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ABSTRACT 

 

One of the expectations for the next-generation industrial robots is to work collaboratively 

with humans. Collaborative robots must be able to communicate with human collaborators 

intelligently and seamlessly. However, industrial robots in prevalence are not good at 

understanding human intentions and decisions. We propose to develop human-robot interactions 

based on Brain-Computer Interfaces (BCIs) transferring human cognition to robots directly. By 

collecting and encoding brain activities with BCIs, human can actively send commands to robots 

in thought or passively let robots monitor mental activities. We conduct two major experiments, 

i.e. BCI for welding robot and BCI for defective part picking robot, through which human 

operators can actively communicate with robots and work collaboratively on manufacturing tasks. 

The BCI for welding robot allows operators to select weld beads and command the robot to weld 

in thought. In the picking robot study, the robot picks defective part from a conveyor based on the 

decisions made when operators examining the qualities visually. Besides, to build faster and more 

accurate BCIs, we propose a Conv-CA model, which combines convolutional neural network 

(CNN) and canonical correlation analysis (CCA) to improve the performance of the state-of-art 

steady-state visually evoked potential (SSVEP) algorithm. We also conduct a study for passive 

BCI communication, i.e. the robot detects the circumstance when operators feel unsafe in the 

human-robot collaboration. When a fear response is detected, the robot can stop immediately to 

protect human safety. 
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CHAPTER 1 : INTRODUCTION 

1.1 MOTIVATION 

Robots are assisting humans in various fields, especially in industry, medical, nursing, 

entertainment, and our daily life. As they become more and more intelligent, robots are engaging 

in many new tasks which in collaboration with humans. Human-robot collaboration refers to 

collaborative processes in which human and robot agents work together to achieve shared goals. 

It can solve the automation problem that requires a large amount of human knowledge or complex 

action planning for the robot. For example, surgical robots perform operations collaborate with 

surgeons combining the medical knowledge of human and high precision motions of robots. It can 

also reduce the workload of programming or reprogramming while handling a variety of different 

objects, unpredictable materials, or working in altering environments. In manufacturing tasks like 

assembly, workers cooperate with robots to integrate industrial parts in specific orders with 

multiple tools. However, in the current human-robot collaborative interactions, human operators 

have to operate robots while handling the human part of the task. Ideally, we hope robots can keep 

a tacit understanding with operators as “robotic co-workers”. When operators make decisions, the 

robots should directly obtain the decisions and take appropriate actions. In this way, robots will 

function without extra manual operations. Besides, it would be better if robots can adapt their 

motion to the working status of the operator.  
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A direct way to obtain human’s decisions is to read from the brain. Human brain activities 

are accompanied by bioelectrical signals. The signals can be measured from the scalp and known 

as electroencephalography (EEG). EEG measures voltage fluctuations resulting from ionic current 

within the neurons of the brain [1]. By analyzing and processing EEG, humans can control external 

devices with brain activities. Since 1988, brain-computer interfaces (BCIs) have been built for 

control robots [2]. When performing tasks, human decisions can be sent directly to the robots 

through BCIs. Therefore, by combing EEG-based BCIs with robots, robotic co-workers can obtain 

the decisions of operators through EEG when the operators are concentrating on the task without 

making any physical operation on the robot. While working with EEG-based robotic co-workers 

on industrial tasks, EEG can reveal the intentions, decisions, and mental status of workers, thereby 

reducing the labor and knowledge for operating the robots. Meanwhile, EEG-based robotic co-

workers can provide work opportunities to disabled people who wish to work on industrial and 

realize their value to society. 

In this study, we demonstrate that human can actively send commands to robots or 

passively let robots monitor mental activities through EEG-based BCIs. We use two manufacturing 

experiments to present the active communication. The first experiment is an EEG-controlled 

welding robot that can detect possible weld beads from welding parts. Operator can choose one of 

the detected weld beads through the BCI and initiate the robot to weld along the bead (CHAPTER 

2). In the second experiment, an EEG-based robotic co-worker picks defective parts out of a 

conveyor according to the decisions from the human quality examiner (CHAPTER 3). Besides, in 

order to build more accurate and faster response BCIs, we propose a Conv-CA model, which 
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improves the state-of-art EEG signal classification algorithms using a convolutional neural 

network (CNN) and a signal processing function combined structure (CHAPTER 4). Moreover, 

we conduct a study on the passive human-robot BCI communication. In the study, we detect the 

fear response from EEG, so that, when the operator feels unsafe in the collaboration, the robot can 

stop immediately to protect the safety of operator (CHAPTER 5).  

1.2 BACKGROUND 

The challenge of robotic co-worker development comes from two aspects: physical human-

robot interaction and cognitive human-robot interaction. For physical human-robot interaction, the 

most critical problem to be solved is how to secure human safety while collaborating with robots. 

Some work in hardware design (e.g. lightweight robots) [4] and safety actuation [5,6] greatly 

reduced the damage when the human-robot collision occurs. In terms of software, robots are 

programmed to avoid collision or actively make reaction in collision [3,7]. Other contributions 

include safety and production optimization [8,9], human safety quantification [10-12], etc. As for 

the cognitive human-robot interaction aspect, researches mainly focus on new human-robot 

interaction and human intension prediction. Gemignani et al. [13] developed a robot-operator 

dialog interface allowing non-expert operators to interact with the robot with voice without 

knowing any internal representation of the robot. Sara [14] and Brian et al. [15] studied the 

intuition of gestures by human observers to explore human-robot interaction gestures. However, 

using the voice and gesture interfaces, operators still need to operate the robot in collaboration. To 

eliminate human operations, Beetz et al. [16] applied artificial intelligence to analyze the 
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operator’s intentions by predicting their motion. Olusegun et al. [17] predicted a set of human’s 

future actions through the Kinect video stream using a CNN model.  

Studies show that humans can achieve multi-dimensional robot control through BCIs with 

many different strategies and input modalities. Invasive BCIs can be used to implement accurate 

and complicated robot controls. Vogel et al. [18] demonstrated that human subjects could 

continuously control a robot arm to retrieve a drink container through an invasive BCI called 

BrainGate. However, invasive BCI requires surgery to place a chip on the brain. The EEG-based 

Non-invasive BCIs are capable of controlling various devices with only a short piece of EEG 

signal. Edlinger [19] built a virtual smart home where devices like TV, MP3 player, and phone, 

can be controlled through a BCI using P300 and steady-state visually evoked potentials (SSVEPs). 

Riaz et al. [20] and Yin et al. [21] developed a BCI language communication tool using P300 

speller and speech imagery. In robot controls, Ying [22] built an on-line robot grasp planning 

framework using BCI to select the grasping target and grasping pose. Hortal et al. [23] trained a 

robot to touch one of the four target areas by detecting four different mental tasks. Gandhi et al. 

[24] and LaFleur et al. [25] proposed a mobile robot and quadcopter control interface for 2D and 

3D navigation through motor imagery.  
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CHAPTER 2 : SSVEP-BASED WELDING ROBOT 

2.1 OVERVIEW 

We develop a welding robot application which allows the operator to select weld beads 

through an EEG-based BCI. The robot detects all possible weld beads from a welding part and 

displays each of them for operators to choose. The decisions are sent to the robot through the BCI. 

Then, the robot welds along the chosen bead. The robot integrates an HD camera (Logitech C920 

HD Pro Webcam), a visual stimuli generator (HP Pavilion 22CWA LED Monitor), a BCI driven 

user interface (B-Alert X24, 20 EEG channels), an industrial manipulator (5-DoF KUKA youBot 

arm with a two-finger gripper), and a virtual welding simulator as shown in Figure 1. When weld 

on a new part, the HD camera calibrates its position and detects all possible weld beads on it. The 

detected weld beads are displayed on the monitor as visual stimuli to the operator. The operator 

can choose one of them by looking at the visual stimuli. Then, the robot welds on the chosen weld 

bead. In our prototype, instead of conducting actual welding, we simulate the welding process in 

a virtual environment. 

2.2 WELD BEAD DETECTION 

Weld beads are detected in three steps: 1) generate a mask for all weld beads; 2) thin the 

mask to a skeleton; and 3) separate each individual weld bead from the skeleton. In the first step, 

we apply Deeplab [26] model to generate the mask for all weld bead. Deeplab is the state-of-art 
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deep learning model for image sematic segmentation developed by Google. The model assigns 

semantic labels to every pixel in the input image. We applied the version ‘DeepLabv3+’ which 

uses an encoder-decoder structure with atrous convolution to refines the segmentation result 

especially along the object boundary. The model segments our input images into two classes, i.e. 

background and weld bead. We used Resnet50 as backbone. Because the area of weld bead is 

much smaller than the background, we assigned different weights for these two classes. The weight 

for the loss of weld bead is 0.8  and the weight for the loss of the background is 0.2. The model is 

trained with SGD (lr = 7e-3, momentrum=0.9) for 500 epochs. The training dataset contains 40 

photos of 3D printed welding parts. On each part there are multiple intersecting weld beads. Figure 

2 (a) demonstrates a welding part example. 

 

Figure 1: System overview of the welding robot application.  
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The mask (Figure 2 (b)) obtained from the Deeplab is further thinned to a skeleton of weld 

beads. The thinning approach is based on Zhang-Suen's thinning algorithm [27]. The algorithm 

generates a clean skeleton for the binary mask, but it contains some undesired distortions at 

skeleton intersection areas (necks) and corner areas (tails) (Figure 2 (c)).  To eliminate distortions, 

we introduce a function "modify skeleton" to refine the skeleton. The “modify skeleton” function 

can be found in Algorithm 1. It searches the necks and tails by pairing the intersection points and 

end points in the skeleton and fixes them by replacing the local skeletons with spline interpolations. 

After the skeleton is fixed, by searching from one end point to the other end points, each individual 

weld bead can be separated, as described in Algorithm 2 and shown in Figure 2 (d).  

 

Figure 2: Weld bead detection process: (a) raw image input, (b) mask by Deeplab (zoomed in), (c) skeleton by Zhang-
Suen thinning algorithm and neck distortions, and (d) separated individual weld beads. 
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 Algorithm 1: modify skeleton 

 Inputs:  

1 𝑰!: the mask return by Deeplab 

2 𝑰": the skeleton return by Zhang-Suen thinning 

 Output: 

3 𝑰#: fixed skeletons 

  

4 𝑰# ← a copy of 𝑰" 

5 {𝒑$} ← a list of intersection points in 𝑰# 

6 {𝒑%} ← a list of end points in 𝑰# 

7 {(𝒑&, 𝒑')} ← Pair every 𝒑$  with another 𝒑$  or a 𝒑% such that the overall travel distance 
of all pairs is the smallest 

8 FOR (𝒑&, 𝒑') in {(𝒑&, 𝒑')} do 

 { 

9 IF 𝒑𝟐 ∈ {𝒑𝒆} then                                                                            ◃fix tail areas 

10 Remove the skeleton between 𝒑& and 𝒑' from 𝑰# 

11 ELSE                                                                                                   ◃fix neck areas 

 { 

12 𝑟&, 𝑟' ← distance from 𝒑& and 𝒑' to the closest edge of the mask 𝑰! 

13 Remove the skeleton w/n radius 𝑟& and 	𝑟' around 𝒑& and 𝒑' 

14 Spline interpolate the remaining branches through (𝒑& + 𝒑')/2 

 } 

 } 
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2.3 EEG ACQUISITION 

Our BCI is a non-invasive implementation, which is an EEG-based BCI. Non-invasive 

BCIs yield lower performance than invasive BCIs, but they are easy to wear and demand no 

surgery. In our system, EEGs of operators are collected through a B-Alert X24 headset (Advanced 

Brain Monitoring, Carlsbad, CA), which has 20 electrodes positioned following the 10-20 system 

and a pair of reference channels. The sampling frequency is 256 Hz. The device is minimalistic 

and can be comfortably worn for an hour at a time without rewetting or reseating the electrodes.  

