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Abstract

This dissertation presents three papers that estimate the demand for envi-

ronmental goods and services. Chapter 1 begins with a brief overview of the

practice of nonmarket valuation, with discussion of previous applications and

the methods that I advance in the subsequent chapters. I also provide a com-

mon nomenclature for continuity in understanding, the underlying intuition

and motivation, and discussion of the results throughout.

In chapter 2, I examine the behavioral response of winter recreationists to

marginal changes in mountain snowpack. I make three primary contributions

in this chapter: 1) I develop a new method to estimate elasticities for climate

amenities by matching the spatial and temporal variation in the level of

the amenity with the frequency of related market transactions; 2) I derive

state-specific snowpack elasticities for all major markets across the United

States and find significant heterogeneity in the behavioral response across

states; and 3) I estimate year-to-year variation in the recreation revenue

from snowpack under current and future climate scenarios. I predict that

resort markets could face reductions in local snow-related revenue of -40% to

-80%, almost twice as large as previous estimates suggest.

In chapter 3, I extend the analysis from the previous chapter to estimate

utility functions for winter recreationists in the United States. I make two

primary contributions in this chapter: 1) I estimate the marginal willing-

ness to pay (MWTP) for mountain snowpack at the national and regional

ii



levels; and 2) I construct a matrix of substitution elasticities between resort

markets. Both contributions invoke random utility maximization to estimate

structural parameters in the utility functions of alpine skiers. For the first

contribution (1), I maintain trip-level data to estimate marginal utilities and

subsequent MWTP. I address price endogeneity concerns using an instru-

mental variables approach. For the second contribution (2), I aggregate the

trip-level data to market-level and calculate daily market shares. This allows

me to recover substitution patterns that provide insight into how skiers move

across markets based on marginal changes in mountain snowpack. Each of

these are important for understanding consumer welfare in the alpine skiing

market and the implications under a changing climate.

In chapter 4, I examine preferences for surface water quality and quan-

tify some overlooked benefits of nutrient reductions in the Mississippi River

Basin. Improvements in local surface water quality in the Mississippi River

Basin (MRB) can contribute to the regional environmental goals of reducing

hypoxia in the Gulf of Mexico. To inform estimates of the benefits of water

quality policy, I use a choice experiment survey in a typical sub-watershed

of the MRB to estimate willingness to pay for local environmental improve-

ments and helping to reduce hypoxia far downstream. I find that residents

place large values on reduced local algal blooms, improved local fish popula-

tions and diversity, and meeting local commitments to help with the regional

environmental problem.

I conclude my analysis in chapter 5 by providing a clear summary of my

findings and why they are important. I discuss some of the possible impli-

cations for the benefits that I quantify and list a few examples of how they

can be used when generating climate and environmental policy.
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To all my mentors, past, present, and future, and to Lauren my love, who I

will always look up to: Thank you.

Examine each question in terms of what is ethically and aesthetically right,

as well as what is economically expedient. A thing is right when it tends to

preserve the integrity, stability, and beauty of the biotic community. It is

wrong when it tends otherwise.—Aldo Leopold, The Land Ethic
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CHAPTER 1

INTRODUCTION

This dissertation presents three papers that estimate the demand for environ-

mental goods and services—nonmarket valuation. Why is this an important

enough topic to write three papers on? The motivation can be traced back

to the idea that one person’s actions can have unsolicited effects on another

person, often times without compensation. In many instances, the natural

environment becomes the channel through which these unsolicited effects,

or externalities, are distributed. Externalities need not be strictly good or

bad. If one person receives unsolicited benefits (a good externality) from

another person’s actions, we might be interested in quantifying that bene-

fit to provide compensation to the person doing the action. We might be

particularly interested if the scenario involves unsolicited damages (a bad

externality). More generally, however, it is less important whether the exter-

nalities are good or bad. If we can quantify, in some meaningful way, the size

and scope (how many people are affected and where) we can begin to explore

if there is too much, too little, or just enough of the original action. The

process of quantifying these benefits and damages, particularly when they

are distributed to others through the natural environment, is the practice of

nonmarket valuation. In the following chapters, I estimate the benefits of

mountain snowpack to outdoor recreation and tourism opportunities. I also

estimate the benefits of clean rivers and lakes, and the benefits that people

would receive from reduced pollution in the Gulf of Mexico.

The quality or quantity of environmental goods and services can differ

across locations (spatial variation) and throughout time (temporal variation).

Similarly, the values people place on these goods and services can also vary

spatially and temporally. Variation in these values is called preference het-

erogeneity. Preferences are a utility theoretic derivation of the value people

place on these goods and services. This is cryptic economic speak for simply

estimating values in a way that is tractable. In economics, we elicit these
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preference in several ways. For example, we can simply ask a person how

much they value the sunshine or clean air. This is an example of a person’s

stated preference for an environmental good or service. Alternatively, we can

use information about their observed behavior to say something about their

preferences. We do this by measuring how they respond in the market (such

as buying something in a store) when we observe a change in the environ-

ment (such as an increase in air pollution). This is an example of a person’s

revealed preference for an environmental good or service.

Stated and revealed methods provide two ways of eliciting people’s prefer-

ences. There are also two distinct ways to model preferences. The first is to

estimate a reduced-form regression that simply establishes the relationship

between some outcome of interest (say the amount of money spent on a given

day) and the explanatory variables in the model (say the level of pollution

on that day). The resulting coefficients from this regression inform us about

how much (or little) these two things (money and air pollution) relate to

one another. Alternatively, we can model the relationship between the two

structurally. This approach assumes the researcher perfectly knows all of

the variables that effect the outcome of interest, then estimate parameters

that predict the outcome variable. A structural model typically has an out-

come variable of interest between 0 and 1, and the parameters attached to

each explanatory variable summarize its contribution to the overall model’s

prediction of an outcome equal to 1.

The following chapters use both stated and revealed preference methods to

estimate the value people place on a few environmental goods and services.

I also use both reduced-form and structural models to estimate these rela-

tionships. I build on existing methods to improve estimates of these values

and to identify differences across location. I then use these values to say

something about how people might be better or worse off in the future under

alternative management or climate scenarios.

In chapter 2, I estimate the value of mountain snowpack to resort towns

across the United States (US).1 The value estimated in this chapter is the

amount of money that is brought into local economies as a function of the

amount of snow at the nearby resort. Identifying the relationship between lo-

cal revenues and mountain snowpack helps identify to what extent people (in

1This chapter is co-authored with Peter Christensen.
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aggregate) rely on the natural environment to provide recreation and tourism

opportunities in their community. I use this relationship to say something

more generally about how revenue in these resort communities might change

under future climate. In the future, the level of snow at a resort is expected

to be less than the current average with higher variability and more rapid

runoff (Reclamation, 2013). Under these conditions, I estimate how economic

activity (revenues) might be different than it is now. I estimate a revenue

function for 26 states across the US that have operating ski resorts and ac-

tive ski culture. I use the derived state-specific parameters in conjunction

with state-specific climate projections to estimate reductions in revenue from

winter outdoor recreation in each state under different climate.

The method I advance in this chapter is the use of high-frequency data

on market transactions (short term property rentals) to estimate demand

for snow at the nearby resort. This method allows market transactions to

fluctuate at the same frequency as that of the environmental good. While

this is not strictly a new approach to nonmarket valuation (see Dundas and

von Haefen (2019) and Chan and Wichman (2018) for similar approaches

in recreational fishing and bike rental markets), the additional features of

data procurement via web crawlers and scrapers and the application to snow

tourism has not before been carried out is such detail.

In chapter 3, I build on the analysis discussed in Chapter 2 by estimating

utility functions for winter recreationists in the United States. I make two

primary contributions in this chapter: 1) I estimate the marginal willingness

to pay (MWTP) for mountain snowpack at the national and regional levels;

and 2) I construct a matrix of substitution elasticities between US resort

markets. Both contributions invoke random utility maximization (McFad-

den, 1973) to estimate structural parameters in the utility functions of alpine

skiers.

For the first contribution (1), I maintain trip-level micro data to estimate

marginal utilities and subsequent MWTP. I address price endogeneity con-

cerns using an instrumental variables approach, and discuss this model and

its results first. I also estimate a more flexible functional form in the utility

function of skiers using a binned specification. This allows me to estimate

the WTP in each snowpack bin, which is particularly useful for estimating

welfare on a given day. I estimate the binned nonparametric approach for the

national sample and regionally. For the second contribution (2), I aggregate
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the trip-level data to market-level and calculate daily market shares. This

allows me to recover substitution patterns, providing insight into how skiers

move across markets based on changes in mountain snowpack.

The method I advance in this paper is the application of a high-dimensional

discrete choice model to estimate the marginal willingness to pay for moun-

tain snowpack. Structural estimation can be computationally intensive and

cumbersome. I use recent advancements in estimation algorithms (Fernández-

Val and Weidner, 2016; Stammann, 2017) to estimate a trip-level demand

model for outdoor winter recreation. I also apply market share estimation in

the spirit of Berry, Levinsohn, and Pakes (1995) to recover new substitution

parameters that map mountain snowpack to outdoor recreation decisions

across the US.

In chapter 4, I estimate the value people place on the quality of surface

water in their local river systems and the value they place on reducing nutri-

ent transmission to the Gulf of Mexico.2 I use a choice experiment to survey

residents living within a watershed in central Illinois—The Upper Sangamon

River Watershed. In addition to estimating the value people place on im-

provements to surface water quality, I investigate whether these values vary

among the sampled respondents. More specifically, I am interested in identi-

fying if the more rural residents of the watershed value these environmental

changes differently than the more urban residents of the watershed. An en-

vironmental policy or program that affects both rural and urban populations

might be inequitable if it favors one group over the other, especially if the

program is funded equally by both groups. Identifying any differences in

these values between rural and urban residents will help to inform policy

makers about how to structure environmental programs aimed at improving

local water quality or reducing hypoxia in the Gulf of Mexico.

The method I advance in this chapter is the introduction of individualized

maps for every scenario on a choice card. This provides the respondent with

a map of the area and locates their home for them on the map relative to the

areas of the proposed improvements. This advancement requires a series of

Python and Stata scripts along with integration with Amazon Web Services

and Microsoft Office Suite to execute in way that the respondent now has

more—and more accurate—information to chose the scenario that they like

2This chapter is co-authored with Amy Ando
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best. Including individualized maps on the choice cards reduces error in the

model and allows me to more accurately estimate the values people place on

changes to their local environment.

In this dissertation, I use empirical methods to address four primary testable

hypotheses: 1) How do people respond to changes in mountain snowpack? ;

2) What is the marginal willingness to pay for mountain snowpack? ; 3) How

do skiers choose to substitute across resort markets? ; and 4) Do people value

clean rivers and streams?. I find that marginal changes in mountain snow-

pack influence visitation to destination resort towns and that snowpack pro-

vides nonmarket benefits in the form of outdoor recreation. These skiers

respond to changes in mountain snowpack in nearby markets by substituting

across markets, in turn influencing the distribution of market shares across

the US. I also find that cleaner surface waters provide benefits through local

use values such as fishing and swimming, and through nonlocal nonuse val-

ues that people have for reducing nutrient transmission to far away bodies

of water. The benefits that I quantify in the following chapters provide a

benchmark for the magnitude and span of the value of mountain snowpack

and clean rivers and streams.
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CHAPTER 2

THE RECREATION RESPONSE TO
CHANGES IN MOUNTAIN SNOWPACK

2.1 Introduction

Winter recreation generates over $70 billion in economic activity each year

across the United States (Outdoor Industry Association, 2017).1 Worldwide,

there are 68 countries with operational ski resorts and established ski cul-

ture. Climate change threatens the viability of the snow sports industry by

reducing the supply of precipitation, increasing average temperatures, and

shortening the length of the snow season (Feng and Hu, 2007; Burakowski,

Wake, Braswell, and Brown, 2008; Burakowski and Magnusson, 2012; Daw-

son and Scott, 2013; Wobus, Small, Hosterman, Mills, Stein, Rissing, Jones,

Duckworth, Hall, Kolian, Creason, and Martinich, 2017). Many rural moun-

tain towns rely on snow to provide recreation opportunities that generate a

significant portion of their local economic activity (Beaudin and Huang, 2014;

White, Bowker, Askew, Langner, Arnold, and English, 2016; Rosenberger,

White, Kline, and Cvitanovich, 2017; Burakowski, Hill et al., 2018). These

communities may, therefore, be particularly vulnerable to the reductions in

precipitation and increases in average temperatures that are predicted by

climate models. However, existing research has been limited to spatially

and temporally aggregated estimates, which the present study shows may

substantially underestimate impacts.

Obtaining estimates of the demand for climate amenities, such as snow-

pack, is complicated by the fact that markets for snow do not explicitly

exist (Champ, Boyle, and Brown, 2017). Instead, economists rely on non-

market valuation methods that match variation in the level of the amenity

with variation in related market transactions. However, the long-run mean of

1 Winter recreation can be defined in various ways. Throughout this paper the term
will be used to describe all consumers who are responding to the snowpack and snow
conditions at a nearby ski resort.
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mountain snowpack has exhibited very little variation from historical levels.

This limits the applicability of established methods such as hedonic price

analysis, which rely upon changes in housing prices to estimate the value

of nearby amenities (Taylor, 2017). Short-run changes in snowpack provide

a key source of variation for identifying the relationship between recreation

demand and snowpack since recreation decisions are often made in response

to short-run fluctuations in snow conditions. But market transactions that

match the frequency of short-run shocks in snowpack have been largely un-

available. Studies have instead relied upon market data that is aggregated

geographically (county or larger), temporally (monthly or larger), or both.

This paper addresses this mismatch by compiling daily market transactions

(short-term property rentals) together with daily snowpack and weather,

which we use to estimate the effect of changes in mountain snowpack on

recreational visits for every major resort market across the United States.

Due to the limited availability of high-frequency market transactions, ex-

isting work has characterized impacts using changes in snow tourism between

high-snow versus low-snow years (“inter-season”). However, inter-season

analyses are vulnerable to the confounding effects of other annual trends such

as business cycles, fluctuations in macroeconomic growth, or local labor mar-

ket conditions, all of which are correlated with weather patterns (Burakowski

et al., 2018; Kahn, Mohaddes, Ng, Pesaran, Raissi, and Yang, 2019). Ex-

isting estimates have also been limited to a single region (Scott, McBoyle,

and Minogue, 2007; Dawson and Scott, 2013) or the national level (Mendel-

sohn and Markowski, 1999; Gilaberte-Brdalo, Lpez-Martn, Pino-Otn, and

Lpez-Moreno, 2014; Rosenberger et al., 2017), such that they cannot ac-

count for the geographic variation in predicted snowpack as illustrated by

climate models. Researchers have emphasized the need for more precise

elasticity estimates for quantifying the demand response to changes in snow-

pack (Loomis and Crespi, 1999).2 Two decades later, however, no study has

provided geographically targeted elasticity estimates that quantify the rela-

tionship between recreation and snowpack. The second contribution of our

paper responds to this key gap in the climate change literature by providing

state-specific elasticities that can be applied to other measures of economic

activity related to winter recreation. We show that significant heterogeneity

2An elasticity is defined as the percentage change in demand divided by the percentage
change in the amenity.
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in elasticities exists across markets, highlighting the importance of geograph-

ically targeted estimates for calculating damages under future climate.

To estimate economic damages under future climate conditions, existing

approaches have relied heavily on the assumption that demand is a linear

function of season length (Mendelsohn and Markowski, 1999; Rosenberger

et al., 2017).3 Damages are identified in terms of changes on the extensive

margin (fewer visits). While it is reasonable to assume that shorter seasons

will result in fewer visits, this method fails to capture the demand response

to reduced snowpack throughout the season. These existing studies estimate

lost revenue (nationally) from a reduction in lift-ticket sales to be between

$1 billion and $2 billion under future climate scenarios, equivalent to 20% to

40% of current lift-ticket sales. The climate modeling literature has provided

similar estimates of economic losses using similar assumptions about the

relationship between season length and visitation (Wobus et al., 2017; Steiger,

Scott, Abegg, Pons, and Aall, 2019). The third contribution of our paper

relaxes the restrictive assumption that recreational users only respond to

season length. Instead, we develop a baseline metric of the value of snowpack

that allows us to predict changes in visitation throughout the season. We

find that losses could be nearly double the level of damage estimates provided

in existing studies.

Prior studies using within-season variation have been limited to a single

season and a few resorts (Morey, 1984; Englin and Moeltner, 2004).4 We find

evidence of substantial heterogeneity in snowpack elasticities across states,

limiting the external validity of estimates from any particular resort. Other

work has used monthly counts of overnight stays and monthly averages of

snowpack to estimate the elasticity of overnight stays (Falk, 2010).5 We

test for differences between elasticities that are based on monthly aggregate

measures and the daily measure that we use in this paper. Our results

indicate that there is a substantial downward bias in the coefficient when

elasticities are estimated at the monthly level.

This paper contributes to an emerging literature that uses short-run varia-

3A linear relationship assumes that every day a resort is closed due to low snowpack,
the predicted losses are equal to the estimated number of daily visits.

4Morey (1984) finds an insignificant relationship between snowpack and demand, while
Englin and Moeltner (2004) estimate an elasticity of 0.21 in the California-Nevada Tahoe
region.

5Elasticity estimates from the Austrian Alps are estimated to fall between 0.05-0.07.
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tion in climate amenities and the demand response to predict damages under

future climate scenarios (Chan and Wichman, 2018; Dundas and von Hae-

fen, 2019). We make three primary contributions to the study of climate

change: 1) we develop a new method for estimating elasticities for climate

amenities by matching the spatial and temporal variation in the level of the

amenity (daily snowpack) with the spatial and temporal variation of mar-

ket responses to the amenity (daily transactions in the short-term property

rental market); 2) we derive state-specific elasticity estimates for all major

resort markets across the United States and show that significant heterogene-

ity exists across states; and 3) we estimate the year-to-year variation in the

contemporaneous value of snowpack in each state and use these estimates to

simulate local economic damages under two future climate scenarios, RCP4.5

and RCP8.5. We find that resort markets could face reductions in local snow-

related revenues of -40% to -80% by the end of the century (2080). When

this response is applied to expenditures on lift-tickets and overnight stays,

the estimated annual damages in each state range from $1 million (Connecti-

cut) to $566 million (California). Across the U.S., annual damages total to

between $1.4 billion (RCP4.5) and $2.36 billion (RCP8.5).

2.2 Empirical Framework

We use a high-dimensional panel fixed effects model to estimate the relation-

ship between weather and recreational visits. This allows us to flexibly con-

trol for unobservable time-varying and time-invariant characteristics in each

market, while still exploiting detailed variation in the level of the climate

amenity (snowpack). Daily revenue for property i on day t is either 0 (not

reserved), or the asking price on that day. To estimate the elasticity between

revenue and snowpack, we transform the dependant variable revenue using

the inverse hyperbolic sine (ihs) (Bellemare and Wichman, 2020), allowing

revenue to take a value of 0. Our estimating equation is:

ihs(revenue)it = βlog(snowpack)rt + SX ′
rtδ +X ′

rtη + ψim + εit. (2.1)

This specification estimates the relationship between daily revenues for prop-

erty i on each day t and the natural logarithm of snowpack in resort market
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r on each day t. The elasticity parameter, β, quantifies the effect of a change

in mountain snowpack on revenue. The vector SX contains bins (indicator

variables) of new snowfall (<24 hours). These are classified in bins of 3-inch

increments (e.g. 0-3 inches, 3-6 inches, etc.) to accommodate their sparse

nature (many zeros) and allow the parameter vector δ to flexibly control for

the relationship between new snowfall and revenue. The vector X includes

an indicator for holiday week, weekday, and a linear and quadratic of daily

mean temperature; the relationship between these and revenue is summarized

by the parameter vector η. The indicator for holiday week assumes a value of

1 for weekdays and weekends following a federal holiday.6 The parameter ψ

is a property-by-month-of-sample fixed effect that captures property-specific

revenue trends across the study period. The error term εit is the remaining

variation in revenue that is unexplained by the model.

This model assumes that changes in the snowpack at a given resort within a

given month of our sample on a given day of the week are random with respect

to bookings in the short-run rental market. For example, we assume that

variation in the snowpack that occurs across the four Saturdays in a given

resort market in February of 2016 is driven by variation in weather that is

random in relation to the market for overnight stays. Importantly, variation

in snowpack is matched with the consumer decisions in this market. β can

be interpreted as the causal effect of snowpack on expenditures in the short-

term property rental market. In later sections, we discuss the assumptions

that are required for linking expenditures on property rentals to other local

economic activity directly related to snow recreation.

To estimate a β for each state s, we introduce an interaction term between

snowpack and a dummy variable indicating the resident state of the resort:

ihs(revenue)it =
∑
s

βs log(snowpack)rt[State = s]︸ ︷︷ ︸
State-specific
Elasticities

+ SX ′
rtδ +X ′

rtη + ψim + εit. (2.2)

This allows us to examine heterogeneity in the revenue function by recover-

6If a holiday falls on a Thursday, the indicator is equal to 1 for Thursday through
Sunday. Similarly, if the holiday is on a Tuesday, the indicator is equal to 1 for Saturday
through Tuesday. It is equal to zero otherwise.
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ing an estimate of state-specific responses to the climate amenity snowpack.7

β has the following interpretation: a 1 percentage point increase in snow-

pack causes a β percentage point change in expected revenue. An important

feature of our method is the direct relevance of the resulting coefficient,

β, to current climate models. These models provide predictions of percent

changes in expected precipitation and snow-water-equivalent measures rela-

tive to historical levels. When we combine these locally downscaled estimates

from climate models with our localized elasticity estimates, we can use con-

temporaneous shocks in the weather to simulate responses in local recreation

demand given predictions about future climate.

2.3 The Data

We estimate the behavioral response to changes in mountain snowpack using

a panel of 13 million daily observations of rental property bookings on the

Airbnb platform. Our study area comprises the 219 resort markets that con-

tain active Airbnb listings (AirDNA, 2017).8 We observe daily transactions

from August 2014 through May 2017, comprising three complete ski seasons.

67 resorts fall within 20km of at least one other resort. We study these as

unified markets by computing the average level of the snowpack, snowfall,

and temperature observed at each resort in the 20km buffer.

