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ABSTRACT 

 Assembly of the plant rhizosphere microbiome is driven by plant genetic and 

evolutionary history (Yeoh et al. 2017). Plant microbiomes play a major role in altering plant 

resilience, fitness, nutrition, and productivity (Busby et al. 2017). Plant hosts selectively filter 

microorganisms that colonize their rhizosphere (Bulgarelli et al. 2013; Philippot et al. 2013). 

This selective process is heritable across plant cultivars (Peiffer et al. 2013; Walters et al. 2018), 

yet the implication of heritability on rhizosphere microbiome function has been relatively 

unexplored. This dissertation attempts to characterize the N-cycling functions associated with 

heritable recruitment to the rhizosphere microbiome.  

The following dissertation aims to address these specific objectives: examine whether the 

contemporary agricultural practices that maize has experienced over the past 50 years of 

breeding has altered the rhizosphere N-cycling microbiome assembly, determine how 

domestication altered modern maize rhizosphere microbiome assembly from its ancestral 

progenitor teosinte, assess whether these genotype driven microbiome assembly processes persist 

in the field setting and influence N-cycling ecosystem function and finally attempt to determine 

the underlying genetic regions and mechanisms contributing to differential microbial community 

assembly and function in the rhizosphere. The findings of these specific objectives suggest that 

the maize microbiome has been unintentionally altered through the process of contemporary 

breeding and domestication, resulting in the microbiome interaction to be less agriculturally 

sustainable. These anthropogenic driven changes to the maize microbiome can be characterized 

by changes in nitrifying and denitrifying microbiome recruitment that consequently alter the 

rates of nitrification and denitrification of a soil. Furthermore, wild genetic diversity appears to 

house more sustainable N-cycling microbiome interactions compared to modern maize. The 
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dissertation closes by showing how “rewilding” the plant microbiome interaction could be a 

potential solution to improve our agricultural system.  

Modern agricultural practices have resulted in the unprecedented degradation of our global 

nitrogen cycle (Galloway et al. 2008). This N-cycle disruption by agriculture has been primarily 

driven by the over-application of synthetic N fertilizers. On average only about half of this 

applied synthetic N is taken up by our focal crop (Coskun et al. 2017), while the remainder is lost 

through microbiome activities such as nitrification and denitrification. Broadly, the work in this 

dissertation shows that genotype-driven rhizosphere microbiome assembly can have a 

considerable effect on N-cycling functional groups that carry out nitrification and denitrification. 

Additionally, this dissertation suggests that at least in maize, a global staple crop, it appears that 

breeding has disrupted N-cycling functional group control in the rhizosphere especially when 

compared to its wild progenitor teosinte. Finally, we show that modern maize can regain the 

ability to influence N-cycling microbes in the rhizosphere with genetic introgressions from 

teosinte. Overall, this dissertation uses a combination of microbial ecology and plant genetics to 

provide some explanations for why our contemporary agricultural system is so unsustainable (via 

N-pollution) and provides some potential solutions to improve it (via rewilding).  
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CHAPTER 1: INTRODUCTION 

Over the 20th century, our industrial agricultural systems have had to meet and increased 

food demands by simplifying our agronomic management practices, increasing the number of 

external fertilizer inputs into the agricultural field, and increasing the density of plants (Hallauer 

2009; Galloway et al. 2008). These changes consequently have resulted in large amounts of 

environmental degradation, increased greenhouse gas production, harm to human health, and 

have made agriculture a substantial contributor to climate change (Smith et al. 2008; Mora et al. 

2018). In addition to this, recent reports show that 52% of all fertile, food-producing soils 

globally are now classified as degraded, and it has been projected that continued agricultural 

production on these degraded lands 12% decline in global food production over the next 25 years 

(United Nations Conventions to Combat Desertification 2015). As it stands, our current 

agricultural system is both sensitive and a major contributor to ecosystem-level changes caused 

by climate change. Rethinking our agricultural system to be sustainable and resilient will require 

the collaboration of scientists and industry to generate solutions that will balance our 

anthropogenic needs with our impacts on both local and global ecosystems.  