The decisions of the operator are identified through steady state visually evoked potentials 

(SSVEPs). SSVEPs are natural EEG responses to visual stimulation at specific frequencies. This 

signal can be triggered when people looks at a flicker flashing at a stable frequency. The EEG 

response will have an oscillation component on the same frequency as the flicker. Based on the 

property of SSVEP, we display the photo of the welding part with weld beads flashing one by one 

 Algorithm 2: separate weld beads 

 Inputs:  

1 𝑰𝒇: fixed skeleton by modify skeleton 

 Output: 

2 {𝒔}: a list of skeletons of separated weld beads 

  

3 IF 𝑝 has not been visited then 

4 𝒔 ← : all passing points travel from 𝑝  till another end point along non-adjacent 
branches 
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as visual stimuli. Figure 3 demonstrates a photo example of visual stimuli generation. We flash 

the bottom weld bead by displaying the photo (a) and photo (b) in Figure 3 alternatively. The 

flashing lasts 2 seconds. Then, the other four weld beads flash similarly. All the flashings are at 6 

Hz. When the operator chose a weld bead, he/she only need to stare at the weld bead when it 

flashes. The photo is displayed on the 1920×1080-pixel LED monitor and visual stimuli are 

produced by Direct-X. 

2.4 EEG PROCESSING 

EEG is pre-processed with a 6-order band-pass Butterworth filter from 4 to 45 Hz to 

remove noise, muscle, eye, and movement artifacts [28]. We use canonical correlation analysis 

(CCA) [29] to detect the SSVEP signal. CCA is the most wildly used classification method in 

current SSVEP-based BCI applications. It seeks a spatial filter, which combines EEGs collected 

 

Figure 3: Example of visual stimuli generation 
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from multiple channels, to maximize the correlation between the combined EEG signal and a group 

of artificial sine and cosine signals. Assume 𝑿 ∈ ℝ+!×+" is a piece of EEG data with 𝑁" sampling 

points collected from 𝑁-  channels. 𝒀. ∈ ℝ+!×'+# , 5𝑛 = 1,2, … , 𝑁#:  is a group of artificial 

reference signals corresponding to the 𝑛-th stimuli frequency 𝑓. as 

 

𝒀. =

⎣
⎢
⎢
⎢
⎡ 𝑐𝑜𝑠

(2𝜋𝑓.𝒕)
𝑠𝑖𝑛(2𝜋𝑓.𝒕)

⋮
𝑐𝑜𝑠(2𝜋𝑁/𝑓.𝒕)
𝑠𝑖𝑛(2𝜋𝑁/𝑓.𝒕)⎦

⎥
⎥
⎥
⎤
0

, 𝒕 = I
1
𝑓"

2
𝑓"

…
𝑁"
𝑓"
J 

(2.1) 

where, 𝑁/  is the number of harmonics, 𝑁#  is the number of stimuli frequencies, and 𝑓"  is the 

sampling frequency. CCA calculates weights 𝒘1 and 𝒘2 maximizing the canonical correlation  

 
𝜌 = 𝐶𝐶𝐴(𝑿, 𝒀) = 𝑚𝑎𝑥

𝒘$,𝒘%

𝐸S𝒘1
0𝑿0𝒀𝒘2T

U𝐸[𝒘1
0𝑿0𝑿𝒘1]𝐸S𝒘2

0𝒀0𝒀𝒘2T
 

(2.2) 

To identify the frequency components of input EEG signal, CCA calculates the canonical 

correlations of the EEG with different artificial reference signals by 𝜌. = 𝐶𝐶𝐴(𝑿, 𝒀.) . The 

frequency of the reference signal which achieves the maximal canonical correlation in CCA is the 

classified stimuli frequency, i.e. 

 𝑓.∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
#&

𝜌. , 𝑛 = 1,2, … , 𝑁 (2.3) 
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In our experiment, all the weld beads are flashing at 6 Hz for 2 seconds. We perform CCA 

on each 2-seconds EEG recordings. The weld bead corresponding to the EEG recording with the 

highest canonical correlation is the weld bead choose by the operator. 

2.5 WELD SEAM SIMULATION 

We simulate the weld seam after the operator selects a weld bead. The simulation performs 

as a preview step for final confirmation before conducting any physical robot welding. The 

simulation is not based on any thermal or physical model, but only for visualization. For each pixel 

on the weld bead, we attach a half ellipsoid on the surface of the joint. The shape of the ellipsoid 

depends on the working angle 𝜃, travel angle 𝜙, welding speed 𝑣, and nozzle-plate distance 𝑑. The 

function of the ellipsoid is 

 

Figure 4: Welding simulation of a welding part 
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 (𝑥 cos𝜙 − 𝑦 sin𝜙)'

(𝑟 𝑑⁄ )' +
(𝑥 cos𝜙 + 𝑦 sin𝜙)'

(𝑟 𝑑⁄ sin 𝜃 cos𝜙)' +
𝑧'

(𝑐 𝑣⁄ )' = 1 
(2.4) 

where 𝑟 and 𝑐 are constants. Figure 4 shows the simulation on a welding part. The section of the 

ellipsoid in x-y plane is determined by 𝜃, 𝜙 and 𝑑. A larger nozzle-plate distance will shrink the 

section. Work angle and travel angle effect the length of principal semi-axes. A non-zero travel 

angle rotates the section as well. Besides, a faster welding speed decreases the thickness of the 

seam. The ellipsoids of each pixel overlap each other to form a weld. The simulation is displayed 

in a 3D virtual environment.  

2.6 RESULTS 

Three subjects participated the experiment. The subject was required to select a target weld 

bead from the monitor through BCI. The experiment runs 20 trials for each subject. The 

classification accuracy of the subject 1, subject 2, and subject 3 are 85%, 90%, and 60% by CCA 

method.  

We use a youBot arm to demonstrate the robot welding process. Figure 5 shows the 

performance of robot while welding on a line in an image from the test dataset. The welding 

process follows butt joint weld parameters 

• welding speed: 5.9267 mm/s 

• travel angle: 10 degree 

• work angle: 90 degree 
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• nozzle plate distance: 9.5250 mm 

Robot end-effector trajectory, angle and speed are measured and calculated from encoders 

in each joint. In Figure 5, the length of the weld bead is 160 mm. The maximum offset between 

the robot trajectory to the extracted curve is 1.37e−3 mm. The maximum welding speed overshoot 

is 0.012 mm/s. For the nozzle plate distance, the maximum error is 1.52e−4 mm. The maximum 

travel angle error is 0.20°. The robot accurately follows the extracted welding seam and keeps 

welding parameters well in the demonstrated butt joint welding. 

2.7 CONCLUSION AND DISCUSSION 

In this experiment, we develop a BCI for welding robot which allows the operator to select 

a weld bead for the robot from the welding part.  The weld beads are automatically detected by the 

robot using a deep learning model “Deeplab”. The detected weld beads are displayed on the 

monitor and flash for 2 seconds on 6 Hz one by one. The operator needs to stare at a target weld 

bead for 2 seconds in order to select it for the robot. The select decision is detected from the SSVEP 

signal in EEG through the BCI. The EEG are segmented into 2 seconds recordings corresponding 

to the flashing of each weld bead. We use CCA method to calculate the canonical correlations of 

each EEG recording and the reference signal at 6 Hz. The weld bead corresponding to the EEG 

recording which has the highest canonical correlation is detected as the one chooses by the 

operator. Then, the robot moves along the selected weld bead and welds in the virtual environment. 

In our human subject study, the SSVEP classification accuracy for 3 participants are 85%, 90%, 
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and 60%. In the next chapter, the BCI for defective part picking robot is built based on SSVEPs in 

multiple frequencies. Advanced SSVEP classification algorithms are also be introduced and 

compared in the next chapter.  

  

 

Figure 5: Demonstration of robot welding errors: robot trajectory, travel angle, work angle, speed and nozzle-plate 
distance. 
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CHAPTER 3 : SSVEP-BASED DEFECTIVE PART PICKING ROBOT 

3.1 OVERVIEW 

We develop a picking robotic co-worker that can remove defective parts based on the 

operator's decisions, which are issued directly from the operator's mind through a brain-computer 

interface (BCI). The robot automatically performs industrial part recognition, part position 

tracking, pickup gesture calculation, and trajectory planning. We demonstrated the performance 

of the picking robot using a human subject study. The picking robotic co-worker integrates an 

industrial manipulator (a 5-Dof KUKA youBot arm with a two-finger gripper), a robot vision 

module (two Logitech HD cameras), a DC motor conveyor, and an EEG driven BCI as shown in 

Figure 6. The BCI consists of an EEG collector (B-Alert X24, 20 EEG channels) and a stimuli 

generator (LED monitor). Denote the camera installed at the front-end of the conveyor as 𝐶6. It 

observes the moment when a new industrial part loads onto the conveyor and takes a photo 

simultaneously. The monitor represents the photo to the operator as visual stimuli. From this photo, 

the operator determines the part quality in mind. Then, the decision about the qualification, which 

analyzed from EEG, is collected and sent to the robot. The robot arm will pick the part out of the 

conveyor if the decision tells the part is defective. The camera installed at the rear end of the 

conveyor (𝐶7), helps the robot arm find and pick the defective part.  
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Figure 6: System diagram of the picking robotic co-worker 

 

 

 

Figure 7: System workflow of the picking robotic co-worker 
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The detailed workflow is presented in Figure 7. When CF detects a newly loaded part, the 

system registers the part in the Log thread as the n-th part loaded on the conveyor. 𝐶6 takes a photo 

(𝑷(.)) for the part and stores the photo in the Log thread. The monitor is programmed to have four 

blocks arranged as a 2 × 2 matrix to display photos. 𝑷(.)  will fill in a block to present to the 

operator. If all the four blocks are filled, the monitor will clear a block to make it available. P(n) 

appears for 10 seconds, and then automatically removed from the block. During the 10 s, the 

operator can inspect the quality of the displaying part from the monitor. Meanwhile, the operator’s 

EEG is collected and analyzed. The EEG is classified to be a binary decision 𝑑(.) and stored in 

the Log thread as well. Here, we have 𝑑(.) = 0 for the part is qualified or 𝑑(.) = 1 for the part is 

defective. When the part moves to the end of the conveyor, and if 𝑑(.) = 1, 𝐶7 will extract its 

position 𝝁(.)(𝑥, 𝑦) in real-time to provide closed-loop feedback for youBot to remove it. While 

the robot picks the part, it follows the grasping plan 𝐺(.) calculated when the part passes 𝐶6.  

The operator sits in front of the monitor to inspect the qualities of industrial parts through 

the photos. Once he/she identifies a defective part, the operator should stare at the photo until it is 

marked with a green square (detection succeed) or until the photo vanishes (detection failed). If 

the part is qualified, the operator should avoid staring at the photo for more than 2 seconds.  

Otherwise, it may result in a false-positive for defective identification. In other words, the system 

will mark the part that the operator has stared at for more than 2 seconds as defective. 
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3.2 PART DETECTION AND EXTRACTION 

In the photo acquired by 𝐶6 or 𝐶7, industrial parts are extracted from background using a 

thresholding method. In pre-processing, a morphologically open operation with a disk (10 pixels 

radius) shaped structuring element is applied to the photo to remove possible lighting effects. 