Daily snow conditions are recovered from historical records as reported by

the resort (OnTheSnow.com, 2017). We recover two measures: 1) snowpack,

the depth of the snow as reported by the resort each day; and 2) snowfall,

the new snow that has fallen within the last 24 hours at each resort. Snow-

fall is sparse with many zeros. As such, we classify it in bins of 3 inches

and group every observation over 15 inches into the largest bin. The daily

mean temperature is acquired from Oregon State’s PRISM Climate Group

(PRISM, 2018).9

To generate expectations of future snowpack, we collect locally downscaled

7A full description of the estimating equation and alternative specifications can be
found in the appendix.

8We define a resort market using a 10km buffer around the resort. See appendix for a
full discussion.

9Summary statistics for the bookings, snowpack, and weather variables used in our
analysis can be found in the appendix.
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climate projections from the suite of CMIP5 models in 1/8-degree resolution

across the U.S. (Reclamation, 2013). These projections offer monthly snow-

water-equivalent levels for historical (1950-1999) and projected (2020-2100)

for RCP4.5 and RCP8.5 scenarios. We compute resort-specific historical av-

erages and calculate the expected change in snow-water-equivalent for two

future periods (2035-2065 and 2065-2095). We average the monthly predic-

tions over each period to generate an expectation of average annual snow-

pack under each RCP scenario. We refer to the first period (2035-2065) as

the mid-century “RCP4.5 2050” and “RCP8.5 2050”. Similarly, the second

period is referred to as the late-century “RCP4.5 2080” and “RCP8.5 2080.”

We incorporate detailed visitation data for each of our 26 states using indus-

try statistics from the National Ski Area Association (NSAA) (NSAA, 2017,

2018). This provides us with annual ski resort visitation in each of the 26

states and the number of overnight stays.

2.4 A Behavioral Response to Snowpack

We estimate the state-specific response to mountain snowpack in the form

of elasticities (β parameters in equation 2.2) that represent the slope of the

revenue function in each state. We report these results in Figure 2.1 (left

panel). These estimates reveal substantial heterogeneity between states, with

the elasticity of snowpack ranging from 0.151 in Colorado to 2.759 in Ten-

nessee. We find that some states like Colorado have large snow-related rev-

enue streams ($2.82 billion annually, Figure A.1), but are less responsive to

changes in mountain snowpack (β = 0.151). State-specific elasticities do not

systematically vary with mean snowpack, suggesting each state and market

has unique underlying characteristics that drive this variation.

Variation in elasticity estimates across states is important for generating

expectations about revenue under future climate scenarios because baseline

revenue, snowpack, and future climate conditions all vary significantly across

states. These parameters allow for more accurate models of changes in ex-

penditures related to changes in snowpack under future climate scenarios.

This is important given the considerable heterogeneity expressed in regional

projections of mountain snowpack.

12



2.5 The Contemporaneous Value of Snowpack

To operationalize the estimation of damages under future climate scenarios,

we first develop a baseline metric of the recreation revenue from snowpack.

This is done using 13 years of within-sample variation in snowpack and two

primary expenditures directly related to snow recreation in each local mar-

ket.10 We calculate the amount spent on lift tickets each year using average

visitation V and the average price of a daily lift ticket P pass (NSAA, 2018).

To recover the average cost of an overnight stay, P bed, we use the panel of

properties to estimate an average bedroom price in each resort market and

combine this with the average number of overnight stays OS to calculate the

amount spent on overnight stays each year (NSAA, 2018). Average annual

revenue AR in each state s is then:

ARs = Vs × P pass
s︸ ︷︷ ︸

Daily
Visits

+OSs × P bed
s︸ ︷︷ ︸

Overnight
Stays

(2.3)

To calculate the annual recreation revenue from snowpack, Revsnow, we com-

bine our derived response parameter βs with ARs, the historical average

depth of snowpack throughout each snow season HSs, and the contempora-

neous snowpack CSs in each state s and within-sample year t such that:

Revsnowst = βs ×
ARs

HSs︸ ︷︷ ︸
Implicit
Revenue

×CSst. (2.4)

The first term in equation 2.4, implicit revenue, is analogous to a conven-

tional implicit price in the nonmarket hedonic price literature. It describes

the additional amount of annual revenue generated by an additional inch of

snowpack, or the marginal annual recreation revenue from an inch of snow-

pack. When multiplied by the contemporaneous snow, the second term in

equation 2.4, we recover the annual recreation revenue from snowpack for

each year of our sample. This provides us with year-to-year variation in the

revenue impacts of snowpack that are independent of annual business cycles

10 The expenditures included to estimate the annual recreation revenue from snowpack
are not meant to be comprehensive. We use this spending to provide a baseline of local
economic activity directly related to the climate amenity snowpack.

13



and macroeconomic trends.11

The average recreation revenue from snowpack in each state varies sig-

nificantly across states, ranging from $1.5 million in Connecticut to $909

million in California (Figure 2.1, right panel). This is the proportion of local

economic activity that is directly related to mountain snowpack. It is rea-

sonable to assume there are indirect (spillover) effects of snowpack on local

revenues, making these estimates a lower bound (Loomis and Crespi, 1999).

A strength of the state-specific elasticity estimates (the βs’s) is that they can

be applied to other measures of economic activity that are directly related to

snow-related recreation to construct more comprehensive estimates in states

where additional data is available.

We then compute the total recreation revenue from snowpack for all 26

states in the sample: ∑
s

Revsnowst (2.5)

and report these Figure A.6. In the next section, we demonstrate an ap-

plication to estimate economic damages under future climate scenarios. We

present the direct effects of changes in snowpack on two primary expenditures

directly related to outdoor recreation.

2.6 Economic Damages

We use the within-sample trends for the period 2005-2017 to construct the

baseline seasonal variation in each state and then estimate changes in ex-

pected snowpack under future climate scenarios. We estimate the effects

of resort-specific predicted changes in snowpack from the suite of CMIP5

climate models (Reclamation, 2013), which yields estimates for 13 years of

snowpack trends in each state under RCP4.5 and RCP8.5 scenarios. Using

these simulations of year-to-year trends in snowpack, we estimate the annual

recreation revenue by modifying equation 2.4 to replace the contemporaneous

snowpack CS with the predicted snowpack PS in simulation year t′:

Revsnow
′

st′ = βs ×
ARs

HSs
× PSst′ . (2.6)

11See appendix for further discussion of equation 2.3 and 2.4
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We report the total recreation revenue in each simulation year t′ from equa-

tion 2.6: ∑
s

Revsnow
′

st′ (2.7)

also in Figure A.6. The year-to-year variation and deviation from the his-

torical mean can be seen using the axis on the right side of the figure. 95%

confidence intervals are also reported for each simulation.12 Between 2005

and 2017, we observe the annual recreation revenue from snowpack shifting

between -25% and +25% of historical averages. The within-sample deviations

in 2007, 2012, and 2015 fall to around $2.8 billion in annual revenue, which

approaches the range predicted by mid-century climate models for RCP8.5.

Under RCP8.5 simulations, these estimates indicate that total recreation

revenue could fall to between -40% and -60% by mid-century and -60% to

-80% by late-century. Revenue in the year with the highest snowpack during

the mid-century period is approximately equivalent to the lowest snowpack

year in the contemporaneous period. By the late-century period, the highest

snowpack year in our simulation will generate half of the economic activity

observed during the worst year in our contemporary sample.

The difference between equations 2.4 and 2.6 (Revsnowst −Revsnow′st′ ) captures

the annual economic damages in each state. We compute total annual dam-

ages across the United States using the sum of the 26 states in our sample:∑
s

(Revsnowst −Revsnow′st′ ). (2.8)

We report the average difference over the 13 years in Figure 2.4. Panel A

summarizes the expected annual losses in each state for each RCP scenario

and period (mid- and late-century). The 95% confidence intervals represent

the variation across the suite of CMIP5 models. The confidence intervals

range from the lower-bound of the least damaging scenario (RCP4.5 2050)

to the upper-bound of the most damaging scenario (RCP8.5 2080). Panel B

presents the aggregate damages across the United States under both RCP

scenarios and periods.

Average annual damages under RCP8.5 2080 range from $1 million in

Connecticut (a 67% reduction in revenue from current levels) to $566 million

12See appendix for further discussion and state-level simulations of equations 2.4 and
2.6.
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in California (a 62% reduction in revenue). These estimates reflect the lost

recreation revenue from snowpack using only the two expenditures stated in

equations 2.3 and 2.4 (lift ticket sales and overnight stays). It is reasonable

to assume that there are other expenditures directly and indirectly linked to

changes in snowpack in each resort market. Our estimates of lost revenues

provide a lower bound on consumer surplus. The demand for snow among

recreational visitors may greatly exceed the value that is captured in revenue

impacts. Other work in progress focuses on estimating these values (Parthum

and Christensen, 2020).

Variation in damages is the composite of three underlying factors: 1) each

state’s unique relationship between snowpack and local economic activity

(the state-specific β); 2) the state’s baseline level of snow-based revenue

(Figure A.1); and 3) the state’s predicted change in snowpack under future

climate scenarios (also depicted in Figure A.1). California, for example,

has large existing levels of snow recreation (over $1 billion each year) in

addition to a large elasticity of snowpack (β = 0.895) and is also predicted

to lose a substantial percentage of the average annual snowpack (-60% to

-80%). Other states, such as Colorado, might have much higher annual

revenue streams (over $2.82 billion), but are less responsive to changes in

the snowpack (β = 0.151), and are also predicted to have smaller shocks in

average annual snowpack given future climate conditions (-30% to -50%).

2.7 Discussion

The present study makes three key contributions to current estimates of the

damages from climate change: 1) we develop a method for estimating elastic-

ities for climate amenities that vary at high spatial and temporal frequencies

using high-resolution, high-frequency transaction data; 2) we derive state-

specific snowpack elasticities of revenue in all major resort markets across the

United States and show that substantial heterogeneity exists across states;

and 3) we simulate the contemporaneous value of snowpack in each state,

along with economic damages under two future climate scenarios, RCP4.5

and RCP8.5. We predict damages (lost revenues) in percentage terms, which

provide a lower-bound dollar estimate of lost economic activity in each state.

We find that resort markets could face reductions of -40% to -80% of snow-
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related revenue by the end of the century (2080). This is nearly double the

magnitude of existing estimates. When this is applied to existing expendi-

tures on lift-tickets and overnight stays, we estimate damages across the U.S.

to be between $1.4 billion (RCP4.5) and $2.36 billion (RCP8.5). The revenue

impacts presented in this paper can be interpreted as a lower bound estimate

of consumer surplus. The true welfare effects from reductions in snowpack

could be substantially larger (Banzhaf, 2018).13 Further refinement is neces-

sary to better understand how consumers choose to substitute between mar-

kets and the implications of climate change on their welfare. Other recent

work highlights the uncertainty and potential for much larger variability in

climate outcomes than is represented in the available CMIP5 models (Chris-

tensen, Gillingham, and Nordhaus, 2018). Industries that depend on snow

recreation face the threat of substantial losses if climate continues to warm

at faster rates than those reflected by the CMIP5 scenarios.

13Estimates of damages that are derived using reduced-form methods, as presented
in this paper, have been shown to be a lower-bound (10% of potential losses) on the
Willingness to Accept welfare metric (Banzhaf, 2018).
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2.8 Figures

Figure 2.1: State-specific Elasticities

Note: The left panel presents the β’s described in equation 2.2 and repre-
sent the slope of the revenue function in each state market. Coefficients are
ranked in order of states with the highest recreation revenue from snowpack
(equation 2.4, right panel). These parameters allow for more accurate mod-
els of changes in expenditures related to changes in snowpack under future
climate scenarios. This is important given the considerable heterogeneity
expressed in regional projections of snowpack.

18



Figure 2.2: Estimates of Relative Revenue by Snowpack Bins
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Figure 2.3: Within Sample and Late-Century Simulations

Note: Figure A.6 presents the results of equations 2.5 and 2.7. These use
within-sample snowpack and predicted snowpack for RCP4.5 and RCP8.5 to
simulate year-to-year variation in the annual recreation revenue from snow-
pack. The three scenarios represent: 1) an average decade currently (within-
sample); 2) an average decade under RCP4.5 by late-century (2075-2100);
and 3) an average decade under RCP8.5 by late-century (2075-2100). Values
represent the total (aggregated) recreation value of snowpack across the 26
states (left axis) and its deviation from historical averages (right axis). The
x-axis represents each year (season) in the simulation. For example, year 1 in
the within-sample simulation would be 2005. Similarly, year 1 in the RCP4.5
and RCP8.5 late-century simulation would be 2075.
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Figure 2.4: Lost Recreation Revenue

Note: Annual state-level damages are stacked by RCP scenario (Panel A).
Total damages (Panel B) are aggregate annual damages across all 26 states
by RCP scenario (equation 2.8). The 95% confidence intervals represent
the variation across the suite of CMIP5 climate models, and range from the
lower-bound of the best-case scenario (RCP4.5 2050) to the upper-bound of
the worst-case scenario (RCP8.5 2080).
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Figure 2.5: Lost Recreation Revenue versus Shorter Seasons

Note: Using only observed revenues from short term property rentals, we
compare conventional estimates that use shorter seasons to estimate damages
with the damage function we model that assume no change in season length.
For the lost revenues from shorter seasons, we assume that (through the use
of snow-making) resorts are still able to open by the holiday rush, December
18, and can remain open through the end of May. These estimates assume
no other changes in revenues while the resorts are able to maintain feasible
operating level of snowpack (Scott et al., 2007; Steiger, 2011; Dawson and
Scott, 2013; Wobus et al., 2017; Steiger and Scott, 2020). The light grey
shaded regions of the plot are holidays.
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CHAPTER 3

A RECREATION DEMAND MODEL FOR
MOUNTAIN SNOWPACK

3.1 Introduction

Mountain snowpack—the amount of packed, dense snow on the ground—is a

major driver of participation in outdoor winter recreation (Hamilton, Brown,

and Keim, 2007; Shih, Nicholls, and Holecek, 2009; Falk, 2010; Damm, Greuell,

Landgren, and Prettenthaler, 2017; Parthum and Christensen, 2020). Its

composition and depth can change daily from blowing wind, melting, and

from deposits of new snowfall (i.e. snowfall within the most recent 24 hour

period). Snowpack is primarily provided by the natural environment as a

nonmarket, environmental amenity.1 In the United States (US), snowpack

at mountain resorts accommodates more than 50 million skier visits each

year and contributes to a $70 billion snow sports industry (Vanat, 2014;

NSAA, 2018). Snowpack is also an environmental amenity that is particu-

larly threatened by climate change (Mendelsohn and Markowski, 1999; Daw-

son and Scott, 2013; Rosenberger et al., 2017; Wobus et al., 2017). But what

is the recreation value of mountain snowpack?

One of the challenges in estimating demand for environmental amenities

such as snowpack is that the markets for the amenity of interest rarely ex-

ist. Instead, researchers interested in the value of mountain snowpack must

rely upon nonmarket valuation methods such as using surveys to construct

markets (Rutty, Scott, Johnson, Jover, Pons, and Steiger, 2015a; Steiger,

Posch, Tappeiner, and Walde, 2020) or by linking observed (revealed) con-

1To supplement naturally occurring seasonal snowpack, many mountain resorts have
invested in snow-making equipment. However, snow-making is costly and limited in its
capacity to cover large areas (Falk and Vanat, 2016; Scott, Steiger, Rutty, Pons, and John-
son, 2019; Steiger and Scott, 2020). It is also dependent on optimal weather conditions
that are suitable for freezing water (Wobus et al., 2017). In this paper, I do not distin-
guish between naturally occurring snowpack and snow that was made using snow-making
equipment.
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sumer behavior to fluctuations in the environmental amenity (Morey, 1985;

Englin and Moeltner, 2004). Both approaches have their relative strengths

and weaknesses (Alberini, 2019). One advantage of stated preference meth-

ods is their ability to estimate values when there has been little observed

variation in the level of the environmental amenity of interest. But they are

often criticized for their hypothetical nature through which bias could be

introduced in the estimates when people say they will behave one way and

choose to behave another way when actually faced with the decision (Cum-

mings, Harrison, and Rutström, 1995; Champ and Bishop, 2006; Carson and

Groves, 2007).

Revealed preference methods, those using observed market behavior, do

not face the concerns of hypothetical bias because consumer behavior is ac-

tually observed. However, revealed methods are not without their own unique

challenges. Data on observed market behavior is typically hard to come by,

and when such data do exist, they are notoriously plagued by endogeneity

and unobserved characteristics or traits that influence demand. I address

both of these challenges in this paper. I use a unique set of daily short-term

property rentals that serve as a repeated cross-section of recreation deci-

sions. I also address endogeneity concerns using a high-dimensional fixed

effect model to control for unobservable characteristics that affect recreation

decisions, coupled with a two-stage least squares (2SLS) approach to instru-

ment for unobserved characteristics that are likely correlated with price.

Previous attempts to quantify welfare in the alpine skiing market have

been few. But those that do, typically provide estimates of average con-

sumer surplus per trip.2 Estimates of the average surplus per trip have

been derived using specific resorts (Morey, 1985), a small group of resorts

(Adrangi, 1983; Englin and Moeltner, 2004), and nationally (Bergstrom and

Cordell, 1991; Loomis and Crespi, 1999; Mendelsohn and Markowski, 1999;

Bowker, Starbuck, English, Bergstrom, Rosenburger, and McCollum, 2009).

These values range anywhere from $14 for a day of skiing (Morey, 1985), to

$277 (Bowker et al., 2009), with an average value of a trip at $77 for alpine

skiers (Rosenberger et al., 2017). Each has noted that refinements should be

made to understand how consumers benefit on the margin to environmental

amenities. For example, Bowker et al. (2009) state that there are significant

2See Rosenberger et al. (2017) for a survey of this literature.
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limitations of their approach including the ability to model “anything that

would include using site characteristics to explain variation in visits” and the

“exclusion of substitution behavior.”

Per trip consumer surplus is helpful for quantifying value on the extensive

margin (the number of trips taken) but does not separate welfare into its

component parts based on the characteristics of each trip. For example,

a skier might value a trip more if there is a deeper snowpack (fewer visible

rocks, more ski-able terrain, etc.), but still decide to make the same number of

trips. Parsing per trip consumer surplus to identify estimates of the marginal

willingness to pay (MWTP) for trip characteristics allows for estimates of

value on the intensive margin. In this paper, I exploit a repeated cross-

section of daily visitation to resort markets in the US. I use a discrete choice

framework (McFadden, 1973; Hanemann, 1984) to provide estimates of the

MWTP for mountain snowpack for all major markets in the continental US.

These values can be used to provide guidance to policy makers who are

interested in the recreation value of snowpack, but also by firms who are

making investment decisions in snow-making equipment—particularly in the

face of a changing climate (Scott et al., 2007; Dawson and Scott, 2013; Wobus

et al., 2017; Wilson, Green, and Mack, 2018; Steiger et al., 2019).

Site substitution is a well-known and important phenomenon to consider

when modeling recreation behavior (Peterson, Stynes, Rosenthal, and Dwyer,

1985; Phaneuf, 2002; DeValck and Rolfe, 2018; Dundas and von Haefen,

2019). However, it has received little attention in the context of alpine skiing

decisions. Substitution effects have been examined between a few resorts

as a form of adaptation to climate change in Austria (Steiger and Scott,

2020), Ontario (Rutty et al., 2015a; Rutty, Scott, Johnson, Jover, Pons,

and Steiger, 2015b), and the Northeastern US (Dawson and Scott, 2013),

but remains an area of necessary research (Unbehaun, Pröbstl, and Haider,

2008; Rosenberger et al., 2017). In this paper, I explore how skiers choose

to substitute across resort markets in the continental US. For example, if

Colorado receives a shock in snowpack levels, how do people in Vermont

respond? I use a structural demand model at the market-level (Berry et al.,

1995; Nevo, 2001) to recover a matrix of snowpack substitution parameters

(elasticities) that estimate how people choose to move across resort markets

in response to changes in mountain snowpack.

I make two primary contributions in this paper: 1) I provide estimates of
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the MWTP for mountain snowpack at the national and regional levels; and

2) I construct a matrix of substitution elasticities between US resort markets.

Both contributions invoke random utility maximization (RUM) (McFadden,

1974) to estimate structural parameters in the utility functions of alpine

skiers. For the first contribution (1), I maintain trip-level micro data to es-

timate marginal utilities subsequent MWTP. I develop a new instrument to

address price endogeneity concerns for use in a 2SLS instrumental variables

approach. I discuss this model and its results first. For the second contribu-

tion (2), I aggregate the trip-level data to market-level and calculate daily

market shares (Berry, 1994; Berry et al., 1995; Nevo, 2001). This allows me

to recover substitution patterns in the form of elasticities, providing insight

into how skiers move across markets based on changes in mountain snowpack.

Both contributions are important for understanding consumer welfare in the

alpine skiing market and the implications of a changing climate.

3.2 Demand for Mountain Snowpack

In the spirit of the recreation demand literature (Hanemann, 1984; Bockstael,

Hanemann, and Strand, 1989), I estimate a discrete choice, travel cost model

using daily micro data on visitation to ski resort markets over three complete

ski seasons.3 The data—described in detail in section 3.3—are from the

short-term property rental market. The geographical coverage includes 13

US states and 137 individual resorts. Each observation is assumed to be a

discrete decision made by a skier. The term ‘skier’ can be used to describe a

variety of winter recreationists, but in this paper I use the term to describe

the decision maker.

I model the discrete choice to either make the trip or to opt-out. The

decision to opt-out can include staying home (which I do not observe), but

can also include any outside option that the skier faces such as making a trip

to another resort (which I observe), or staying in accommodations outside

the short-term property rental market (which I do not observe). Using this

framework, I estimate: 1) average marginal utilities for all skiers, and 2)

heterogeneity in the means of the marginal utilities by geographical regions

(Mountain-West vs. Central-East, and by NSAA resort regions, Figure B.1).

