters that are designed to translate binary instructions individually and
compose the resulting LLVM IR, we believe that this could be done simply by customizing
Compositional Lifter to capture the idiosyncrasies of each lifter. Such customization is
mostly related to generating some custom glue code while IR composition, as detailed in
Section 4.4.1. We believe that such an engineering effort for customization is quite practical
and does not overshadow the benefit of abandoning a heavyweight equivalence checker.

6.3 EVALUATING CORRECTNESS OF DISASSEMBLER USING ISA SEMANTICS

Disassembly is the backbone of research in any static binary analysis, which gets benefited
if the disassembly is accurate. The output of a disassembler serves many different uses-cases
(e.g., debugging and reverse engineering). Therefore, disassemblers represent the first link of
a long chain of stages on which any high-level analysis of binary code depends. It has been
demonstrated that many disassemblers fail to decode certain instructions and thus that the
first link of the chain is fragile.
There are a few prior works that directly address this problem and are based on testing

a disassembler w.r.t to some notion of ground truth. Most notable pre-work is Paleari et
al. [216], where the idea is to compare the output of n disassemblers against each other,
where one of them is a special instruction decoder the author developed, that leverages the
physical CPU to provide accurate results, while the others are other off-the-shelf disassem-
blers. Disassemblers usually have two phases: (I) instruction decoding, where a piece of
code is translated into a single assembly instruction and (II) selection of the next instruction
of the program to decode, where the disassembler selects the next piece of code to decode
according to the format (or the semantics) of the instruction previously decoded. This pro-
cess is repeated until all the code is disassembled. The work by Paleari et al. is focused on
automated testing in the first phase only. However, there are various challenges specific to

84

the second phase mainly because disassemblers adopt several heuristics, assuming certain
compiler conventions are respected, to tackle problems related to disassembly [53, 56, 54, 55].
When the code being disassembled violates the assumed conventions (for example, in case
of obfuscated code, handwritten assembly), disassemblers produce completely unreliable re-
sults.
The basis of Paleari et al. comparison is syntactic and works well if the disassemblers

decode a single instruction at a time to a mnemonic which can then be compared syntactically
against other disassembler outputs. But the problem comes if the disassemblers try to decode
multiple instructions at a time. Because of the challenges mentioned above, the disassemblers
might generate, for a given binary blob, syntactically different instruction sequences that
may (or may not) be semantically equivalent. It would be interesting to evaluate off-the-
shelf disassemblers by checking the semantic equivalence of their disassembled output using
the formal semantics of x86-64 ISA.

85

APPENDIX A: SINGLE INSTRUCTION TRANSLATION VALIDATION

In this appendix, we will elaborate on various artifacts and tools used for single-instruction
translation validation. The presentation will use a running example of a logical-and instruc-
tion andq -32(%rsp),%rbx to demonstrate the validation strategy of its lifting to LLVM
IR (using McSema). The instruction performs logical AND of memory (-32(%rsp)) and
register (%rbx) operands and writes the result to destination register %rbx. For example,
Figure A.1 explains the output behavior of the instruction in terms of some logical formulas
over the inputs values RBX (of register %rbx) and Mem64 (of memory location -32(%rsp)).
According to the Intel manual [84], flags %zf, %sf and %pf are updated based on result of
logical AND computation, %of and %cf flags are cleared, and %af flag is undefined.

1

2 RBX ← RBX & Mem64
3

4 ZF ← RBX & Mem64 == 0 ? 1 : 0
5

6 SF ← (msb of RBX) & (msb of Mem64)
7

8 PF ← number of set bits in least significant 8−bits of
9 (RBX & Mem64) is even ? 1 : 0

10

11 OF ← 0
12 CF ← 0
13

14 AF ← undef

Figure A.1: Formal semantics of andq -32(%rsp),%rbx instruction

As discussed in Section 4.3, one of the prerequisites for the single-instruction translation
validation approach is the formal specification of x86-64. For the current discussion, we will
be emphasizing on the specification relevant to the running example of andq. Figure A.2
depicts the relevant portion of the formal syntax, declared using the conventional BNF nota-
tion. The syntax defines an x86-64 program as a list of instructions, where each instruction
is composed of an opcode and list of operands. Operands can be further classifies based on
its type (memory/register/immediate) or size (8-, 16-, 32-, or 64-bits).
Figure A.3 presents the semantic specification of andq instruction highlighting two rewrite

rules. The first rule (lines 1 − 6), is responsible for reading a memory value of size 64-
bits starting at memory offset MemOff. The read is accomplished using a K function
loadFromMemory which can read a byte addressable memory implemented using K builtin
map. In the rule text, the term to the left of ⇒ shows the instruction andn in execution

86

1

2 syntax Instructions ::= List{Instruction, ""}
3 syntax Instruction ::= Opcode Operands
4

5 syntax Opcode ::= "andq" | ...
6 syntax Operands ::= List{Operand, ","}
7 syntax Operand ::= Register | Imm | Mem | MemOffset
8

9 // register operands
10 syntax Register ::= Rh | R8 | R16 | R32 | R64 | Xmm | Ymm
11 syntax Rh ::= "%ah" | "%bh" | "%ch"| ...
12 syntax R8 ::= "%al" | "bl" | "cl" | ...
13 syntax R16 ::= "%ax" | "%bx" | "%cx" | ...
14 syntax R32 ::= "%eax" | "%ebx" | "%ecx" | ...
15 syntax R64 ::= "%rax" | "%rbx" | "%rcx" | ...
16 syntax Xmm ::= "%xmm0" | "xmm1" | ...
17 syntax Ymm ::= "%ymm0" | "ymm1" | ...
18

19 // immediate operands
20 syntax Imm ::= "$" Int | HexConstant
21

22 // memory operands
23 syntax Mem ::= Int "(" R64 "," R64 "," Int ")" // One of the memory
24 // addressing expressions
25 | MemOffset // an effective address computed
26 // from a memory addressing expression
27 syntax MemOffset ::= memOffset (MInt) // MInt represents a bit-vector
28 // (or Machine Integer)

Figure A.2: A snippet of formal syntax relevant to andq -32(%rsp),%rbx instruction

mode, which gets reduced to a sequence of two tasks: a call to loadFromMemory followed
by the same execution instance of the instruction. In the next rewrite rule (line 8 − 37),
the terms to the left of ⇒ are the ones rewritten by the previous rule except that the
loadFromMemory call is replaced by the read memory value, memVal64. In this rewrite
rule, the two tasks at the top of the k cell are reduced to empty computation “.”. The
regstate cell, which hosts a map, RSMap, from register names to their values, is updated
with the new values of the registers. For example, the destination register R2 (= %rbx)
is updated to the logical AND of the memory value, MemVal64 with the value from source
register operand R2 (= %rbx). Similarly, control flags are updated as shown by the other
map updates. The K function convToRegKeys is responsible for accessing the concrete
register (%rbx in this case) pointed by the symbolic register (R2). The other K function,
getParentValue(R2, RSMap), extracts the old value of the concrete register pointer
by R2 (which, in this case, is value of %rbx) from the register map RSMap. The operators

87

andMInt, extractMInt, and eqMInt are respectively the K built-in operators for bitwise
and, extract and equality check.

1 rule <k>
2 execinstr (andq:Opcode
3 memOffset(MemOff:MInt):MemOffset, R2:R64, .Operands) ⇒
4 loadFromMemory(MemOff, 64) y
5 execinstr (andq memOffset(MemOff), R2, .Operands)
6 ...</k>
7

8 rule <k>
9 memLoadValue(MemVal64 :MInt):MemLoadValue y

10 execinstr (andq:Opcode
11 memOffset(MemOff:MInt):MemOffset, R2:R64, .Operands) ⇒ .
12 ...</k>
13 <regstate>
14 RSMap:Map ⇒ updateMap(RSMap,
15 convToRegKeys(R2) 7→ andMInt(
16 getParentValue(R2, RSMap),
17 MemVal64)
18

19 "ZF" 7→ (#ifMInt
20 eqMInt(
21 andMInt(
22 getParentValue(R2, RSMap), MemVal64),
23 mi(64, 0))
24 #then mi(1, 1)
25 #else mi(1, 0) #fi)
26 "SF" 7→ andMInt(
27 // Extracts the most significant bit of register value.
28 extract(getParentValue(R2, RSMap), 0, 1),
29 // Extracts the most significant bit of memory value.
30 extract(MemVal64 , 0, 1))
31 "PF" 7→ // omitted for brevity
32

33 "OF" 7→ mi(1, 0)
34 "CF" 7→ mi(1, 0)
35

36 "AF" 7→ undefMInt
37 </regstate>

Figure A.3: Formal semantics of andq -32(%rsp),%rbx instruction

Figure A.4 shows a snippet of McSema-lifted LLVM IR for the example instruction. The
embedded comments, using “;”, highlight the stores of values to various simulated registers
and flags. The addresses of simulated registers (e.g., %2 (for %rbx), %9 (for %cf), %16 (for
%pf) etc.) are computed using LLVM getelementptr instruction and the values stored
in them are based on the semantic of the andq -32(%rsp),%rbx instruction.

88

Figure A.5 shows the LLVM syntax and semantics corresponding to the LLVM add in-
struction for integer type values1. The rewrite rule at line 8 is responsible for adding two
LLVM typed values and wrapping around the result, using K function wrap (line 13), to
the bit-width of the operation type.

; %1: The state structure, %2: pointer to rbx register
; %3: value of rbx register, %4: effective address (-32 + rbp)
define internal %struct.Memory* @ANDQImpl(%struct.Memory*, %struct.State*, i64*, i64, i64) {
; Store the added result in simulated register %rbx
%6 = inttoptr i64 %4 to i64*
%7 = load i64, i64* %6
%8 = and i64 %7, %3
store i64 %8, i64* %2, align 8

; Set carry flag to 0
%9 = getelementptr inbounds %struct.State, %struct.State* %1, i64 0, i32 2, i32 1
store i8 0, i8* %9, align 1

; Set parity flag (pf)
%10 = trunc i64 %8 to i32
%11 = and i32 %10, 255
%12 = tail call i32 @my.ctpop.i32(i32 %11)
%13 = trunc i32 %12 to i8
%14 = and i8 %13, 1
%15 = xor i8 %14, 1
%16 = getelementptr inbounds %struct.State, %struct.State* %1, i64 0, i32 2, i32 3
store i8 %15, i8* %16, align 1

; Set zero flag (zf)
%17 = icmp eq i64 %8, 0
%18 = zext i1 %17 to i8
%19 = getelementptr inbounds %struct.State, %struct.State* %1, i64 0, i32 2, i32 7
store i8 %18, i8* %19, align 1

; Set sign flag (sf)
%20 = lshr i64 %8, 63
%21 = trunc i64 %20 to i8
%22 = getelementptr inbounds %struct.State, %struct.State* %1, i64 0, i32 2, i32 9
store i8 %21, i8* %22, align 1

; Set overflow flag (of) to 0
%23 = getelementptr inbounds %struct.State, %struct.State* %1, i64 0, i32 2, i32 13
store i8 0, i8* %23, align 1

; Set auxiliary flag (af) to 0
%24 = getelementptr inbounds %struct.State, %struct.State* %1, i64 0, i32 2, i32 5
store i8 0, i8* %24, align 1

ret %struct.Memory* %0
}

Figure A.4: McSema-lifted LLVM IR for andq -32(%rsp),%rbx instruction

Once we have the formal specification of the syntax and semantics of an instruction (or
corresponding lifted LLVM IR), the K framework can generate, at no additional cost, a
parser, an interpreter, as well as formal analysis tools such as symbolic execution engines,

1Refer to [94] for the semantics of other LLVM operators.