Pixels with intensity lower than 0.2 are classified as background. In addition, all the tiny connected 

areas whose area is less than 20 pixels are removed to reduce noise. The rest area is the extracted 

parts denoted as 𝑺. Figure 8 demonstrates an example of the part extraction process. Figure 8 (a) 

shows a photo obtained by 𝐶7 and Figure 8 (b) shows the extracted part  𝑺.  

We use a square signal 𝑤 to perceive the time when a part loads onto the conveyor or 

passes the end of the conveyor. 𝑤 is defined as the projection of 𝑆 along the row axis, i.e. 𝒘: =

𝑚𝑎𝑥
$
𝑺$:. For 𝐶6, when new a step down (from 1 to 0) is observed in 𝒘, the system registers a new 

part. Similarly, for 𝐶7 , if a new step down appears in 𝒘, the system erases a registered part. 

Besides, to divide multiple parts in the same photo, we cut the photo at the midpoints from each 

step down to step up of	𝒘. So that 𝑺 is divided into several sub-regions with each sub-region 

contains only one part. We denote the sub-regions containing the 𝑛-th part as 𝑺(.). This is a fast 

way to track the number of parts on the conveyor, but there must be some space between adjacent 

parts along the moving direction of the conveyor. The signal in Figure 8 (c) is 𝒘 corresponding to 

the photo in Figure 8 (a). The divided sub-regions are shown in Figure 8 (d). 
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Figure 8: Part detection and extraction 
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3.3 PART POSITION ESTIMATION AND GRASPING PLANNING  

We use the geometric center (𝝁(.)) of  𝑺(.) to estimate the position of the 𝑛-th part. 𝝁(.) 

can be easily calculated by averaging all the pixels in 𝑺(.). To pick various industrial parts with 

the robot gripper, we developed a generalized grasping algorithm named two-finger gripper 

random grasp (2FRG). The 2FRG algorithm generates robust 3-Dof picking gestures for the two-

finger gripper to pick unknown objects. It randomly samples 𝑁 lines as 𝑁 potential finger moving 

directions. Along each line, it searches all possible finger grasping positions (GPs). We define a 

GP as the position where both fingers touch the object. Then, it only keeps the GP constructing a 

firm grasp, which is a firm grasping position (FGP). FGP is the position that each finger has at 

least two points on both edges touching the object or has at least one point in the middle touching 

the object. We use the distance between an FGP and 𝝁(.) as the score to evaluate the FGP. 2FRG 

returns the FGP with the highest score. A demonstration of a GP and an FGP are shown in Figure 

9 (a) and (b). In Figure 9 (a), the right finger touches the part with only one point on the edge (red 

dot in the subfigure), so it is not an FGP. In Figure 9 (b), both fingers have at least one point in the 

middle that touches the object. Thus, the GP in Figure 9 (b) is an FGP.  

We tested 2FRG on various shaped industrial parts. In Figure 10, 2FRG returns the optimal 

FGPs for the five different parts by sampling 200 lines. The returned FGPs are closed to geometric 

centers. And the grippers grasp the objects in comfortable directions. A pseudocode of 2FRG is 

presented in Algorithm 3. 2FRG returns the finger positions (𝒈&, 𝒈') of the optimal FGP from 𝑁 
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line samples. The grasping plan 𝐺(.)(𝜑, 𝜹) consists of the grasping direction 𝜑 and the offset 𝜹 

from the FGP to 𝝁(.). Note that 𝜑 is the angle of the vector 𝒈& − 𝒈' and  𝜹 = 𝒈& 2⁄ + 𝒈' 2⁄ − 𝝁.  

 

 

Figure 9: (a) A GP but not an FGP, and (b) an FGP. 
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Figure 10: Grasping planning for five different industrial parts. (a) Photo of industrial parts; (b) 200 grasping direction 
samples; (c) optimal FGP returned by 2FRG. 
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 Algorithm 3: Two-finger Gripper Random Grasp (2FRG) 

 Inputs:  

1 𝑺(.): region of an object stored in a segmented binary image 𝑰 

2 𝑁: number of maximum sampling times 

3 𝐿: geometric constrains of a gripper 

 Output: 

4 (𝒈&, 𝒈'): positions of gripper fingers 

  

5 Do for 𝑁 times  

 { 

6 Uniformly sample two points 𝒒& and 𝒒' in 𝑰 

7 Construct a line segment 𝒍 ∈ 𝑰 connecting 𝒒& and 𝒒' and create 𝒈&, 𝒈' ∈ 𝒍   

8 {𝒍!} ←	The collection of all continues sub-intervals of 𝒍 such that L is satisfied if a 
gripper 𝒈& or 𝒈' ∈ 𝒍! 

9 IF {𝒍!} is not empty then 

 { 

10 G; ← The collection of (𝒈&, 𝒈') with 𝒈& ∈ 𝒍!&, 𝒈' ∈ 𝒍!' and  𝒍!&, 𝒍!' ∈ {𝒍!} 
such that (𝒈&, 𝒈') is a GP. 

11 G<; ← The collection of (𝒈&, 𝒈') ∈ 𝐺= such that (𝒈&, 𝒈') is an FGP.  

 } 

 } 

12 Return the (𝒈&, 𝒈') ∈ 𝐺"= with the highest score, where 

𝑠𝑐𝑜𝑟𝑒 = −𝑛𝑜𝑟𝑚>' w𝒈& 2⁄ + 𝒈' 2⁄ −𝑚𝑒𝑎𝑛5𝑺(.):x 
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3.4 ROBOT MOTION PLANNING AND CONTROL 

If the 𝑛-th part is defective and enters the view of 𝐶7, the robot will pick it out based on 

𝐺(.)(𝜑, 𝜹) and the 𝝁(.) obtained by 𝐶7 in real-time. The robot moves to a pre-designed position 

above the conveyor with its last joint perpendicular to the conveyor surface in advance. Then the 

robot follows the part and moves downward to the conveyor surface. The robot velocity in the 

horizontal directions (𝒗12), vertical direction (𝑣?), and angular velocity of the last joint (𝛼) are 

controlled by 

 𝒗12 = 𝑲&5𝝁(.) + 𝜹 − 𝒑12: + 𝑲'�̇�(.) +𝑲@5�̈�(.) − �̇�12: (3.1) 

 𝑣? = 𝑘A(𝑧$ − 𝑝?) − 𝑘B�̇�? (3.2) 

 𝛼 = 𝑘C(𝜑 − 𝜃) − 𝑘D�̇� (3.3) 

Here, 𝒑12 and 𝒑? are the position of robot end-effector in horizontal axes and vertical axis. 

𝜃 is the last joint angle of the robot. 𝑧$ is the height of the conveyor belt. 𝑲&, 𝑲', 𝑲@, 𝑘A, 𝑘B, 𝑘C, 

𝑘D are control gains, where 𝑲&, 𝑲', and 𝑲@ are 2 × 2 diagonal matrixes.   

3.5 EEG ACQUISITION 

The BCI implementation is similar as the BCI we develop in the welding robot experiment. 

But instead of using only one frequency, we flash the photos of industrial parts at different 

frequencies. Then we can recognize which photo the operator is staring at from the EEG by 

distinguishing the frequencies of SSVEP. When there is no defective part presenting on the 
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monitor, the operator should look over all the displaying photos, or look at a blank spot. By doing 

this, no significant frequency components at the photos' flashing frequencies can be observed from 

the EEG. We call this situation as the idle state (IS). On the other hand, when the operator identified 

a defective part, he/she should stare at the photo until it is marked. In this case, a significant 

frequency component at the flashing frequency of the photo should be found in EEG. 

The monitor is programmed to display visual stimuli for generating SSVEPs. The monitor 

displays photos in four square blocks. As shown in Figure 11, the size of the blocks is 300 

pixels×300 pixels. The four blocks flash at 6 Hz, 6.67 Hz, 7.5 Hz, and 8.57 Hz, respectively. Once 

𝐶6 observes a new part, the monitor will flash the photo of the part in a block. The photo of the 

next observed part will present in the next available block. Photos present for 10 seconds in the 

block. However, the monitor can display up to four photos at the same time. When 𝐶6 observes a 

newly loaded part and all blocks are filled, the monitor will clear the earliest filled block for the 

part.  

 

Figure 11: Blocks on the monitor 
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3.6 EEG PROCESSING 

We compare six SSVEP classification methods, which are canonical correlation analysis 

(CCA), individual templated based CCA (IT-CCA) [30], support vector machine method (SVM), 

power spectral density-based SVM method (PSD-SVM) [31], CCA-based SVM method (CCA-

SVM), and convolutional neural network CCA method (CNN-CCA). CCA-SVM and CNN-CCA 

are our proposed methods. EEG is pre-processed with a 6-order band-pass Butterworth filter from 

4 to 45 Hz to remove noise, muscle, eye, and movement artifacts. 

3.6.1 CCA method 

Recall the CCA method from equation (2.3). In our application, there are four target 

SSVEP frequencies, which are 6 Hz, 6.67 Hz, 7.5 Hz, and 8.57 Hz, corresponding to the flashing 

frequencies of the blocks on the monitor. Besides, we need to classify IS as well. Therefore, EEGs 

will be classified as one of the five classes, i.e. SSVEP in 0 Hz (IS), 6 Hz, 6.67 Hz, 7.5 Hz, and 

8.57 Hz. However, the standard CCA method can only identify non-zero frequencies. To classify 

the IS, we extend the standard CCA by thresholding the maximal canonical correlation. Equation 

(2.3) becomes 

 
𝑓.∗ = �

𝑎𝑟𝑔𝑚𝑎𝑥
#&

𝜌. , 𝑖𝑓 𝑚𝑎𝑥 𝜌. > 𝛿.

0, 𝑖𝑓 𝑚𝑎𝑥 𝜌. ≤ 𝛿.
 

(3.4) 

The threshold 𝛿. is searched in a training dataset such that 𝛿. maximize the classification accuracy 

of the training dataset.  
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3.6.2 IT-CCA method 

 IT-CCA is based on the CCA method but using individual template signals as reference 

signal instead of artificial reference signals. The individual template signal (𝑿�. ∈ ℝ+!×+") for the 

𝑛-th stimuli is obtained by averaging the training dataset across all the trials. The canonical 

correlation is calculated by  𝜌. = 𝐶𝐶𝐴(𝑿, 𝑿�.). The rest of IT-CCA follows the same steps of the 

CCA method. 

3.6.3 SVM, PSD-SVM and CCA-SVM methods 

The SVM method use SVM model with 2-nd order polynomial kernel and L-2 

regularization to classify EEG into the five classes. Considering SSVEP has excellent properties 

in the frequency domain, PSD-SVM uses the power spectra density of EEG as the feature of a 

standard SVM model. Similarly, CCA-SVM applies the canonical correlations of CCA as the 

feature of SVM. The feature is 

 ∅ = {𝜌./ , 𝜌E}, 𝑛 = 1,2, … , 𝑁# , ℎ = 1,2, … , 𝑁/ , 𝛼 = 1,2, … , 𝑁E (3.5) 

where 

 𝜌./ = 𝐶𝐶𝐴 �𝑿, I𝑐𝑜𝑠
(2𝜋ℎ𝑓.𝒕)

𝑠𝑖𝑛(2𝜋ℎ𝑓.𝒕)
J� (3.6) 

 𝜌E = 𝐶𝐶𝐴 �𝑿, I𝑐𝑜𝑠
(2𝜋𝑓E𝒕)

𝑠𝑖𝑛(2𝜋𝑓E𝒕)
J� (3.7) 
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Two frequencies 8 Hz and 10 Hz are chosen for 𝑓E. The feature 𝜌E measures brain activities in the 

alpha-band, which reflect the idle activities of the brain.  