3I discuss trip-level estimation first. Market-level is discussed in section 3.5.
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The discrete choice is made as follows: a skier i makes the decision to

make a trip to resort j each day t, or decides to opt-out. This means that

the dependent variable in the model takes a value of 1 if a trip was made

(i.e. a short term property was rented) and 0 otherwise. The choice is

characterized in the RUM framework of McFadden (1974): U i
jt = V i

jt + εijt,

where V is the representative component of utility and ε is the unobserved

individual-specific utility in the model, distributed extreme value. The utility

received from choosing the outside option is normalized to be equal to 0. The

probability that skier i chooses alternative j is:

P i
jt = Prob(V i

jt + εijt > 0), (3.1)

resulting in the standard logit choice probabilities:

P i
jt =

1

1 + exp(−V i
jt)
. (3.2)

The parameters recovered from a logit regression are the marginal utilities

for each attribute in the model—the ratio of which can provide meaningful

information about the marginal rate of substitution between two attributes.

When one of the attributes is the price of the trip, the econometrician can

estimate the MWTP for the non-monetary attributes by taking the ratio of

their parameters (the numerator) and the parameter on price (the denomi-

nator).

3.3 The Data

Daily bookings in short term properties are acquired from a private firm who

collect the universe of Airbnb, VRBO, and HomeAway listings across the US

(AirDNA, 2017). Rental transaction data for each property include the reser-

vation date, availability (available or not available to rent), the price paid,

and property characteristics such as the number of bedrooms, bathrooms,

and the approximate coordinates of the home. The dataset includes more

than 1.4 million properties and 410 million bookings spanning the contiguous

US.

I identify all properties located within 10km of a ski resort to construct
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an empirical sample of 33,636 unique properties and 6.6 million observed

property-days. Owners of these properties have the option of “blocking” the

property for their own use, or have it listed as “available.” When a property

is rented, it is recorded as “reserved” and the date that the reservation was

made is recorded.

The environmental amenities, snowpack and snowfall, are acquired from

a website (OnTheSnow.com, 2017) that provides daily reports for all 137

resorts in the sample. These amenities are as reported by the ski resort on

each day and matches the information that a tourist see when making the

decision to make a trip. I developed a web scraper to recover historical daily

data from their website, as well as any resort characteristics and lift ticket

prices available. 34 resorts fall within 20km of one or more other resorts

(i.e. resorts that have overlapping 10km buffers). I classify these as unified

markets and take the average levels of the environmental amenities observed

at each resort (snowpack, snowfall, and temperature).

Daily mean temperature is acquired from Oregon State’s PRISM Cli-

mate Group (PRISM, 2018), which provides a dedicated API that allows

researchers to efficiently recover interpolated weather values in a raster for-

mat. From the raster files, I extract the daily mean temperature in each

resort market. Summary statistics of all the variables are in the Appendix

(Tables B.3, B.4, and B.5).

3.4 The Model

The utility U of person i from choosing alternative j on day t at resort r is:

U i
jt = −λpricej + β′snowpackrt +X ′

rtφ+Z′
jγ + Ωt + θr + εjt. (3.3)

It is worth noting that each alternative j is nested within its respective resort

r such that snowpack, the environmental amenity of interest, varies at the

level of the resort. The cost attribute, price, includes the cost to travel to the

resort and any expenses related to accessing the ski slope: 1) the per-bedroom

price of the property; 2) the driving distance to the nearest metropolitan area

(in miles) multiplied by $0.33; and 3) the price of a lift ticket at the nearby

resort. The variable snowpack includes a linear and quadratic polynomial to
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allow for diminishing marginal utility of snowpack; β is a vector consisting

of two parameters (β1, β2) summarizing the nonlinear relationship between

snowpack and utility.4

The vector X includes characteristics of the resort that also vary at the

daily level: 1) six bins of new snowfall received at the resort within the most

recent 24 hours; a linear and quadratic of 2) the total new snowfall within the

past week; 3) mean temperature; 4) the total number of available properties

on each day; and 5) average snowpack, weekly snowfall, and mean tempera-

ture at nearby substitute resorts (other resorts that are in the same state).

Including the average characteristics of nearby resorts (excluding resort r)

helps to control for the relative utility of the outside option (normalized to

be equal to 0). The parameter vector φ summarizes the marginal utilities of

the characteristics in X.

The vector Z includes information about the alternative j such as number

of bedrooms, bathrooms, and other characteristics of the property that I

observe but remain fixed throughout the panel—discussed in more detail

below. The parameter vector γ summarizes the marginal utilities of the

characteristics in Z. Lastly, the fixed effect Ωt includes an indicator for

the day-of-sample to capture the mean utility for every day in the sample.

This controls for differential utility due to holidays, weekends, or anything

else that is unobservable and might increase or decrease utility on any given

day. θr is a resort fixed effect to capture preferences for time-invariant and

unobservable characteristics of resort r.

I am interested in estimating the MWTP for mountain snowpack. When

estimating equation 3.3, MWTP can be recovered by taking a simple ra-

tio of the parameters (marginal utilities) on snowpack and price such that

MWTP snow = (β1 + β2)λ. One issue with this specification is that price

is likely correlated with other unobservable features of j that influence the

decision to make a trip (i.e. correlated with the error term ε). If this is true,

the estimate of λ will be biased towards 0, inflating subsequent estimates of

MWTP (Lewbel, Dong, and Yang, 2012).

In the same way that I control for time-varying unobservables with Ωt,

I want to control for unobservable factors that are specific to alternative

j—particularly those that affect the observed price of a trip—to mitigate

4I also estimate a non-parametric binned regression model, discussed in section 3.4.3.
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the bias associated with correlations between the variables in the model and

the error term. I address this concern by introducing an alternative specific

constant δj such that any unobservable and time-invariant characteristics of j

are captured in this parameter. However, doing so subsumes λ, the marginal

utility of price, and any other parameters associated with characteristics that

only vary across alternatives.

The addition of δj to the model sets the stage for a two-step estimation

to recover unbiased estimates of the marginal utilities of j that dictate the

decision to make a trip or to opt-out (Murdock, 2006; Timmins and Mur-

dock, 2007; Klaiber and von Haefen, 2019). More specifically, I define the

alternative specific constant δj(pj,Zj, ξj) as the collection of attributes that

are specific to alternative j. The price of the trip pj is the three-part price

discussed above. The vector Z includes other observable characteristics of

j.5

The third parameter in δj(pj,Zj, ξj), captures the characteristics of j that

are only observable to the decision maker (i.e. unobservable to the econo-

metrician) and influence the decision to choose alternative j. This can be

thought of as features or amenities contained within the pictures of the prop-

erty, the presence of a fireplace, a desirable view-shed, or even its exact

location—such as ski-in-ski-out accommodations or access to public trans-

portation. Plugging δj(pj,Zj, ξj) into equation 3.3, person i’s utility function

becomes:

U i
jt = δj + β′snowpackrt +X ′

rtφ+ Ωt + θr + εjt (3.4)

where

δj = −λpricej +Z′
jγ + ξj. (3.5)

I estimate equation 3.4 using a standard logit specification, recovering the

β’s and the vector of parameters associated with the alternative specific con-

5The full set of characteristics includes: the number of bedrooms* and bathrooms*,
maximum number of guests*, the number of photographs in the listing*, the distance to the
resort (in meters)*, the total number of days the property was available in the sample*,
the median home price in the census block*, whether or not an owner is considered a
“superhost”, an indicator for if the listing is an entire home or private room, and resort
(location) fixed effects. Asterisks (*) indicate that a linear and quadratic polynomial was
included to flexibly model the utility from these characteristics.
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stants δj.
6 The large size of δj (33,636×1, or one estimate for each property j

in the sample) is important for identifying the parameters in equation 3.5. To

allow for correlation across observations, I cluster standard errors at the level

of the market (Wooldridge, 2006; Abadie, Athey, Imbens, and Wooldridge,

2017).7 I estimate equation 3.5 using 2SLS to recover λ and γ, also clustering

standard errors at the level of the market. As mentioned, price is endoge-

nous in the model described so far. I propose my instrument, along with a

comparison to alternative instruments, in the following section.

3.4.1 The Endogenous Price of a Trip

The price characteristic in equation 3.5 is likely correlated with other unob-

servable features of j that influence the decision to make a trip. I address

this problem by first including a property fixed effect (equation 3.4) that

subsumes the endogenous price. In the second regression (equation 3.5), I

use a 2SLS approach that is common in the industrial organization literature

(Berry et al., 1995; Nevo, 2001; Bayer, Ferreira, and McMillan, 2007). Typi-

cal instruments either include average prices of the outside option (Price-IV)

or the average of any observable product characteristic of the outside options

(BLP-IV). The assumption with these instruments is that the price and char-

acteristics of alternative k, where k 6= j, only affect utility of alternative j

through prices, conditional on other observable characteristics of the market.

A unique feature of my data is that I observe the property owner’s deci-

sion to block their property for their own private use. This is made according

to their own personal schedule, uncorrelated with demand shocks associated

with the skier’s decision to make a trip. The assumption here is that the

owner has their own schedule and does not choose to block or unblock their

listing according to daily shocks in demand. Any deviation from this as-

sumption and the instrument will have a weak first-stage. I estimate this

variable, Υj, for each property j as the ratio of blocked days to the total

6One might be concerned about the incidental parameters problem (IPP) when esti-
mating a nonlinear model with large unit and time fixed effects (Neyman and Scott, 1948;
Fernández-Val and Weidner, 2016). Potential bias, arising from IPP, is mitigated when
estimating the model using Stammann (2017) and integration of post-estimation outlined
in Cruz-Gonzalez, Fernández-Val, and Weidner (2017).

7I examine correlation structures at the property, market, and state levels. Those
results and discussion can be found in the appendix (Table B.1). Significance is robust to
alternative clustering—I choose market-level for the primary analysis.
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observed days (blocked + available) in the sample and introduce this as an

additional instrument for the endogenous price (Schedule-IV). My first-stage

equation is:

pricej = Z′
kΠ1 + Π2Υj +Z′

jΓ + θr + υj. (3.6)

The vector Zk includes the typical BLP-IV instruments—average price and

property characteristics of the outside options. Υj is the property owner’s

share of blocked days (Schedule-IV). X includes all observable characteristics

of property j and θr is a resort fixed effect. I examine robustness of results

using 1) only the average price of the outside option (Price-IV), 2) the tra-

ditional BLP-IV instruments, and 3) the BLP-IV plus the Schedule-IV, as

outlined in equation 3.6. Results of a Wald test estimate the strongest set

of instruments is (3), the joint use of the BL-IV and Schedule-IV. Table 3.3

provides a complete comparison of the three approaches.

3.4.2 Heterogeneity in Marginal Utilities

I have, so far, described a model that estimates the average marginal utilities

for skiers across the US. Underlying a national market, regional differences

emerge in both the preferences (ski culture) and the geographical charac-

teristics (elevation, terrain, etc.) of recreation decisions and opportunities.

That is to say, the marginal utility of snowpack in the western US (e.g. Cal-

ifornia, Nevada, Utah, Colorado, etc.) might differ from the preferences for

snowpack in the eastern US (e.g. Pennsylvania, Vermont, New Hampshire,

etc.).

To allow for heterogeneity in the marginal utility of snowpack, I intro-

duce two alternative specifications. The first splits the US into two distinct

regions: Mountain-West and Central-East. The Mountain-West region in-

cludes the states of Montana, Idaho, Wyoming, Colorado, Utah, and Califor-

nia. The Central-East region includes Michigan, New York, Massachusetts,

Connecticut, New Hampshire, Vermont, and Maine. The second type of re-

gion classification is determined by the NSAA regions: Westcoast, Rocky

Mountain, Midwest, and Northeast (Figure B.1). The marginal utilities of

the other attributes in the model (new snowfall, mean temperature, etc.) are

preserved as national averages and assumed constant across the sample. I

also assume the diminishing marginal utility of snowpack (snowpack2 in the
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model) does not vary across regions. Utility is represented in region m by:

U i
jt =δj +

∑
m

βmsnowpackrt[region = m]

+ β2snowpack
2
rt +X ′

rtφ+ Ωt + θr + εjt, (3.7)

where δj = −λpricej +Z′
jγ + ξj. The only difference between equations 3.4

and 3.7 is the addition of the interaction between snowpack and region.

3.4.3 A Binned Regression Model

Up until now, the relationship between snowpack and utility has been as-

sumed to be diminishing quadratically in depth. To accommodate a more

flexible functional form between snowpack and utility, I estimate a model

that groups snowpack into increments of 10 inch bins, with anything above

100 inches grouped in the largest bin. This allows me to trace out the nonlin-

ear relationship between snowpack and marginal utilities in each snowpack

bin b:

U i
jt = δj +

∑
b

βbsnowpackrt[bin = b]

+ β2snowpack
2
rt +X ′

rtφ+ Ωt + θr + εjt, (3.8)

where δj = −λpricej + Z′
jγ + ξj. Similar to the regional specification in

equation 3.7, the only difference here is replacing continuous specification of

snowpack with the binned snowpack. As a final step, I introduce regional

variation in the binned model by including an interaction between the region

and the snowpack bin:

U i
jt = δj +

∑
m

∑
b

βbmsnowpackrt[region = m][bin = b]

+ β2snowpack
2
rt +X ′

rtφ+ Ωt + θr + εjt, (3.9)

where δj = −λpricej +Z′
jγ + ξj. No changes are made in the 2SLS specifi-

cation that is used to estimate the parameters of δj(pj,Zj, ξj) (equation 3.5)

when exploring heterogeneity in the marginal utility of snowpack.
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3.4.4 Results of Trip-level Estimation

I find that skiers have large and statistically significant preferences for deeper

snowpack (Table 3.1).8 I also find that utility is, in fact, nonlinear and

diminishing in the level of snowpack. When I introduce regional variation in

the utility function, the marginal utility of snowpack is greater in the Central-

East than the Mountain-West region. Parsing utility into NSAA regions, I

find that the marginal utility of snowpack is largest in the Northeast, followed

by the Rocky Mountain, Westcoast, and Midwest regions (respectively).

The 2SLS estimates of the marginal utility of price are negative (as ex-

pected) and consistent across national and regional specifications (Table 3.1).

I compare the strengths of the Price-IV, BLP-IV, and Schedule-IV instru-

ments and find that the full set of instruments (BLP-IV + Schedule-IV) are

the strongest predictors of price based on the results of the Wald F-statistic

(Table 3.3). The näıve OLS estimate of λ is half the magnitude when com-

pared to the 2SLS estimate using the full set of instruments—supporting the

hypothesized attenuation bias in the coefficient on price.

But what is the MWTP for mountain snowpack? I estimate empirical

distributions of MWTP using 5,000 bootstrapped replications of the ratio:

β/λ (Krinsky and Robb, 1986). The mean MWTP for one inch of snowpack

in the US is $2.40 and diminishing at approximately $0.01 for each additional

inch (Table 3.2). I do find substantial regional variation, ranging from $1.38

in the Midwest to $4.24 in the Northeast. As mentioned earlier, the regional

variation in the recreation value of snowpack is likely driven by differences

in ski culture, snowpack composition, and geographical characteristics or the

resorts (Vanat, 2014).

I also estimate utility using the binned specification in equation 3.8. This

allows me to estimate the WTP in each snowpack bin, in contrast to the

previous results that derive the MWTP for each inch of snowpack in a para-

metric functional form. This is particularly useful for estimating welfare on a

given day. For example, for each day a resort has 40”-50” of snowpack, I es-

timate the WTP for that snowpack at $110.23. Similarly, a day with 30”-40”

of snowpack (one bin down), the WTP is $80.97, or approximately $30 less

than the next higher bin (Figure 3.1). I also examine regional variation in

the binned estimates and find that while the Central-East has higher mean

8Results for all attributes in the model can be found in the Appendix (B.2).
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WTP in most bins, the point estimates are not statistically different than

the Mountain-West estimates for the same bin.

3.5 Market Shares and Substitution

To estimate geographical substitution across resort markets, I introduce vari-

ation in the outside option by asking the question: conditional on going,

where do people choose to go and why? I do this in the framework of Berry

(1994) and Berry et al. (1995) using a market share inversion. Each state-day

pair is observed to have a share of the total visits in each season. A “market”

in this context is a single day in the sample, and the “product” is a state.

Market shares sum to 1 each ski season. This allows skiers to choose both

when and where they go to ski, while also providing substantial variation in

the product characteristics across markets.

Market shares s are the number of reserved beds q in state j on day t in

season y divided by the total number of reserved beds Q in season y: sjty =

qjty/Qy. The other variables in the model are the averages of the observed

characteristics in each state-day pair in the sample: price, snowpack, weekly

snowfall, and mean temperature.

Average snowpack varies substantially across resort markets. I account

for this difference in levels by using the natural logarithm of snowpack. This

normalizes the level of snowpack and allows for a more intuitive interpretation

of the derived substitution parameters. I estimate a random parameter model

with unobserved heterogeneity in λ and β such that they are both indexed

by i. The utility of skier i from choosing state j on day t is: U i
jt = ωjt + εijt.

The term ε is, again, unobserved individual-specific utility of alternative j

on day t, and the mean utility ωjt is:

ωjt = −λipricejt + βilog(snowpack)jt +X ′
jtφ+ Ψj + Ωy + θh + ξijt. (3.10)

The parameter φ includes both the linear and quadratic of weekly snowfall

and mean temperatures. Ψj, Ωy, and θh are fixed effects that capture baseline

utility in each state, each season, and from making a trip during a holiday

week. ξ, as before, captures the utility from the characteristics of j that are

only observed by the skier (unobserved by the econometrician).
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3.5.1 Results of Market Share Inversion

Estimation is carried out numerically using the contraction mapping algo-

rithm of Berry et al. (1995) to predict the market shares s in state j on day

t such that:

sjt =
exp(ωjt)

1 +
∑

j exp(ωjt)
. (3.11)

I use the average characteristics of the outside options k on day t to instru-

ment for price (BLP-IV). The marginal utilities from estimating the regres-

sion are summarized in Table 3.4. As expected, I find that skiers have a

positive and significant marginal utility of snowpack and a negative and sig-

nificant marginal utility of price. Price has a statistically significant standard

deviation; however, I find no unobserved heterogeneity in the marginal utility

of snowpack (i.e. the standard deviation of log(snowpack) is not statistically

different than 0). One could also estimate MWTP from these parameters;

however, the trip-level approach described in section 3.2 is better suited to

do so. The market-level approach, described here, is particularly useful for

estimating substitution across resort markets, something that the trip-level

approach is unable to estimate.

To recover the elasticity of substitution η between alternatives j and k, I

take the partial derivative of sjt with respect to snowpack (denoted by x)

such that:

ηjkt =
∂sjt
∂xk

xk
sj
. (3.12)

I average the resulting η’s over markets, dropping the subscript t, to recover

a matrix of own and cross-snowpack elasticities. It is reasonable to assume

that skiers are more likely to substitute within a particular NSAA region

(e.g. skiers in Vermont are more likely to respond to changes in snowpack

in New Hampshire than changes to snowpack in California). I accommodate

this assumption by specifying a group structure on ε that nests the corre-

lation (denoted by σ) within each state’s NSAA region m. In doing so, the

elasticities are:

ηjk =


βxxk

1− σm
(1− (1− σm)sk − σmsk|m) if j = k; j, k ∈ m

βxxk
1− σm

((1− σm)sk + σmsk|m if j 6= k; j, k ∈ m

βxxksk if j 6= k; j ∈ m; k /∈ m

(3.13)
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With this specification, as the correlation σm → 0, the cross-snowpack elas-

ticity between j and k when they are the same nest, approaches the elasticity

between j and k when they are not in the same nest. That is to say, that the

cross-snowpack elasticity is larger in magnitude when state j is in the same

NSAA region m as the substitute state k.

I summarize the derived own and cross-snowpack elasticities in Figure 3.2.

The columns of the matrix define the state where the change in snowpack

occurs (i.e. the “dose” state) and the rows are the states that experience a

change in predicted market shares (i.e. the “response” state). The diagonals

of the matrix are the own-snowpack elasticities, and the off-diagonals are the

cross-snowpack elasticities.

Substitution is larger in the Mountain-West states: California, Utah, Idaho,

Montana, Wyoming, and Colorado, suggesting that skiers in these states

are quite responsive to changes in snowpack within their own region. The

Central-East states do experience substitution, but relatively smaller in mag-

nitude than their western counterparts. One interesting finding is that Ver-

mont is particularly affected when it experiences an increase in snowpack.

Western states such as Utah, Wyoming, and Colorado, observe a 0.4 percent-

age point drop in market shares when Vermont receives a 1 percent increase

in snowpack. This is likely due to Vermont skiers staying in their own state

when conditions are good, but traveling to western states when conditions

are bad.

3.6 Discussion

I estimate a flexible discrete choice model to derive marginal utilities of winter

recreationists in the United States. I use a trip-level model of random utility

to estimate the marginal willingness to pay for mountain snowpack. I find

that skiers place a significant value on this particular environmental amenity,

and that their values are not uniform across regions. This finding is important

for welfare estimation in the sense that it allows measures of consumer surplus

to vary on the intensive margin. More specifically, if the level of snowpack is

expected to change under future climate, one could estimate the lost welfare

from this change even if the number of trips remains the same. Alternatively,

I provide estimates of willingness to pay for snowpack that are binned into
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increments of 10 inches. This provides a unique opportunity to estimate

the consumer welfare for a day of skiing in each bin in the model. This is

particularly useful for estimating differences in welfare when the number of

trips a skier takes remains the same, but they experience more days in one

bin than in another.

The market-level model I use allows me to derive substitution parame-

ters that map market shares to snowpack. I present these in the form of

snowpack-elasticities (own and cross). I find that market shares are, in fact,

sensitive to the level of snowpack in local and nonlocal markets. While skiers

are more likely to substitute across markets within their own region, I find

that even markets that are geographically distant rely on the environmental

amenities in the far away markets. Recognizing the degree to which markets

are interconnected is important when considering the heterogeneous changes

in snowpack accumulation predicted by climate change. Markets that are

relatively better off (i.e. have smaller losses from base levels relative to other

markets) should plan for substantial increases in market shares and visitation

under future climate.

The models I use in this paper build on a long-history of recreation demand

literature, extending well-established practices and methods into a relatively

less-researched market of outdoor winter recreation. The models are simple

but sound, and could be improved upon as computational advances emerge

and estimation algorithms become more efficient. The trip-level model could

be expanded to accommodate random parameters that might allow for more

refined estimates of marginal utilities. Additionally, the market-level model

could be improved by incorporating other supply-side considerations that

might affect the resulting market shares. Both models could be improved

if one were to have a panel of consumers (compared to the repeated cross-

section, or panel of properties, used in this paper), this would allow the

incorporation of demographic characteristics that determine demand.