89

1 syntax Type ::= IntegerType | ... // other LLVM types are omitted
2 syntax IntegerType ::= tInt(Int)
3 syntax Val ::= Int | ... // other kinds of LLVM values are omitted
4

5 syntax TypedVal ::= typedVal(Type, Val)
6

7 // addition between ints
8 rule iadd(typedVal(tInt(N:Int), I1:Int), typedVal(tInt(N), I2:Int)) =>
9 typedVal(tInt(N), wrap(N, I1 +Int I2))

10

11 // Wraps around the result of an arithmetic operation to convert it back
12 // to an unsigned representation of the given bit width
13 syntax Int ::= wrap(/*Bit width */ Int,
14 /* Operation result */ Int) [function]
15

16 rule wrap(N:Int, OpRes:Int) => OpRes modInt (1 <<Int N)

Figure A.5: Formal semantics of LLVM and instruction

model checkers and deductive program verifiers. The next step is to use the symbolic-
execution engine to symbolically execute the instruction (or corresponding lifted LLVM IR)
in order to generate the symbolic summary of it.
The symbolic-execution engine, auto-generated using either the x86-64 semantics or LLVM

IR semantics, needs a driver specification file for its execution, which includes the specifi-
cation of the input symbolic values assigned to the various operands2 of the instruction.

Figure A.6 shows a simplified snippet of the driver specification file to run symbolic exe-
cution on andq -32(%rsp),%rbx instruction. The computation term at the top of the
k cell, “fetch”, is responsible for fetching the top instruction from the “text” memory (con-
tents of text cell). The term at the right side of ⇒ represents the “target” state where the
program successfully terminates. In the regstate cell, input symbolic values are assigned
to various registers and flags. For example, the register %rbx is initialized with a 64-bit
symbolic value VX_RBX and is ensured to be any symbolic 64-bit value mi(64, _:Int)

at successful termination of the program. Similarly, the memory at address -32(%rbp) is
initialed with 64-bit value VX_MEM_64. We use a similar driver specification file to drive
symbolic execution on the lifted LLVM IR (details of which are omitted for the brevity of
presentation). The symbolic executions result in symbolic summaries; one for the x86-64
instruction and the other for the lifted LLVM IR.
Next, the symbolic summaries are converted to SMTLIB formula in bit-vector logic, in

order to compare them for equivalence. Note that, the x86-64 semantics is built using
2Note that, in the context of LLVM IR, operands means the simulated register or memory location.

90

1 rule
2 <k> fetch ⇒ exit_0 </k>
3 <regstate>
4 "RBP" 7→ ptr (1032)
5 "RBX" 7→ (mi(64, VX_RBX:Int):MInt ⇒ mi(64, _:Int))
6 "AF" 7→ (mi(1, VX_AF:Int):MInt ⇒ mi(1, _:Int))
7 "CF" 7→ (mi(1, VX_CF:Int):MInt ⇒ mi(1, _:Int))
8 "OF" 7→ (mi(1, VX_OF:Int):MInt ⇒ mi(1, _:Int))
9 "PF" 7→ (mi(1, VX_PF:Int):MInt ⇒ mi(1, _:Int))

10 "SF" 7→ (mi(1, VX_SF:Int):MInt ⇒ mi(1, _:Int))
11 "ZF" 7→ (mi(1, VX_ZF:Int):MInt ⇒ mi(1, _:Int))
12 </regstate>
13

14 <memstate>
15 <text>
16 code (
17 0 7→ storedInstr (andq -32(%rbp), %rbx, .Operands)
18 1 7→ storedInstr (ret .Operands))
19 </text>
20

21 <stack>
22 // 64-bit symbolic value at -32(%rbp)
23 1000 7→ byte (0, mi(64, VX_MEM_64)))
24 1001 7→ byte (1, mi(64, VX_MEM_64)))
25 1002 7→ byte (2, mi(64, VX_MEM_64)))
26 1003 7→ byte (3, mi(64, VX_MEM_64)))
27 1004 7→ byte (4, mi(64, VX_MEM_64)))
28 1005 7→ byte (5, mi(64, VX_MEM_64)))
29 1006 7→ byte (6, mi(64, VX_MEM_64)))
30 1007 7→ byte (7, mi(64, VX_MEM_64))))
31 </stack>
32 </memstate>

Figure A.6: A Snippet of the driver specification file to run symbolic execution on
andq -32(%rsp),%rbx instruction

the K bit-vector operators which makes the conversion of the summary to bit-vector logic
SMTLIB formula trivial. This is mainly because the bit-width (or type) of the values are
explicit in the summary expression, which can be used directly to generate the corresponding
SMTLIB summary. For example, Figure A.7(a), lines 3− 5, shows a snippet of the symbolic
summary corresponding to the output value of destination register %rbx. The summary is
generated by symbolic executing of the example x86-64 instruction using x86-64 semantics.
The summary expression is explicit in the type of the values. Figure A.7(b) shows the
converted SMTLIB expression in bit-vector theory.
However, the LLVM IR semantics is developed using the K unbounded-integer operators

and, as a result, the corresponding summary does not capture the type of the values.

91

1 // symbolic summary of the ouput value of destination %rbx
2 // obtained using symbolic-execution on andq -32(%rsp),%rbx
3 andMInt(
4 mi(#token("64","Int"),VX_RBX),
5 mi(#token("64","Int"),VX_MEM_64)
6

7 (a)
8

9 // SMTLIB summary of of the ouput value of destination %rbx
10 VX_RBX = z3.BitVec(’VX_RBX’,64)
11 VX_MEM_64 = z3.BitVec(’VX_MEM_64’,64)
12 xvar = (VX_RBX & VX_MEM_64)
13

14 (b)

Figure A.7: Summaries corresponding to the value of destination register %rbx

1 // symbolic summary of the simulated register %rbx
2 // obtained using symbolic-execution on lifted LLVM IR
3 ‘_modInt_‘(‘
4 ‘_&Int_‘(VL_MEM_64, VL_RBX),
5 #token("18446744073709551616", "Int"))
6

7 (a)
8

9 // SMTLIB summary of the simulated register %rbx
10 VL_RBX = z3.BitVec(’VL_RBX’,64)
11 VL_MEM_64 = z3.BitVec(’VL_MEM_64’,64)
12

13 lvar = (VL_MEM_64 & VL_RBX) & 1844674407370955161564
14

15 (b)

Figure A.8: Summaries corresponding to the value of simulated destination register %rbx

For example, Figure A.8(a) (lines 3 − 5) shows the symbolic summary corresponding to
the value of simulated destination register %rbx, obtained by symbolically executing the
McSema-lifted LLVM IR. In the expression, all the operators are integer operators and the
type of the symbolic variable, like VL_RBX, VL_MEM_64, are known. However, the constant
like 18446744073709551616 has no designated type. Such types need to be inferred from the
known types. In this particular case, the type of the constant is inferred as 64-bits while
converting the expression to SMTLIB summary as shown in Figure A.8(b).
There exist a few other cases where the type inference is non-trivial. Consider the expres-

sion in Figure A.9(a), where a 64-bit value VL_RBX is added with 1 (expr1 in Figure A.9(a))
and similarly, a 8-bit value VL_BL is added with 2 (expr2 in Figure A.9(a)). Finally, the
results of the two additions are added using the outermost addition operator. Note that the

92

integer modulus operator is used to constraint the result of addition to the bit-width of the
operation.

1 // an example symbolic summary
2 ‘_modInt_‘(// To constraint the resultant value to 64 bits
3 ‘_+Int_‘(‘
4 ‘_modInt_‘(// To constraint the value of VL_RBX + 1 to 64 bits
5 ‘_+Int_‘(VL_RBX, #token("1","Int")), // expr1
6 #token("18446744073709551616","Int")
7),
8 ‘_modInt_‘(// To constraint the value of VL_BL + 2 to 8 bits
9 ‘_+Int_‘(VL_BL, #token("2","Int"))), // expr2

10 #token("256","Int")
11)
12),
13 #token("18446744073709551616","Int")
14)
15

16 (a)
17

18 // corresponding SMTLIB summary
19 VL_RBX = z3.BitVec(’VL_RBX’, 64)
20 VL_BL = z3.BitVec(’VL_BL’, 8)
21 lvar = (
22 (VL_RBX + 164) & 1844674407370955161564) +
23 z3.Concat(056 , ((VL_BL + 28) & 2558)
24) & 1844674407370955161564
25

26 (b)

Figure A.9: Example symbolic summaries obtained by symbolically executing the McSema-
lifted LLVM IR

VL_RBX and VL_BL has known types of size 64 and 8 respectively. From the known
operand types and the requirement that the SMTLIB addition operator expects operands
of equal size, the types of 1 and 2 can be individually inferred as 64 and 8 respectively;
resulting a type mismatch on the operands on outermost addition operator. To handle the
type mismatch, the type of expr2 need to be promoted to 64-bits. The converted SMTLIB
summary is shown in Figure A.9(b)3. This type promotion makes sense for most of the
bitwise operators except concatenation which might take operands of different types.
This conversion is achieved using a custom developed tool “spec-to-smt”. The tools takes

as input the symbolic summaries of a binary instruction and corresponding lifted LLVM IR
and generates verification queries in SMTLIB format. Figure A.10 shows the verification
query corresponding to the destination register %rbx of the running example instruction.

3 We note that the integer modulus operator is used to constraint the value of the added result within
the limits of the bit-width in the event of overflow.

93

Similar verification queries are generated for each register, flag and clobbered memory value
and dispatched to the Z3 solver for equivalence check. For a particular instruction, if the
result of the equivalence check is sat for any verification query, then we declare the lifting
of that instruction as buggy. Otherwise, the lifting is deemed as the correct translation of
the binary instruction.

1 // verification query corresponding to destination %rbx
2 VX_RBX = z3.BitVec(’VX_RBX’,64)
3 VX_MEM_64 = z3.BitVec(’VX_MEM_64’,64)
4 VL_RBX = z3.BitVec(’VL_RBX’,64)
5 VL_MEM_64 = z3.BitVec(’VL_MEM_64’,64)
6 V_R = z3.BitVec(’V_R’,64)
7

8 s = z3.Solver()
9 s.add(VX_RBX == VL_RBX)

10 s.add(VL_MEM_64 == VL_MEM_64)
11

12 s.push()
13 lvar = (V_R == (VL_MEM_64 & VL_RBX) & 1844674407370955161564)
14 xvar = (V_R == (VX_RBX & VX_MEM_64))
15

16 s.add(lvar != xvar)
17 if(s.check() == z3.sat):
18 // report bug
19 if(s.check() == z3.unknown):
20 // report timeout
21 s.pop()

Figure A.10: Verification condition corresponding to destination register %rbx

94

REFERENCES

[1] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis. Springer
Publishing Company, Incorporated, 2010. [Cited on page 1.]