3.6.4 CNN-CCA method 

CNN-CCA combines the CNN structure and CCA. The CNN structure convolutes multi-

channel EEG in short sampling intervals to construct a single-channel signal. The CCA-layer at 

the end of the CNN framework eliminates the noise in the signal and extracts frequency features 

of the signal. CNN-CCA takes the EEG 𝑿 ∈ ℝ+!×+"×&  as input. It applies a 3-layer CNN 

convoluting 𝑿 to 

 𝒙� = 𝑓(𝑿), 𝒙� ∈ ℝ+!×& (3.8) 

Here 𝑓(. ) is the 3-layer CNN. Then, a CCA-layer is added after the CNN-layer. The CCA-

layer applies standard CCA to 𝒙�  as 𝜌. = 𝐶𝐶𝐴(𝒙�, 𝒀.) , where 𝒀.  is the reference signal 

corresponding to the 𝑛-th stimuli constructed as Equation (2.1) with 𝑁/ = 8, 𝑁# = 5, 𝑓& = 0 (IS), 

𝑓' = 6 , 𝑓@ = 6.67 , 𝑓A = 7.5 , and 𝑓B = 8.57 . Note that, by Cauchy-Schwarz inequality, the 

maximum correlation in the CCA-layer can be calculated by 

 
𝜌. = 𝐶𝐶𝐴(𝒙�, 𝒀.) = �

(𝒙� ∘ 𝒙�)0(𝒀. ∘ 𝒀.)
𝒙�0𝒙�𝒀.0𝒀.

, 𝑛 ∈ S1, 𝑁#T 
(3.9) 

where the operation ∘ represents Hadamard product (i.e. the element-wise product). Then, the 

output of the CCA-layer is  
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 𝒛 = 𝑔(𝒙�, 𝒀)

= �𝐶𝐶𝐴(𝒙�, 𝒀&) 𝐶𝐶𝐴(𝒙�, 𝒀') ⋯ 𝐶𝐶𝐴 w𝒙�, 𝒀+'x�

= [𝜌& 𝜌' ⋯ 𝜌+'] ∈ ℝ+ (3.10) 

Here, 𝑔(. ) is the CCA-layer. We use a dense layer with 𝑁# units and softmax activation function 

as the final layer before classification.  

Because the CCA-layer can provide non-linear operations, the CNN-layers are active by 

linear activation functions. The first layer of the CNNs has 16 filters of 16 × 4  kernels. It 

convolutes EEGs in all input channels (𝑁- = 4) in a short local time period (16 sampling points or 

23.4 ms). The second layer combines the 16 filters in the first layer together It uses 1 × 4 kernels 

to weight EEGs from different channels. The third layer applies an 1 × 4 kernel with no padding 

(The first and second layers use zeros paddings to keep outputs the same size as the inputs.) to 

transform the data 𝑿 ∈ ℝ+!×+"×& into a one-dimension signal 𝒙� ∈ ℝ+!×&. At the end of the CNN-

 

Figure 12: Structure of the CNN-CCA model 



31 

 

layers, we apply a dropout with dropping rate 5% to  x� for regularization. The detailed structure is 

shown in Figure 12. 

The CNN-CCA is implemented in python-Keras with tensorflow backend. We use 

categorical cross-entropy as the loss function. The optimization is solved with Adam algorithm 

(learning rate (1e-4), beta1 (0.9), beta2 (0.999), gradient clipping (5)) with batch size 32.  

3.7 EXPERIMENTAL SETUP 

We established an offline experiment to test the performances of the above SSVEP 

classification methods. The experiment required subjects to stare at a flashing photo for 15 seconds 

in each trial. The photo flashed at one of the frequencies of 0 Hz, 6 Hz, 6.67 Hz, 7.5 Hz, and 8.57 

Hz. The experiment took five runs with five trials in each run. During the experiment, subjects 

wearing an EEG-based BCI headset were required to stay still and blink as less as possible. Five 

subjects (age 25-35, 4 males, 1 female) attended the experiment.  

After the offline experiment, subject 1, 2, and 3 participated in the online experiment. 

Subjects need to identify 2 defective industrial parts from 10 parts. The parts were manually placed 

on the conveyor in random order by another operator. The online experiment took three runs. All 

subjects successfully accomplished the task. Figure 13 shows the user interface and hardware in 

the online experiment.  
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3.8 RESULTS 

Classification accuracy is used to evaluate the performance of all methods. We evaluated 

all the methods in four data lengths, i.e. 0.5 s, 1.0 s, 1.5 s, and 2.0 s. The data length will be 

mentioned as time window length (TW) in below. The data is extracted with a step of 0.15 × TW. 

We use leave-one-out cross validation to evaluate the methods. Specifically, one of the 5 trials are 

used for test and the other 4 trials are the training dataset. This process repeated for 5 times so that 

every trial is tested.  

 

Figure 13: On-line experiment 



33 

 

As shown in Table 1, the classification accuracies of our proposed CNN-CCA method are 

80.24%, 89.98%, 93.63%, and 96.56% at the 0.5 s, 1.0 s, 1.5 s, and 2.0 s TW, respectively. CNN-

CCA achieved the highest classification accuracies in the comparison with CCA-SVM, PSD-

SVM, CCA, IT-CCA, and SVM. Comparing to the most commonly used CCA method, CNN-

CCA improved the average classification accuracies by 31.43%, 23.00%, 16.25%, and 12.92% at 

Table 1: Average classification accuracies of CNN-CCA, CCA-SVM, PSD-SVM, CCA, IT-CCA and SVM at 0.5 s, 
1.0 s, 1.5 s, and 2.0 s time window lengths 

TW (s)  0.5 1.0 1.5 2.0 

 CNN-CCA 80.24 89.98 93.63 96.56 

 CCA-SVM 63.98 80.14 86.67 89.73 

 PSD-SVM 74.22 81.71 82.98 82.07 

Accuracy (%) CCA 48.81 66.98 77.38 83.64 

 IT-CCA 53.55 63.96 68.43 70.80 

  SVM 64.16 76.55 81.82 84.56 
 
 
 

 

Figure 14: Classification accuracies of CNN-CCA, CCA-SVM, PSD-SVM, CCA, IT-CCA, and SVM at 0.5 s, 1.0 s, 
1.5 s, and 2.0 s time window lengths for each subject in the offline experiment 
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0.5 s, 1.0 s, 1.5 s, and 2.0 s TW, respectively. Figure 14 shows the classification accuracies of each 

individual subject. CNN-CCA outperformed other tested method at 0.5 s, 1.0 s, 1.5 s, and 2.0 s 

TW with 𝑝 < 0.001.  

In our implementation, the most frequent class is IS (i.e. n = 1), because the industrial 

parts on the conveyor are qualified in most cases. Thus, the classification accuracy of IS is more 

important than the other classes. To check the performance for classify IS, we calculated the 

confusion matrices of CNN-CCA, PSD-SVM, CCA, and CCA-SVM in Figure 15. The 

classification accuracies of IS are marked on the confusion matrixes. At the 0.5 and 1.0 TW, PSD-

SVM has the highest IS classification accuracy. However, the classification accuracies of all the 

five classes are 74.22% and 81.71%. As we lengthen the TW, CNN-CCA exceed PSD-SVM to 

become the best IS classification model with 95% accuracy at 2.0 TW.  

The result of applying CNN-CCA on the online experiment is shown in Figure 16.  In the 

online experiment, SSVEP is classified in 2 s TW. Each five rectangles in a row represents five 

windows of EEG data for SSVEP classification during an industrial part flashing on the monitor. 

The frequency on each row of rectangles is the stimuli frequency of the part. A blue rectangle 

represents the part is qualified and detected as IS in the classification, which is a true negative 

detection. A green rectangle represents the part is defective and detected as defective with the 

correct frequency, which is a true positive detection. An orange rectangle represents the part is 

qualified but detected as defective, which is a false positive detection. A red rectangle representing 

the part is defective but detected as qualified (did not happen in the experiment), which is the false 
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negative case. The subject 1 and subject 3 completed the experiment with all the part detected 

correct. The subject 2 got one false positive case in both the first and the second runs. Comparing 

to their offline experiment, the subject 2 has higher classification accuracy than the subject 3. 

However, the subject 2 has worse IS classification accuracy, which caused false positive cases. 

  

 

Figure 15: Confusion matrices and IS classification accuracies of CCA-SVM, PSD-SVM, CCA, and CNN-CCA 
methods at 0.5 s, 1.0 s, 1.5 s, and 2.0 s TW 
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Figure 16: Result of the online experiment 
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3.9 CONCLUSIONS AND DISCUSSION 

We developed a robotic co-worker which obtain the decisions of human collaborators 

through an EEG-based BCI. The operator can collaborate with the robot in a task without manually 

operating the robot. We used a manufacturing task, i.e. defective part picking, to demonstrate the 

concept. The task required the robotic co-worker to select defective parts from the conveyor based 

on the decisions when human collaborators examine the parts. Human collaborators examine the 

qualities of the parts from a monitor. The decisions were extracted through a SSVEP-based BCI 

and sent to the robot.  

We established an offline experiment to verify the performance of six SSVEP classification 

methods, which are CCA, IT-CCA, SVM, CCA-SVM, PSD-SVM, and CNN-CCA. The methods 

are verified on 0.5 s, 1.0 s, 1.5 s, and 2.0 s TW of EEG data. Our proposed CNN-CCA method 

achieves best performance among all tested methods for the six tested time window lengths. The 

average classification accuracies across all five subjects are 80.24%, 89.98%, 93.63%, and 96.56% 

on 0.5 s, 1.0 s, 1.5 s, and 2.0 s TW, respectively. Then, we established an online experiment with 

2.0 s as the SSVEP classification TW. The average part detection successful rate is 93.33%.  

In this experiment, we found that combining CNN and CCA can increase the classification 

accuracy of SSVEP classification. To verify our discovery, we construct a similar CNN and CCA 

combined model and validated it on a benchmark dataset in the next chapter.  
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CHAPTER 4 : CONVOLUTION CORRELATION ANALYSIS FOR ENHANCING THE 

PERFORMANCE OF SSVEP-BASED BCI 

4.1 INTRODUCTION 

SSVEP is one of the most popular EEG signals for human-machine communication in the 

field of BCI. Because of the high information transfer rate (ITR), few user training, and ease of 

trigger, SSVEPs are broadly used in various of applications, such as medical [32,33], industrial 

[34,35], communication [36,37], smart home [38,39], gaming [40,41,42], and robot & vehicle 

control [43-47], etc. The performances and ITRs of SSVEP-based BCI applications largely depend 

on the classification accuracy of the SSVEP signal.  

SSVEPs are brain response characterized by frequency pattern at stimulation frequency 

and its harmonic frequencies [48]. Intuitively, SSVEPs can be detected if transformed into 

frequency domain. One of the most powerful classification methods is the Power Spectra Density 

based Analysis (PSDA), which is based on the Discrete Fourier Transform. The PSDA method is 

designed to be use on the single channel EEG which results the method to be noise sensitive. 