The takeaway from this paper is that skiers do value and respond to

marginal changes in mountain snowpack. This means that considering wel-

fare on the intensive margin will be important for estimating damages under

a changing climate. Estimates that use only measures of surplus on the ex-

tensive margin may over-predict changes in welfare by assuming that people

will not substitute across markets, and under-predict changes in welfare by

failing to account for changes in value on the intensive margin.
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3.7 Tables

Table 3.1: Marginal Utilities from Trip Decisions

(1) (2) (3)
National West-East NSAA
Average Regions Regions

Snowpack 0.01242∗∗∗

(0.00392)

Snowpack × Mtn.-West 0.01159∗∗∗

(0.00070)
Snowpack × Central-East 0.02044∗∗∗

(0.00159)

Snowpack × West-coast 0.00914∗∗∗

(0.00076)
Snowpack × Rocky Mtn. 0.01146∗∗∗

(0.00070)
Snowpack × Midwest 0.00727∗

(0.00405)
Snowpack × Northeast 0.02235∗∗∗

(0.00164)

Snowpack2 -0.00004∗ -0.00004∗ -0.000009∗

(0.00002) (0.00002) (0.000004)
Price (2SLS) −0.00526∗∗∗ −0.00528∗∗∗ −0.00526∗∗∗

(0.00077) (0.00077) (0.00075)

Property j FE Yes Yes Yes
Day-of-sample FE Yes Yes Yes
Clustered. SE Market Market Market

Observations 6,610,513 6,610,513 6,610,513

McFadden ρ2 0.29 0.29 0.29
BIC 6,770,282.87 6,770,005.61 6,760,126.80
F-stat (Wald: IV) 204.02∗∗∗ 204.09∗∗∗ 203.4∗∗∗

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Column 1 summarizes the results from equation 3.4 and the 2SLS estimate of

price from 3.5. The parameters represent the average marginal utilities associated with

the attributes in the model. Standard errors are clustered at the market level. Results for

the full set of covariates in equation 3.4 are in the appendix (Table B.2). Full results for the

2SLS estimates for equation 3.5 are in table 3.3. Column 2 and 3 introduce heterogeneity

in the marginal utility of snowpack and are recovered for each region using an interaction

term between snowpack and the corresponding region of the resort (equation 3.7).
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Table 3.2: Marginal Willingness to Pay for Snowpack

(1) (2) (3)
National West-East NSAA
Average Regions Regions

Snowpack $2.40
[2.38, 2.43]

Snowpack × Mtn.-West $2.22
[2.20, 2.24]

Snowpack × Central-East $3.93
[3.89, 3.98]

Snowpack × West-coast $1.79
[1.74, 1.82]

Snowpack × Rky. Mtn. $2.18
[2.17, 2.19]

Snowpack × Midwest $1.38
[1.33, 1.42]

Snowpack × Northeast $4.24
[4.22, 4.26]

Snowpack2 -$0.01 -$0.01 -$0.002
[-0.01, -0.01] [-0.01, -0.01] [-0.002, -0.002]

Krinsky-Robb 95% confidence intervals in brackets

Note: MWTP are calculated using the ratio of the marginal utilities in table 3.1 such that

MWTP = β/λ. Empirical distributions of MWTP are calculated using the Krinsky-Robb

approach (Krinsky and Robb, 1986).
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Table 3.3: 2SLS Results with Different Price Instruments

2SLS OLS

(1) (2) (3) (4)

BLP-IV and BLP-IV Price-IV Reduced
Schedule-IV Only Only Form

Price −0.00526∗∗∗ −0.00307∗∗∗ −0.00319∗∗∗ −0.00243∗∗∗

(0.00077) (0.00047) (0.00051) (0.00031)

Bedrooms −84.01∗∗∗ −52.72∗∗∗ −54.53∗∗∗ −43.71∗∗∗

(13.35) (7.37) (8.35) (5.94)
Bedrooms2 24.56∗∗∗ 15.21∗∗∗ 15.76∗∗∗ 12.52∗∗∗

(5.56) (3.69) (4.05) (3.11)
Bathrooms 21.50∗∗∗ 2.37 3.48 −3.14

(8.05) (4.86) (5.44) (3.46)
Bathrooms2 8.88∗∗ 6.38∗∗ 6.52∗∗ 5.66∗

(4.06) (3.10) (3.11) (2.97)
Maximum Guests 32.42∗∗∗ 19.97∗∗∗ 20.69∗∗∗ 16.39∗∗∗

(5.65) (4.33) (4.40) (4.02)
Maximum Guests2 −0.83 3.31 3.07 4.50∗

(3.38) (2.66) (2.64) (2.64)
Superhost 0.38∗∗∗ 0.43∗∗∗ 0.43∗∗∗ 0.44∗∗∗

(0.04) (0.05) (0.05) (0.05)
Number of Photos 18.78∗∗∗ 15.87∗∗∗ 16.04∗∗∗ 15.04∗∗∗

(5.16) (5.10) (5.08) (5.09)
Number of Photos2 −6.36∗ −4.64 −4.74 −4.14

(3.70) (3.22) (3.25) (3.20)
Distance (meters) −20.97∗∗∗ −14.85∗∗∗ −15.21∗∗∗ −13.09∗∗∗

(5.29) (3.83) (4.00) (3.58)
Distance2 (meters) 7.79 4.72 4.90 3.84

(4.98) (3.72) (3.80) (3.29)
Entire Home 0.99∗∗∗ 0.67∗∗∗ 0.69∗∗∗ 0.58∗∗∗

(0.17) (0.17) (0.16) (0.15)
Private Room 0.35∗∗ 0.22 0.23 0.18

(0.17) (0.16) (0.16) (0.16)
Total Days Available −65.27∗∗∗ −63.62∗∗∗ −63.71∗∗∗ −63.14∗∗∗

(6.23) (6.50) (6.48) (6.40)
Total Days Available2 42.42∗∗∗ 44.36∗∗∗ 44.24∗∗∗ 44.91∗∗∗

(4.01) (3.76) (3.78) (3.85)
Median Home −28.81∗∗∗ −15.27∗∗∗ −16.06∗∗∗ −11.38∗∗∗

(6.16) (4.13) (4.39) (3.51)
Median Home2 91.84∗∗∗ 91.75∗∗∗ 91.75∗∗∗ 91.72∗∗∗

(32.30) (30.27) (30.38) (29.77)
Market FE Yes Yes Yes Yes
Clustered. SE Market Market Market Market
Observations 33,636 33,636 33,636 33,636
Adjusted R2 0.188 0.226 0.225 0.228
Deg. of Fred. 33,524 33,524 33,524 33,524
F-stat (Wald: IV) 204.02∗∗∗ 76.55∗∗∗ 68.74∗∗∗ —

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.4: Market-level Marginal Utilities

(1) (2)
Mean (λ, β) Std. Dev

Price -0.040∗∗∗ 0.023∗∗∗

(0.012) (0.005)
log(snowpack) 0.827∗∗∗ 0.016

(0.122) (0.622)

State FE Yes
Season FE Yes
Holiday FE Yes
Clustered. SE NSAA Region

Observations 5,937
F-stat (Wald: IV) 81.02∗∗∗

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Skiers have a positive and significant marginal utility of snowpack and a negative

and significant marginal utility of price. Price has a statistically significant standard

deviation; however, I find no unobserved heterogeneity in the marginal utility of snowpack

(i.e. the standard deviation of log(snowpack) is not statistically different than 0).
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3.8 Figures

Figure 3.1: Willingness to Pay for Discrete Snowpack Bins

Note: Willingness to Pay is nonlinear in snowpack. Here, I present discrete bins of

WTP for snowpack nationally (Panel A) and for Mountain-West and Central-East Regions

(Panel B). This is WTP for snowpack only, not accounting for other characteristics of a trip

that the skier might value separately. Regions are largely similar in WTP. However, the

Mountain-West region is steadily increasing and statistically distinct in each incremental

bin with deeper snowpack up to 70-80 inches and then flattens out—not statistically

different between each bin above the 70-80 inch bin.
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Figure 3.2: Own and Cross Snowpack Elasticities

Note: Substitution is larger in the Mountain-West states: California, Utah, Idaho, Mon-

tana, Wyoming, and Colorado, suggesting that skiers in these states are quite responsive

to changes in snowpack within their own region. The Central-East states do experience

substitution, but relatively smaller in magnitude than their western counterparts. One

interesting finding is that Vermont is particularly affected when it experiences an increase

in snowpack. Western states such as Utah, Wyoming, and Colorado, observe a 0.4 percent-

age point drop in market shares when Vermont receives a 1 percent increase in snowpack.

This is likely due to Vermont skiers staying in their own state when conditions are good,

but traveling to western states when conditions are bad.
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CHAPTER 4

OVERLOOKED BENEFITS OF NUTRIENT
REDUCTIONS IN THE MISSISSIPPI

RIVER BASIN

4.1 Introduction

Nutrient pollution and hydrological disruption cause water quality impair-

ments throughout the Mississippi River Basin (MRB) and serious problems

with widespread oxygen depletion called hypoxia in the Gulf of Mexico

(U.S.EPA, 2008).1 The U.S. Environmental Protection Agencys 2008 Gulf

Hypoxia Action Plan (GHP) tasked the 12 upstream states with the respon-

sibility of reducing their transmission of nutrients such as nitrate-nitrogen

and phosphorus by 45% by the year 2040. In an approach similar to the

other states in the MRB, agencies in Illinois created the Illinois Nutrient

Loss Reduction Strategy (INLRS) to coordinate efforts in that state to meet

the nutrient reduction targets. The INLRS promotes voluntary efforts by

farmers to reduce nutrient runoff into local waters, but a major policy change

such as state subsidies will be needed to accomplish the 2040 goals (Coppess,

2016). State agencies and lawmakers are, therefore, interested in how much

their own residents would support efforts to meet the INLRS targets. How

much value do residents of the MRB gain from changes to water quality in

their local watersheds, and to what extent do people in a state like Illinois

value their local watersheds contribution to non-local improvements such as

reducing the scale of the hypoxic dead zone in the Gulf of Mexico?

Integrated assessment of surface water quality policies and management

actions can benefit from information about the total values of changes in

water quality and the distribution of those values among different groups

of people. A host of previous studies has shed light on the values people

place on some dimensions of pollution reduction in particular parts of the

U.S. That work is surveyed in Bergstrom and Loomis (2017); meta-analyses

1This chapter is based in part on work funded by USDA-NIFA Grant #1008843.
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of those studies have informed benefit transfer efforts to estimate aggregate

benefits of water quality changes at the national level (Johnston, Besedin,

and Stapler, 2017; Moeltner, 2019). Use values for water quality have been

directly estimated at the national scale by quantifying the impact of the Clean

Water Act on average housing prices (Keiser and Shapiro, 2018). There is

also a long line of research exploring the differences between use and nonuse

values from local and nonlocal improvements in surface water quality in the

U.S. (Greenley, Walsh, and Young, 1981; Lant and Roberts, 1990; Carson and

Mitchell, 1993; Johnston, Besedin, and Wardwell, 2003; Houtven, Powers,

and Pattanayak, 2007) and recent work has emphasized the need to examine

these relationships when considering the benefits from policies that reduce

hypoxia in the Gulf of Mexico (Babcock and Kling, 2015; Keiser, Kling, and

Shapiro, 2019). This paper advances research on water quality valuation

and integrated assessment with a choice experiment survey that estimates

three conventional benefits of water quality improvements (improvements in

local fish populations, fish diversity, and reductions in local algal blooms)

and previously overlooked benefits (local contributions to reaching a regional

nutrient reduction target) that arise from policies targeting hypoxia in the

Gulf of Mexico.2 We then illustrate how to use those values in a spatially

disaggregate integrated assessment of a land-use policy or management plan

and explore two dimensions of value heterogeneity.

Benefit-cost analyses often aggregate the benefits of environmental im-

provements to all people affected by the policy. However, many policy mak-

ers and interest groups are particularly concerned about the net impact of

agricultural-environmental policies on rural residents (Gibbs, 2016; Farber,

2018). Evidence regarding preference heterogeneity between rural and ur-

ban areas is mixed. Some academic research shows that urban residents give

more support for environmental policies than people in rural areas of the U.S.

(Salka, 2001). However, other research in environmental sociology finds little

difference between rural and urban residents in their interests for environ-

mental quality (Arcury and Christianson, 1993; Mobley, 2016). Racevskis

and Lupi (2006) find rural residents in Michigan are less likely to support

2Phaneuf (2002) estimates use values within a watershed for achieving total maximum
daily load targets (nutrient reductions). We extend this analysis to estimate the local
(within the watershed) benefits of contributing to regional, downstream (outside the wa-
tershed) nutrient reduction targets.
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forest management efforts involving conservation, but conclude this is likely

because those rural communities rely on forests products for production or

exports. (Melstrom, Lupi, Esselman, and Stevenson, 2015) find that urban

rivers and streams are less valued than rural rivers for recreational fishing,

but do not estimate the differences in preferences between rural and urban

recreationists themselves. Thus, we fill a knowledge gap by testing whether

the values that people place on water quality improvements vary between

people in urban and rural areas in the heart of the Mississippi River Basin

(MRB).

Previous research in stated preference valuation shows that spatial di-

mensions matter in other important ways. First, willingness to pay (WTP)

for an environmental improvement can vary widely across space (Johnston

and Duke, 2007; Brouwer, Martin-Ortega, and Berbel, 2010). In particular,

people often have higher WTP close to the improvement (Sutherland and

Walsh, 1985; Hanley, Schlpfer, and Spurgeon, 2003; Czajkowski, Budziski,

Campbell, Giergiczny, and Hanley, 2017a; Glenk, Johnston, Meyerhoff, and

Sagebiel, 2019). Second, researchers have found that when estimating WTP

for a change that has a specific location in the landscape, the quality of re-

sponses from stated preference surveys depends on how clearly the survey

describes the location of the change relative to the respondent (Schaafsma

and Brouwer, 2013; Johnston, Holland, and Yao, 2016). Our survey shows

respondents exactly where they live relative to the proposed improvements.

We also vary distance from the improvement experimentally across alterna-

tives to identify how WTP varies with exogenous distance from the good.

We find that people place economically significant positive and significant

values on local water quality improvements and on helping to achieve basin-

wide success in reducing hypoxia in the Gulf of Mexico. We do not find

evidence of joint differences in preferences between rural and urban residents

in the same watershed. We do, however, find that rural residents and people

who are familiar with nutrient pollution problems place more value on mov-

ing away from the status quo conditions in the watershed regardless of the

improvements a program produces. Finally, we demonstrate how these esti-

mates can be used in spatially disaggregated integrated assessments, where

benefit totals and distributions depend on spatial details of the improvements

and the population that stands to gain.
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4.2 Application

Freshwater systems throughout the U.S. Midwest have been severely altered

due to decades of intensive agriculture production (Manifold and Swamp,

1998; Alexander, Smith, Schwarz, Boyer, Nolan, and Brakebill, 2008). Trib-

utaries located within the upper MRB carry excess nutrients, byproducts

of intensive agriculture production, to the Mississippi River where they are

eventually released into the northern Gulf of Mexico. An overabundance of

these nutrients contributes to the large seasonal hypoxic dead zone off the

cost of Louisiana and Texas (Diaz and Rosenberg, 2008; Rabalais, Daz, Levin,

Turner, Gilbert, and Zhang, 2010; Rabotyagov, Kling, Gassman, Rabalais,

and Turner, 2014).

This paper surveys people in the Upper Sangamon River Watershed (USRW)

in central Illinois 4.1. This watershed is listed as a priority watershed due

to its high levels of nitrate-nitrogen and phosphorus transmission within the

MRB (U.S.EPA, 2008, 2013). The population in the study area is diverse

and includes large swaths of rural landscape with several urban clusters.

The characteristics of the USRW are representative of many watersheds in

the MRB. This, this area provides an excellent setting for examining value

differentials and policy-induced distributional effects across rural and urban

populations in the MRB.

State agencies, Extension personnel, researchers at the University of Illi-

nois, and people from groups like the Illinois Farm Bureau have been active

communicating about the INLRS in the state, explaining the goals of the

INLRS and how agricultural practices such as cover crops, reduced tillage,

and riparian buffers can reduce nutrient loadings. It has been shown that

stated preferences for environmental goods, and the underlying latent con-

sequentiality of a survey, are more reliable when the policies that are being

proposed include established practicesas is the case in our survey (White-

head, Blomquist, Hoban, and Clifford, 1995; LaRiviere, Czajkowski, Hanley,

Aanesen, Falk-Petersen, and Tinch, 2014; Czajkowski, Giergiczny, and Za-

wojska, 2015; Czajkowski, Vossler, Budziński, Wísniewska, and Zawojska,

2017b).
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4.2.1 Choice experiment methodology

Choice experiments are widely used to elicit preference for nonmarket envi-

ronmental amenities such as water quality in rivers and streams. Using this

platform allows us to model preferences in the random utility (RUM) frame-

work (McFadden, 1974). Preferences are characterized by estimating the

probability a respondent chooses a scenario from a set of alternatives with

varying levels of environmental quality (Hanley, Wright, and Adamowicz,

1998).

Each respondent began the survey by reading a consent form describing

the purpose and nature of the survey and gave consent to continue with the

survey. They were then presented with a background section that provided

basic information about nutrient pollution problems in the MRB and the

general nature of the improvements to be evaluated in the survey. After the

respondent read the background section, they answered six choice questions

and supplemental questions about personal characteristics.

We held a series of focus groups throughout the watershed with attendees

from the general population. They were asked to take the survey and partici-

pate in a 30-minute follow-up discussion. In response to focus group feedback,

we revised the survey to incorporate their suggestions regarding ambiguities

in management mechanisms and wording of the attribute changes. We de-

ployed the survey in a pre-test with 79 completed surveys (474 observations)

and adjusted the levels of the cost attribute so that all levels were chosen with

some frequency. Finally, we distributed the survey to a randomly selected

group of respondents living within the watershed.

4.2.2 Consent and background

Several features of the survey were designed to increase respondent belief

in consequentiality and prevent concern about agricultural regulation that

might trigger protest responses. The consent form explained that “infor-

mation from this survey will help policy makers, economists, and watershed

managers choose how and how much to improve water quality in your area.”

The University of Illinois is regionally known to be connected to state pol-

icy makers and agricultural decision makers, supporting the claim that the

survey will be consequential.
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The background section of the survey tells respondents about the national

goal for nutrient loss reduction to reduce the size of the hypoxic zone and

the nutrient pollution reduction target for Upper Sangamon River water-

sheds contribution to that goal. This section explains that the proposed

environmental changes would come from changes in local agriculture such

as expanded cover crops, reduced tillage, and riparian buffers; these volun-

tary and subsidized practices can reduce sediment and nutrient runoff from

the surrounding area and are currently well-accepted and widely used by

farmers throughout the region. The survey scenarios with water quality im-

provements from such changes in agricultural practices are within the range

of future actions actually being discussed in the state, and thus not entirely

hypothetical. In the survey background we explicitly state “change will NOT

result in a change in agricultural acreage or profits” to further prevent con-

cern about the profitability of local agriculture from being confounded with

the value people would gain from environmental improvements.3

4.2.3 Choice questions

A choice question is posed in a “card” that shows a set of scenarios and asks

the respondent to choose the scenario they like most. In our survey, each

scenario in a choice card has seven experimentally varied attributes. Four

of those attributes relate to biophysical characteristics of water quality, two

capture spatial heterogeneity, and one is the payment necessary to implement

the proposed improvements. Table 1 summarizes each attribute, specifying

the status quo and improved levels of each attribute. Our CE survey is

tightly coupled to biophysical models of watershed improvements; the levels

of the biophysical attributes were informed by the work of hydrological and

ecological modelers in the USRW. Botero-Acosta, Chu, and Huang (2019)

modeled predicted changes in nutrient levels throughout the USRW resulting

from hypothetical changes in local agricultural practices. Andres, Chien,

and Knouft (2019) use these predicted changes in nutrient levels, climate,

and data from 110 monitoring sites across the USRW, to model changes in

aquatic biodiversity.

Three of the four biophysical attributes related to water quality are local

3The full survey text can be found in C.1.
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and one is non-local. Number of fish species and population of fish (two inde-

pendent attributes) are local quantitative measures summarizing the current

average number of distinct species of fish (diversity) and populations of in-

dividual fish per 100 linear yards of river (density). Dissanayake and Ando

(2014) find that Illinois residents have positive value for both species diver-

sity and faunal density in grassland birds; we test whether people value two

such attributes of fish in inland streams. Local water quality improvement is

captured as percent reductions in the frequency of occurrence of algal blooms

in the local watershed including streams and ponds; that ranged from 0%

to 75% reduction. The fourth nutrient-pollution attribute describes the like-

lihood that this watershed succeeds in meeting its targets for reductions in

the level of nutrient transmission to the Gulf are met and ranges from 0%

(definitely will not succeed) to 100% (certain to succeed).

Local water quality-related changes from a nutrient-loss reduction strategy

are not uniform throughout a watershed, but rather depend on local details

such as depth, flow rate, and shade. We partition the watershed into four

equally sized sections. Each choice scenario alternative specified the section

of the watershed in which water quality attributes improved. The location

attribute varies as part of the experiment design; as a result, distance (mea-

sured as the distance from each respondent to the improved section of the

watershed) also varies experimentally.

The final attribute in the choice scenarios is the household payment nec-

essary to achieve the proposed improvements, cost. We use an increase in

annual county fees as the payment vehicle, verifying with focus groups that

this is a salient and credibly binding mechanism for payment. The survey

states that the fee will be passed on to renters through an annual increase in

rent charged by the landlord. An example of a survey is in C.1. 4.2 shows

that all attribute levels were chosen with some frequency by respondents

We designed the survey to increase estimation efficiency while maintaining

reliability in WTP estimates. In theory, choice experiments are only de-

mand revealing if they are incentive compatible (Carson and Groves, 2007)

and while a dichotomous choice design (one status quo and one alternative)

is often argued to be incentive compatible, trichotomous choice (one status

quo and two alternatives) is not. However, trichotomous choice increases

the amount of information recovered from each survey response and some

research shows that values are similar between the two mechanisms (Collins
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and Vossler, 2009; Czajkowski et al., 2017a). Thus, we include two alterna-

tives along with the status quo on every choice card.