[2] E. M. Clarke and E. A. Emerson, “Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic,” in Logic of Programs, Workshop. Berlin,
Heidelberg: Springer-Verlag, 1982. [Online]. Available: http://dl.acm.org/citation.
cfm?id=648063.747438 pp. 52–71. [Cited on page 1.]

[3] J.-P. Queille and J. Sifakis, “Specification and Verification of Concurrent Systems
in CESAR,” in Proceedings of the 5th Colloquium on International Symposium
on Programming. London, UK, UK: Springer-Verlag, 1982. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647325.721668 pp. 337–351. [Cited on page 1.]

[4] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints,”
in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, ser. POPL ’77. New York, NY, USA: ACM, 1977. [Online].
Available: http://doi.acm.org/10.1145/512950.512973 pp. 238–252. [Cited on page 1.]

[5] Y. Xie, A. Chou, and D. Engler, “ARCHER: Using Symbolic, Path-sensitive
Analysis to Detect Memory Access Errors,” in Proceedings of the 9th European
Software Engineering Conference Held Jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. ESEC/FSE-11. New York,
NY, USA: ACM, 2003. [Online]. Available: http://doi.acm.org/10.1145/940071.940115
pp. 327–336. [Cited on page 1.]

[6] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu,
“Finding and Reproducing Heisenbugs in Concurrent Programs,” in Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855760 pp. 267–280. [Cited on page 1.]

[7] F. Ivančić, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar, “F-SOFT:
Software Verification Platform,” in Proceedings of the 17th International Conference
on Computer Aided Verification, ser. CAV’05. Berlin, Heidelberg: Springer-Verlag,
2005. [Online]. Available: http://dx.doi.org/10.1007/11513988_31 pp. 301–306. [Cited
on page 1.]

[8] M. B. Dwyer, J. Hatcliff, R. Robby, C. S. Pasareanu, and W. Visser, “Formal
Software Analysis Emerging Trends in Software Model Checking,” in 2007 Future
of Software Engineering, ser. FOSE ’07. Washington, DC, USA: IEEE Computer
Society, 2007. [Online]. Available: https://doi.org/10.1109/FOSE.2007.6 pp. 120–136.
[Cited on page 1.]

95

http://dl.acm.org/citation.cfm?id=648063.747438
http://dl.acm.org/citation.cfm?id=648063.747438
http://dl.acm.org/citation.cfm?id=647325.721668
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/940071.940115
http://dl.acm.org/citation.cfm?id=1855741.1855760
http://dx.doi.org/10.1007/11513988_31
https://doi.org/10.1109/FOSE.2007.6

[9] D. Binkley, “Source Code Analysis: A Road Map,” in 2007 Future of Software
Engineering, ser. FOSE ’07. Washington, DC, USA: IEEE Computer Society, 2007.
[Online]. Available: https://doi.org/10.1109/FOSE.2007.27 pp. 104–119. [Cited on
page 1.]

[10] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. Engler, “A Few Billion Lines of Code Later: Using
Static Analysis to Find Bugs in the Real World,” Commun. ACM, vol. 53, no. 2, pp.
66–75, Feb. 2010. [Online]. Available: http://doi.acm.org/10.1145/1646353.1646374
[Cited on page 1.]

[11] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek,
S. K. Rajamani, and A. Ustuner, “Thorough Static Analysis of Device Drivers,” in
Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006, ser. EuroSys ’06. New York, NY, USA: ACM, 2006. [Online].
Available: http://doi.acm.org/10.1145/1217935.1217943 pp. 73–85. [Cited on page 1.]

[12] X. Meng and B. P. Miller, “Binary Code is Not Easy,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2931037.2931047 pp. 24–35. [Cited on page 1.]

[13] D. Bruening, T. Garnett, and S. Amarasinghe, “An Infrastructure for Adaptive Dy-
namic Optimization,” in Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-directed and Runtime Optimization, ser. CGO ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 265–275. [Cited on page 1.]

[14] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “PEBIL: Efficient
static binary instrumentation for Linux,” in 2010 IEEE International Symposium on
Performance Analysis of Systems Software (ISPASS), March 2010, pp. 175–183. [Cited
on page 1.]

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’05. New York, NY,
USA: ACM, 2005. [Online]. Available: http://doi.acm.org/10.1145/1065010.1065034
pp. 190–200. [Cited on page 1.]

[16] N. Nethercote and J. Seward, “Valgrind: A Program Supervision Framework,”
Electronic Notes in Theoretical Computer Science, vol. 89, no. 2, pp. 44–66, 2003,
rV ’2003, Run-time Verification (Satellite Workshop of CAV ’03). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066104810429 [Cited on pages
1, 3, 5, 17, and 53.]

[17] D. L. Bruening, “Efficient, Transparent, and Comprehensive Runtime Code Manipula-
tion,” Ph.D. dissertation, Cambridge, MA, USA, 2004, aAI0807735. [Cited on page 1.]

96

https://doi.org/10.1109/FOSE.2007.27
http://doi.acm.org/10.1145/1646353.1646374
http://doi.acm.org/10.1145/1217935.1217943
https://doi.org/10.1145/2931037.2931047
http://doi.acm.org/10.1145/1065010.1065034
http://www.sciencedirect.com/science/article/pii/S1571066104810429

[18] C. Cifuentes and M. V. Emmerik, “UQBT: Adaptable Binary Translation at
Low Cost,” Computer, vol. 33, no. 3, pp. 60–66, Mar. 2000. [Online]. Available:
https://doi.org/10.1109/2.825697 [Cited on page 1.]

[19] L. Ďurfina, J. Křoustek, P. Zemek, D. Kolář, T. Hruška, K. Masařík, and A. Meduna,
“Design of a Retargetable Decompiler for a Static Platform-Independent Malware
Analysis,” in Information Security and Assurance, T.-h. Kim, H. Adeli, R. J. Rob-
les, and M. Balitanas, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
72–86. [Cited on page 1.]

[20] S. K. Cha, M. Woo, and D. Brumley, “Program-Adaptive Mutational Fuzzing,”
in Proceedings of the 2015 IEEE Symposium on Security and Privacy, ser. SP
’15. Washington, DC, USA: IEEE Computer Society, 2015. [Online]. Available:
https://doi.org/10.1109/SP.2015.50 pp. 725–741. [Cited on page 1.]

[21] B. Ford and R. Cox, “Vx32: Lightweight User-level Sandboxing on the x86,” in
USENIX 2008 Annual Technical Conference, ser. ATC’08. Berkeley, CA, USA:
USENIX Association, 2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1404014.1404039 pp. 293–306. [Cited on page 1.]

[22] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,” in Proceedings of
the 22nd USENIX Conference on Security, ser. SEC’13. USA: USENIX Association,
2013, pp. 337–352. [Cited on page 1.]

[23] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou, “Practical Control Flow Integrity and Randomization for Binary
Executables,” in Proceedings of the 2013 IEEE Symposium on Security and Privacy,
ser. SP ’13. Washington, DC, USA: IEEE Computer Society, 2013. [Online].
Available: http://dx.doi.org/10.1109/SP.2013.44 pp. 559–573. [Cited on page 1.]

[24] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-vivo Multi-
path Analysis of Software Systems,” in Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XVI. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1950365.1950396 pp. 265–278. [Cited on page 1.]

[25] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing Symbolic Execution
with Veritesting,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568293 pp. 1083–1094. [Cited on page 1.]

[26] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated Whitebox Fuzz Testing,” in
Proceedings of NDSS (Network and Distributed Systems Security), 2008, pp. 151–166.
[Cited on page 1.]

97

https://doi.org/10.1109/2.825697
https://doi.org/10.1109/SP.2015.50
http://dl.acm.org/citation.cfm?id=1404014.1404039
http://dl.acm.org/citation.cfm?id=1404014.1404039
http://dx.doi.org/10.1109/SP.2013.44
http://doi.acm.org/10.1145/1950365.1950396
http://doi.acm.org/10.1145/2568225.2568293

[27] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ser.
ATEC ’05. Berkeley, CA, USA: USENIX Association, 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1247360.1247401 pp. 41–41. [Cited on pages 1, 3,
11, 12, and 17.]

[28] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg, J. Högberg,
F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full System Simulation
Platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002. [Online]. Available:
https://doi.org/10.1109/2.982916 [Cited on page 1.]

[29] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni: Automatic
Reverse Engineering of Input Formats,” in Proceedings of the 15th ACM Conference
on Computer and Communications Security, ser. CCS ’08. New York, NY, USA:
ACM, 2008. [Online]. Available: http://doi.acm.org/10.1145/1455770.1455820 pp.
391–402. [Cited on page 1.]

[30] Z. Lin and X. Zhang, “Deriving Input Syntactic Structure from Execution,” in
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. SIGSOFT ’08/FSE-16. New York, NY, USA: ACM, 2008.
[Online]. Available: http://doi.acm.org/10.1145/1453101.1453114 pp. 83–93. [Cited
on page 1.]

[31] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 Decompilation Using
Semantics-preserving Structural Analysis and Iterative Control-flow Structuring,”
in Proceedings of the 22Nd USENIX Conference on Security, ser. SEC’13.
Berkeley, CA, USA: USENIX Association, 2013. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2534766.2534797 pp. 353–368. [Cited on pages 1, 3,
and 12.]

[32] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith, “No More Gotos:
Decompilation Using Pattern-Independent Control-Flow Structuring and Semantic-
Preserving Transformations,” in NDSS, 2015. [Cited on pages 1, 3, and 12.]

[33] A. Ruef and A. Dinaburg, “Static Translation of X86 Instruction Semantics to LLVM
with McSema,” 2014. [Online]. Available: https://github.com/trailofbits/mcsema
[Cited on pages 1, 2, 3, 4, 5, 7, 9, 17, 53, and 56.]

[34] “Angr: A powerful and user-friendly binary analysis platform!” http://angr.io/, July
2018, last accessed: May 1, 2020. [Cited on pages 1, 3, 7, and 17.]

[35] S. Alvarez, “Radare2,” https://rada.re/r/, July 2018, last accessed: May 1, 2020. [Cited
on pages 1, 2, 3, 4, 6, 7, 17, and 25.]

[36] V. Kiriansky, D. Bruening, and S. P. Amarasinghe, “Secure Execution via
Program Shepherding,” in Proceedings of the 11th USENIX Security Symposium.
Berkeley, CA, USA: USENIX Association, 2002. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=647253.720293 pp. 191–206. [Cited on page 1.]

98

http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1109/2.982916
http://doi.acm.org/10.1145/1455770.1455820
http://doi.acm.org/10.1145/1453101.1453114
http://dl.acm.org/citation.cfm?id=2534766.2534797
http://dl.acm.org/citation.cfm?id=2534766.2534797
https://github.com/trailofbits/mcsema
http://angr.io/
https://rada.re/r/
http://dl.acm.org/citation.cfm?id=647253.720293
http://dl.acm.org/citation.cfm?id=647253.720293

[37] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “XFI:
Software Guards for System Address Spaces,” in Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, ser. OSDI
’06. Berkeley, CA, USA: USENIX Association, 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1298455.1298463 pp. 75–88. [Cited on page 1.]