Moreover, the DFT has low frequency resolution if time window of the EEG is short. To improve 

the PSDA method, Friman [49] linearly combined EEGs from different channels maximizing 

signal-noise ratios (SNRs). Meanwhile, Lin [29] came up a spatial filtering approach, i.e. the 

Canonical Correlation Analysis (CCA). CCA also linearly combines different channels to 

maximize SNRs, which is similar to Friman’s “Maximum Contrast Combination”, but it solves 
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the frequency resolution drawback of the PSDA by calculating the correlations between EEG 

signal and artificial reference signals in arbitrary frequencies. Currently CCA is still the most 

popular SSVEP classification method and an important benchmark for new classification methods. 

A concern for the CCA method is that its performance varies across different subjects, 

which means CCA may result low classification accuracy on some subjects. Many researches 

contribute to improve CCA. One of the most efficient directions is individual calibration data, i.e. 

constructing subject-specific model for each individual subject based on a training dataset. In 

CCA, the reference signals are artificial signals constructed with sine and cosine. Artificial signals 

lack of subject-specific information. Zhang et al. proposed the MwayCCA [50], L1-MCCA [51], 

and MsetCCA [52] based on standard CCA using subject-specific reference signals constructed 

from the training dataset for each subject. To further enhance the spatial filter on different 

harmonic frequency components, Chen et al. [53] built the filter bank CCA (FBCCA) which 

decompose SSVEPs into multiple sub-band components under multiple pre-processing filters, then 

fusion the classifications from all sub-band. The training dataset is also utilized to optimize the 

weights of spatial filters instead of merely being used as reference signals. Wang et al. [54] 

extended the CCA structure with canonical correlations between training data, validation data, and 

reference signals. Nakanish et al. [55] introduced ensembled TRCA to optimize spatial filter 

weights by maximizing the reproducibility in cross-session training dataset. The TRCA achieved 

an averaged ITR of 325.33 bit per minute in a 40-target cue-guided task. The CORCA-based 

method proposed by Zhang et al. [56] extracting maximally correlated signal components of EEG 

from multiple subjects are reported to have better performance than TRCA. 
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Recently, deep learning techniques have been successfully applied in various classification 

tasks in many domains. However, in the SSVEP frequency classification task, the performances 

of deep learning models haven’t reach or not even close to simple spatial filters, such as TRCA or 

ensembled TRCA. Aznan et al. [57] introduced a CNN model in a 5-frequencies SSVEP 

classification task. They compared the CNN model with other SSVEP deep learning models, such 

as LSTM, SVM, and RNN, and demonstrated a better performance in their dataset. Similarly, 

Kwak et al. [58] developed another CNN based model in 5-target SSVEP experiment and obtained 

higher accuracy than the CCA method. However, these methods are neither investigated on a large 

number of targets nor validated on a standard benchmark dataset. Podmore [59] et al. proposed a 

deep CNN framework (PodNet) reached an ITR of 79.26 bit per minute in the same dataset tested 

for TRCA. PodNet is the first deep learning model which tested on a benchmark dataset and 

compared with the FBCCA. Except the PodNet has much worse performance than the FBCCA. 

The main reason that the current deep learning models haven’t succeed on SSVEP classification 

task is overfitting. Because SSVEPs have low signal-to-noise ratios (SNRs), most of the 

parameters in pure deep neural network frameworks are actually learning from noise. Even with 

large amount of training data provided, these deep neural networks are still not able to estimate 

the true model. Since noise is dominating SSVEP signals, classic neural networks, which works 

well in other domain, can’t extract the signal from the training dataset.  

Thus, we propose a new deep leaning model for SSVEP classification, called convolution 

correlation analysis (Conv-CA). The Conv-CA combines CNN structure and traditional 

correlation analysis. It has two CNN pieces named signal-CNN and reference-CNN. The signal-



41 

 

CNN provides convolutional operation for the multi-channel EEG signals in every tiny time 

windows. It transforms EEGs collected from multi-channels into a single signal. Similarly, 

reference-CNN convolutionally combines reference signals from multiple channels and outputs a 

one-channel reference signal for each frequency. A correlation layer connecting the signal-CNN 

and the reference-CNN calculates the correlations between the EEG signal and the reference 

signal. The CNN structure extends the spatial filter to a non-linear model. Meanwhile, the 

correlation layer prevents model from overfitting using the correlation analysis. We compared our 

model with the TRCA method which is one of the state-of-art SSVEP classification model for 

individual subject.  

4.2 BENCHMARK DATASET 

Our model Conv-CA and the TRCA [55] are validated on a SSVEP benchmark dataset 

[60]. The dataset was collected through a cue-guided target selecting task in an offline BCI 

experiment. EEGs from thirty-five healthy subjects (seventeen females, eighteen males, mean age: 

twenty-two years) were collected. The experiment included six trials for each subject. Each trial 

contains 40 simulation tests corresponding to 40 different characters in random order. In each test, 

subjects were instructed to stare at a target character without eye blinks during the stimulation 

duration. Each test started with a 0.5-second target cue. Before cue ends, subjects were asked to 

shift their gaze to the target character. Following the cue, all stimuli flicked on the screen 

concurrently for 5 seconds. After the 5-seconds simulation, the screen was blanked for 0.5 second 

before the start of next test. 
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The 40 target characters of the BCI were arranged in a 5 × 8 matrix on a monitor. The 

characters were coded in joint frequency and phase modulation (JFPM) approach. The frequencies 

of the 40 targets were from 8 Hz to 15.8 Hz with a 0.2 Hz offset between two targets. The phase 

offset between two characters was 0.5 p. EEG data were recorded through a Synamps2 EEG 

system (Neuroscan, Inc.) under a sampling rate of 1000 Hz. Sixty-four electrodes were placed on 

the standard positions according to an extended 10-20 system. A reference electrode was placed 

at the vertex (Cz). During the experiment, electrode impedances were kept below 10 kW.  

A 50 Hz notch filter was applied to recorded EEGs to remove the power-line noise. All the 

epochs were down sampled to 250 Hz subsequently. All EEG data were filtered with a Chebyshev 

Type I filter with cutoff frequencies from 6 Hz to 90 Hz and stopband corner frequencies from 4 

Hz to 100 Hz.  Because the EEG recording in each test contains 0.5 second pre-stimulus and 0.5 

second post-stimulus, we only used the data from 0.5 second to 5.5 seconds for frequency 

recognition. 

4.3 TRCA-BASED METHOD 

TRCA is a method that learns the weights of spatial filters from the training dataset of an 

individual subject. The weights are calculated by maximizing the similarity of EEGs among all 

trials in the training dataset. Denote the EEG signals as 𝑋 ∈ ℝ+!×+"×+'×+(, where 𝑁", 𝑁-, 𝑁#, and 

𝑁F  are the number of sampling points, the number of channels, the number of target SSVEP 
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frequencies, and the number of trials, respectively. For a frequency target 𝑛 ∈ S1, 𝑁#T, denote the 

weight of the corresponding spatial filter as 𝒘. ∈ ℝ+"×&. The covariance among different trials is  

 

 
� 𝐶𝑜𝑣5𝑿(∗,∗,.,$)𝒘., 𝑿(∗,∗,.,:)𝒘.:
+(

$,:G&,$H:

= � 𝒘.
0𝑿(∗,∗,.,$)

𝑻
𝑿(∗,∗,.,:)𝒘.

+(

$,:G&,$H:	

= 𝒘.
0 � 𝑿(∗,∗,.,$)

𝑻
𝑿(∗,∗,.,:)

+(

$,:G&,$H:

𝒘.

= 𝒘.
0𝑺𝒘. (4.1) 

Here, the 𝑿(∗,∗,.,$) and 𝑿(∗,∗,.,:) denote the 𝑛-th frequency in the 𝑖-th and 𝑗-th trials of 𝑿. 

The covariance among all the trials is  

 
� 𝐶𝑜𝑣5𝑿(∗,∗,.,$)𝒘., 𝑿(∗,∗,.,:)𝒘.:
+(

$,:G&

= 𝒘.
0𝑸𝒘. (4.2) 

Note that the equation (4.2) has different form as represented in [55], but they are mathematically 

equivalent. 

The weight 𝒘. of the spatial filter for the target 𝑛 can be calculated by maximizing the 

covariance among different trials divided by the covariance among all trials, i.e. 
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𝒘.
∗ = argmax

𝒘&

𝒘.
0𝑺𝒘.

𝒘.
0𝑸𝒘.

 
(4.3) 

The optimal weight 𝒘.
∗  can be calculated as the eigenvector of matrix 𝑸K&𝑺 corresponding to the 

largest eigenvalue. We denote the above steps for obtain optimal 𝒘.
∗  as a function 

 𝒘.
∗ = 𝛾(𝑿, 𝑛) (4.4) 

For an individual subject with a training dataset 𝑿FLM$. ∈ ℝ+!×+"×+'×+(  and test data 

𝑿F%"F ∈ ℝ+!×+"×+', the reference signal 𝒀 ∈ ℝ+!×+"×+' is the trial-averaged training data, i.e.  

 
𝒀(∗,∗,.) =

1
𝑁F
�𝑿FLM$.

(∗,∗,.,$)
+(

$G&

, 𝑛 ∈ S1, 𝑁#T 
(4.5) 

The correlation coefficients between the test data 𝑿F%"F and its reference signal 𝒀 are 

 𝜆. = 𝜌w𝑿F%"F
(∗,∗,.)𝒘.

∗ , 𝒀(∗,∗,.)𝒘.
∗ x, 𝑛 ∈ S1, 𝑁#T (4.6) 

where 𝒘.
∗ = 𝛾(𝑿FLM$., 𝑛) and 𝜌(. , . ) indicates the one-dimensional correlation analysis. Then, the 

frequency of the test data 𝑿F%"F can be recognized by 

 𝑓., 𝑛 = argmax 𝜆. , 𝑛 ∈ S1, 𝑁#T (4.7) 

 

 



45 

 

4.3.1 Ensemble TRCA-based method 

Experiment results shows that integrating all spatial filters of all frequency targets could 

further improve the performance of TRCA. With 𝑁# spatial filters, a concatenated matrix 𝑾∗ ∈

ℝ+"×+' can be obtained. Then the equation (4.6) can be replaced by 

 𝜆. = 𝜌w𝑿F%"F
(∗,∗,.)𝑾∗, 𝒀(∗,∗,.)𝑾∗x, 𝑛 ∈ S1, 𝑁#T (4.8) 

where  𝜌(. , . ) indicates the two-dimensional correlation analysis instead.  

4.3.2 TRCA with filter bank 

Filter bank technique have been verified to improve the performance of TRCA-based 

method in [55]. The filter bank analysis decomposes SSVEP signals into sub-band components 

using infinite impulse response (IIR) filters, such that the harmonic components of SSVEP signals 

can be embedded independently. According to the study [53], the lower and upper cut-off 

frequencies of the 𝑚-th sub-band were set to 𝑚 × 8 Hz and 90 Hz, where 𝑚 ∈ [1, 𝑁N] and 𝑁N is 

the number of sub-bands. By applying the 𝑚-th Chebyshev Type I filters to the training dataset 

𝑿FLM$. and test data 𝑿F%"F, a sub-band correlation for the frequency target 𝑛 can be obtained as 𝜆.! 

from equation (4.6) or equation (4.8). With all sub-bands, a set of correlations 𝜷. =

5𝜆.& , 𝜆.' , … , 𝜆.
+):

0
 for the target 𝑛  can be linear combined by  

 𝜆. = 𝚽0𝜷. (4.9) 

where 𝚽 is defined as 
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 𝚽 = (1KM + 𝑏 2KM + 𝑏 … 𝑁NKM + 𝑏)0 (4.10) 

Here 𝑎 and 𝑏 are empirically set to 1.25 and 0.25 respectively.  