In stated preference research, hypothetical bias can influence estimates of

WTP (Cummings et al., 1995; Cummings and Taylor, 1999), we include a

modified cheap talk script in the information section of the survey and an

opt-out reminder on each choice card to mitigate such bias (Ladenburg and

Olsen, 2014).4 After each choice card, we also include certainty questions

asking how sure the respondent was of the selection they just made (Ready,

Champ, and Lawton, 2010; Penn and Hu, 2020).5

4.2.4 Experimental design

We develop an optimal orthogonal choice matrix resulting in a D-efficient

experiment design (Adamowicz, Louviere, and Swait, 1998b; Hensher, Rose,

and Greene, 2005; Street and Burgess, 2007; Ferrini and Scarpa, 2007). As

recommended in Ferrini and Scarpa (2007), the design is optimized for main

effects with zero priors (β = 0) to produce a reliable design when the true

underlying data generating process is unknown and prior information on pa-

rameter values is not available. We produce 18 unique choice cards from the

full factorial design, divided into three blocks of six choice cards. Respon-

dents are randomly assigned one of the three blocks of six choice cards. The

number of cards and alternatives are chosen to limit cognitive burden for

the respondents while maintaining statistical power to estimate WTP (Swait

and Adamowicz, 2001; Caussade, de Dios Ortzar, Rizzi, and Hensher, 2005).

After an initial design was created, we impose two additional conditions for

the final design and re-run the design if the conditions are not met. The first

condition is a no-free-lunch restriction (improvement in any attribute will

4The cheap talk script included in the information section read: “Experience from
previous similar surveys is that people often say they would be willing to pay more money
for something than they actually would. For example, in one study, 80% of people said they
would buy a product, but when a store actually stocked the product, only 43% of people
actually bought the new product. It is important that you make each of your upcoming
selections like you would if you were actually facing these exact choices in reality. Note
that paying for environmental improvement means you would have less money available
for other purchases.”

5The question asked: “How confident are you in your answer?” With the range: “0 -
not at all confident”; “1 - somewhat confident”; and “2 - very confident.” We use these
responses to re-code any uncertain responses to the status quo alternative. Results and
discussion are available in the appendix (Table C.6).
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come at a non-zero cost) and a welfare improving restriction (no improve-

ment across all attributes cannot come at a cost). The second condition

checks if any of the 18 resulting choice cards had an alternative that was

strictly dominated by another alternative on the same card (e.g. a higher

level of improvements at a lower cost). After seven iterations of the two-

step procedureeach iteration consisting of many design iterations in the first

stepall conditions are met.6

With the exception of location and distance, we allow the status quo level

of each attribute to be randomly included in the improved (non-status quo)

scenarios. We include an alternative specific constant (ASC) in the exper-

imental design (and regressions) to represent the status quo alternative on

the choice card. The ASC captures preferences that the respondent may

have for maintaining the status quo that are unobservable and not otherwise

contained in our experimental design.

4.2.5 Individualized maps and choice card generation

Following recommendations highlighted in Johnston et al. (2016), each alter-

native on a choice card includes an individually geocoded map highlighting

the section of river that would experience the improvements and a marker

locating the respondent within the watershed relative to the proposed im-

provements. Each map is created for the individual respondent and geocoded

using ArcPy integration in ArcGIS. Eight towns and city centers distributed

throughout the watershed are geolocated to provide a you are here marker

in each map. The total number of combinations of choice cards, alterna-

tives, and geolocations results in 432 different individualized maps and 432

different levels for the distance attribute listed as an attribute on the choice

card.

In order to accommodate the individualization of alternatives and choice

cards, we create images of the choice cards by integrating the mail-merge

capabilities of Microsoft Publisher, referencing an underlying matrix of all

individualized combinations of the experiment design. The resulting pages of

the document are then extracted by the survey protocol using Python to cre-

6We generated the design using the dcreate package implemented in Stata (Hole, 2015).
We created a wrapper for the dcreate package that allows us to impose the additional
conditions on the design.
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ate an image for each page representing a choice card in the experiment. The

432 choice cards images are then stored online using Amazon Web Services

and referenced in real-time while the respondent was taking the survey.

4.2.6 Other survey questions

We designed the survey instrument to test for potential preference hetero-

geneity between residents who identify as rural, and those who identify as

urban. That characteristic was examined in two dimensions: 1) geographi-

cal affiliation; and 2) cultural affiliation. The first, geographical affiliation,

is simply determined using the U.S. Census Bureaus classification of rurala

census block group area with less than 1,000 residents per square mile (Rat-

cliffe, Burd, Holder, and Fields, 2016). Respondents who fit this designation

are classified as living in a geographically rural area, all others are classified

as living in an urban area. The second, cultural affiliation, is determined

by the respondents stated affiliation in the post-survey questionnaire. The

question is phrased as: “Do you consider where you live to be rural?” Re-

spondents in our sample overwhelmingly responded with a cultural affiliation

that aligned with their geographical affiliation. Our design allows us to test

the hypothesis that preferences for water quality are the same between those

who live in a geographically and culturally rural area and those who live in

a geographically and culturally urban area.

To understand other characteristics of the respondents in our survey sam-

ple, we ask two sets of personal questions. Three questions come before the

choice questions and ask about the frequency with which people had seen

algal blooms, how often respondents visit the river to go fishing, and how

often they recreate nearby the river. A section after the choice questions

contains common demographic and socioeconomic questions.

4.2.7 Survey administration

The survey was administered online using a Qualtrics panel of respondents

through their survey interface, paired with additional JavaScript and HTML

to incorporate the individualized choice cards.7 Respondents were recruited

7The first wave of survey responses was collected from January, 2019, through February,
2019. A second collection period was administered January, 2020, through February, 2020.
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from the 42 zip codes contained within the watershed. Once a respondent

received an invitation to take the survey, they would arrive at the online

interface where they were asked to enter their zip code. If the zip code was

not one of the 42 qualifying, they would be screened and exited from the

survey. The next step individualizing the CE was to ask respondents which

of the eight locations (towns or city centers) they lived closest to. Their

response would then cue the system to load a randomly ordered set of choice

cards. Our final sample has complete responses from 343 individuals.

4.3 Econometric Framework

Following choice experiment methodology (Hanley et al., 1998), we assume

that a respondent derives utility based on the observable characteristics con-

tained within the choice card, and some characteristics unobservable to the

researcher Specifically, U is the utility respondent i derives by choosing al-

ternative j on choice card t:

Uijt = −αipjt + β′
ixjt + eijt (4.1)

where x is a vector of attributes is, p is the price (cost) of the scenario, and

e is the stochastic component (taste-shock) capturing unobservable charac-

teristics influencing the respondents choice and is IID distributed extreme

value. Included in x is an alternative specific constant (ASC) that is equal

to 1 for the status quo alternative in each choice set, and 0 otherwise. β is

the vector of preference coefficients, and α is the coefficient on cost. Both β

and α are indexed to be respondent-specific when estimated using a random

parameter logit model (Train, 1998).

The variance of error term also varies with each respondent such that:

V ar(eijt) = k2
i (π

2/6) where k is the scale parameter for respondent i. Vari-

ation in the error term can be attributable to scale heterogeneity or other

forms of correlation between the model attributes, particularly so in panel

(repeated choice occasion) settings such as ours (Swait and Louviere, 1993;

Train and Weeks, 2005; Hess and Train, 2017). Dividing the preference pa-

rameters by the scale parameter where λi = (αi/ki) and ci = (βi/ki) results
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in a specification that has the same variance for all respondents:

Uijt = −λipjt + c′ixjt + εijt (4.2)

where ε is IID type-one extreme value, now with a constant variance: π2/6.

With k in the denominator of each coefficient, allowing the coefficients to

be independent (not correlated) would constrain the scale parameter to be

constant for the sample while allowing the preference parameters to vary, or

vice versa (Louviere, Street, Carson, Ainslie, Deshazo, Cameron, Hensher,

Kohn, and Marley, 2002). Equation 4.2 is the model in preference space

(Train and Weeks, 2005). To avoid the postestimation difficulties in deriving

empirical distributions of WTP (Train, 1998; Daly, Hess, and Train, 2012;

Carson and Czajkowski, 2019), we choose to estimate our model in willingness

to pay space directly (WTP-space) (Train and Weeks, 2005; Scarpa, Thiene,

and Train, 2008).8 This is a standard reparameterization of equation 4.2

such that wtpi = (ci/λi); utility is then represented by:

Uijt = −λipjt + λiwtp
′
ixjt + εijt. (4.3)

Equation 4.3 is the specification in WTP-space (Train and Weeks, 2005).

We specify the vector of WTP parameters wtp to be distributed normal and

the coefficient on cost, λ, is distributed log-normal as recommended by Train

and Weeks (2005). We specify the distributions of the random parameters

to be fully correlated, estimating a full covariance matrix and corresponding

correlation coefficients for the random parameters in the model. We follow

Thiene and Scarpa (2009) and estimate the model using maximum simulated

likelihood. Halton draws were used in the maximum-likelihood simulation.

The first N prime numbers were used to generate the draws, where N is

equal to the number of random parameters in the model.9

To develop estimates of total WTP and its distribution throughout the wa-

tershed for hypothetical improvements in water quality, we allow for location-

specific and individual-specific heterogeneity in estimates of MWTP by recov-

8We also estimate our models using conventional preference-space specifications. These
specifications, along with their discussion, can be found in the appendix (Tables C.7 and
C.8.

9All specifications and analyses are modeled using the gmnl package in R (Sarrias
and Daziano, 2017). All data and replication files can be found at the following DOI:
doi.org/10.5281/zenodo.3692738.
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ering the conditional individual specific means of the parameters in equation

4.3 (Greene, Hensher, and Rose, 2005; Meyerhoff, Boeri, and Hartje, 2014).

This is discussed in more detail in section 4.5 when we discuss the integrated

assessment exercise.

4.4 Results

Our sample is evenly divided between people in rural (53%) and urban (47%)

areas, and 56% of the sample own homes instead of renting (Table C.1).

Respondents are predominantly white (78%) and female (68%); the former

is consistent with the actual demographics of the area. Our sample has broad

representation of age, income, and education categories, and the distributions

in our sample are similar to the U.S. Census demographics for this area (Table

C.2).10 This is an area with little in-migration; half the people in our sample

have lived in the area for more than 30 years, and only 10% have lived

there for 10 years or fewer. Table C.3 summarizes the results of testing for

observable differences between rural and urban respondents. The two sub-

samples are mostly similar, except that urban respondents are more likely to

hold a graduate degree and less likely to participate in recreational fishing

and hiking.11

Figures 4.3 shows the distributions of answers to qualitative questions

about familiarity with local algal blooms and water quality concerns de-

scribed in the survey. Nearly 80% of the sample reported having at least

some familiarity with the water quality issues discussed in the survey and

about the same number of respondents reported experience with algal blooms

in the rivers or connected bodies of water. Fewer than 20% of respondents

report having fished in the USRW at all. However, nearly 50% reported

having visited the river or walked trails near the river (Figure C.1).

Table 4.2 presents the main regression results, estimating equation 3 (WTP-

space) for the full sample. The regression in Column 1 includes just the core

model parameters. The regression in Column 2 introduces an interaction

term between the status quo dummy (ASC) and respondent characteristics.

10Figure C.2 maps data from the 2013-2018 American Community Survey (ACS) for
the watershed (U.S.Census, 2019).

11The results of testing for observable differences between rural and urban respondents
can be found in the appendix (Tables C.7 and C.8).
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All mean WTP coefficients in Column 1 are statistically significant at the

1% level or better. The coefficient on the status quo (no program) option is

large and negative and suggests respondents strongly prefer having a water-

quality improvement program than not. The coefficient on distance is also

negative—people prefer a program focused on the river close to where they

live. The coefficients on fish species and fish population are positive; people

would be willing to pay nearly $5 per year to have an additional species

of game fish in the river, and they separately place a positive value on the

total number of individual fish in the river. The coefficients on algal blooms

and nutrient target are positive. People would gain utility from reducing

the frequency of these local problems in their watershed, with an average

annual MWTP of $0.77 for a one percent reduction in the frequency of algal

blooms. Respondents also place a large value on nutrient target, with an

average annual MWTP of $0.95 for a one percentage point increase in the

likelihood of achieving the watersheds nutrient loss target.

The large MWTP to move away from the status quo suggests that respon-

dents have strong preferences for having a new program instead of the status

quo regardless of the variable attributes in our choice scenarios. Column

2 explores two factors contributing to these preferences. Respondents who

live in more rural areas of the watershed and respondents who were familiar

with surface water issues in the area are willing to pay significantly more for

moving away from the status quo. Rural residents are estimated to value this

move from status quo $49 more than urban residents. Those who reported

being familiar, very familiar, or very familiar and involved with watershed

quality issues value this move from the status quo $66 more than those who

were less aware.

Full regressions for the separate urban and rural sub-samples are in Table

C.4 of the appendix. A LR test of joint preference stability tests the fit of

separate regressions for the two sub-samples against the constrained pooled

sample in column 1 (see Table C.4). We fail to reject the null that MWTP are

jointly similar across the two sub-samples. While preferences for the status

quo may vary, the holistic set of preferences is consistent between urban and

rural respondents in this watershed.
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4.5 Integrated Assessment Application

To illustrate how benefits from water quality improvements are distributed

throughout the watershed, we recover the conditional individual-specific means

of MWTP for every respondent in our sample (Greene et al., 2005). We use

the primary specification in our analysis 4.2 to recover conditional individual-

specific means. For each zip code in our sample, we average the MWTP over

the respondents who lived in that zip code. This gives us zip code level

variation in the MWTP for each attribute.

Zip codes are considered rural if there are fewer than 1,000 residents per

square mile, and urban otherwise (Ratcliffe et al., 2016; U.S.Census, 2019).

This allows us to tally welfare changes separately for the rural and urban

areas in the USRW. The distributions of MWTP in the rural and urban zip

codes are as expected and have significant overlap.12

Policy simulations, or state-of-the-world experiments, simulate a change in

the levels of the environmental attributes to recover an individuals total WTP

for the suite of improvements over the status quo level (Holmes, Adamowicz,

and Carlsson, 2017). For example, an individuals WTP for a change in

attribute x1 is their MWTP for x1 multiplied by the change in x1’s level:

WTPx1 = MWTPx1×∆x1. If more than one attribute is changing, then the

individuals WTP for changes in both attributes is the sum of their WTP for

each attribute j that is changing:

WTP =
∑
j

MWTPxj ×∆xj. (4.4)

Because we have zip code specific MWTP for each attribute, we estimate

changes in welfare for each zip code under different states of the world. More-

over, in zip code z over households N , the total WTP for improvements in a

set of attributes indexed by j is:

WTPz =
∑
n

∑
j

(MWTPxj |z ×∆xj)n|z. (4.5)

From equation 4.5, the total WTP in the watershed is simply the sum of

WTPz over all zip codes in the USRW.

12A full summary of the recovered conditional individual-specific means of the MWTP
for each attribute can be found in the appendix (Figure C.3).
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Table 4.3 summarizes the results of our policy simulations. Panel A iden-

tifies the scenarios, Panel B considers benefits from only the environmental

attributes in the model, and Panel C adds to Panel B by also including the

benefits from moving away from the status quothe MWTP associated with

the ASC in our model. The first scenario models a 50% reduction in only

the frequency of algal blooms in river section A. Scenario 2 models this same

improvement except for river section C. This allows us to hold all other at-

tributes constant to see how benefits might accrue differently depending on

where the improvement takes place. Scenario 3 models a 75% likelihood that

the watershed reaches it nutrient loss target of 45% by the year 2040. Sce-

nario 4 introduces a more complete improvement scenario where river section

A sees a 75% reduction in the frequency of algal blooms, sections A and B

receive an additional 50 fish (population) per 100 yards of river, section A

receives an additional 2 species of game fish per 100 yards of river, and a

100% likelihood of reaching the watersheds nutrient target.

Reducing the frequency of local algal blooms in just one of the four reaches

of the watershed yields around $1 million to $1.6 million per year depending

on the location of the improvement (Table 4.3, Panel B, columns 1 and 2). A

75% likelihood of reaching the nutrient target is worth $4.4 million per year

(Table 4.3, Panel B, column 3). Finally, the most comprehensive scenario

(Table 4.3, Panel B, column 4) yields benefits of around $7 million per year.

Table 4.3 also provides a summary of the average values per household for

each of the scenarios. Household WTPs are calculated at the zip code level.

We provide the average WTP for each scenario throughout the watershed as

well as the average WTP in the rural and urban areas separately. Reducing

algal blooms by 50% has an average value of $9 or $15 per year depending on

where in the watershed it occurs, and the average value of a 75% change of the

watershed doing its part for hypoxia reduction is $39 per year per household.

The comprehensive scenario in column 4 produces average benefits of $63

per year per household.

To see where the benefits from the policy simulations accrue throughout the

watershed, Figure 4.4 provides maps of both the total WTP (Panel A) and

the per household WTP (Panel B) in each zip code. Benefits are most dense

where population is most dense (Panel A). However, when we map benefits

based on per household estimates, we see the distribution is often higher
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in the rural areas throughout the watershed (Panel B).13 Rural areas tend

to receive larger benefits because the river sections—and the corresponding

improvements—are mostly in rural areas of the watershed.

4.6 Discussion

We have carried out a CE survey to estimate how much people in a sub-

watershed of the Mississippi River Basin are willing to pay to improve local

fish diversity and populations in their rivers, reduce the prevalence of local

algal blooms, and ensure that their watershed does its part to hypoxia in the

Gulf of Mexico. While current efforts in the MRB to reduce nutrients and

sediment are driven by concern about water quality far away in the Gulf,

we find that people in our study area would gain significant benefit from the

local environmental improvements that could result from reduced nutrient

pollution and from helping to reduce environmental problems in the Gulf.

Much traditional research on water quality values has focused on generic

measures of whether waters are boatable, fishable, and swimmable, and the

resulting values can be quite small (Keiser et al., 2019). In contrast, we

find that people would gain large value from reducing the frequency of local

algal blooms, with respondents willing to pay nearly $40 per year to reduce

the frequency of nearby algal blooms by 50%. Algal blooms are becoming

more prevalent as climate change expands hot summer conditions; our result

implies that economists and water quality modelers should pay increased

attention to the impact of management and policies on those particularly

harmful manifestations of nutrient pollution.

Residents of the central Midwest gain no use value from reducing hypoxia

in the Gulf of Mexico. However, we find that people in our study area would

gain utility from increasing the likelihood that their watershed reaches the

target set for it under the Illinois Nutrient Loss Reduction Strategy; the

average respondent would be willing to pay $48 to have even a 50% chance

of the watersheds goal being met. This finding provides further compelling

13Refinements could be made when modeling WTP throughout the watershed, or for use
in transfer to similar watersheds, using spatial regression methods such as those discussed
in Johnston, Besedin, and Holland (2019) or DeValck and Rolfe (2018). However, the focus
of this paper is to provide a proof of concept for estimating the distributional effects of
policies related to water quality that span geographically and culturally diverse landscapes.
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rationale for the work on nutrient loss in which government agencies, NGOs,

and industry groups are all currently engaged.

Our estimates suggest that people in this landlocked part of the Midwest

would gain large value from improving local game fish diversity and fish pop-

ulations. This result seems to be capturing significant non-use values for

having thriving river ecosystems in the region since only a small fraction of

respondents reported engaging in local fishing. Most previous research on the

value of fish species and populations comes from travel cost and recreational

site-choice models that can only capture use values (Phaneuf, von Haefen,

Mansfield, and Van Houtven, 2013; Melstrom et al., 2015). The large nonuse

values we estimate in this study support the well-known claim that revealed

preference estimates may not capture the full range of benefits from environ-

mental improvements (Adamowicz, Boxall, Williams, and Louviere, 1998a;

Hanley and Czajkowski, 2019).

Economists, other social scientists, and policy makers have wondered if

there is a rural-urban divide in the values people place on environmental

improvements. In this case, we find that rural and urban preferences are

similar. If anything, rural residents may place more value on a move away

from the status quo towards environmental improvement. This finding im-

plies that people in the rural areas that implement many of the changes

needed to improve water quality may also have high willingness to pay for

those improvements themselves.

Finally, the results from our simple simulations suggest that the total val-

ues water quality improvement could bring to a watershed like our study area

are not trivial. For the USRW alone, total WTP for reaching a 75% likelihood

of reaching nutrient reduction targets (scenario 3) is estimated at approxi-

mately $4.4 million dollars annually. And when modeled with improvements

that will likely come as compliments for any policy targeting reductions in

nutrient loss and transmission to the Gulf (scenario 4), total annual benefits

within this small watershed are estimated to exceed $7 million dollars per

year.

Debate over nutrient loss reduction strategies continues. To inform that

debate, analysts should quantify the full range of costs and benefits and

how costs and benefits are distributed among groups of people in the land-

scape. Our findings can play an important role in that effort. However,

more work needs to be done in order to further uncover and understand
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the overlooked benefits of reductions in nutrient loss and transmission. Fu-

ture research would do well to explore how values vary throughout the MRB

for improving local fish habitat, avoiding local algal blooms, and solving re-

gional environmental problems like hypoxia in the Gulf. Additional work is

also needed to understand the factors driving people in our study to express

such strong antipathy for a status quo that does nothing to address pervasive

surface water pollution in the U.S.
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4.7 Tables

Table 4.1: Survey Attributes and Levels

Attribute Levels (SQ) Description

Fish Species (1), 2, 3, 5 Number of different recreational
game fish species per 100 yards of
river

Fish Population (15), 30, 45, 150 Number of all fish (any species) per
100 yards of river

Algal Blooms (%) (0), 25, 50, 75 Percent reduction in the frequency
of local algal blooms

Nutrient Target (%) (0), 50, 75, 100 Likelihood that nutrient runoff
from this watershed is reduced by
the target of 45 percent by 2040

Location A, B, C, D The section of river where the im-
provements will be received

Distance (varies) The distance in miles from the re-
spondent to the nearest point on
the location attribute. This de-
pends on where the respondent
lives and which location is repre-
sented in the scenario.

Annual cost (0), 5, 15, 30, 60 Payment vehicle: annual county fee
(e.g. property tax)

Note: Status quo levels for each attribute are presented in parentheses. All
attributes listed except for distance were included in the experiment design.
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Table 4.2: MWTP to Reduce Nutrient Transmission to the Gulf of Mexico

(1) (2)
Full Sample ASC Heterogeneity

Mean Std. Mean Std.
MWTP Dev. MWTP Dev.