[38] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native Client: A Sandbox for Portable, Untrusted
x86 Native Code,” in Proceedings of the 2009 30th IEEE Symposium on Security
and Privacy, ser. SP ’09. Washington, DC, USA: IEEE Computer Society, 2009.
[Online]. Available: https://doi.org/10.1109/SP.2009.25 pp. 79–93. [Cited on page 1.]

[39] L. C. Harris and B. P. Miller, “Practical Analysis of Stripped Binary Code,”
SIGARCH Comput. Archit. News, vol. 33, no. 5, pp. 63–68, Dec. 2005. [Online].
Available: http://doi.acm.org/10.1145/1127577.1127590 [Cited on page 1.]

[40] A. Srivastava and A. Eustace, “ATOM: A System for Building Customized
Program Analysis Tools,” in Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation, ser. PLDI ’94. New York, NY,
USA: ACM, 1994. [Online]. Available: http://doi.acm.org/10.1145/178243.178260 pp.
196–205. [Cited on page 1.]

[41] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing Mayhem on Binary
Code,” in Proceedings of the 2012 IEEE Symposium on Security and Privacy, ser.
SP ’12. Washington, DC, USA: IEEE Computer Society, 2012. [Online]. Available:
https://doi.org/10.1109/SP.2012.31 pp. 380–394. [Cited on page 1.]

[42] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, “Semantics-Aware
Malware Detection,” in Proceedings of the 2005 IEEE Symposium on Security and
Privacy, ser. SP ’05. Washington, DC, USA: IEEE Computer Society, 2005. [Online].
Available: https://doi.org/10.1109/SP.2005.20 pp. 32–46. [Cited on page 2.]

[43] A. Holzer, J. Kinder, and H. Veith, “Using verification technology to specify and detect
malware,” in Computer Aided Systems Theory – EUROCAST 2007, R. Moreno Díaz,
F. Pichler, and A. Quesada Arencibia, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 497–504. [Cited on page 2.]

[44] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting Malicious
Code by Model Checking,” in Proceedings of the Second International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, ser.
DIMVA’05. Berlin, Heidelberg: Springer-Verlag, 2005. [Online]. Available:
http://dx.doi.org/10.1007/11506881_11 pp. 174–187. [Cited on page 2.]

[45] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Proactive Detection
of Computer Worms Using Model Checking,” IEEE Trans. Dependable Secur.
Comput., vol. 7, no. 4, pp. 424–438, Oct. 2010. [Online]. Available: http:
//dx.doi.org/10.1109/TDSC.2008.74 [Cited on page 2.]

99

http://dl.acm.org/citation.cfm?id=1298455.1298463
https://doi.org/10.1109/SP.2009.25
http://doi.acm.org/10.1145/1127577.1127590
http://doi.acm.org/10.1145/178243.178260
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2005.20
http://dx.doi.org/10.1007/11506881_11
http://dx.doi.org/10.1109/TDSC.2008.74
http://dx.doi.org/10.1109/TDSC.2008.74

[46] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang, “Effective and Efficient Malware Detection at the End Host,” in
Proceedings of the 18th Conference on USENIX Security Symposium, ser.
SSYM’09. Berkeley, CA, USA: USENIX Association, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855790 pp. 351–366. [Cited on page 2.]

[47] D. Gopan and T. Reps, “Low-level library analysis and summarization,” in Computer
Aided Verification, W. Damm and H. Hermanns, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 68–81. [Cited on page 2.]

[48] G. Balakrishnan and T. Reps, “WYSINWYX: What You See is Not What You
eXecute,” ACM Trans. Program. Lang. Syst., vol. 32, no. 6, pp. 23:1–23:84, Aug. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1749608.1749612 [Cited on page 2.]

[49] “Remill: Library for lifting of x86, amd64, and aarch64 machine code to LLVM bit-
code,” https://github.com/trailofbits/remill, July 2018, last accessed: May 1, 2020.
[Cited on pages 2, 3, 4, 9, 25, 38, 53, and 56.]

[50] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis,” 2016. [Cited on pages 2, 3, 4, and 6.]

[51] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A Binary Analysis
Platform,” in Proceedings of the 23rd International Conference on Computer Aided
Verification, ser. CAV’11. Berlin, Heidelberg: Springer-Verlag, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=2032305.2032342 pp. 463–469. [Cited
on pages 2, 3, 4, 6, 7, 12, and 17.]

[52] R. N. Horspool and N. Marovac, “An approach to the problem of detranslation of
computer programs.” The Computer Journal, vol. 23, pp. 223–229, 1980. [Cited on
page 2.]

[53] C. Cifuentes and M. Van Emmerik, “Recovery of jump table case statements from
binary code,” in Proceedings Seventh International Workshop on Program Comprehen-
sion, May 1999, pp. 192–199. [Cited on pages 2 and 85.]

[54] “Jump tables,” https://www.hexblog.com/?p=68, last accessed: May 1, 2020. [Cited
on pages 2 and 85.]

[55] “Simplex method in IDA Pro,” http://www.hexblog.com/?p=42, last accessed: May
1, 2020. [Cited on pages 2 and 85.]

[56] J. Troger and C. Cifuentes, “Analysis of virtual method invocation for binary transla-
tion,” in Ninth Working Conference on Reverse Engineering, 2002. Proceedings., Nov
2002, pp. 65–74. [Cited on pages 2 and 85.]

[57] “fcd: An optimizing decompiler,” https://zneak.github.io/fcd/, July 2018, last ac-
cessed: May 1, 2020. [Cited on pages 3, 4, 7, 53, 54, 58, and 84.]

100

http://dl.acm.org/citation.cfm?id=1855768.1855790
http://doi.acm.org/10.1145/1749608.1749612
https://github.com/trailofbits/remill
http://dl.acm.org/citation.cfm?id=2032305.2032342
https://www.hexblog.com/?p=68
http://www.hexblog.com/?p=42
https://zneak.github.io/fcd/

[58] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A New Approach to Computer
Security via Binary Analysis,” in Proceedings of the 4th International Conference on
Information Systems Security, ser. ICISS ’08. Berlin, Heidelberg: Springer-Verlag,
2008. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-89862-7_1 pp. 1–25.
[Cited on pages 3, 4, and 7.]

[59] “Hex-Rays Decompiler,” http://www.hex-rays.com/decompiler.shtml, last accessed:
May 1, 2020. [Cited on page 3.]

[60] A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina, “SmartDec: Approaching
C++ Decompilation,” in Proceedings of the 2011 18th Working Conference on Reverse
Engineering, ser. WCRE ’11. Washington, DC, USA: IEEE Computer Society, 2011.
[Online]. Available: https://doi.org/10.1109/WCRE.2011.49 pp. 347–356. [Cited on
page 3.]

[61] A. Smith and S. B. Yadavalli, “LLVM Based Binary Raiser: llvm-mctoll,” 2018.
[Online]. Available: https://github.com/Microsoft/llvm-mctoll [Cited on pages 3, 7,
and 53.]

[62] V. Chipounov and G. Candea, “Enabling sophisticated analyses of x86 binaries with
RevGen,” in 2011 IEEE/IFIP 41st International Conference on Dependable Systems
and Networks Workshops (DSN-W), June 2011, pp. 211–216. [Cited on pages 3 and 7.]

[63] A. Bougacha, “Binary Translator to LLVM IR,” https://github.com/repzret/dagger,
2017, last accessed: May 1, 2020. [Cited on pages 3 and 7.]

[64] J. Feichtner, D. Missmann, and R. Spreitzer, “Automated Binary Analysis on IOS:
A Case Study on Cryptographic Misuse in IOS Applications,” ser. WiSec ’18. New
York, NY, USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3212480.3212487 pp. 236–247. [Cited on page 3.]

[65] K. Kirchner and S. Rosenthaler, “Bin2llvm: Analysis of Binary Programs Using
LLVM Intermediate Representation,” in Proceedings of the 12th International
Conference on Availability, Reliability and Security, ser. ARES ’17. New York,
NY, USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3098954.3103152 [Cited on pages 3 and 7.]

[66] A. Di Federico, M. Payer, and G. Agosta, “Rev.Ng: A Unified Binary Analysis
Framework to Recover CFGs and Function Boundaries,” in Proceedings of the 26th
International Conference on Compiler Construction, ser. CC 2017. New York, NY,
USA: ACM, 2017. [Online]. Available: http://doi.acm.org/10.1145/3033019.3033028
pp. 131–141. [Cited on pages 3, 4, 7, 54, 58, and 84.]

[67] “reopt: A tool for analyzing x86-64 binaries,” https://github.com/GaloisInc/reopt,
2014, last accessed: May 1, 2020. [Cited on pages 3, 7, 13, and 53.]

101

http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://www.hex-rays.com/ decompiler.shtml
https://doi.org/10.1109/WCRE.2011.49
https://github.com/Microsoft/llvm-mctoll
https://github.com/repzret/dagger
https://doi.org/10.1145/3212480.3212487
https://doi.org/10.1145/3098954.3103152
http://doi.acm.org/10.1145/3033019.3033028
https://github.com/GaloisInc/reopt

[68] J. Křoustek and P. Matula, “RetDec: An Open-Source Machine-Code Decompiler,”
[talk], July 2018, presented at Pass the SALT 2018, Lille, FR. [Cited on pages 3
and 7.]

[69] Draper-Laboratory, “An architecture-independent decompiler to LLVM IR,” https://
github.com/draperlaboratory/fracture, last accessed: May 1, 2020. [Cited on pages 3
and 7.]

[70] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, “Driller: Augmenting Fuzzing Through Selective Symbolic
Execution,” 2016. [Cited on page 3.]

[71] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice - Auto-
matic Detection of Authentication Bypass Vulnerabilities in Binary Firmware,” 2015.
[Cited on page 3.]

[72] “Python bindings for Valgrind’s VEX IR.” https://github.com/angr/pyvex, 2013, last
accessed: May 1, 2020. [Cited on pages 3 and 12.]

[73] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent, “The
BINCOA Framework for Binary Code Analysis,” in Proceedings of the 23rd
International Conference on Computer Aided Verification, ser. CAV’11. Berlin,
Heidelberg: Springer-Verlag, 2011. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2032305.2032318 pp. 165–170. [Cited on pages 3 and 12.]

[74] T. Dullien and S. Porst, “REIL: A platform-independent intermediate representation
of disassembled code for static code analysis,” 2009. [Cited on page 3.]

[75] E. Fleury, O. Ly, G. Point, and A. Vincent, “Insight: An open binary analysis frame-
work,” in Tools and Algorithms for the Construction and Analysis of Systems, C. Baier
and C. Tinelli, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 218–
224. [Cited on page 3.]

[76] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum, “Codesurfer/x86—a platform
for analyzing x86 executables,” in Compiler Construction, R. Bodik, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 250–254. [Cited on page 3.]