4.4 CONV-CA MODEL DESIGN 

The Conv-CA is designed to classify multi-target SSVEP signals with a structure 

combining CNN and correlation analysis. The detailed structure is demonstrated in Figure 17. The 

Conv-CA takes the EEG data 𝑿 ∈ ℝ+!×+"×& and the reference data 𝒀 ∈ ℝ+!×+"×+' as inputs. To 

simplify the implementation, we rearranged the order of dimensions of 𝒀 from ℝ+!×+"×+'   to 

ℝ+!×+'×+". Then, we apply a 3-layer CNN to 𝑿 as  

 𝒙� = 𝑓(𝑿), 𝒙� ∈ ℝ+!×& (4.11) 

 

Figure 17: Structure of the proposed Conv-CA SSVEP classification model. The CNN layers use zero paddings except 
the second layer of the signal-CNN which has no padding. All the CNNs use linear activation functions. The activation 
function of the dense layer is softmax.  
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Here the 3-layer CNN 𝑓(. ) is named as signal-CNN. Another 2-layers CNN is applied to the 

reference signal 𝒀 as  

 𝒀� = 𝑔(𝒀), 𝒀� ∈ ℝ+!×+' (4.12) 

where 𝑔(. ) is named as reference-CNN. The correlation analysis layer takes 𝒙� and 𝒀� as inputs and 

calculates the correlation coefficients of 𝒙� and 𝒀�(.,.) for all 𝑛 ∈ S1, 𝑁#T. By denoting 𝒚�. = 𝒀�(.,𝒏), 

the correlation coefficients in the correlation analysis layer are  

 
𝛾(𝒙$, 𝒚$𝒏) =

)(𝒙$ ∘ 𝒙$)𝑻(𝒚$𝒏 ∘ 𝒚$𝒏)

√𝒙$𝑻𝒙$)𝒚$,𝑻𝒚$,
, 𝑛 ∈ .1, 𝑁-1 (4.13) 

where  ∘ is the Hadamard product (i.e. element-wise product). Then the output of the correlation 

analysis layer is  

 𝒛 = ℎ(𝒙�, 𝒀�)

= �𝛾(𝒙�, 𝒚�&) 𝛾(𝒙�, 𝒚�') … 𝛾 w𝒙�, 𝒚�+'x� ∈ ℝ
+' (4.14) 

We use a dense layer with 𝑁#  units and softmax activation function as the final layer before 

classification.  

Because we build a correlation analysis layer at the end of CNNs, the CNNs do not have 

to be active by non-linear activation functions. In our implementation, we use linear activation 

functions in all CNNs. The first layer of the signal-CNN has 16 filters of 9 × 9  kernels. It 

convolutes EEGs in all input channels (𝑁- = 9) in a short local time period (9 sampling points or 

36 ms). The second layer combines the 16 filters in the first layer into one. It uses 1 × 9 kernels to 
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weight EEGs from different channels. The third layer applies a 1 × 9 kernel with no padding (The 

first and second layers use zero paddings to keep the output to have same dimension as the input.) 

to transform the data 𝑿 ∈ ℝ+!×+"×& into a one-dimension signal 𝒙� ∈ ℝ+!×&. At the end of signal-

CNN, we apply a dropout with dropping rate 75% to  𝒙� for regularization. The reference-CNN 

uses two CNN layers. The first layer contains 40 (𝑁# = 40) filters of 9 × 1 kernels. It provides 

convolutional weights for all classes and all channel EEGs in the short time period. The second 

layer uses 9 × 1 kernels to integrate the weights. Similar as the signal-CNN, a dropout layer with 

dropping rate 15% is added at the end of the reference-CNN. 

The Conv-CA is implemented in python-Keras with tensorflow backend. We use 

categorical cross-entropy as loss function. The optimization is solved with Adam algorithm 

(learning rate (8e-4), beta1 (0.9), beta2 (0.999)) with a batch size 32. The model runs on the Google 

Cloud platform. 

4.5 PERFORMANCE EVALUATION 

Accuracy of Classification and ITR are used to evaluate the performance of all models. 

While calculating ITRs, the 0.5 second gaze-shifting time from the original off-line experiment is 

added. We evaluate all the methods in various data lengths (0.2 s to 1 s, with a step of 0.2 s). The 

data is extracted from the simulation period (0.5 s to 5.5 s) of the 6 s recorded data with a step of 

0.15 × 𝑑𝑎𝑡𝑎	𝑙𝑒𝑛𝑔𝑡ℎ. TRCA-based methods are used to compare with our proposed Conv-CA 

model. We use leave-one-out cross validation to evaluate the methods. Specifically, one of the 6 



49 

 

trials of the EEG data are used as test data and the other 5 trials are used as training dataset. This 

process is repeated for 6 times so that every trial is tested. Paired t-test are performed to verify the 

statistical differences of the Conv-CA model and TRCA-based methods. 

The Conv-CA model is trained with a Tesla K80 GPU. When the time window 𝑁" = 50 

(0.2 s), each epoch takes 11 s. The model converges within 100 epochs. To avoid gradient 

exploding, a gradient clipping at 5.0 is added in the Adam solver. For 𝑁" = 100 (0.4 s), 𝑁" = 150 

(0.6 s) and 200 (0.8 s), we use 500 epochs while each epoch takes 9 s, 8 s and 7 s respectively. As 

for 𝑁" = 250 (1.0 s), 1,000 epochs are applied. Each epoch takes 7 s. We demonstrate an example 

of the epoch selection in Figure 18. Figure 18 shows the training loss, validation loss, training 

accuracy, and validation accuracy while applying Conv-CA on the 6-th trial EEG data of subject 

35 with 𝑁" = 250. In Figure 18. (a), the training accuracy and the validation accuracy increase 

rapidly in the first 500 epochs. Then they slowly grow and converge in the rest 500 epochs.  In 

Figure 18. (b), the training loss decreases over the entire 1,000 epochs. However, the validation 

loss almost stops decreasing in the last 500 epochs. The model converges within 1,000 training 

epochs. Similar training loss and validation loss ensure the model have similar performance on 

both the training dataset and the test data.  

The Conv-CA is compared with two TRCA-based methods, i.e. basic TRCA and ensemble 

TRCA. According to [55], the basic TRCA and the ensemble TRCA achieve best performance 

with 5 sub-bands. Thus, we applied filter bank technique on both methods with 5 sub-bands. 
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4.6 RESULT 

We investigated the performance of our proposed Conv-CA model by comparing with 

TRCA-based methods. Because, as mentioned above, filter bank technique (5 sub-bands) can 

substantially improve the classification accuracy of TRCA-based methods, we only explored the 

basic TRCA method under 5 sub-bands and the ensemble TRCA method under 5 sub-bands. For 

simplification, we will mention them as TRCA and ensemble TRCA in below. Figure 19 shows 

the classification accuracy and ITR comparisons across all subjects in various time windows. By 

Figure 19 (a) and (b), our proposed Conv-CA model significantly outperform (𝑝 < 0.001) the 

basic TRCA method in both classification accuracies and ITRs across 5 tested time windows from 

0.2 s to 1.0 s. Figure 19 (c) and (d) demonstrate that the Conv-CA model is significantly (𝑝 <

0.05) better than the ensemble TRCA method in both accuracies and ITRs across all time windows. 

The Conv-CA model achieves the highest ITR 226.19 bits/min on the 0.4 s time window, which 

 

Figure 18: (a) The training accuracy, the validation accuracy, (b) the training loss, and the validation loss of the 6-th 
trial EEG of subject 35 on 1.0 s time window over 1,000 training epochs. 
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is higher than the highest ITR 216.34 bits/min of the ensemble TRCA achieved on the same time 

window. The highest ITR of the Conv-CA is significantly (𝑝 < 0.001) higher than the highest ITR 

of the ensemble TRCA method.  

We also investigated how our proposed Conv-CA model performs on those subjects which 

have relative lower classification accuracies under TRCA-based methods. In Figure 20, we plotted 

the absolute performance increment of Conv-CA compare to the ensemble TRCA vs the 

classification accuracy of the ensemble TRCA. The classification accuracies of the subjects, whose 

 

Figure 19: The averaged accuracies (a, c) and ITRs (b, d) across all subjects by TRCA-based methods and Conv-CA 
model in various time windows. The asterisks in subfigures indicate significant difference between two methods by 
paired t-tests (*𝑝 < 0.05,  **	𝑝 < 0.01, *** 𝑝 < 0.001). The error bars indicate standard errors. 
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SSVEP were not well-classified by the ensemble TRCA, increased much more than those subjects 

whose SSVEP were well-classified. Especially in the 0.8 s time window, the classification 

accuracy of subject 33 increased from 43.57% to 61.71% with the Conv-CA model. And the 

accuracy of subject 19 increased from 58.93% to 71.57%. According to Figure 20, the Conv-CA 

tends to have better improvement for low-performed subjects in the ensemble TRCA method. To 

verify the assumption, we calculated the correlation coefficients of the increments and the 

classification accuracies of the ensemble TRCA. The hypothesis tests and correlation coefficients 

in Figure 21 indicate that the increments have negative relationship with the accuracies of the 

ensemble TRCA. Thus, our proposed Conv-CA model has better performance on the subjects 

whose SSVEP have lower- performance in ensemble TRCA method. 

4.7 CONCLUSION AND DISCUSSIONS 

Enhancing the classification performance of SSVEPs is important for numbers of BCI 

applications. In this study, the Conv-CA model we proposed has better performance than the state-

of-art TRCA-based methods on both classification accuracies and ITRs for classifying multi-target 

SSVEPs using individual subject data. The TRCA-based methods learn weights of spatial filters 
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from the training data to linear combine EEGs collected from multiple channels. While applying 

 

Figure 20: The Conv-CA performance increments from ensemble TRCA vs the classification accuracies of ensemble 
TRCA method in various time windows.  The dash lines are 2-nd order polynomial curve fittings of the increments to 
visualize the trends.  
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the ensemble TRCA with filter bank, the method has great performance on the benchmark dataset. 

However, for some subjects, for example the subject 11, 19, and 33, the classification accuracy is 

much lower than the cross-subject averaged accuracy. Specifically, the accuracies of the subject 

11, 19, and 33 are 76.20%, 69.63%, and 57.78% compare to the averaged accuracy 92.99% on the 

1.0 s time window. Our proposed Conv-CA model has significant better performance on these 

low-performed subjects.  

The proposed Conv-CA model no longer using linear models, such as spatial filters. It 

combines CNNs and correlation analysis to provide convolute operations for short periods of EEG 

signals across multiply channels. The Conv-CA suggests that by involving non-linear components, 

we can obtain a better performed model than spatial filters. It also implies that some subjects have 

worse SSVEP performances is probably because the model does not contain enough non-linear 

 

Figure 21: Correlation coefficient of the Conv-CA increments from ensemble TRCA and the accuracies of ensemble 
TRCA in various time windows. The * indicates significance of a correlation (p < 0.001).  



55 

 

components. Furthermore, the CNN structures and parameters in the Conv-CA model has not been 

sufficiently explored. By constructing different CNNs, the Conv-CA can expand into infinite 

number of models. So, there is great potential that a fine-tuned Conv-CA model can achieve much 

better performance than the current Conv-CA model. And the structure of the Conv-CA can also 

be further changed to the combinations of other non-linear structures and other signal processing 

tools.  