Distance (miles) -0.67*** 92.57*** -0.68*** 1.22***
(0.15) (18.69) (0.15) (0.26)

Fish Species 4.73** 1.06*** 4.72** 12.32***
(1.48) (0.26) (1.55) (2.14)

Fish Population 0.17** 6.58*** 0.16** 0.38***
(0.06) (2.12) (0.06) (0.08)

Algal Blooms (%) 0.77*** 0.35** 0.88*** 0.96***
(0.11) (0.09) (0.1) (0.13)

Nutrient Target (%) 0.95*** 0.85*** 1.14*** 0.89***
(0.13) (0.16) (0.13) (0.12)

Status Quo (No Program) -69.49*** 1.42*** -20.25 77.02***
(14.78) (0.23) (13.48) (21.19)

Status Quo × Rural -48.79*** 171.45***
(14.33) (26.29)

Status Quo × -65.82*** 106.84***
Aware of Water Issues (16.34) (21.01)

λ (cost coefficient) -3.17*** 0.85*** -2.71*** 0.77***
(0.32) (0.13) (0.42) (0.12)

Observations (Respondents) 2058 (343) 2058 (343)
Log-likelihood -1717.19 -1717.77
AIC 3506.38 3527.54

McFadden ρ2 0.15 0.15

Standard errors in parentheses *p<0.1; **p<0.05; ***p<0.01

Note: Column 1 provides the results of the WTP-space model for the pooled
(full) sample. Column 2 introduces an interaction between the Status Quo
dummy and respondent characteristics. Correlation matrices of the random
parameters can be found in the appendix (Table C.5).
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Table 4.3: Sample Integrated Assessment Value Estimates (total WTP)

Panel A: Scenarios (1) (2) (3) (4)
Algal Blooms 50% reduced 50% reduced - 75% reduced

Area A only Area C only Area A only
Nutrient Target - - 75% 100%

likelihood likelihood
Fish Species - - - +2 species

Area A only
Fish Population - - - +50 population

Area A and B
Panel B: No ASC
Annual Benefits $1,057,497 $1,697,818 $4,406,411 $7,126,757

Rural Areas $768,279 $985,443 $2,612,890 $4,512,142
Urban Areas $289,218 $712,376 $1,793,521 $2,614,615

Per Household $9.30 $14.93 $38.75 $62.67
Rural Areas $13.51 $17.33 $45.95 $79.35
Urban Areas $5.09 $12.53 $31.54 $45.98

Panel C: With ASC
Annual Benefits $3,648,648 $4,288,969 $6,997,562 $9,717,908

Rural Areas $2,413,881 $2,631,044 $4,258,491 $6,157,744
Urban Areas $1,234,768 $1,657,925 $2,739,071 $3,560,165

Per Household $32.08 $37.71 $61.53 $85.45
Rural Areas $42.45 $46.27 $74.89 $108.30
Urban Areas $21.72 $29.16 $48.17 $62.61

Note: Benefits are estimated using equation 5. These are estimates of com-
pensating variation for the improvements modeled in the IAM exercise. In
aggregate, rural areas of the watershed stand to benefit nearly twice as much
as the urban clusters. Rural areas of the watershed also tend to have a higher
per household WTP for each scenario. This is largely because a majority of
the improvements will be realized in more rural areas of the watershed.
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4.8 Figures

Figure 4.1: Study Area in Upper Sangamon River Basin, Central Illinois

Note: The Upper Sangamon River Watershed, located in central Illinois. It
is listed as one of the EPAs prioritized watershed for high transmission of
nutrients to the Gulf of Mexico. The four sections of river (A, B, C, D) are
highlighted, and included as attributes on the choice card.
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Figure 4.2: Frequency of Chosen Attribute Levels

Note: Plots show substantial variation in the levels of each attribute as
indicated in the chosen alternative from each choice card. Status quo levels
of each attribute are represented in the far-left column of each plot. Fish
species and fish population are more represented by the status quo level
than the other four attributes.
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Figure 4.3: Responses to Questions about Surface Water Quality Awareness

Note: Responses to the post-survey questionnaire about how familiar re-
spondents are to water quality issues in the watershed, and how frequently
they experience algal blooms in or in nearby surface water the Upper Sanga-
mon River. Algal blooms are quite frequently observed by respondents and is
likely closely related to their awareness of water quality issues. Rural respon-
dents reported more frequently seeing algal blooms and being more familiar
with the water quality issues discussed in the survey.
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Figure 4.4: Sample Integrated Assessment Value Estimates

Note: Spatial distribution of total WTP in each zip code throughout the
watershed (Panel A) and per household MWTP (Panel B). Total benefits
accrue in urban clusters where the population is dense. However, on a per
household basis we see higher WTP in rural areas than in the urban clusters
within the watershed.
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CHAPTER 5

CONCLUSION

Throughout this dissertation, I have used both positive and normative ap-

proaches to describe environmental goods and services. I have applied em-

pirical methods, supported by economic theory, to quantify several benefits

that humans receive from the natural environment. Each chapter is moti-

vated by the idea that one person’s actions can often have unsolicited and

uncompensated effects on another person. These effects, or externalities, can

be distributed to others through channels such as wintertime precipitation

and surface waters. In quantifying the benefits that people derive from these

environmental amenities, we can say something about how well off people

are in different states of the world.

How do people respond to changes in mountain snowpack? In chapter 2, I

quantify the behavioral response in outdoor recreation to marginal changes

in mountain snowpack. I provide an exposition of what recreation demand

might look like under future climate; suggesting that mountain economies

stand to lose billions of dollars in revenues each year due to predicted re-

ductions in annual snowpack accumulation. I find a positive relationship

between spending on short term property rentals and the amount of snow at

a nearby resort. I estimate, on average, that a 1 percent increase in snow at

the resort predicts a 0.291 percent increase in revenues from overnight stays.

I estimate that by the end of the century, total reductions in revenues for the

26 US states could be between $1.4 billion and $2.4 billion dollars per year.

What is the marginal willingness to pay for mountain snowpack? Chap-

ter 3 builds on the previous chapter to provide estimates of the marginal

willingness to pay for mountain snowpack. I find that on average skiers in

the United States are willing to pay $2.40 for each inch of snowpack on the

ground the day of their trip. This is diminishing at approximately $0.01 for

each additional inch. I do find substantial regional variation, ranging from

$1.38 in the Midwest to $4.24 in the Northeast. The regional variation in
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the recreation value of snowpack is likely driven by differences in ski culture,

snowpack composition, and geographical characteristics or the resorts. I also

estimate a more flexible functional form in the utility function of skiers using

a binned specification. This allows me to estimate the WTP in each snow-

pack bin, which is particularly useful for estimating welfare on a given day.

For example, for each day a resort has 40”-50” of snowpack, I estimate the

WTP for that snowpack at $110.23. Similarly, a day with 30”-40” of snow-

pack (one bin down), the WTP is $80.97, or approximately $30 less than the

next higher bin. I also examine regional variation in the binned estimates

and find that while the Central-East has higher mean WTP in most bins,

the point estimates are not statistically different than the Mountain-West

estimates for the same bin.

How do skiers choose to substitute across resort markets? In chapter 3, I

also derive substitution parameters that map changes in snowpack to recre-

ation decisions. I find that substitution is larger in the Mountain-West states:

California, Utah, Idaho, Montana, Wyoming, and Colorado, suggesting that

skiers in these states are quite responsive to changes in snowpack within

their own region. The Central-East states do experience substitution, but

relatively smaller in magnitude than their western counterparts. One inter-

esting finding is that Vermont is particularly affected when it experiences an

increase in snowpack. Western states such as Utah, Wyoming, and Colorado,

observe a 0.4 percentage point drop in market shares when Vermont receives

a 1 percent increase in snowpack. This is likely due to Vermont skiers stay-

ing in their own state when conditions are good, but going to western states

when conditions are bad relative to Utah, Wyoming, and Colorado.

Do people value clean rivers and streams? In chapter 4, I quantify the

benefits of clean surface waters in local rivers and streams. I also estimate

local benefits from nonlocal improvments such as reducing nutrient loading

far downstream in the Gulf of Mexico. I find that residents of this watershed

place a large and positive value on reducing the frequency of algal blooms

in their area and the likelihood that their watershed will meet its nutrient

transmission reduction targets. They also value on the number of different

types of game fish (species) and the total number of all types of fish in the

river (population). I also find that values are largely similar across rural and

urban residents. The amount that an average person in the watershed is

willing to pay for a one percent reduction in the frequency of algal blooms
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is $0.77 per year. For a one percent increase in the likelihood of reaching

nutrient targets, they are willing to pay $0.95 per year. The average value

of an additional game fish species is $4.73, and $0.17 per additional fish of

any species. When I aggregate these values across the population in the

watershed and simulate feasible changes in the environment such as a 75%

reduction in algal blooms, 100% likelihood of reaching nutrient reduction

targets, 2 additional fish species and 50 additional fish per 100 yards of river,

the total values in the watershed exceed $7 million per year.

My findings are summarized using assigned values (Segerson, 2017). These

are particularly useful for supporting discussions about climate and environ-

mental policy. Externalities from actions and behaviors that drive climate

change endanger benefits that stem from mountain snowpack. Externalities

from agricultural and urban storm water runoff reduce the benefits people

gain from clean surface waters. In both cases, Pigovian taxes could be used

to internalize these externalities into the firms and individuals contributing

to climate change or polluting rivers and streams. Coasian solutions could

involve voluntary contributions from those who benefit from the environmen-

tal goods and services. In the case of mountain snowpack, those who value

winter outdoor recreation should, in theory, be willing to pay to preserve

snowpack and the benefits they receive from the amenity. For example, a

$20 surcharge on a lift ticket would be well below the benefits I estimate

from a day of skiing. In the case of surface waters, people who would benefit

from cleaner rivers should be willing to pay to maintain or provide these

benefits. Revenues from voluntary contributions could be used to directly

incentivize the individuals responsible for generating the externalities. Al-

ternatively, the polluters could reimburse the recreationists for the damages

they are causing to the environmental amenities. While it is the responsibil-

ity of careful policy design to determine the direction of compensation and

the existence of property rights, the benefits that I have quantified in the

previous chapters provide a benchmark for the magnitude and span of the

benefits from mountain snowpack and clean surface waters. They are not,

however, comprehensive benefits and should be considered pieces to a much

larger puzzle in environmental economics.
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APPENDIX A

SUPPLEMENTAL MATERIALS FOR CH. 2

A.1 Primary Specification and Empirical Framework

We use a panel fixed effects model to estimate the relationship between

overnight stays (short-term property rentals) and snowpack. We use a ihs−
log specification to estimate the elasticity of revenue with respect to changes

in snowpack. Elasticities provide a clear interpretation and link directly to

the percentage change in snow-water-equivalent (snowpack), which is the

relevant parameter given by climate models. The dependent variable (daily

revenue) takes a zero when the property is vacant. We assume that it may

not be optimal for profit maximizing owners to rent properties on all days

as a result of variable costs (maintenance, wear and tear, cleaning, manage-

ment, etc.). We allow for an equilibrium with vacancies. Any exogenous

changes in the owner’s profit function (such as a decrease in snowpack) will

directly affect expected revenue.

The primary model specification in our paper is the state-specific (s) rev-

enue function:

ihs(revenue)it =
∑
s

βs log(snowpack)rt[State = s]︸ ︷︷ ︸
State-specific
Elasticities

+ SX ′
rtδ +X ′

rtη + ψim + εit. (2.2)

The βs in our model can be explicitly defined as:

βs =
∂ihs(revenue)s
∂log(snowpack)s

. (A.1)

We can recover the implicit revenue in state s, analogous to an implicit price
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in a traditional hedonic specification, using the following equation:

Implicit Revenues = βs ×
Revenues

Snowpacks
. (A.2)

Implicit revenue can be interpreted in terms of the additional dollar of rev-

enue generated per inch of snowpack in the nearby resort in state s. These

are typically evaluated at the mean, using the average revenue and the aver-

age snowpack when calculating the implicit value of the nonmarket amenity

(Taylor, 2017). Equation A.2 is also the first part of equation 2.4:

Revsnows = βs ×
ARs

HSs︸ ︷︷ ︸
Implicit
Revenue

×CSs. (2.4)

The average annual revenue (the numerator in equation 2.4) is the average

annual estimate of demand for lift tickets and overnight stays from equation

2.3:

Annual Revenues =V isitss × Pricelift tickets︸ ︷︷ ︸
Daily
Visits

+Overnight Stayss × Pricebeds︸ ︷︷ ︸
Overnight

Stays

(2.3)

The average annual revenue term in equation 2.3 consists of two components:

(1) daily visits, defined as the average annual number of visits in each state

multiplied by the average price of a lift ticket in state s; and (2) overnight

stays, defined as the average annual number of overnight stays multiplied by

the average price of an overnight stay in state s (the average price per bed

from the short term property rentals in our sample). We use this approach

to estimate year-to-year variation in the recreation revenue from snowpack

that is driven entirely by the level of snowpack each year, and is relative to

historical (within sample) averages (independent of annual business cycles

and macroeconomic trends).

We compute the historical average recreation revenue from snowpack using
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the following:

Revsnows = βs ×
ARs

HSs
×HSs = βs × ARs. (A.3)

The historical recreation revenue from snowpack is defined as the expected

annual revenue at the an average snowpack for any year in state s. This quan-

tity reflects the proportion of annual revenue that can be directly attributed

to snowpack at the resort. These are reported for each state alongside our

main elasticity estimates in Figure 2.1 and in Panel B of Figure A.4.

A.2 Additional Data Descriptions

Daily bookings in short term properties are acquired from a private firm,

Airdna.co, which collects the universe of Airbnb, VRBO, and HomeAway

listings across the United States (AirDNA, 2017). Rental transaction data

for each property include the reservation date, availability (as opposed to

blacked out and not available for rent), the price paid, and property char-

acteristics including the number of bedrooms, number of bathrooms, and

the approximate coordinates of the home. Coordinates are randomized at

the sixth decimal place to maintain the anonymity of an owner’s exact loca-

tion, but are accurate to within 2km. The supply of these properties in each

market is updated monthly, which fixes supply within any given month of

the sample. The dataset includes more than 1.4 million properties and 410

million bookings spanning the contiguous United States.

We identify all properties located within 10km of the sample of 219 ski re-

sorts in the United States. We construct an empirical sample of 60 thousand

unique properties within this radius and 13 million observed property-day

bookings. We examine the sensitivity of our revenue function to the choice

of a 10km threshold. Estimates generated with a sample that includes all

properties within 20km from a resort are nearly identical to the main results,

except for larger standard errors that reflect increasing noise associated with

booking behavior further away from resorts. Owners of these properties have

the option of “blocking” the property for their own use, or have it listed as

“available.” When a property is rented, it is recorded as “reserved” and the

date of the reservation (booking) is recorded.
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The climate amenities, snowpack and snowfall, are acquired from a website

(OnTheSnow.com, 2017) that provides daily reports for all 219 resorts in our

sample. These amenities are as reported by the ski resort on each day and

directly matches the information that a tourist see when making the decision

to make a trip. We developed a web scraper that recovers all historical daily

climate amenity data from their website, as well as any resort characteristics

and lift ticket prices available.

We observe 219 ski resorts in 26 states across the contiguous United States.

While approximately 481 resorts exist in the United States, the sample ac-

counts for all major ski areas that contain a rental property within 10km.

The resorts not in the sample are in the lower quantiles of ski-able acreage,

capacity, and do not represent a significant portion of the economic activity

in the population of ski resorts for any single region. 67 resorts fall within

20km of one or more other resorts (resorts that have overlapping buffers).

We classify these as unified markets and take the average climate amenity

levels observed at each resort (snowpack, snowfall, and mean temperature).

Daily mean temperature is acquired from Oregon State’s PRISM Cli-

mate Group (PRISM, 2018), which provides a dedicated API that allows

researchers to efficiently extract interpolated weather values in raster for-

mat. From the raster files, we record the daily mean temperature in each

resort market.

Table A.4 provides summary statistics for the data used in our analysis.

Column 1 summarizes our full sample and column 2 summarizes the sam-

ple when restricted to include only properties that are full-time rentals (no

blackout days). Daily rents (revenue) range from $0 to $5k. All dollar values

provided in this paper are measured in real terms using year 2017 $USD.

In our primary sample, the climate amenity snowpack ranges from 0 to 225

inches, which reflects the range of daily measurements of snow levels on the

ground in each resort. These two variables, revenue and snowpack, are the

primary variables of interest.

A.3 Alternative Specifications and Discussion

A more general form of our primary estimating equation (equation 2.1) con-

sists of a national average revenue function using all markets in the sample.
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This specification omits the interaction between snowpack and an indicator

for each state. Table A.1 summarizes these results. Column 1 estimates

the average revenue function for all resort markets and provides a baseline

estimate for the parameter of interest β. We estimate the average snowpack

elasticity of revenue to be 0.262. This implies that for every 1% reduction in

mountain snowpack, revenues will decline by 0.262% on average across the

Unites States. To estimate regional heterogeneity in the revenue function, we

introduce regional interaction terms with snowpack to recover the snowpack

elasticity specific for each region k:

ihs(revenue)it =
∑
k

βs log(snowpack)rt[Region = k]

+ SX ′
rtδ +X ′

rtη + ψim + εit. (A.4)

We explore two forms of regional classification. The first splits the U.S. into

two distinct regions, Central-East and Mountain-West. The Central-East

region captures everything east of the eastern-most boarders of Montana,

Wyoming, Colorado, and New Mexico. The Mountain-West captures Mon-

tana, Wyoming, Colorado, and New Mexico, as well as every state west of

these four (of the lower 48 contiguous states). The second region classification

is determined by the NSAA regional codes shown in Figure A.7.

Columns 2 and 3 in Table A.1 summarize the underlying heterogeneity

in the revenue function identified using equation A.4. Column 2 introduces

an interaction between snowpack and two general regions, Central-East and

Mountain-West. Column 3 introduces an interaction between snowpack the

six regions as determined by the NSAA. Coefficients reported in this table

have the same interpretation as our state-specific elasticities. On average,

we observed greater responsiveness to marginal changes in snowpack in the

eastern regions of the U.S., while the western regions who receive much higher

average annual snowfall and more favorable snowpack are less responsive (as

measured in percentage point reductions in revenue). All models control for

binned snowfall, property-by-month-of-sample fixed effects, a cubic of mean

temperature, and an indicator for holiday week.

The underlying characteristics of each rental property might vary with the

level of the snowpack at the resort on a given day. For example, when the

snowpack is greater, perhaps renters are willing to pay more to be closer to the

78



resort. In order to explore this heterogeneity, we introduce and interaction

between snowpack and various characteristics, C, of the property:

ihs(revenue)it =
∑
c

βs log(snowpack)rt[C = c]

+ SX ′
rtδ +X ′

rtη + ψim + εit. (A.5)

Here, C represents variables defining property characteristics. Table A.2

summarizes the results of equation A.5. In column 1 we include the results

of the main specification, equation 2.1. Column 2 of table A.2 introduces

an interaction between snowpack and full-time rentals (properties that are

always available for the public to rent — no “blackout days” scheduled by the

owner). This sample addresses potential simultaneity resulting from property

owners that list their property for rent only when demand is high (Farronato

and Fradkin, 2018). This larger coefficient on the rental properties suggests

that renters can sort into full-time rentals more quickly, or that owners main-

tain a personal schedule (blackout days) that is unaffected by demand shocks.

Columns 3 and 4 introduce an interaction between snowpack and other prop-

erty characteristics to examine substitution behavior when snowpack is low

versus when snowpack is high. We find that revenues increase for nearby

properties when snowpack is higher.

We estimate an alternative functional form to model the relationship be-

tween snowpack and revenue by binning snowpack into ten 10-inch bins.

Explicitly:

ihs(revenue)it =
∑
d

βs log(snowpack)rt[Snowpack = d]

+ SX ′
rtδ +X ′

rtη + ψim + εit. (A.6)

We also estimate the binned snowpack regression within the regional speci-

fication:

ihs(revenue)it =
∑
d

∑
k

βdk log(snowpack)rt[Snowpack = d][Region = k]

+ SX ′
rtδ +X ′

rtη + ψim + εit. (A.7)

The (now) categorical variable snowpack represents the vector of dummy
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variables for binned snowpack and Region specifies if the resort falls in the

Central-East or Mountain-West regions. For example, if on day t we observe

resort r reporting 35 inches of snow depth, D would be equal to 1 for the

30-40 inch bin. This is represented in Figure 2.2 where the β’s are relative

daily revenues for each snowpack bin (the reference level of revenue is 0). For

example, a coefficient estimate of 1.239 (the 50-60 inch bin) indicates that

an additional day with snowpack between 50-60 inches results 123.9% higher

revenues relative to no snowpack on the same day. Panel A summarizes the

national revenue function using binned snowpack (equation A.6, and panel B

summarizes the regional binned snowpack (equation A.7). In both cases, the

revenue functions exhibit diminishing returns to scale. The regional model,

however, suggests that losses in the Mountain-West states could be much

larger than we estimate if snowpack falls to below 30-40 inches of average

snowpack. This poses a particularly large threat to these states and local

economies if changes in snowpack falls above the mean predicted by climate

models.