[77] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled Reverse Engineering of Types
in Binary Programs,” in Proceedings of the Network and Distributed System Security
Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th February
2011. The Internet Society, 2011. [Online]. Available: https://www.ndss-symposium.
org/ndss2011/tie-principled-reverse-engineering-of-types-in-binary-programs [Cited
on page 3.]

[78] M. Noonan, A. Loginov, and D. Cok, “Polymorphic Type Inference for Machine
Code,” SIGPLAN Not., vol. 51, no. 6, pp. 27–41, June 2016. [Online]. Available:
https://doi.org/10.1145/2980983.2908119 [Cited on pages 3 and 17.]

102

https://github.com/draperlaboratory/fracture
https://github.com/draperlaboratory/fracture
https://github.com/angr/pyvex
http://dl.acm.org/citation.cfm?id=2032305.2032318
http://dl.acm.org/citation.cfm?id=2032305.2032318
https://www.ndss-symposium.org/ndss2011/tie-principled-reverse-engineering-of-types-in-binary-programs
https://www.ndss-symposium.org/ndss2011/tie-principled-reverse-engineering-of-types-in-binary-programs
https://doi.org/10.1145/2980983.2908119

[79] B.-Y. Shen, J.-Y. Chen, W.-C. Hsu, and W. Yang, “LLBT: An LLVM-based Static
Binary Translator,” in Proceedings of the 2012 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, ser. CASES ’12. New York, NY,
USA: ACM, 2012. [Online]. Available: http://doi.acm.org/10.1145/2380403.2380419
pp. 51–60. [Cited on pages 3 and 12.]

[80] K. P. Lawton, “Bochs: A Portable PC Emulator for Unix/X,” Linux J., vol. 1996, no.
29es, Sep. 1996. [Online]. Available: http://dl.acm.org/citation.cfm?id=326350.326357
[Cited on pages 3, 11, 12, and 43.]

[81] K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles, and R. Barua,
“A Compiler-Level Intermediate Representation Based Binary Analysis and Rewriting
System,” in Proceedings of the 8th ACM European Conference on Computer Systems,
ser. EuroSys ’13. New York, NY, USA: Association for Computing Machinery, 2013.
[Online]. Available: https://doi.org/10.1145/2465351.2465380 pp. 295–308. [Cited on
page 3.]

[82] S. Bansal and A. Aiken, “Binary Translation Using Peephole Superoptimizers,” in
Proceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation, ser. OSDI’08. USA: USENIX Association, 2008, pp. 177–192. [Cited on
pages 3 and 17.]

[83] “McSema-Research & Development,” https://www.trailofbits.com/
research-and-development/mcsema/, last accessed: May 1, 2020. [Cited on page 3.]

[84] “Intel 64 and IA-32 Architectures Software Developer Manuals,” https://software.
intel.com/en-us/articles/intel-sdm, 2019, published on October 12, 2016, updated on
September 26, 2019. [Cited on pages 4, 7, 8, 23, 75, and 86.]

[85] “ARM Architecture Reference Manual,” http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.subset.architecture.reference/index.html, 1996, last accessed:
May 1, 2020. [Cited on pages 4 and 17.]

[86] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu, “A Complete
Formal Semantics of X86-64 User-Level Instruction Set Architecture,” in Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2019. New York, NY, USA: Association for Computing
Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3314221.3314601 pp.
1133–1148. [Cited on pages 4, 13, 17, 23, 53, 56, and 73.]

[87] S. Heule, E. Schkufza, R. Sharma, and A. Aiken, “Stratified Synthesis:
Automatically Learning the x86-64 Instruction Set,” in Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2908080.2908121 pp. 237–250. [Cited on pages 4, 6, 7, 9,
14, 16, 17, 23, 24, 27, 35, 37, 49, 50, 52, and 53.]

103

http://doi.acm.org/10.1145/2380403.2380419
http://dl.acm.org/citation.cfm?id=326350.326357
https://doi.org/10.1145/2465351.2465380
https://www.trailofbits.com/research-and-development/mcsema/
https://www.trailofbits.com/research-and-development/mcsema/
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
https://doi.org/10.1145/3314221.3314601
http://doi.acm.org/10.1145/2908080.2908121

[88] S. Goel, W. A. Hunt, M. Kaufmann, and S. Ghosh, “Simulation and Formal
Verification of x86 Machine-Code Programs That Make System Calls,” in
Proceedings of the 14th Conference on Formal Methods in Computer-Aided
Design, ser. FMCAD ’14. Austin, TX: FMCAD Inc, 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2682923.2682944 pp. 18:91–18:98. [Cited on pages
4, 6, 14, 15, 17, 24, 37, 49, 50, 52, and 53.]

[89] S. Goel, W. A. Hunt, and M. Kaufmann, Engineering a Formal, Executable x86
ISA Simulator for Software Verification. Cham: Springer International Publishing,
2017, pp. 173–209. [Online]. Available: https://doi.org/10.1007/978-3-319-48628-4_8
[Cited on pages 4, 6, 17, 20, 29, 51, and 53.]

[90] X. Leroy, “Formal Verification of a Realistic Compiler,” Commun. ACM, vol. 52,
no. 7, pp. 107–115, July 2009. [Online]. Available: http://doi.acm.org/10.1145/
1538788.1538814 [Cited on pages 4, 15, 17, 50, and 53.]

[91] J. Lim and T. Reps, “TSL: A System for Generating Abstract Interpreters
and Its Application to Machine-Code Analysis,” ACM Trans. Program. Lang.
Syst., vol. 35, no. 1, pp. 4:1–4:59, Apr. 2013. [Online]. Available: http:
//doi.acm.org/10.1145/2450136.2450139 [Cited on pages 4, 15, 17, 31, 50, 51, and 53.]

[92] N. Hasabnis and R. Sekar, “Lifting Assembly to Intermediate Representation: A Novel
Approach Leveraging Compilers,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872380 pp. 311–324. [Cited on pages 4, 17, 23,
50, and 53.]

[93] N. Hasabnis and R. Sekar, “Extracting Instruction Semantics via Symbolic Execution
of Code Generators,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2016. New York, NY,
USA: ACM, 2016. [Online]. Available: http://doi.acm.org/10.1145/2950290.2950335
pp. 301–313. [Cited on pages 4, 6, 17, 23, 50, and 53.]

[94] T. Kasampalis, “Translation Validation for Compilation Verification,” PhD thesis, Uni-
versity of Illinois at Urbana Champaign (to be published), 2020. [Cited on pages 5, 7,
53, 57, 73, 78, 82, and 89.]

[95] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Formalizing the LLVM
Intermediate Representation for Verified Program Transformations,” in Proceedings of
the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2103656.2103709 pp. 427–440. [Cited on pages 5 and 53.]

[96] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation,” in Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004. [Cited
on pages 5, 17, and 53.]

104

http://dl.acm.org/citation.cfm?id=2682923.2682944
https://doi.org/10.1007/978-3-319-48628-4_8
http://doi.acm.org/10.1145/1538788.1538814
http://doi.acm.org/10.1145/1538788.1538814
http://doi.acm.org/10.1145/2450136.2450139
http://doi.acm.org/10.1145/2450136.2450139
http://doi.acm.org/10.1145/2872362.2872380
http://doi.acm.org/10.1145/2950290.2950335
http://doi.acm.org/10.1145/2103656.2103709

[97] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, “Testing CPU Emulators,”
in Proceedings of the Eighteenth International Symposium on Software Testing and
Analysis, ser. ISSTA ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1572272.1572303 pp. 261–272. [Cited on pages 6 and 11.]

[98] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Bruschi, “Testing System Virtual
Machines,” in Proceedings of the 19th International Symposium on Software Testing
and Analysis, ser. ISSTA ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1831708.1831730 pp. 171–182. [Cited on pages 6 and 11.]

[99] J.-Y. Chen, W. Yang, B.-Y. Shen, Y.-J. Li, and W.-C. Hsu, “Automatic Validation
for Binary Translation,” Comput. Lang. Syst. Struct., vol. 43, no. C, pp. 96–115, Oct.
2015. [Online]. Available: http://dx.doi.org/10.1016/j.cl.2015.05.002 [Cited on pages
6, 11, and 12.]

[100] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis, “Path-
exploration Lifting: Hi-fi Tests for Lo-fi Emulators,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XVII. New York, NY, USA: ACM, 2012, pp. 337–
348. [Cited on pages 6, 11, 12, 17, and 43.]

[101] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha,
“Testing Intermediate Representations for Binary Analysis,” in Proceedings of the
32Nd IEEE/ACM International Conference on Automated Software Engineering,
ser. ASE 2017. Piscataway, NJ, USA: IEEE Press, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3155562.3155609 pp. 353–364. [Cited on pages 6,
9, 12, and 13.]

[102] J. Hendrix, G. Wei, and S. Winwood, “Towards Verified Binary Raising ,” in Workshop
on Instruction Set Architecture Specification (co-located with ITP 2019), 2019. [Cited
on pages 6 and 13.]

[103] M. O. Myreen, M. J. C. Gordon, and K. Slind, “Machine-code Verification for
Multiple Architectures: An Application of Decompilation into Logic,” in Proceedings
of the 2008 International Conference on Formal Methods in Computer-Aided Design,
ser. FMCAD ’08. Piscataway, NJ, USA: IEEE Press, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1517424.1517444 pp. 20:1–20:8. [Cited on pages 6,
13, 17, and 18.]

[104] M. O. Myreen, M. J. C. Gordon, and K. Slind, “Decompilation into logic — Improved,”
in 2012 Formal Methods in Computer-Aided Design (FMCAD), Oct 2012, pp. 78–81.
[Cited on pages 6, 13, and 18.]

[105] M. Kaufmann, J. S. Moore, and P. Manolios, Computer-Aided Reasoning: An Ap-
proach. Norwell, MA, USA: Kluwer Academic Publishers, 2000. [Cited on pages 6
and 15.]

105

http://doi.acm.org/10.1145/1572272.1572303
http://doi.acm.org/10.1145/1831708.1831730
http://dx.doi.org/10.1016/j.cl.2015.05.002
http://dl.acm.org/citation.cfm?id=3155562.3155609
http://dl.acm.org/citation.cfm?id=1517424.1517444

[106] S. Horwitz, J. Prins, and T. Reps, “On the Adequacy of Program Dependence Graphs
for Representing Programs,” in Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’88. New
York, NY, USA: Association for Computing Machinery, 1988. [Online]. Available:
https://doi.org/10.1145/73560.73573 pp. 146–157. [Cited on pages 8, 69, and 71.]

[107] “C Language Testsuites: C-torture version 8.1.0,” https://gcc.gnu.org/onlinedocs/
gccint/C-Tests.html, 2018, last accessed: May 1, 2020. [Cited on pages 8, 16, 30,
and 40.]

[108] “Bug Reported in Intel Developer Zone: Possible errors in instruction se-
mantics,” https://software.intel.com/en-us/forums/intel-isa-extensions/topic/773342,
April 2018, last accessed: May 1, 2020. [Cited on pages 8 and 39.]

[109] “Bug Reported in Stoke: Semantic bugs,” https://github.com/StanfordPL/stoke/
issues/983, April 2018, last accessed: May 1, 2020. [Cited on pages 9 and 42.]