The Conv-CA model is not a classic deep learning model which constructed by pure neural 

networks. It contains a correlation analysis layer at the end of the CNNs. The correlation analysis 

layer connects the signal-CNN and the reference-CNN by correlation coefficients. In other aspect, 

the CNNs are extensions of spatial filters, because the signals and the references are still connected 

with correlation analysis. Classic deep learning models learn all parameters from the dataset. 

Because EEG signals has low SNRs, it is easy to obtain a biased deep learning model, which means 

the model learns too much from the noise rather than focus on the signal. Even with huge amount 

of data, it will still be a challenge for deep learning models to locate the true signal. By involving 

a correlation analysis layer, the CNNs are forced to maximize the signal-reference correlations. It 

can avoid bring too much redundant parameters and structures. 

The idea of combing traditional signal processing tools and deep learning structures can 

also be tested on other low SNR signals, such as P300 and seizure. Deep learning structures can 

bring sufficient non-linear operations to a model and the unsupervised features form traditional 

signal processing tools can prevent overfitting caused by involving too many parameters.  
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CHAPTER 5 : EEG-BASED FEAR DETECTION FOR HUMAN SAFETY 

PROTECTION IN HUMAN-ROBOT COLLABORATION 

5.1 INTRODUCTION 

In human-robot collaborative interaction, the robot collaborators should adapt their actions 

to human’s physical and mental states. For example, the robot is expected to slow down when the 

human collaborator is exhausted. Or when the collaborator feels uncomfortable, the robot should 

stop. One of the important features is that the robot should slow down, pause, or stop when the 

human feels unsafe in the collaboration. These functions require the robot to understand the 

emotions of humans.  

Emotions can be acquired indirectly from the human’s facial expression, body language, 

and voice by robots [61-64]. They can also be perceived from the physiological signals, such as 

electroencephalogram (EEG), electromyogram (EMG), and electrocardiogram (ECG) [65-67]. 

EEG is the most commonly used physiological signal for emotion recognition. It is collected from 

the brain cortex hence directly reflects the mental activities. However, emotion recognition from 

EEG is challenging, because of the emotion-variety in different individuals and the fuzzy 

boundaries of the emotional time, etc. Most current researches stimulate subjects to produce certain 

emotions by showing pictures, sounds, music, and videos with emotional tendencies [66,68,69]. 

Stimulated emotions are disgust, joy, anger, sadness, surprise, fear, curiosity, etc. And the EEG 

time window for emotion recognition varies from around 10 seconds to couple minutes. However, 
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in the human-robot collaboration scenario, the robot should be able to respond to emotions quickly, 

especially fear. Moreover, emotions produced by watching videos or images are different from the 

emotions produced while working collaboratively with a robot. But there is no study detecting the 

emotions while subjects are working with a robot. 

In this study, we detected the fear response from EEG in real-time (1 second time window) 

while the humans are working with a robot collaboratively. A human subject experiment was 

designed to collect the fear responses that human-produced when they observe unexpected robot 

motions. Classification models and regression models for detecting fear responses in EEG data per 

second were built and compared based on classification accuracies or prediction errors. Finally, 

the models were evaluated based on their performance for unsafe warning.  

5.2 EXPERIMENTAL DESIGN 

We designed an experiment to collect the human operators’ EEG responses when they felt 

dangerous while working collaboratively with the robot. The experiment design followed two 

requirements: 1) Subjects need to feel unsafe; 2) The robot will not harm subjects physically. 

Therefore, in our experiment, subjects were asked to stay outside the workspace of the robot. 

Meanwhile, we enhanced their intense feeling from both visual and auditory aspects. The 

experiment was designed into two stages. In the first stage, subjects were assigned a task so that 

they always focused on the robot. At random times, the robot jumped into the second stage. Since 

stress can modulate sensory gating [70, 71], the unexpected stage change while subjects were 
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focusing on the task can enhance the fear of the subjects. In the second stage, the robot moved 

quickly under unpredictable trajectories and simultaneously destroyed surrounding objects. Scenes 

and sounds that destroying objects also enhanced the sense of unsafe. The robot actions and 

destructions in the second stage were all pre-designed to ensure the safety of subjects. The EEG 

was collected during both stages. 

The experimental design details are as follows. The subject sits one meter away from the 

robot with a keyboard accessible by them. Before the experiment, the subject was told to complete 

a task, which is during the robot moving back and forth, press a key when the robot moves to the 

highest position or the lowest position. As the experiment starts, the robot end-effector slowly 

moves downward as shown in the two leftmost robot configurations in Figure 22. The downward 

movement takes 2600 ms.  Then, the robot pauses for 10 ms at the lowest position. The subject 

needs to press a key so that the key hits in the 10 ms pause period of the robot. If the key is 

successfully pressed within the pause time, the subject will receive a point for the task. Otherwise, 

 

Figure 22: Illustration diagram of the robot motion in the experiment design. Stage 1: the robot moves down for 2600 
ms, stays at the lowest point for 10 ms, then, moves up for 2600 ms, and stays at the highest point for another 10 ms. 
The downward or upward motion repeats for 30 times. But a random time between the 21-st motion and the last 
motion, the robot can enter the stage 2. Stage 2: the robot moves quickly in a predesigned motion for 9000 ms. 
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a sound message will tell the subject whether the key was pressed too early or too late. Then, the 

robot moves up and pauses for another 10 ms. And the subject should once again press the key 

within the pause time. The upward or downward motions repeat 30 times in total. However, if the 

subject scored more than 7 points in the first 20 motions, the experiment will leap to the second 

stage at a random time between the 21-st motion and the last motion. Once the experiment enters 

the second stage, the robot will move quickly following a pre-designed trajectory. However, the 

trajectory appears to be unpredictable to the subject. During the quick motion, the robot pushes a 

large box and two bolts off the table. The subject will hear the dropping sound of bolts. Then, the 

robot will break the pen attached at the end of the robot. The whole quick motion takes 9000 ms. 

The EEG is collected during the entire experiment. The time when the experiment enters the 

second stage is also recorded. 

5.3 EEG COLLECTION 

The EEG was collected through a B-Alert X24 headset (Advanced Brain Monitoring, 

Carlsbad, CA), which has 20 electrodes positioned following the 10-20 system and a pair of 

reference channels. The sampling frequency is 256 Hz. Five healthy subjects (males, age 25-30 

years) participated in the experiment. The experiment run 4 times for each subject. 
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5.4 SIGNAL EXTRACTION 

The fear acquisition process can activate several brain areas. Kevin S. LaBar et al. 

conducted a study using echoplanar functional magnetic resonance imaging (fMRI) to observe the 

fear acquisition in 1998 [72]. The experiment is designed in a simple discrimination paradigm. A 

visual conditioned stimulus was paired with an electric shock to the wrist, while the other visual 

conditioned stimulus was presented alone. In the study, activations were observed in the anterior 

cingulate (Brodmann’s Area (BA) 32, 24), precentral gyrus (BA 6), periamygdaloid cortex (BA 

34), superior frontal gyrus (BA 6), precentral gyrus (BA 4), middle frontal gyrus (BA 8), superior 

temporal gyrus (BA 22), and striatum. Another two studies conducted by M. A. Fullana et al [73] 

and Jorge L. Armony [74] confirmed the activations in the anterior cingulate, superior frontal 

gyrus, middle frontal gyrus, and superior temporal gyrus. They also observed additional activations 

in the fusiform gyrus (BA 37) and dorsolateral prefrontal cortex (BA 9, 46). We marked all the 

reported activation areas on Figure 23 (a). Now that we are observing fear from the EGG. The 

corresponding channels in a 20-electrodes 10-20 system to the activation areas are Fp1, Fp2, F3, 

F4, T3, and T4, as shown in Figure. 23 (b). In the study conducted by Michael A. Kisley [75], they 

found event-related gamma (30-100 Hz) and beta (14-30 Hz) activities in the EEGs after a click 

which indicates that the participants will experience white noise burst or electrical shock. 
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These relative studies suggested that fear responses can be found in gamma and beta bands 

of the Fp1, Fp2, F3, F4, T3, and T4 channels. We have consistent discovery in our experimental 

study. In Figure 24, we plotted the average power spectral density (PSD) of the EEG from 16 Hz 

to 45 Hz collected from the Fp1, Fp2, F3, F4, T3, and T4 channels of all subjects. The average 

PSD increased after the experiment enters the stage 2. 

 
(a) 

 

 
(b) 

Figure 23: (a) The brain active areas in the process of fear acquisition in fMRI studies and (b) the corresponding 
positions in the EEG 10-20 system. The numbers in (a) are Brodmann’s areas. 
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5.5 SIGNAL PREPARATION 

The fear response is to alert the robot when human feels unsafe in the collaboration. Such 

that, the robot can interrupt its current motion by stopping or slowing down to protect human 

safety. Under this goal, the detection was performed in every second. Detection models were built 

for each individual subject. The data of each individual subject is 4-folded and divided into a 

training dataset, a validation dataset, and a test dataset. Specifically, every 3 runs of the experiment 

were used for training. The rest run was left for validation and test. The training and validation 

 

Figure 24: The average PSD of EEG from 16 Hz to 45 Hz collected from Fp1, Fp2, F3, F4, T3, and T4 channels of 
all subjects. The red line indicates the time when the experiment entered stage 2. The left and right sides are the PSD 
of 9 s EEG before and after the stage change. PSD is calculated in non-overlapping 1 s time windows and normalized 
between 0 and 1. 
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datasets are the EEG segments collected from 9 seconds before and after the experiment stage 

change. The test dataset is the EEG collected from 50 seconds before and 9 seconds after the stage 

change. The EEG segments have no overlapping. 

5.6 MODEL EVALUATION METRIC 

The ideal detection model should classify all the 1-second EEG segments collected in the 

experiment stage 1 as negative for fear response and classify at least one segment collected in the 

stage 2 as positive for fear response. Because the robot will take actions to protect human safety 

once one EEG segment is classified as positive fear response, some EEG segments collected in 

stage 2 are allowed to be classified as negative. Models are evaluated using Fowlkes–Mallows 

index (FM) as 

 
𝐹𝑀 = � 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 ∙
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
( 5.1) 

Here, TP is the number of true positives, specified as the number of test trials which has at least 

one positive fear response detected in the experiment stage 2. The FN is the number of false 

negatives. It is the number of all test trials minus TP. FP is the number of false positives, which is 

the total number of positive fear responses detected in the experiment stage 1. 
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5.7 FEAR RESPONSE CLASSIFICATION 

PSD from 16 Hz to 45 Hz of the EEG in different channel combinations were used as 

features. The channel combinations were (Fp1, Fp2), (Fp1, Fp2, T3, T4), (Fp1, Fp2, F3, F4), (T3, 

T4, F3, F4), and (Fp1, Fp2, T3, T4, F3, F4). The EEG segments collected in the experiment stage 

1 were labeled as 0. And segments collected in the stage 2 were labeled as 1. EEGs were classified 

by logistic regression (LGS) and support vector machine (SVC). The LGS model was applied with 

L1-regularization and the SVC model was applied with RBF-kernel. 

We chose hyperparameters which maximize the score of the validation dataset. For the fear 

detection task, we tested two different validation scores, i.e. classification accuracy (CA) and a 

modified classification accuracy (MCA). CA is the ratio of correct classification. While for the 

MCA, it counted all the false negatives (i.e. negative fear response in stage 2) as true positives 

(positive fear response in stage 2) if there was at least one true positive found in a test trial. 

Comparing to CA, MCA is more similar to the model evaluation metric. 