As discussed in the introduction of the main text, we demonstrate the

implications of using a more coarse level of analysis (monthly) to derive

elasticity estimates. This model uses total revenue and the average levels of

weather and snowpack in each calendar month. This is comparable to the

estimation strategy used in Falk (2010). We do this for both the national

average revenue function (the monthly version of equation 2.1) and the state-

specific revenue functions (the monthly version of equation 2.2). For month

m of season y in resort market r this is:

ihs(revenue)rm = β log(snowpack)rm +X ′
rmδ + ηrm + ψy + εrm. (A.8)

The state-specific revenue functions at the monthly level for state s is then:

ihs(revenue)rm =
∑
s

βs log(snowpack)rm[State = s]

+X ′
rmδ + ηrm + ψy + εrm. (A.9)

In this monthly specification, the vector X includes the average new snowfall

and temperature (containing both a linear and quadratic polynomial) on each

day throughout the month; the parameter δ summarizes their relationship

with revenue. The parameter η is a resort market by calendar-month fixed ef-
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fects (i.e. January through December indicator variables). The parameter ψ

is a operating season (year) fixed effect. Results from our monthly estimation

can be found in Figure A.3. We present state-specific elasticities estimated

using monthly data (left), daily data (middle), and the bootstrapped differ-

ence between the two (right). We find that the average magnitude of the

error (βmonthly − βdaily) is large. Most states suggest attenuation in the coef-

ficient when we aggregate from daily estimates up to monthly. This can be

seen when the difference between the two is less than zero (right panel). The

monthly aggregates even yield negative elasticities in some cases, suggesting

additional bias in specifications that do not match the temporal variation

in amenity levels with the temporal variation in market transactions. The

differences were obtained by bootstrapping the estimation of both daily and

monthly models 200 times and taking the difference between the coefficients

in each iteration. Statistically insignificant coefficients are indicated by a

lighter (greyed) shade of marker.
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A.4 Additional Tables

Table A.1: Regional Heterogeneity

(1) (2) (3)
National Two Regions NSAA
Average West-East Regions

log(Snowpack) 0.291∗∗

(0.137)
log(Snowpack) × Mtn.-West 0.278∗∗

(0.136)
log(Snowpack) × Cent.-East 0.537∗∗∗

(0.077)
log(Snowpack) × Pac. NW 0.260∗∗∗

(0.042)
log(Snowpack) × Pac. SW 0.900∗∗∗

(0.159)
log(Snowpack) × Rocky Mtn. 0.207∗∗

(0.105)
log(Snowpack) × Midwest 0.384∗∗∗

(0.129)
log(Snowpack) × Northeast 0.507∗∗∗

(0.092)
log(Snowpack) × Southeast 0.855∗∗∗

(0.217)

Prop. × Month of Sample FE Y Y Y
Weekday FE Y Y Y
Clu. SE: Market Y Y Y
Observations 12,903,718 12,903,718 12,903,718

Adjusted R2 0.396 0.396 0.396

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Column 1 presents the most general specification used in this study, estimating

the average revenue function across all 219 resort markets in our data (equation 2.1).

Columns 2 and 3 begin to dissect the underlying spatial heterogeneity in the average rev-

enue function (equation A.4). Column 2 introduces an interaction between snowpack and

two general regions, Central-East and Mountain-West. Column 3 introduces an interaction

between snowpack the six regions as determined by the NSAA. The coefficients presented

in this table are interpreted in the same way as our state-specific elasticities of demand.
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Table A.2: Property Characteristics

(1) (2) (3) (4)
Full Full Time Distance Other

Sample Rentals From Resort Characteristics

log(Snowpack) 0.291∗∗ 0.166∗∗ 0.276∗∗ 0.156∗

(0.137) (0.080) (0.136) (0.081)
log(Snowpack) × Rental 0.454∗∗

(0.210)
log(Snowpack) × < 2km 0.100∗

(0.044)
log(Snowpack) × km −0.006∗∗∗

(0.001)
log(Snowpack) × Beds −0.033∗

(0.019)
log(Snowpack) × Baths 0.013

(0.013)
log(Snowpack) × Max Guests 0.011∗

(0.006)

Prop. × Month of Sample FE Y Y Y Y
Weekday FE Y Y Y Y
Clu. SE: Market Y Y Y Y
Observations 12,903,718 12,903,718 12,903,718 12,903,718

Adjusted R2 0.396 0.396 0.396 0.396

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Column 1 again presents the most general specification used in this
study, estimating the average revenue functions for all reservations and all
resorts (equation 2.1). Columns 2 through 4 examine sensitivity of this gen-
eral specification to certain characteristics of the property (equation A.5).
Column 2 introduces an interaction between full-time rental properties (i.e.
no “blackout” days) and snowpack. The average elasticity is larger for rental
properties. We hypothesize that this difference is largely due to the fact that
owners who occasionally occupy their property likely do so when the snow
conditions are most desirable. Column 3 introduces an interaction between
snowpack and a variable indicating whether or not a property is within 2km
of the resort. This result suggests that when snowpack is larger, people
prefer to be closer to the resort. The final specification, column 4, further
desegregates the characteristics of the property and their relationship with
snowpack. When snowpack is larger, people prefer to be closer to the resort
and exhibit some trade-offs between the number of bedrooms, bathrooms,
and maximum number of guests. This suggests that people are substituting
for smaller properties that are closer to the resort but allow for more guests
(e.g. bunk beds).
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Table A.3: Monthly vs. Daily Specifications

(1) (2)
Monthly Daily

log(Snowpack) 0.125∗∗ 0.291∗∗

(0.054) (0.137)

Market × Month FE Y N
Season FE Y N
Clu. SE Market Market
Property × Month of Sample FE N Y
Weekday FE N Y
Observations 2,201 12,903,718
Adjusted R2 0.756 0.395

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Here we compare average revenue functions when estimated at differ-
ent temporal scales (equations A.8 and 2.1). Column 1 represent the results
of the monthly-level of observations (equation A.8). Monthly-level analyses
are the finest (most granular) temporal scale offered in the existing litera-
ture. Column 2 estimates using the full set of daily observations (equation
2.1), which is the method we develop in this paper. The average snowpack
elasticity of revenue is 45% smaller than the estimate derived from the daily
specification. The attenuation could be due to various forms of bias that
are introduced when aggregating to the monthly level. First, measurement
error (classical) can be exacerbated during aggregation. Second, monthly
observations must relax the vector of fixed effects from a property × month-
of-sample controls to a more vulnerable set of two additive controls: (1)
market × month; and (2) season fixed effects. Relaxing these can introduce
unobservable variation across months (time varying) as well as unobservable
variation in the market structure of the rented properties (time invariant).
Figure A.3 summarizes the difference between monthly and daily estimates
at the state level, along with bootstrapped differences between the point
estimates.
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A.5 Additional Figures

Figure A.1: Current Annual Revenue and Predicted Snowpack Loss

Note: Figure A.1 provides a summary of current (average) annual revenues
and the predicted loss in average snowpack under RCP8.5 according to the
suite of CMIP5 climate models. Current (average) annual revenues (in mil-
lions) in each state s consist of 2 cost components and are calculated as:

Annual Revenues = Annual V isitss × Lift T icket Prices
+ Annual Overnight Stayss ×Mean Overnight Prices.

This is also equation 2.3 from the main text. Visitation statistics are drawn
from NSAA (2018). Total average annual revenue across all 26 states is
estimated at $8.82 billion per year.
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Figure A.2: State-specific Elasticity Estimates

Note: Figure A.2 presents heterogeneity in elasticity estimates by state.
Each represents the slope of the revenue function in each market, the state-
specific β’s specified in equation 2.2. Coefficients are ranked in order of states
with the highest average snowpack (top) to states with the lowest average
snowpack (bottom). This is an alternative presentation of figure 2.1 that
ranks coefficients by average recreation revenue from snowpack. The elas-
ticity estimates in Figure 2.1 and Figure A.2 are the same, and are used to
estimate the annual recreation revenue from snowpack in each state (equation
2.4). Variation in elasticity estimates across states is important for gener-
ating expectations about revenue under future climate as baseline revenue,
contemporaneous snowpack, and future climate, all vary significantly across
states. Providing state-specific estimates of snowpack elasticities allows each
state to update their own expectations of annual revenues with the respon-
siveness of snow-tourists to their state’s changing snowpack.
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Figure A.3: Monthly vs. Daily Estimates

Note: Figure A.3 presents state-specific elasticities estimated using monthly data (left),

daily data (middle), and the bootstrapped difference between the two (right). The daily

estimates are the primary estimates used throughout our analysis. The average magnitude

of the error (βmonthly − βdaily) is large. Most states suggest attenuation in the coefficient

when we aggregate daily observations up to the monthly level. This can be seen when

the difference between the two is less than zero (right panel). In many cases, the monthly

aggregates even yield negative (although statistically insignificant) elasticities, suggesting

additional bias is introduced in the estimation of a model that does not match the temporal

variation in the level of the amenity with the frequency at which the market transactions

are taking place. The differences were obtained by bootstrapping the estimation of both

daily and monthly models using 200 iterations and taking the difference between the

coefficients in each iteration. In the right panel, if the confidence interval bounds zero

(almost all do) then monthly and daily are not statistically different from each other. If

there is no confidence interval, it was too large to show and also bounds zero. South

Dakota and Tennessee are omitted from the monthly analysis as we do not have enough

monthly observations to estimate these states. Statistically insignificant coefficients from

the monthly and daily models are indicated by a lighter (greyed) shade of marker.
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Figure A.4: Annual Recreation Revenue from Snowpack in each State

Note: Figure A.4 presents estimates of the recreation revenue from snowpack
in each state s and within-sample year t:

Revenue from Snowpackst = βs ×
Annual Revenues

Historical Snowpacks
× Contemporaneous Snowpackst (A.10)

This is also equation 2.4 from the main text. Panel A present the year-to-
year recreation revenue from snowpack in each of the 26 states from 2005
to 2017 operating seasons. Panel B presents the average annual recreation
revenue from snowpack over this period. These state-level simulations are an
intermediate step for aggregate estimates presented in figures A.6, A.5, and
2.3.
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Figure A.5: Within Sample and RCP4.5 Simulations

Figure A.6: Within Sample and RCP8.5 Simulations
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Figure A.7: NSAA Resort Regions

Note: Figure A.7 presents the regions across the U.S. as defined by the
NSAA (NSAA, 2018). These are the regions specified in equation A.4.
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Figure A.8: Spatial Distribution of Resorts Throughout the United States

Note: Figure A.8 presents the spatial distribution of the 219 resort markets
considered in this study.
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Figure A.9: Spatial Distribution of Airbnb Properties in Aspen, CO

Note: Figure A.9 presents the spatial distribution of short term rental prop-
erties within a 10km buffer near Aspen, Colorado.
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APPENDIX B

SUPPLEMENTAL MATERIALS FOR CH. 3

B.1 Additional Tables

Table B.1: Results of Different Clustered Standard Errors

(1) (2) (3)
Clustered. SE: Property Market State×WoS

Snowpack 0.01242∗∗∗ 0.01242∗∗∗ 0.01242∗∗∗

(0.0006) (0.0039) (0.0036)

Snowpack2 -0.00004∗∗∗ -0.00004∗ -0.00004∗∗

(0.000006) (0.00002) (0.00002)

Property j FE Yes Yes Yes
Day-of-sample FE Yes Yes Yes
# of Clusters 33,636 94 908

Observations 6,610,513 6,610,513 6,610,513

McFadden ρ2 0.29 0.29 0.29
BIC 6,770,282.87 6,770,282.87 6,770,282.87
F-stat (Wald: IV) 204.02∗∗∗ 204.02∗∗∗ 204.02∗∗∗

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: I explore various levels of clustering to address possible correlation
across observations in the sample. Column 1 is the most generous where
correlation is assumed to be zero across properties. Column 2, what is used
in our primary analysis, clusters standard errors at the market-level. This
assumes that observations within a market are correlated, but independent
across markets. Column 3 uses state×week-of-sample to cluster observations.
I introduce the interaction to ensure a sufficient number of clusters from 13
with state only, to 908 with state×week-of-sample (Wooldridge, 2006; Abadie
et al., 2017).
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Table B.2: Marginal Utilities from Trip Decisions (Contd. from Table 3.1)

(1) (2) (3)
National West-East NSAA
Average Regions Regions

Weekly Snowfall -76.8167∗∗∗ -75.8032∗∗∗ -72.7571∗∗∗

(4.42007) (4.41590) (4.42725)

Weekly Snowfall2 24.6878∗∗∗ 24.6754∗∗∗ 27.7108∗∗∗

(2.91943) (2.91925) (2.89935)
New Snow 1”-3” 0.00991∗∗∗ 0.00971∗∗ 0.00469

(0.00380) (0.00380) (0.00380)
New Snow 3”-6” 0.03108∗∗∗ 0.03075∗∗∗ 0.04140∗∗∗

(0.00480) (0.00480) (0.00479)
New Snow 6”-9” -0.00465 -0.00369 -0.03613∗∗∗

(0.00767) (0.00767) (0.00762)
New Snow 9”-12” 0.01412 0.01625 0.02708∗∗

(0.01143) (0.01142) (0.01143)
New Snow 12”-15” 0.03575∗∗ 0.03572∗∗ 0.02777∗

(0.01438) (0.01437) (0.01427)
New Snow 15”+ -0.11925∗∗∗ -0.11490∗∗∗ -0.07928∗∗∗

(0.01392) (0.01391) (0.01377)
Temperature 134.869∗∗∗ 138.680∗∗∗ 224.504∗∗∗

(20.4386) (20.4222) (20.2170)

Temperature2 -28.4468∗∗∗ -28.9883∗∗∗ -22.9429∗∗

(10.8402) (10.8460) (10.9288)
Market Size 62.6419 49.9075 78.1899

(55.8591) (55.9710) (55.9961)

Market Size2 30.6767 47.1165∗ -10.1123
(27.8445) (28.1546) (28.3001)

Snowpack Outside Option -294.178∗∗∗ -266.350∗∗∗ 60.7485∗

(31.7884) (32.3183) (33.5216)

Snowpack Outside Option2 -69.3880∗∗∗ -74.2635∗∗∗ -138.305∗∗∗

(18.9525) (19.0039) (19.2005)
Weekly Snowfall Outside Option 36.5520∗∗∗ 34.3089∗∗∗ 34.4416∗∗∗

(5.48513) (5.49552) (5.50445)

Weekly Snowfall Outside Option2 -37.9710∗∗∗ -36.2836∗∗∗ -10.6445∗∗∗

(3.97956) (3.97491) (3.97820)
Temperature Outside Option -243.839∗∗∗ -234.195∗∗∗ -324.261∗∗∗

(20.5960) (20.5793) (20.3095)

Temperature Outside Option2 -110.698∗∗∗ -110.660∗∗∗ -108.231∗∗∗

(10.7968) (10.8026) (10.8360)
Property j FE Yes Yes Yes
Day-of-sample FE Yes Yes Yes
Clustered. SE Market Market Market
Observations 6,610,513 6,610,513 6,610,513

McFadden ρ2 0.2857 0.29143 0.2857
BIC 6,770,282.87 6,770,005.61 6,760,126.80

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B.2 Logit, PPML, and LPM

Table B.6: Results from Logit, PPML, and LPM

(1) (2) (3)
Logit PPML LPM

Panel A: Marginal Utilities

Snowpack 0.01242∗∗∗ 0.00610∗∗ 0.00178∗∗∗

(0.00392) (0.00218) (0.00052)

Snowpack2 -0.00004∗ -0.00002∗ -0.000007∗

(0.00002) (0.00001) (0.000003)
Price (2SLS) −0.00526∗∗∗ −0.00280∗∗∗ −0.00081∗∗∗

(0.00077) (0.00039) (0.00012)

Property j FE Yes Yes Yes
Day-of-sample FE Yes Yes Yes
Clustered. SE Market Market Market

Observations 6,610,513 6,610,513 6,610,513

McFadden ρ2 0.28 0.16 0.29
BIC 6,770,282.87 8,257,517.81 6,760,126.80
F-stat (Wald: IV) 204.02∗∗∗ 241.60∗∗∗ 410.90∗∗∗

Panel B: Marginal Willingness to Pay

Snowpack $2.40 $2.23 $2.24
[2.38, 2.43] [2.22, 2.24] [2.22, 2.26]

Snowpack2 -$0.01 -$0.01 -$0.01
[-0.01, -0.01] [-0.01, -0.01] [-0.01, -0.01]

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Krinsky-Robb 95% confidence intervals in brackets

Note: I explore to what degree the specification of logit, Poisson Pseudo-
Maximum Likelihood, and linear probability models influence the policy-
relevant metric of willingness to pay. While marginal utilities are not directly
comparable (MIXL and logit are represented as standard odds ratios), I find
no distinguishable difference in the resulting MWTP.
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Table B.7: MWTP from Ken Train’s Heating Data

(1) (2) (3) (4)
MIXL Logit PPML LPM

Contract Length -0.21*** -0.15*** -0.15*** -0.12***
(0.01) (0.02) (0.02) (0.02)

Local Company 2.13*** 1.99*** 2.05*** 1.72***
(0.09) (0.17) (0.20) (0.17)

Well-known Company 1.51*** 1.30*** 1.41*** 1.01***
(0.07) (0.12) (0.15) (0.10)

Time-of-Day Rate 9.30*** 8.78*** 8.76*** 8.82***
(0.12) (0.14) (0.16) (0.11)

Seasonal Rate 9.35*** 9.25*** 9.31*** 9.18***
(0.13) (0.13) (0.17) (0.09)

Standard errors in parentheses *p<0.1; **p<0.05; ***p<0.01

Note: Using the heating data from the mlogit package (Train and Croissant,
2012), I explore to what degree the specification of logit, Poisson Pseudo-
Maximum Likelihood, and linear probability models influence the policy-
relevant metric of willingness to pay. While marginal utilities are not directly
comparable (MIXL and logit are represented as standard odds ratios), I find
little distinguishable difference (all but contract length are not statistically
different between the models) in the resulting MWTP. MWTP is estimated
using the delta method and the command wtp.gmnl (Sarrias and Daziano,
2017).
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Figure B.1: NSAA Resort Regions

B.3 Additional Figures

Note: Figure A.7 presents the regions across the U.S. as defined by the
NSAA (NSAA, 2018). These are the regions specified in equation A.4. I com-
bine California, Nevada, Oregon, and Washington to be a combined NSAA
region called “West-coast”.
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Figure B.2: Spatial Distribution of Airbnb Properties in Aspen, CO

Note: Figure A.9 presents the spatial distribution of short term rental prop-
erties within a 10km buffer near Aspen, Colorado.
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APPENDIX C

SUPPLEMENTAL MATERIALS FOR CH. 4

C.1 The Survey
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C.2 Summary Statistics

Table C.1: Summary Statistics

(1) (2) (3) (4)
Respondents mean min max

Rural 343 0.53 0 1
Works in Agriculture 343 0.16 0 1
Male 343 0.32 0 1
White 343 0.78 0 1
Homeowner 343 0.56 0 1
Age

18 - 29 343 0.25 0 1
30 - 44 343 0.33 0 1
45 - 64 343 0.3 0 1
> 65 343 0.12 0 1

Household income ($k)
< $25,000 343 0.24 0 1
$25,000 - $34,999 343 0.16 0 1
$35,000 - $49,999 343 0.16 0 1
$50,000 - $74,999 343 0.2 0 1
$75,000 - $99,999 343 0.13 0 1
$100,000 - $149,999 343 0.07 0 1
$150,000 - $199,999 343 0.02 0 1
> $200,000 343 0.01 0 1

Education
Less than high school 343 0.04 0 1
High school / GED 343 0.24 0 1
Some college 343 0.27 0 1
Two-year degree 343 0.11 0 1
Four-year degree 343 0.22 0 1
Graduate degree 343 0.12 0 1

Years of Residency
0-5 years 343 0.06 0 1
5-10 years 343 0.04 0 1
10-20 years 343 0.17 0 1
20-30 years 343 0.2 0 1
> 30 years 343 0.53 0 1

Minutes to Complete 343 10.49 3.52 321.82

Note: Experience categories range from 0 (never go) to 5 (more than 5 times per year).

Water Quality Issues relates to their current understanding of the water quality concerns

in the watershed, and ranges from 0 (not aware of any) to 4 (very aware and involved).

Algal Blooms refers to the respondents current experience with algal blooms, and ranges

from 0 (never see them) to 4 (very often, all the time).
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Table C.2: Differences between Survey Respondents and U.S.Census (2019)

(1) (2) (3)
Respondents Census Difference

Works in Agriculture 0.15 (0.00) 0.05 (0.03) -0.10*** (0.01)
Male 0.32 (0.00) 0.50 (0.04) 0.18*** (0.01)
White 0.77 (0.00) 0.94 (0.10) 0.16*** (0.02)
Homeowner 0.57 (0.00) 0.75 (0.16) 0.18*** (0.03)
Age

18 - 29 0.22 (0.23) 0.18 (0.04) -0.05 (0.04)
30 - 44 0.30 (0.31) 0.23 (0.04) -0.07 (0.06)
45 - 64 0.36 (0.35) 0.38 (0.04) 0.02 (0.06)
> 65 0.12 (0.20) 0.21 (0.05) 0.09** (0.04)

Household income ($k)
< $25,000 0.06 (0.10) 0.12 (0.17) 0.07* (0.03)
$25,000 - $34,999 0.01 (0.03) 0.07 (0.03) 0.07*** (0.01)
$35,000 - $49,999 0.15 (0.24) 0.13 (0.08) -0.02
$50,000 - $74,999 0.20 (0.31) 0.20 (0.06) 0.00 (0.06)
$75,000 - $99,999 0.22 (0.31) 0.18 (0.07) -0.04 (0.06)
$100,000 - $149,999 0.18 (0.27) 0.17 (0.07) -0.00 (0.05)
$150,000 - $199,999 0.18 (0.22) 0.07 (0.05) -0.11*** (0.04)
> $200,000 0.01 (0.02) 0.04 (0.04) 0.04*** (0.01)

Education
Less than high school 0.22 (0.29) 0.06 (0.04) -0.16*** (0.05)
High school/GED 0.12 (0.27) 0.35 (0.09) 0.23*** (0.05)
Some college 0.21 (0.22) 0.24 (0.04) 0.03 (0.04)
Two-year degree 0.08 (0.21) 0.09 (0.02) 0.01 (0.04)
Four-year degree 0.19 (0.20) 0.16 (0.07) -0.03 (0.04)
Graduate degree 0.18 (0.33) 0.08 (0.07) -0.10 (0.06)

Zip Codes 42 42 42

Standard errors in parentheses *p<0.1; **p<0.05; ***p<0.01

Note: Comparisons are provided between the 2017 American Community Survey (ACS)

5-year zip code level data and the sample in the choice experiment. Averages are across

the 42 zip codes in the study area. Our sample is largely representative of the region, with

a few differences. Our sample is more likely to work in agriculture; however, this is likely

because of the broad wording of the question where we asked respondents if they or their

family performed work related to agriculture, and results are consistent with this. Our

sample is more likely to be female, less likely to be white, and less likely to be a homeowner.