[110] “Bug Reported in Stoke: Modelling the behavior of flags which may or must take undef
values,” https://github.com/StanfordPL/stoke/issues/986, May 2018, last accessed:
May 1, 2020. [Cited on pages 9, 42, and 51.]

[111] S. Dasgupta, “Defining semantics of instructions unsupported in Strata/Stoke,” https:
//github.com/StanfordPL/stoke/pull/996, 2019, last accessed: May 1, 2020. [Cited
on pages 9 and 51.]

[112] I. Roessle, F. Verbeek, and B. Ravindran, “Formally Verified Big Step Semantics
out of x86-64 Binaries,” in Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, ser. CPP 2019. New York, NY,
USA: ACM, 2019. [Online]. Available: http://doi.acm.org/10.1145/3293880.3294102
pp. 181–195. [Cited on pages 9, 15, 17, and 50.]

[113] “Comparison with other machine code to LLVM bitcode lifters,” 2018, last
accessed: May 1, 2020. [Online]. Available: https://github.com/lifting-bits/mcsema#
comparison-with-other-machine-code-to-llvm-bitcode-lifters [Cited on page 9.]

[114] S. Dasgupta, “A Scalable Validator for Binary Lifters,” https://github.com/sdasgup3/
validating-binary-decompilation, 2020, last accessed: May 1, 2020. [Cited on page 10.]

[115] S. Dasgupta, “Semantics of x86-64 in K,” https://github.com/kframework/
X86-64-semantics, 2018, last accessed: May 1, 2020. [Cited on page 10.]

[116] B. Shen, J. You, W. Yang, and W. Hsu, “An LLVM-based hybrid binary transla-
tion system,” in 7th IEEE International Symposium on Industrial Embedded Systems
(SIES’12), June 2012, pp. 229–236. [Cited on page 12.]

[117] A. H. Miranti, S. Dasgupta, and G. Roşu, “Formalizing x86-64 Instruction Decoder
in K,” in Workshop on Instruction Set Architecture Specification (co-located with ITP
2019), 2019. [Cited on pages 13 and 23.]

106

https://doi.org/10.1145/73560.73573
https://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
https://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
https://software.intel.com/en-us/forums/intel-isa-extensions/topic/773342
https://github.com/StanfordPL/stoke/issues/983
https://github.com/StanfordPL/stoke/issues/983
https://github.com/StanfordPL/stoke/issues/986
https://github.com/StanfordPL/stoke/pull/996
https://github.com/StanfordPL/stoke/pull/996
http://doi.acm.org/10.1145/3293880.3294102
https://github.com/lifting-bits/mcsema#comparison-with-other-machine-code-to-llvm-bitcode-lifters
https://github.com/lifting-bits/mcsema#comparison-with-other-machine-code-to-llvm-bitcode-lifters
https://github.com/sdasgup3/validating-binary-decompilation
https://github.com/sdasgup3/validating-binary-decompilation
https://github.com/kframework/X86-64-semantics
https://github.com/kframework/X86-64-semantics

[118] M. O. Myreen and M. J. C. Gordon, “Hoare logic for realistically modelled machine
code,” in Proceedings of the 13th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, ser. TACAS’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 568–582. [Cited on page 13.]

[119] A. Fox, “Improved Tool Support for Machine-Code Decompilation in HOL4,” in Inter-
active Theorem Proving, C. Urban and X. Zhang, Eds. Cham: Springer International
Publishing, 2015, pp. 187–202. [Cited on pages 13, 17, and 18.]

[120] K. Slind and M. Norrish, “A Brief Overview of HOL4,” in Theorem Proving in Higher
Order Logics, O. A. Mohamed, C. Muñoz, and S. Tahar, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 28–32. [Cited on pages 13 and 18.]

[121] T. A. L. Sewell, M. O. Myreen, and G. Klein, “Translation Validation for a Verified
OS Kernel,” in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13. New York, NY, USA: ACM,
2013. [Online]. Available: http://doi.acm.org/10.1145/2491956.2462183 pp. 471–482.
[Cited on pages 13 and 18.]

[122] “X86isa: Implemented-opcodes: Opcodes Supported by the x86 Model,”
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.
php/X86ISA____IMPLEMENTED-OPCODES, July 2018, last accessed: May 1,
2020. [Cited on page 15.]

[123] “The Coq Proof Assistant,” https://coq.inria.fr/, 2018, last accessed: May 1, 2020.
[Cited on page 15.]

[124] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and D. Costanzo, “CertiKOS:
An Extensible Architecture for Building Certified Concurrent OS Kernels,” in
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’16. Berkeley, CA, USA: USENIX Association, 2016.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3026877.3026928 pp. 653–669.
[Cited on page 15.]

[125] V. Srinivasan and T. Reps, “Synthesis of machine code from semantics,”
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation - PLDI 2015, pp. 596–607, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2737924.2737960 [Cited on page 15.]

[126] S. Owens, S. Sarkar, and P. Sewell, “A Better x86 Memory Model: X86-TSO,”
in Proceedings of the 22Nd International Conference on Theorem Proving in Higher
Order Logics, ser. TPHOLs ’09. Berlin, Heidelberg: Springer-Verlag, 2009. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-03359-9_27 pp. 391–407. [Cited on
pages 15, 17, 24, and 49.]

107

http://doi.acm.org/10.1145/2491956.2462183
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/X86ISA____IMPLEMENTED-OPCODES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/X86ISA____IMPLEMENTED-OPCODES
https://coq.inria.fr/
http://dl.acm.org/citation.cfm?id=3026877.3026928
http://dl.acm.org/citation.cfm?doid=2737924.2737960
http://dx.doi.org/10.1007/978-3-642-03359-9_27

[127] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant, M. O.
Myreen, and J. Alglave, “The Semantics of x86-CC Multiprocessor Machine Code,” in
Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’09. New York, NY, USA: ACM, 2009. [Online].
Available: http://doi.acm.org/10.1145/1480881.1480929 pp. 379–391. [Cited on pages
15, 17, 24, and 49.]

[128] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M. Norton,
P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark, N. Krishnaswami, and
P. Sewell, “ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS,” Proc. ACM
Program. Lang., vol. 3, no. POPL, pp. 71:1–71:31, Jan. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3290384 [Cited on pages 16, 17, 18, 37, and 53.]

[129] “Sail x86 ISA model,” https://github.com/rems-project/sail/tree/sail2/x86, 2017, last
accessed: May 1, 2020. [Cited on pages 16, 18, and 50.]

[130] “rmem: Executable concurrency models for ARMv8, RISC-V, Power, and x86,” https:
//github.com/rems-project/rmem/, 2019, last accessed: May 1, 2020. [Cited on pages
16 and 18.]

[131] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell, “Simplifying ARM
Concurrency: Multicopy-atomic Axiomatic and Operational Models for ARMv8,”
Proc. ACM Program. Lang., vol. 2, no. POPL, pp. 19:1–19:29, Dec. 2017. [Online].
Available: http://doi.acm.org/10.1145/3158107 [Cited on pages 16 and 18.]

[132] A. Reid, “Trustworthy Specifications of ARM V8-A and v8-M System Level Architec-
ture,” in Proceedings of the 16th Conference on Formal Methods in Computer-Aided
Design, ser. FMCAD ’16. Austin, Texas: FMCAD Inc, 2016, pp. 161–168. [Cited on
pages 16, 17, 18, 19, 20, 37, and 43.]

[133] A. Reid, “ARM’s Architecture Specification Language,” https://alastairreid.github.
io/specification_languages/, 2016, last accessed: May 1, 2020. [Cited on pages 16
and 18.]

[134] U. Degenbaev, “Formal specification of the x86 instruction set architecture,” 03
2012. [Online]. Available: https://core.ac.uk/download/pdf/10697957.pdf [Cited on
page 16.]

[135] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Superoptimization,” in Proceedings
of the Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’13. New York, NY, USA: ACM,
2013. [Online]. Available: http://doi.acm.org/10.1145/2451116.2451150 pp. 305–316.
[Cited on pages 16, 24, 27, 41, and 51.]

108

http://doi.acm.org/10.1145/1480881.1480929
http://doi.acm.org/10.1145/3290384
https://github.com/rems-project/sail/tree/sail2/x86
https://github.com/rems-project/rmem/
https://github.com/rems-project/rmem/
http://doi.acm.org/10.1145/3158107
https://alastairreid.github.io/specification_languages/
https://alastairreid.github.io/specification_languages/
https://core.ac.uk/download/pdf/10697957.pdf
http://doi.acm.org/10.1145/2451116.2451150

[136] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan,
“RockSalt: better, faster, stronger SFI for the x86,” PLDI: Program-
ming Languages Design and Implementation, pp. 395–404, 2012. [Online].
Available: http://doi.acm.org/10.1145/2254064.2254111{%}5Cnhttp://dl.acm.org/
ft{_}gateway.cfm?id=2254111{&}type=pdf [Cited on page 17.]

[137] “Evaluable Strings Intermediate Language,” https://radare.gitbooks.io/radare2book/
content/disassembling/esil.html, July 2018, last accessed: May 1, 2020. [Cited on
page 17.]

[138] W. A. H. Jr., “Microprocessor Design Verification,” J. Autom. Reasoning, vol. 5,
no. 4, pp. 429–460, 1989. [Online]. Available: https://doi.org/10.1007/BF00243132
[Cited on pages 17 and 43.]

[139] S. Goel, A. Slobodova, R. Sumners, and S. Swords, “Verifying X86 Instruction
Implementations,” in Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, ser. CPP 2020. New York,
NY, USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3372885.3373811 pp. 47–60. [Cited on pages 17 and 43.]

[140] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen, A. Pathirane,
O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-End Verification of Processors with ISA-
Formal,” in Computer Aided Verification, S. Chaudhuri and A. Farzan, Eds. Cham:
Springer International Publishing, 2016, pp. 42–58. [Cited on pages 17, 19, 20, and 43.]

[141] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: A Verified
Implementation of ML,” SIGPLAN Not., vol. 49, no. 1, pp. 179–191, Jan. 2014.
[Online]. Available: https://doi.org/10.1145/2578855.2535841 [Cited on pages 17
and 18.]

[142] X. Leroy, “Formal Certification of a Compiler Back-end or: Programming a Compiler
with a Proof Assistant,” in Conference Record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’06. New York, NY,
USA: ACM, 2006. [Online]. Available: http://doi.acm.org/10.1145/1111037.1111042
pp. 42–54. [Cited on page 17.]

[143] M. O. Myreen and M. J. C. Gordon, “Verified LISP Implementations on
ARM,Âăx86ÂăandÂăPowerPC,” in Theorem Proving in Higher Order Logics,
S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 359–374. [Cited on pages 17 and 18.]

[144] S. Maus, M. Moskal, and W. Schulte, “Vx86: x86 Assembler Simulated in C Powered
by Automated Theorem Proving,” in Algebraic Methodology and Software Technology,
J. Meseguer and G. Roşu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 284–298. [Cited on page 17.]