5.8 FEAR RESPONSE REGRESSION 

Because it is not necessary for every EEG segment in the experiment stage 2 to be classified 

as positive fear response. The fear response detection can be performed by regression models. For 

the regression models, we used the same features and channel combinations as in classification. 
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The dependent variables of EEG segments in the stage 1 were set to 0. The dependent variables in 

the stage 2 at the 𝑡-th second after the stage change was set as 

 
𝑦(F) =

�̅�'
(F) −𝑚𝑒𝑎𝑛(�̅�&

($))$G&,…,0
𝑚𝑒𝑎𝑛(�̅�'

($))$G&,…,0 −𝑚𝑒𝑎𝑛(�̅�&
($))$G&,…,0

 
( 5.2) 

where, �̅�&
(F), �̅�'

(F) ∈ ℝ are the average PSD of the t-th second EEG in the stage 1 and 2 from 16 Hz 

to 45 Hz in the channels Fp1, Fp2, T3, T4, F3, and F4 across all experiment runs. The dependent 

variables of all the time windows is shown in Figure 25. 

We applied ridge (RDG), lasso (LSS), and linear support vector regression (SVR) models 

for regression. The validation loss is a balanced mean absolute error (MAE). The balanced MAE 

is the average of the MAE of the prediction for stage 1 and the MAE of the prediction for stage 2. 

The regression prediction is further classified as a positive fear response if it satisfies 

 

Figure 25: Dependent variable for regression models 
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 𝑦²(F) > 𝑐 +𝑚𝑒𝑎𝑛5𝑦²($):
$G&,…,F

+ 2 ∗ 𝑠𝑡𝑑(𝑦²($))G&,…,F ( 5.3) 

Here, 𝑐 is a constant threshold to control the detection sensitivity. 𝑦²(F) is the regression prediction 

of the 𝑡-th second EEG segment. 𝑠𝑡𝑑(𝑦²($))G&,…,F is the standard deviation of the predictions in the 

first t seconds.  

5.9 RESULTS 

Table 2 shows the accuracy and model performance comparison t-test when validating 

SVC and LGD on various channel combinations using classification accuracy and modified 

classification. Applying SVC to the Fp1, Fp2, F3, and F4 channels (SVC-front4) reached the 

highest accuracy for both validation scores at 86.0% and 96.0%. While applying SVC merely to 

the Fp1 and Fp2 channels (SVC-front2) reached the second-best accuracy for both validation 

scores at 85.8% and 95.7%. These two models have significantly better performance than other 

tested models.  

Figure 26 (a) and (b) show the classification results of SVC-front4 and SVC-front2 on the 

test dataset. SVC-front4 obtained 100% true positive rates. However, there were 5.05 false 

positives on average per trial. SVC-front2 also got 100% true positive rates with lower false 

positives rates as 4.00 false positives per trial.  

Table 3 shows the modified MAE of RDG, LSS, and SVR on various channel 

combinations. Applying SVR on the Fp1, Fp2, F3, and F4 channels (SVR-front4) reached the 

lowest MAE at 0.372. SVR-front4 has significant lower MAE than the other tested models except 



67 

 

for the SVR-front2 model which applied SVR on the Fp1 and Fp2 channels. SVR-front2 obtained 

higher MAE at 0.383.  

Figure 26 (c) and (d) show the classification results of SVR-front4 and SVR-front2 with 

threshold c=0.2. The true positive rates are 95% and 80% for SVR-front4 and SVR-front2 

respectively. However, their false positive rates are much lower than the classification models as 

0.20 and 0.1 false positives per trial respectively.  

When c=0.2, FM of SVR-front4 is 0.886 and FM of SVR-front2 is 0.843. SVR-front4 

reached the highest FM when c=0.2, as shown in Figure 27 (a). The highest FM for SVR-front2 is 

0.933, which can be reached when c=0.13. The corresponding test result is shown in Figure 27 (b). 

The FM for SVC-front4 and SVC-front2 are 0.407 and 0.447 respectively. 
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Table 2: Comparison of classification models using classification accuracy, and the comparisons of models using 
modified classification accuracy 

 

CA 
Fp1, Fp2,  

F3, F4 Fp1, Fp2 
MCA 

Fp1, Fp2, 
F3, F4 Fp1, Fp2 

(SVC) (SVC) (SVC) (SVC) 

Fp1, Fp2 (SVC) 0.858 p = 0.858  0.957 p = 0.742  

Fp1, Fp2 (LGS) 0.755 p < 0.001 p < 0.001 0.893 p < 0.001 p < 0.001 

Fp1, Fp2, T3, T4 (SVC) 0.596 p < 0.005 p < 0.005 0.754 p < 0.001 p < 0.001 

Fp1, Fp2, T3, T4 (LGS) 0.665 p < 0.001 p < 0.001 0.837 p < 0.001 p < 0.001 
Fp1, Fp2, F3, F4 (SVC) 0.860  

 0.960  
 

Fp1, Fp2, F3, F4 (LGS) 0.752 p < 0.001 p < 0.005 0.884 p < 0.001 p < 0.005 

T3, T4, F3, F4 (SVC) 0.583 p < 0.001 p < 0.005 0.729 p < 0.001 p < 0.001 

T3, T4, F3, F4 (LGS) 0.646 p < 0.001 p < 0.001 0.831 p < 0.001 p < 0.001 

Fp1, Fp2, T3, T4, F3, F4 (SVC) 0.597 p < 0.005 p < 0.005 0.765 p < 0.001 p < 0.005 

Fp1, Fp2, T3, T4, F3, F4 (LGS) 0.681 p < 0.001 p < 0.001 0.846 p < 0.001 p < 0.001 

Table 3: Comparison of regression models using balanced mean absolute error 

 MAE Fp1, Fp2, F3, F4 (SVR) Fp1, Fp2 (SVR) 

Fp1, Fp2 (RDG) 0.467 p < 0.001 p < 0.001 

Fp1, Fp2 (LSS) 0.471 p < 0.001 p < 0.001 

Fp1, Fp2 (SVR) 0.383 p = 0.215 
 

Fp1, Fp2, T3, T4 (RDG) 0.458 p < 0.001 p < 0.001 

Fp1, Fp2, T3, T4 (LSS) 0.480 p < 0.001 p < 0.001 

Fp1, Fp2, T3, T4 (SVR) 0.480 p < 0.05 p = 0.069 

Fp1, Fp2, F3, F4 (RDG) 0.453 p < 0.005 p < 0.005 

Fp1, Fp2, F3, F4 (LSS) 0.459 p < 0.001 p < 0.001 

Fp1, Fp2, F3, F4 (SVR) 0.372 
  

T3, T4, F3, F4 (RDG) 0.475 p < 0.001 p < 0.001 

T3, T4, F3, F4 (LSS) 0.505 p < 0.001 p < 0.001 

T3, T4, F3, F4 (SVR) 0.469 p < 0.01 p < 0.05 

Fp1, Fp2, T3, T4, F3, F4 (RDG) 0.456 p < 0.001 p < 0.001 

Fp1, Fp2, T3, T4, F3, F4 (LSS) 0.488 p < 0.001 p < 0.001 

Fp1, Fp2, T3, T4, F3, F4 (SVR) 0.436 p < 0.01 p < 0.05 
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Figure 26: Test dataset prediction results of (a) SVC-front4, (b) SVC-front2, (c) SVR-front4 (𝑐 = 0.2), and (d) SVR-
front2 (𝑐 = 0.2). The red lines are stage changing times. The peaks are positive fear response predictions. 

 

 

Figure 27: (a) FM of SVR-front4 and SVR-front2 under various thresholds and (b) Prediction results of SVR-front2 
𝑐 = 0.13. 
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5.10 CONCLUSSION AND DISCUSSIONS 

We designed an experiment to collect the EEG when the human subjects feel dangerous 

while working collaboratively with an industrial robot. The fear emotion generated in our 

experiment is different from the previous experiments. In the previous experiment, the fear signal 

is collected between the subjects received a hint and received an electrical shock. In other word, 

the subjects generated fear emotion while waiting for the electrical shock. However, in our 

experiment, the fear emotion is generated while watching the unexpected motions of the robot. 

Rather than being afraid, there are some worries and frights also. So, we think the emotions in the 

EEG are not only fear itself in our experiment. The unsafe feeling of the human while the robot is 

making un-predictable motions is not pure fear. Thus, the “fear” emotion detected in our study is 

only for human-robot collaborative working. 

The fear response did not stay in the same level during the experiment stage 2. As shown 

in Figure 27, the averaged PSD suggested that the emotion reached the peak at the 3-rd second 

after the experiment stage change, then decayed in the rest of the experiment. The delay of the 

peak can be related to the robot trajectory in the experiment. That is, in the beginning of the stage 

2, the motion of the robot was not being afraid by the emotion of the subjects did not contain much 

fear. For classification models, it is not trivial to manually distinguish which second the subjects 

feel dangerous, which second don’t. But, if all the EEG segments were labeled as fear response 

(the same as we did in this study), there results a lot of false positives in the stage 1. On the other 

hand, regression models handled this situation much better as we demonstrated in the study. 



71 

 

For regression models, we applied the equation (3) to determine which prediction is a fear 

response. The equation (3) basically classify a prediction as a fear response if it is higher than the 

historical mean for two standard deviations. However, the standard deviation can be very small 

when we only have a few historical data. So, a threshold was added in the equation (3) to control 

the detection sensitivity.  

  



72 

 

CHAPTER 6 : FUTURE WORK 

In this work, we developed BCIs to interact with industrial robots actively or passively. In 

the active interaction, the operator can send commands to the robot with SSVEP. In the passive 

interaction, the robot will observe the fear response from the operator’s EEG. We also introduced 

a CNN and CCA combined model “Conv-CA” which works great on the 40-frequencies SSVEP 

classification task. We think there are some future work directions that are worth well to explore: 

1) For the active interactions, the SSVEP we are currently using is a signal that is very stable 

and easy to detect. However, the signal has some major drawbacks. First, the command 

sender has to stare at a flashing light. This action is not intuitive for giving a command. 

Second, if the flashing light is not strong enough or the flashing image is not big enough, 

SSVEP can be difficult to detect. Third, SSVEP doesn’t work for everyone. Some people 

can have very weak SSVEP. Ideally, what we want to send is our thought or even a simple 

‘yes’ or ‘no’. But that is almost impossible to be extracted in EEG. And, when people try 

hard to think, some EMG signal can mess up EEG. We think, if a binary thought like “yes” 

and “no” can be detected in EEG, or people can learn a way to think “yes” and “no” such 

that the thought can be captured in EEG, combining with eye gazing technology, it will be 

a great human-robot interaction. 

2) Comparing to active interaction, we think there are more possibilities in passive interaction. 

The passive interaction is intuitive, because people can just focus on their job while the 

BCI functions by itself. It can be used to detect certain response, for example the unsafe 
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feeling we studied, or some emotions, like happy, depressed, sleepy, boring, etc. These 

emotions detection can benefit social robots, safety driving, rehabilitation training, etc. The 

current research collects EEG with emotions by showing emotion relevant videos or 

images to experiment subjects. But the classification accuracy is pretty low. We think 

alternative experiment designs should be considered in order to collect EEG with higher 

quality emotions. The experiment must be designed carefully so that the subjects can 

achieve target emotions in the experiment. And we want the experiment can be repeated 

on the same subject for multiple times.  

3) As for the classification model of noisy biomedical signals, deep learning models can be a 

strong tool. As we discussed in the chapter 4, complicated deep learning models can result 

strong overfitting on low SNR signals. Combining adding a deterministic layer in the deep 

learning model, for example the CCA layer in Conv-CA, can prevent overfitting. 
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