The age of respondents is representative of the U.S. Census, with fewer above the age of

65. Our sample has similar income and education levels.
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Table C.3: Differences between Respondents in Rural and Urban Areas

(1) (2) (3)
Rural Urban Difference

Works in Agriculture 0.19 (0.39) 0.12 (0.33) -0.06 (0.04)
Male 0.32 (0.47) 0.32 (0.47) -0.00 (0.05)
White 0.81 (0.40) 0.74 (0.44) -0.07 (0.05)
Homeowner 0.60 (0.49) 0.52 (0.50) -0.08 (0.05)
Age

18 - 29 0.24 (0.43) 0.27 (0.44) 0.03 (0.05)
30 - 44 0.36 (0.48) 0.29 (0.46) -0.07 (0.05)
45 - 64 0.28 (0.45) 0.32 (0.47) 0.04 (0.05)
> 65 0.12 (0.32) 0.12 (0.32) 0.00 (0.03)

Household income ($k)
< $25,000 0.20 (0.40) 0.28 (0.45) 0.08* (0.05)
$25,000 - $34,999 0.19 (0.39) 0.14 (0.34) -0.05 (0.04)
$35,000 - $49,999 0.17 (0.38) 0.16 (0.36) -0.02 (0.04)
$50,000 - $74,999 0.19 (0.39) 0.20 (0.40) 0.02 (0.04)
$75,000 - $99,999 0.14 (0.35) 0.13 (0.34) -0.01 (0.04)
$100,000 - $149,999 0.09 (0.29) 0.05 (0.22) -0.04 (0.03)
$150,000 - $199,999 0.02 (0.13) 0.03 (0.17) 0.01 (0.02)
> $200,000 0.01 (0.10) 0.01 (0.11) 0.00 (0.01)

Education
Less than high school 0.03 (0.18) 0.04 (0.21) 0.01 (0.02)
High school/GED 0.27 (0.44) 0.21 (0.41) -0.06 (0.05)
Some college 0.31 (0.46) 0.22 (0.42) -0.08* (0.05)
Two-year degree 0.08 (0.27) 0.14 (0.35) 0.07** (0.03)
Four-year degree 0.22 (0.42) 0.22 (0.42) 0.01 (0.05)
Graduate degree 0.09 (0.29) 0.16 (0.36) 0.06* (0.04)

Years of Residency
0-5 years 0.04 (0.19) 0.09 (0.29) 0.06** (0.03)
5-10 years 0.04 (0.19) 0.04 (0.21) 0.01 (0.02)
10-20 years 0.15 (0.36) 0.18 (0.39) 0.03 (0.04)
20-30 years 0.25 (0.43) 0.15 (0.36) -0.10** (0.04)
> 30 years 0.52 (0.50) 0.53 (0.50) 0.01 (0.05)

Experience
Recreational Fishing 0.76 (1.36) 0.43 (1.08) -0.32** (0.13)
Hiking/Biking Trails 1.34 (1.63) 1.03 (1.46) -0.31* (0.17)
Water Quality Issues 1.90 (1.27) 1.71 (1.21) -0.18 (0.13)
Algal Blooms 1.90 (1.27) 1.71 (1.21) -0.18 (0.13)

Minutes to Complete 11.14 (24.32) 9.76 (7.42) -1.38 (1.99)

Respondents 182 161 343

Standard errors in parentheses *p<0.1; **p<0.05; ***p<0.01
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C.3 Rural and Urban Preferences

Table C.4: Differences in MWTP Between Rural and Urban Respondents

(1) (2) (3)
Mean MWTP Coefficients Full Sample Rural Urban

Distance (miles) -0.67*** -0.87*** -0.77***
(0.15) (0.23) (0.21)

Fish Species 4.73** 2.65 5.62**
(1.48) (1.79) (1.77)

Fish Population 0.17** 0.05 0.23**
(0.06) (0.07) (0.08)

Algal Blooms (%) 0.77*** 0.80*** 0.77***
(0.11) (0.13) (0.15)

Nutrient Target 0.95*** 1.11*** 0.79***
(0.13) (0.16) (0.14)

Status Quo (No Program) -69.49*** -50.92*** -10.53
(14.78) (12.93) (12.22)

SD of Random Parameters

Distance (miles) 92.57*** 5.57 104.78***
(18.69) (15.47) (21.48)

Fish Species 1.06*** 1.16*** 1.38***
(0.26) (0.34) (0.32)

Fish Population 6.58*** 10.47*** 10.38***
(2.12) (2.79) (1.96)

Algal Blooms (%) 0.35** 0.25* 0.50***
(0.09) (0.11) (0.10)

Nutrient Target 0.85*** 1.08*** 0.67***
(0.16) (0.21) (0.17)

Cost 0.85*** 1.11*** 0.85***
(0.13) (0.18) (0.15)

Status Quo (No Program) 1.42*** 1.28*** 1.50***
(0.23) (0.18) (0.28)

Observations (Respondents) 2058 (343) 1092 (182) 966 (161)
Log-likelihood -1717.19 -899.63 -786.11
AIC 3506.38 1871.26 1644.22

McFadden ρ2 0.15 0.16 0.16

LR χ2
63 62.90

Standard errors in parentheses *p<0.1; **p<0.05; ***p<0.01

Note: Column 1 provides the results of the WTP-space model for the pooled (full)

sample. Column 2 and 3 divide the sample into rural and urban respondents. The

likelihood ratio test in column 1 tests for joint similarities between rural and urban

respondents. We fail to reject that MWTP values are jointly the same.
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C.4 Correlation Coefficients

Table C.5: Correlation Coefficients in Primary Models

Panel A: Full Sample
Status Q. Distance Fish Spe. Fish Pop. Algal Nutrient Cost

Status Q. 1
Distance 0.006 1
Fish Spe. -0.631 0.489 1
Fish Pop. 0.236 -0.103 -0.658 1
Algal -0.169 0.142 -0.392 0.792 1
Nutrient -0.541 0.486 0.304 0.067 0.526 1
Cost 0.085 -0.078 -0.438 0.627 0.537 0.438 1
Panel B: Rural

Status Q. Distance Fish Spe. Fish Pop. Algal Nutrient Cost
Status Q. 1
Distance -0.591 1
Fish Spe. -0.253 -0.572 1
Fish Pop. -0.017 -0.054 -0.150 1
Algal -0.264 0.848 -0.691 0.238 1
Nutrient -0.202 0.463 -0.188 -0.006 0.614 1
Cost 0.260 -0.018 -0.251 0.200 0.286 0.613 1
Panel C: Urban

Status Q. Distance Fish Spe. Fish Pop. Algal Nutrient Cost
Status Q. 1
Distance -0.390 1
Fish Spe. -0.222 -0.080 1
Fish Pop. -0.122 0.337 0.245 1
Algal 0.047 0.376 -0.352 0.815 1
Nutrient -0.533 0.621 0.156 0.039 -0.111 1
Cost 0.219 0.082 0.240 0.424 0.219 0.467 1

Note: Correlation coefficients are recovered from the primary model in Table
4.2 (Panel A) and the rural and urban samples in Table C.4 (Panel B). As ex-
pected, correlations between parameters are large for many of the attributes
providing strong evidence that an attribute-correlated model is appropriate.
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C.5 Certainty Adjustments

Table C.6: MWTP with Certainty Adjustments

(1) (2) (3)
Full Sample Adjustment 1 Adjustment 2

Distance (miles) -0.67*** -0.76*** -0.67*
(0.15) (0.18) (0.28)

Fish Species 4.73** 3.34 -7.61
(1.48) (1.89) (4.78)

Fish Population 0.17** 0.14 0.09
(0.06) (0.07) (0.13)

Algal Blooms (%) 0.77*** 0.89*** 0.75*
(0.11) (0.15) (0.30)

Nutrient Target 0.95*** 1.06*** 0.63*
(0.13) (0.16) (0.26)

Status Quo (No Program) -69.49*** -8.90 196.67***
(14.78) (12.31) (56.60)

Observations (Respondents) 2058 (343) 2058 (343) 2058 (343)
Log-likelihood -1717.19 -1762.15 -1433.89
AIC 3506.38 3596.29 2939.78

McFadden ρ2 0.15 0.13 0.29

Standard errors in parentheses *p<0.1; **p<0.05; ***p<0.01

Note: Column 1 presents the results from our primary specification (Table
4.2). Column 2 makes a certainty adjustment that recodes any “not very
certain” follow-up questions to the status quo option. Column 3 makes a
certainty adjustment that recodes any “not very certain” and “somewhat
certain” follow-up questions to the status quo option. This can be interpreted
as moving from less restrictive (column 1) to more restrictive (column 3).
MWTP values become more noisy (larger standard errors) in columns 2 and
3. However, MWTP for improvements in Algal Blooms and reaching the
Nutrient Target are still large and significant. The MWTP for distance is also
robust to certainty adjustments. As discussed in Penn and Hu (2020), the
most restrictive assumptions regarding certainty adjustments (column 3) are
believed to underestimate the true MWTP—overcorrecting for hypothetical
bias.
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C.6 Preference-space Results

Table C.7: Preferences-Space Models and Marginal Utilities

(1) (2) (3) (4)
Mean Marg. Util. Full Sample ASC Het. Rural Urban
Distance (miles) -0.0124*** -0.0134*** -0.0119** -0.0135***

(0.0026) (0.0028) (0.0038) (0.0040)
Fish Species 0.0500 0.0495 0.0091 0.0908*

(0.0271) (0.0279) (0.0395) (0.0402)
Fish Population 0.0031** 0.0032** 0.0013 0.0048**

(0.0010) (0.0011) (0.0014) (0.0015)
Algal Blooms (%) 0.0143*** 0.0149*** 0.0125*** 0.0171***

(0.0015) (0.0016) (0.0021) (0.0023)
Nutrient Target 0.0167*** 0.0170*** 0.0172*** 0.0170***

(0.0015) (0.0016) (0.0022) (0.0022)
Cost 0.0163*** 0.0165*** 0.0150*** 0.0191***

(0.0021) (0.0022) (0.0029) (0.0033)
Status Quo (No Program) -0.7933*** -0.2811 -1.1083*** -0.4291

(0.1980) (0.2626) (0.2755) (0.2963)
Status Quo × Rural -0.5295

(0.2880)
Status Quo × -0.3753

Aware of Water Issues (0.2223)
SD of Ran. Param.
Distance (miles) 0.024*** 0.027*** 0.03*** 1.50**

(0.006) (0.005) (0.007) (0.28)
Fish Species 0.160** 0.174** 0.225** 0.024*

(0.055) (0.06) (0.09) (0.009)
Fish Population 0.007*** 0.007*** 0.006* 0.009**

(0.002) (0.002) (0.003) (0.003)
Algal Blooms (%) 0.017** 0.017*** 0.021*** 0.012**

(0.002) (0.003) (0.003) (0.004)
Nutrient Target 0.016*** 0.016*** 0.017*** 0.015***

(0.002) (0.12) (0.003) (0.003)
Status Quo (No Program) 1.70*** 2.12*** 1.300* 2.17***

(0.32) (0.43) (0.54) (0.47)
Status Quo × Rural 1.78***

(0.41)
Status Quo × 0.167

Aware of Water Issues (0.34)
Obs. (Respondents) 2058 (343) 2058 (343) 1092 (182) 966 (161)
Log-likelihood -1739.9212 -1730.2633 -913.4013 -807.9063
AIC 3535.8424 3550.5267 1882.8027 1671.8127

McFadden ρ2 0.14 0.15 0.14 0.16

LR χ2
63 37.23

Standard errors in parentheses *p<0.1; **p<0.05; ***p<0.01

Note: The likelihood ratio test in column 1 tests for joint similarities between rural and

urban respondents (columns 3 and 4). We fail to reject that preferences are jointly the

same. For all preference-space regressions, the coefficient on cost is assumed fixed. All

other parameters are assumed to be distributed normal.
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Table C.8: MWTP from Preference-Space Models

(1) (2) (3) (4)
Full Sample ASC Heterogeneity Rural Urban

Distance (miles) -0.76*** -0.82*** -0.80** -0.71**
(0.18) (0.20) (0.29) (0.24)

Fish Species 3.06 3.00 0.61 4.77*
(1.73) (1.77) (2.65) (2.27)

Fish Population 0.19** 0.19** 0.09 0.25**
(0.07) (0.07) (0.10) (0.10)

Algal Blooms (%) 0.88*** 0.90*** 0.84*** 0.90***
(0.13) (0.14) (0.20) (0.17)

Nutrient Target 1.02*** 1.03*** 1.15*** 0.89***
(0.15) (0.15) (0.25) (0.17)

Status Quo (No Program) -48.54*** -17.04 -74.06*** -22.52
(11.95) (15.75) (19.88) (15.16)

Status Quo × Rural -32.10
(17.96)

Status Quo × -22.75
Aware of Water Issues (13.59)

Standard errors in parentheses *p<0.1; **p<0.05; ***p<0.01

Note: MWTP values are recovered from the preference-space model summa-
rized here. Means and standard errors are estimated using the delta method
in the gmnl package in R (Sarrias and Daziano, 2017). The coefficient on cost
was assumed to be fixed for the population. This allowed us to derive mean-
ingful distributions of MWTP by taking a simple ratio of the mean preference
parameters. Results are comparable to the estimates in the WTP-space mod-
els in our main analysis (Table 4.2). However, the MWTP produced from the
WTP-space models has a tighter distribution around the means with more
precise estimates of the mean MWTP for each attribute.
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C.7 MIXL, Logit, PPML, and LPM Specifications

Table C.9: Marginal Utilities from Logit, Poisson Pseudo-ML, and LPM

(1) (2) (3) (4)
MIXL Logit PPML LPM

Distance (miles) -0.0113*** -0.0101*** -0.0056*** -0.0019***
(0.0024) (0.0031) (0.0017) (0.0005)

Fish Species 0.0414 0.0151 0.0020 0.0037
(0.0256) (0.0267) (0.0145) (0.0060)

Fish Population 0.0023** 0.0021** 0.0012*** 0.0004**
(0.0009) (0.0007) (0.0003) (0.0001)

Algal Blooms (%) 0.0126*** 0.0112*** 0.0061*** 0.0026***
(0.0014) (0.0015) (0.0008) (0.0003)

Nutrient Target 0.0149*** 0.0115*** 0.0064*** 0.0026***
(0.0014) (0.0011) (0.0006) (0.0002)

Cost 0.0159*** 0.0154*** 0.0084*** 0.0034***
(0.0019) (0.0023) (0.0013) (0.000)

Status Quo -0.9255** -0.7932*** -0.6768*** -0.1181***
(0.2031) (0.1663) (0.1200) (0.0313)

Individual j FE Yes Yes Yes Yes
Clustered. SE Individual Individual Individual Individual
Correlated Parameters No No No No
Obs. (Respondents) 2058 (343) 2058 (343) 2058 (343) 2058 (343)
Log-likelihood -1,754.2 -3,335.46 -3,931.15 -3,508.40
AIC 3,534.338 7,404.93 8,596.30 7,750.81
ρ2 and R2 0.14 0.06 0.01 0.13

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table C.10: MWTP from Preference-Space Specifications

(1) (2) (3) (4)
MIXL Logit PPML LPM

Distance (miles) -0.71*** -0.66*** -0.67** -0.56**
(0.17) (0.22) (0.24) (0.19)

Fish Species 2.59 0.98 0.24 1.08
(1.67) (1.73) (1.73) (1.77)

Fish Population 0.14** 0.14** 0.15** 0.14**
(0.06) (0.05) (0.05) (0.05)

Algal Blooms (%) 0.79*** 0.73*** 0.73*** 0.76***
(0.12) (0.17) (0.19) (0.17)

Nutrient Target 0.94*** 0.74*** 0.76*** 0.75***
(0.13) (0.17) (0.15) (0.13)

Status Quo -58.01*** -51.46*** -80.42*** -34.03***
(13.38) (10.26) (16.23) (7.46)

Standard errors in parentheses *p<0.1; **p<0.05; ***p<0.01
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C.8 Additional Figures

Figure C.1: Responses to Questions about Recreation

Note: Responses to the post-survey questionnaire about how frequently
respondents visit the trails around the Upper Sangamon River each year,
and if they participate in recreational fishing. Respondents rarely visit the
trails, and even more rarely fish in the river or nearby water.
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Figure C.2: Demographics and characteristics plots of the USRB

Note: Data from the American Community Survey (U.S.Census, 2019) are
plotted within the watershed. Comparisons between these data and our
sample are found in Table C.2.
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Figure C.3: Conditional Individual-Specific Means of MWTP

Note: Conditional individual-specific means of MWTP are derived using
the gmnl package in R (Sarrias and Daziano, 2017). These values are used in
the IAM exercise to estimate the spatial distribution of benefits within the
watershed.
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Loomis, J., Crespi, J., 1999. Estimated effects of climate change on selected
outdoor recreation activities in the United States, p. 289314. Cambridge
University Press.

Louviere, J., Street, D., Carson, R., Ainslie, A., Deshazo, J., Cameron, T.,
Hensher, D., Kohn, R., Marley, T., 2002. Dissecting the random component
of utility. Marketing letters 13(3), 177–193.

127



Manifold, B., Swamp, O., 1998. Executive summary: The quality of our na-
tion’s water. Technical report, Beverly Manifold: Report to US Congress.

McFadden, D., 1973. Conditional logit analysis of qualitative choice behavior.
Frontiers in Econometrics pp. 105–142.

McFadden, D., 1974. The measurement of urban travel demand. Journal of
public economics 3(4), 303–328.

Melstrom, R. T., Lupi, F., Esselman, P. C., Stevenson, R. J., 2015. Valu-
ing recreational fishing quality at rivers and streams. Water Resources
Research 51, 140–150.

Mendelsohn, R., Markowski, M., 1999. The impact of climate change on
outdoor recreation, p. 267288. Cambridge University Press.

Meyerhoff, J., Boeri, M., Hartje, V., 2014. The value of water quality im-
provements in the region berlinbrandenburg as a function of distance and
state residency. Water Resources and Economics 5, 49–66.

Mobley, C., 2016. What matters when explaining environmentalism at the
watershed level: Who you are, where you live, what you see, or what you
perceive? Environment and Behavior 48, 1148–1174.

Moeltner, K., 2019. Bayesian nonlinear meta regression for benefit transfer.
Journal of Environmental Economics and Management 93, 44–62.

Morey, E. R., 1984. The choice of ski areas: Estimation of a generalized
ces preference ordering with characteristics. The Review of Economics and
Statistics 66(4), 584–590.

Morey, E. R., 1985. Characteristics, consumer surplus, and new activities: A
proposed ski area. Journal of Public Economics 26(2), 221–236.

Murdock, J., 2006. Handling unobserved site characteristics in random utility
models of recreation demand. Journal of environmental economics and
management 51(1), 1–25.

Nevo, A., 2001. Measuring market power in the ready-to-eat cereal industry.
Econometrica 69(2), 307–342.

Neyman, J., Scott, E. L., 1948. Consistent estimates based on partially con-
sistent observations. Econometrica: Journal of the Econometric Society
pp. 1–32.

NSAA, 2017. National ski areas association: National demographic study.
Technical report, National Ski Areas Association.

128



NSAA, 2018. National ski areas association: Kottke national end of season
survey 2017/18. Technical report, National Ski Areas Association.

OnTheSnow.com, 2017. Ski resort stats.

Outdoor Industry Association, T., 2017. The outdoor recreation economy.
Technical report, Outdoor Industry Association, The.

Parthum, B., Christensen, P., 2020. A recreation demand model for mountain
snowpack. UIUC Working Paper .

Penn, J., Hu, W., 2020. Certainty follow-up efficacy under potential and ac-
tual hypothetical bias: A meta-analysis. American Journal of Agricultural
Economics forthcoming.

Peterson, G., Stynes, D., Rosenthal, D., Dwyer, J., 1985. Substitution in
recreation choice behavior. In: G. Stankey and S. McCool (Compilers),
Proceedings–Symposium on Recreation Choice Behavior, pp. 19–30.

Phaneuf, D. J., 2002. A random utility model for total maximum daily loads:
Estimating the benefits of watershed-based ambient water quality improve-
ments. Water Resources Research 38, 36–1–36–11.

Phaneuf, D. J., von Haefen, R. H., Mansfield, C., Van Houtven, G., 2013.
Measuring nutrient reduction benefits for policy analysis using linked non-
market valuation and environmental assessment models, final report on
stated preference surveys. Report to the US EPA .

PRISM, C. G., 2018. Prism, oregon state university. Oregon State University,
created 21 August 2018 .

Rabalais, N. N., Daz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., Zhang,
J., 2010. Dynamics and distribution of natural and human-caused hypoxia.
Biogeosciences 7, 585–619.

Rabotyagov, S., Kling, C., Gassman, P., Rabalais, N., Turner, R., 2014. The
economics of dead zones: Causes, impacts, policy challenges, and a model
of the gulf of mexico hypoxic zone. Review of Environmental Economics
and Policy 8(1), 58–79.

Racevskis, L. A., Lupi, F., 2006. Comparing urban and rural perceptions
of and familiarity with the management of forest ecosystems. Society &
Natural Resources 19, 479–495.

Ratcliffe, M., Burd, C., Holder, K., Fields, A., 2016. Defining rural at the
u.s. census bureau. U.S. Census Bureau .

129



Ready, R. C., Champ, P. A., Lawton, J. L., 2010. Using respondent uncer-
tainty to mitigate hypothetical bias in a stated choice experiment. Land
Economics 86, 363–381.

Reclamation, 2013. Downscaled cmip3 and cmip5 climate projections release
of downscaled cmip5 climate projections, comparison with preceding in-
formation, and summary of user needs. U.S. Department of the Interior,
Bureau of Reclamation.

Rosenberger, R. S., White, E. M., Kline, J. D., Cvitanovich, C., 2017. Recre-
ation economic values for estimating outdoor recreation economic benefits
from the national forest system. U.S. Department of Agriculture, Forest
Service, Pacific Northwest Research Station p. 33.

Rutty, M., Scott, D., Johnson, P., Jover, E., Pons, M., Steiger, R., 2015a. Be-
havioural adaptation of skiers to climatic variability and change in ontario,
canada. Journal of Outdoor Recreation and Tourism 11, 13–21.

Rutty, M., Scott, D., Johnson, P., Jover, E., Pons, M., Steiger, R., 2015b.
The geography of skier adaptation to adverse conditions in the ontario ski
market. The Canadian Geographer/Le Géographe canadien 59(4), 391–
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