109

http://doi.acm.org/10.1145/2254064.2254111{%}5Cnhttp://dl.acm.org/ft{_}gateway.cfm?id=2254111{&}type=pdf
http://doi.acm.org/10.1145/2254064.2254111{%}5Cnhttp://dl.acm.org/ft{_}gateway.cfm?id=2254111{&}type=pdf
https://radare.gitbooks.io/radare2book/content/disassembling/esil.html
https://radare.gitbooks.io/radare2book/content/disassembling/esil.html
https://doi.org/10.1007/BF00243132
https://doi.org/10.1145/3372885.3373811
https://doi.org/10.1145/2578855.2535841
http://doi.acm.org/10.1145/1111037.1111042

[145] A. Mycroft, “Type-Based Decompilation (or Program Reconstruction via Type Recon-
struction),” in Proceedings of the 8th European Symposium on Programming Languages
and Systems, ser. ESOP ’99. Berlin, Heidelberg: Springer-Verlag, 1999, pp. 208–223.
[Cited on page 17.]

[146] S. Dasgupta, S. Dinesh, D. Venkatesh, V. S. Adve, and C. W. Fletcher, “Scalable
Validation of Binary Lifters,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2020. ACM, 2020.
[Online]. Available: http://doi.acm.org/10.1145/3385412.3385964 [Cited on pages 17
and 53.]

[147] J. Regehr and U. Duongsaa, “Deriving Abstract Transfer Functions for Analyzing
Embedded Software,” SIGPLAN Not., vol. 41, no. 7, pp. 34–43, June 2006. [Online].
Available: https://doi.org/10.1145/1159974.1134657 [Cited on page 17.]

[148] J. Regehr and A. Reid, “HOIST: A System for Automatically Deriving Static
Analyzers for Embedded Systems,” pp. 133–143, 2004. [Online]. Available:
https://doi.org/10.1145/1024393.1024410 [Cited on page 17.]

[149] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing for
Security Testing,” Queue, vol. 10, no. 1, pp. 20–27, Jan. 2012. [Online]. Available:
https://doi.org/10.1145/2090147.2094081 [Cited on page 17.]

[150] A. C. J. Fox and A. Fox, “A HOL specification of the ARM instruction set architecture,”
2001. [Cited on pages 17 and 18.]

[151] A. Fox and M. O. Myreen, “A Trustworthy Monadic Formalization of the ARMv7
Instruction Set Architecture,” in Interactive Theorem Proving, M. Kaufmann and L. C.
Paulson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 243–258.
[Cited on pages 17, 18, and 37.]

[152] A. Fox, “Directions in ISA Specification,” in Interactive Theorem Proving, L. Beringer
and A. Felty, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 338–344.
[Cited on page 17.]

[153] A. Reid, “Who Guards the Guards? Formal Validation of the Arm v8-m Architecture
Specification,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, Oct. 2017. [Online].
Available: https://doi.org/10.1145/3133912 [Cited on pages 17, 19, 20, and 43.]

[154] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon,
and P. Sewell, “Modelling the ARMv8 Architecture, Operationally: Concurrency
and ISA,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’16. New York, NY,
USA: Association for Computing Machinery, 2016. [Online]. Available: https:
//doi.org/10.1145/2837614.2837615 pp. 608–621. [Cited on pages 17, 18, and 37.]

110

http://doi.acm.org/10.1145/3385412.3385964
https://doi.org/10.1145/1159974.1134657
https://doi.org/10.1145/1024393.1024410
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/3133912
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/2837614.2837615

[155] A. Fox and C. Fd, “Formal verification of the ARM6 micro-architecture,” Technical
Report, UCAM-CL-TR-548, University of Cambridge, Computer Laboratory, 12 2002.
[Cited on pages 18 and 43.]

[156] A. Fox, “Formal Specification and Verification of ARM6,” in Theorem Proving in
Higher Order Logics, D. Basin and B. Wolff, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 25–40. [Cited on pages 18 and 53.]

[157] M. Dam, R. Guanciale, and H. Nemati, “Machine Code Verification of a Tiny
ARM Hypervisor,” in Proceedings of the 3rd International Workshop on Trustworthy
Embedded Devices, ser. TrustED ’13. New York, NY, USA: Association for Computing
Machinery, 2013. [Online]. Available: https://doi.org/10.1145/2517300.2517302 pp.
3–12. [Cited on page 18.]

[158] C. Ellison and G. Roşu, “An Executable Formal Semantics of C with Applications,”
in Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’12). ACM, January 2012, pp. 533–544. [Cited on pages
18 and 31.]

[159] D. Filaretti and S. Maffeis, “An Executable Formal Semantics of PHP,” in ECOOP
2014 – Object-Oriented Programming, R. Jones, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 567–592. [Cited on page 18.]

[160] D. Guth, “A formal semantics of Python 3.3,” 2013. [Cited on page 18.]

[161] D. Bogdănaş and G. Roşu, “K-Java: A Complete Semantics of Java,” in Proceedings
of the 42nd Symposium on Principles of Programming Languages (POPL’15). ACM,
January 2015, pp. 445–456. [Cited on page 18.]

[162] D. Park, A. Ştefănescu, and G. Roşu, “KJS: A complete formal semantics of
JavaScript,” in Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’15). ACM, June 2015, pp. 346–356.
[Cited on page 18.]

[163] “The EVM Jello Paper,” https://anon293409324.github.io/, 2017, last accessed: May
1, 2020. [Cited on pages 18 and 43.]

[164] A. Reid, “Defining interfaces between hardware and software: Quality and perfor-
mance,” Ph.D. dissertation, School of Computing Science, University of Glasgow,
March 2019. [Cited on pages 19 and 43.]

[165] “ARM Architecture Reference Manual ARMv8, for ARMv8-A archi-
tecture profile (DDI0487)),” https://developer.arm.com/docs/ddi0487/a/
arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile, 2013,
last accessed: May 1, 2020. [Cited on page 19.]

[166] “Armv8-M Architecture Reference Manual (DDI0553)),” https://developer.arm.com/
docs/ddi0553/latest/armv8-m-architecture-reference-manual, 2016, last accessed:
May 1, 2020. [Cited on page 19.]

111

https://doi.org/10.1145/2517300.2517302
https://anon293409324.github.io/
https: //developer.arm.com/docs/ddi0487/a/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https: //developer.arm.com/docs/ddi0487/a/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0553/latest/armv8-m-architecture-reference-manual
https://developer.arm.com/docs/ddi0553/latest/armv8-m-architecture-reference-manual

[167] A. Pnueli, M. Siegel, and E. Singerman, “Translation Validation,” in Proceedings
of the 4th International Conference on Tools and Algorithms for Construction and
Analysis of Systems, ser. TACAS ’98. Berlin, Heidelberg: Springer-Verlag, 1998.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646482.691453 pp. 151–166.
[Cited on page 20.]

[168] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg, “VOC: A Translation Validator for
Optimizing Compilers,” Electronic Notes in Theoretical Computer Science, vol. 65,
no. 2, pp. 2–18, 2002. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1571066104803931 [Cited on page 20.]

[169] C. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. Zuck, “TVOC: A Transla-
tion Validator for Optimizing Compilers,” in Computer Aided Verification, K. Etessami
and S. K. Rajamani, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp.
291–295. [Cited on page 20.]

[170] G. C. Necula, “Translation Validation for an Optimizing Compiler,” in Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, ser. PLDI ’00. New York, NY, USA: ACM, 2000. [Online]. Available:
http://doi.acm.org/10.1145/349299.349314 pp. 83–94. [Cited on pages 20 and 21.]

[171] J.-B. Tristan, P. Govereau, and G. Morrisett, “Evaluating Value-graph Translation
Validation for LLVM,” in Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’11. New York, NY,
USA: ACM, 2011. [Online]. Available: http://doi.acm.org/10.1145/1993498.1993533
pp. 295–305. [Cited on pages 20, 22, 72, and 82.]

[172] M. Stepp, R. Tate, and S. Lerner, “Equality-based Translation Validator for
LLVM,” in Proceedings of the 23rd International Conference on Computer Aided
Verification, ser. CAV’11. Berlin, Heidelberg: Springer-Verlag, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=2032305.2032364 pp. 737–742. [Cited
on pages 20, 22, 72, and 82.]

[173] L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu,
“Translation and Run-Time Validation of Loop Transformations,” Form. Methods
Syst. Des., vol. 27, no. 3, pp. 335–360, Nov. 2005. [Online]. Available:
https://doi.org/10.1007/s10703-005-3402-z [Cited on page 20.]

[174] C. Hawblitzel, S. K. Lahiri, K. Pawar, H. Hashmi, S. Gokbulut, L. Fernando,
D. Detlefs, and S. Wadsworth, “Will You Still Compile Me Tomorrow? Static
Cross-version Compiler Validation,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2013. New York, NY,
USA: ACM, 2013. [Online]. Available: http://doi.acm.org/10.1145/2491411.2491442
pp. 191–201. [Cited on page 21.]

112

http://dl.acm.org/citation.cfm?id=646482.691453
http://www.sciencedirect.com/science/article/pii/S1571066104803931
http://www.sciencedirect.com/science/article/pii/S1571066104803931
http://doi.acm.org/10.1145/349299.349314
http://doi.acm.org/10.1145/1993498.1993533
http://dl.acm.org/citation.cfm?id=2032305.2032364
https://doi.org/10.1007/s10703-005-3402-z
http://doi.acm.org/10.1145/2491411.2491442

[175] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino, “Boogie:
A Modular Reusable Verifier for Object-oriented Programs,” in Proceedings of
the 4th International Conference on Formal Methods for Components and Objects,
ser. FMCO’05. Berlin, Heidelberg: Springer-Verlag, 2006. [Online]. Available:
http://dx.doi.org/10.1007/11804192_17 pp. 364–387. [Cited on page 21.]

[176] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo, “SYMDIFF: A
Language-agnostic Semantic Diff Tool for Imperative Programs,” in Proceedings
of the 24th International Conference on Computer Aided Verification, ser.
CAV’12. Berlin, Heidelberg: Springer-Verlag, 2012. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-31424-7_54 pp. 712–717. [Cited on page 21.]

[177] X. Rival, “Symbolic Transfer Function-based Approaches to Certified Compilation,”
in Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’04. New York, NY, USA: ACM, 2004. [Online].
Available: http://doi.acm.org/10.1145/964001.964002 pp. 1–13. [Cited on page 21.]

[178] T. F. Şerbănuţa, A. Arusoaie, D. Lazar, C. Ellison, D. Lucanu, and G. Roşu, “The K
primer (version 3.2),” Tech. Rep. [Cited on pages 23, 26, and 57.]

[179] “x86 and amd64 Instruction Reference (UnOfficial),” http://www.felixcloutier.com/
x86/, July 2018, last accessed: May 1, 2020. [Cited on page 24.]

[180] “x86 assembly language,” https://en.wikipedia.org/wiki/X86_assembly_language/,
July 2018, last accessed: May 1, 2020. [Cited on page 26.]

[181] G. Roşu and T. F. Şerbănuţă, “An Overview of the K Semantic Framework,” Journal
of Logic and Algebraic Programming, vol. 79, no. 6, pp. 397–434, 2010. [Cited on
page 26.]

[182] G. L. Steele, Jr., Common LISP: The Language. Newton, MA, USA: Digital Press,
1984. [Cited on page 35.]

[183] X. Shi, “Certification of an Instruction Set Simulator,” Theses, Université Grenoble
Alpes, July 2013. [Online]. Available: https://tel.archives-ouvertes.fr/tel-00937524
[Cited on page 37.]

[184] “GDB: The GNU Project Debugger,” https://www.gnu.org/software/gdb/, July 2018,
last accessed: May 1, 2020. [Cited on page 37.]

[185] “IEEE Std 754-2008 - IEEE Standard for Floating-Point Arithmetic,” https://
standards.ieee.org/findstds/standard/754-2008.html, Aug 2008. [Cited on pages 38
and 39.]

[186] S. Dasgupta, “Test Inputs borrowed from Strata project,” https://github.
com/kframework/X86-64-semantics/tree/master/tests/single-instruction-tests/
test-inputs, 2018, last accessed: May 1, 2020. [Cited on page 38.]

113

http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://doi.acm.org/10.1145/964001.964002
http://www.felixcloutier.com/x86/
http://www.felixcloutier.com/x86/
https://en.wikipedia.org/wiki/X86_assembly_language/
https://tel.archives-ouvertes.fr/tel-00937524
https://www.gnu.org/software/gdb/
https://standards.ieee.org/findstds/standard/754-2008.html
https://standards.ieee.org/findstds/standard/754-2008.html
https://github.com/kframework/X86-64-semantics/tree/master/tests/single-instruction-tests/test-inputs
https://github.com/kframework/X86-64-semantics/tree/master/tests/single-instruction-tests/test-inputs
https://github.com/kframework/X86-64-semantics/tree/master/tests/single-instruction-tests/test-inputs

[187] S. Dasgupta, “Test Inputs (either manually generated or borrowed from
related projects,” https://github.com/kframework/X86-64-semantics/tree/master/
tests/single-instruction-tests, 2018, last accessed: May 1, 2020. [Cited on page 38.]

[188] “Eric Schkufza. Personal communication,” June 2018. [Cited on page 40.]

[189] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu, “A Formal Verification Tool
for Ethereum VM Bytecode,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA: ACM, 2018.
[Online]. Available: http://doi.acm.org/10.1145/3236024.3264591 pp. 912–915. [Cited
on page 42.]

[190] H. D. Foster, “Trends in Functional Verification: A 2014 Industry Study,” in
Proceedings of the 52nd Annual Design Automation Conference, ser. DAC ’15.
New York, NY, USA: ACM, 2015. [Online]. Available: http://doi.acm.org/10.1145/
2744769.2744921 pp. 48:1–48:6. [Cited on page 42.]

[191] L. Liu and S. Vasudevan, “Scaling Input Stimulus Generation Through Hybrid Static
and Dynamic Analysis of RTL,” ACMTrans. Des. Autom. Electron. Syst., vol. 20, no. 1,
pp. 4:1–4:33, Nov. 2014. [Online]. Available: http://doi.acm.org/10.1145/2676549
[Cited on page 43.]

[192] L. Liu and S. Vasudevan, “Efficient validation input generation in RTL by hybridized
source code analysis,” in 2011 Design, Automation Test in Europe, March 2011, pp.
1–6. [Cited on page 43.]

[193] A. Ahmed, F. Farahmandi, and P. Mishra, “Directed test generation using concolic
testing on RTL models,” in 2018 Design, Automation Test in Europe Conference Ex-
hibition (DATE), March 2018, pp. 1538–1543. [Cited on page 43.]

[194] S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and W. J. Paul, “Putting It All
Together – Formal Verification of the VAMP,” Int. J. Softw. Tools Technol. Transf.,
vol. 8, no. 4, pp. 411–430, Aug. 2006. [Cited on page 43.]

[195] P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy, “An Empirical Study on the
Correctness of Formally Verified Distributed Systems,” in Proceedings of the Twelfth
European Conference on Computer Systems, ser. EuroSys ’17. New York, NY, USA:
ACM, 2017, pp. 328–343. [Cited on page 43.]

[196] D. A. Burke and K. Johannisson, “Translating Formal Software Specifications to Nat-
ural Language,” in Logical Aspects of Computational Linguistics, P. Blache, E. Stabler,
J. Busquets, and R. Moot, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 51–66. [Cited on page 43.]

114

https://github.com/kframework/X86-64-semantics/tree/master/tests/single-instruction-tests
https://github.com/kframework/X86-64-semantics/tree/master/tests/single-instruction-tests
http://doi.acm.org/10.1145/3236024.3264591
http://doi.acm.org/10.1145/2744769.2744921
http://doi.acm.org/10.1145/2744769.2744921
http://doi.acm.org/10.1145/2676549

[197] A. Stefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu, “Semantics-based Program
Verifiers for All Languages,” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA 2016. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2983990.2984027 pp. 74–91. [Cited on page 44.]

[198] G. Roşu and A. Ştefănescu, “Checking Reachability using Matching Logic,” in Pro-
ceedings of the 27th Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’12). ACM, Oct 2012, pp. 555–574. [Cited on page 44.]

[199] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making Information
Flow Explicit in HiStar,” in Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation - Volume 7, ser. OSDI
’06. Berkeley, CA, USA: USENIX Association, 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267308.1267327 pp. 19–19. [Cited on page 46.]

[200] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic Generation
of High-coverage Tests for Complex Systems Programs,” in Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation, ser.
OSDI’08. Berkeley, CA, USA: USENIX Association, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756 pp. 209–224. [Cited on pages 46
and 48.]

[201] “MPFR Java Bindings,” https://github.com/kframework/mpfr-java, July 2018, last
accessed: May 1, 2020. [Cited on page 49.]

[202] “The GNU MPFR Library,” https://www.mpfr.org/, July 2018, last accessed: May 1,
2020. [Cited on page 49.]

[203] S. Dasgupta, “Improving Stoke ability to debug a circuit,” https://github.com/
StanfordPL/stoke/pull/997, 2019, last accessed: May 1, 2020. [Cited on page 51.]

[204] A. Lööw, R. Kumar, Y. K. Tan, M. O. Myreen, M. Norrish, O. Abrahamsson,
and A. Fox, “Verified Compilation on a Verified Processor,” in Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2019. New York, NY, USA: ACM, 2019. [Online].
Available: http://doi.acm.org/10.1145/3314221.3314622 pp. 1041–1053. [Cited on
page 53.]

[205] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood,
“seL4: Formal Verification of an OS Kernel,” in Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, ser. SOSP ’09. New York, NY,
USA: ACM, 2009. [Online]. Available: http://doi.acm.org/10.1145/1629575.1629596
pp. 207–220. [Cited on page 53.]

115

http://doi.acm.org/10.1145/2983990.2984027
http://dl.acm.org/citation.cfm?id=1267308.1267327
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://github.com/kframework/mpfr-java
https://www.mpfr.org/
https://github.com/StanfordPL/stoke/pull/997
https://github.com/StanfordPL/stoke/pull/997
http://doi.acm.org/10.1145/3314221.3314622
http://doi.acm.org/10.1145/1629575.1629596

[206] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos, “An
in-depth analysis of disassembly on full-scale x86/x64 binaries,” in 25th USENIX
Security Symposium (USENIX Security 16). Austin, TX: USENIX Association,
Aug. 2016. [Online]. Available: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/andriesse pp. 583–600. [Cited on page 54.]

[207] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Proceedings
of the Theory and Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, ser.
TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag, 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=1792734.1792766 pp. 337–340. [Cited
on page 55.]

[208] D. Sangiorgi, Introduction to Bisimulation and Coinduction. New York, NY, USA:
Cambridge University Press, 2011. [Cited on page 60.]

[209] “MemorySSA,” https://llvm.org/docs/MemorySSA.html, last accessed: May 1, 2020.
[Cited on page 68.]

[210] M. Saltz, A. Jain, A. Kothari, A. Fard, J. A. Miller, and L. Ramaswamy, “DualIso: An
Algorithm for Subgraph Pattern Matching on Very Large Labeled Graphs,” in 2014
IEEE International Congress on Big Data, June 2014, pp. 498–505. [Cited on page 68.]

[211] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools (2nd Edition). Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2006. [Cited on page 71.]

[212] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-
M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible framework for
program autotuning,” in International Conference on Parallel Architectures and
Compilation Techniques, Edmonton, Canada, August 2014. [Online]. Available:
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf [Cited
on pages 72 and 83.]

[213] “Z3’s behavior seems to depend on the order in which formulas are asserted,” https:
//github.com/Z3Prover/z3/issues/1106, June 2017, last accessed: May 1, 2020. [Cited
on page 74.]

[214] “A few discrepancies in x86-64 Instruction Semantics,” https://github.com/
lifting-bits/remill/issues/376, November 2019, last accessed: May 1, 2020. [Cited on
page 74.]

[215] I. Guilfanov, “Decompilers and Beyond,” In Black-Hat USA, July 2008. [Cited on
page 78.]

116

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/andriesse
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/andriesse
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://llvm.org/docs/MemorySSA.html
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
https://github.com/Z3Prover/z3/issues/1106
https://github.com/Z3Prover/z3/issues/1106
https://github.com/lifting-bits/remill/issues/376
https://github.com/lifting-bits/remill/issues/376

[216] R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi, “N-version Disassembly:
Differential Testing of x86 Disassemblers,” Proceedings of the 19th international
symposium on Software testing and analysis - ISSTA ’10, p. 265, 2010.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1831708.1831741 [Cited
on page 84.]

117

http://portal.acm.org/citation.cfm?doid=1831708.1831741

	CHAPTER 1 Introduction
	Validating Binary Lifters: Motivation
	Correctness Challenges for Binary Lifters
	Overall Goal of Our Work
	Summary of Related Work
	Intuition and Summary of Our Approach
	Contributions
	Thesis Organization

	CHAPTER 2 Related Work
	Validation of Binary Lifters
	Testing-based Approaches
	Formal Methods based Approaches

	Defining Formal Semantics of x86-64
	Defining Formal Semantics of ISA (Other than x86/x86-64)
	Translation Validation

	CHAPTER 3 Formal Semantics of x86-64 User-Level ISA
	Approach Overview
	Challenges in Formalizing x86-64
	Preliminaries
	x86-64 Instruction Set Architecture
	K Framework
	Strata Project

	Formalization of x86-64 Semantics
	Scope of the Work
	Overview of the Approach
	Program Configuration
	Semantics of Execution Environment
	Semantics of Individual Instructions
	Constructing the x86-64 Semantics

	Validation of Semantics
	Co-Simulations against Hardware
	Comparing with Stoke

	Applications
	Validating Processor Hardware
	Program Verification
	Symbolic Execution
	Translation Validation of Optimizations

	Limitations
	Lessons Learned

	CHAPTER 4 Scalable Validation of Binary Lifters
	Approach Overview
	Preliminaries
	Single-Instruction Translation Validation
	Program-Level Validation
	Compositional Lifter
	Transformer & Matcher

	Evaluation
	Limitations

	CHAPTER 5 Conclusions
	CHAPTER 6 Future Directions
	Improving the Current Work
	Extending to Other Lifters
	Evaluating Correctness of Disassembler Using ISA Semantics

	APPENDIX A Single Instruction Translation Validation
	REFERENCES