A proposed solution to meet the challenge to improve resilience and sustainability is to 

harness capabilities of the plant-associated soil microbial communities and incorporate them into 

modern agriculture (Busby et al. 2017; Antwis et al. 2017). A recent renaissance in microbial 

ecology, spurred by technological advances in next-generation sequencing and culturing 

methods, has begun to reveal the pivotal role that soil microbes play in plant health and 

productivity. These advances in understanding have led to a paradigm shift in which microbial 

communities are seen as functional drivers of their plant host (Philippot et al. 2013; Bulgarelli et 

al. 2013; Cordovez et al. 2019). This is because microbial communities can expand the genomic 
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and metabolomic capabilities of their sessile plant hosts, providing them a mechanism by which 

to mitigate or evade stressors in their shared environment (Vandenkoornhuyse et al. 2015; 

Cordovez et al. 2019). Specifically, soil microbial assemblages have been implicated in the 

resistance of pathogens, amendments to plant nutrition, resistance against drought, and resistance 

against plant pests (Kwak et al. 2018; Philippot et al. 2013; Seabloom et al. 2019). The 

physiological and ecological link between soil microbial communities and plants should come as 

little surprise as these two systems have been interacting and coevolving since the inception of 

terrestrial land plants (Svistoonoff et al. 2008; Delaux and Schornack 2021). Incorporation and 

expansion of a plant-microbiome perspective with a fundamental view that the two systems are 

working in concert is necessary to improve the sustainability and resilience of our 

agroecosystems. 

Currently, these advances in plant microbiome sciences have resulted in the emergence of 

agro-industrial ventures focused on the production of microbial bio-stimulants that improve plant 

performance (e.g., Novozymes, Pivot bio, Valagro, Aphea Bio, Azotic, etc.). These industries 

design, culture, and characterize microorganisms that are capable of have beneficial interactions 

with plants. Plant-growth-promoting microbes are then reintroduced back into the soil ecosystem 

or inoculated directly onto the plant (Kong, Hart, and Liu 2018; Sessitsch, Pfaffenbichler, and 

Mitter 2019). While this approach has been shown to have considerable success in improving 

plant performance in controlled and greenhouse settings, such findings rarely hold in the field 

(Backer et al. 2018). Typically, this lack of success is attributed to the complex and context-

dependent nature of agricultural soils (Kong, Hart, and Liu 2018; Hart et al. 2018). 

Microorganisms and their functions are extremely sensitive to environmental conditions. 

Consequently, microbial biostimulants are developed under controlled laboratory conditions and 
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can fail to deliver the desired result when introduced to the highly variable environment of 

agroecosystems (Sessitsch, Pfaffenbichler, and Mitter 2019). Besides, to establish in the 

agricultural environment, microbial biostimulants must compete with native soil microbiota and 

be compatible with conditions in the soil environment (Hart et al. 2018; Woo and Pepe 2018; 

Kong, Hart, and Liu 2018). Furthermore, the biostimulant method of agricultural improvement is 

intractable at greater agronomic scales as the production and development of microbial inoculum 

is expensive, time-consuming, and not always rewarded. Significant advances in the usage of 

microbiome applicants are needed to bridge the gap between laboratory success and field in field 

settings. 

As an alternative, we propose leveraging plant genetics and breeding to harness the plant-

microbe interactions. Plant breeding is the genetic improvement of plants for human benefit. 

Plant breeders play a unique evolutionary role in the agricultural system as they test, cross, and 

select traits of specific germplasm for improvement. Traits that have been successfully 

incorporated into crop plants range in complexity. Easily characterized phenotypic traits (i.e., 

crop beauty, flavor, crop storage, and yield) have been the primary focus of breeders over human 

history (Diamond 2002), but work has shown that complex traits can be successful targets of 

selection (Anderson et al. 2014). Some examples of context-dependent traits that breeders have 

improved include abiotic stress tolerance (Trethowan and Mujeeb-Kazi 2008), resistance against 

pathogens (Wille et al. 2019), increased tolerance to insect pests (Foyer, Noctor, and van Emden 

2007), herbicide resistance and plant-soil allelopathy (Fragasso, Iannucci, and Papa 2013). 

Complex traits started playing a prominent role in the agricultural system over the past 30 years. 

Here, we want to examine if plant-associated microbial communities behave like the previously 

mentioned complex traits and if they can be used to improve the sustainability of the 
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agroecosystem. Understanding the potential for a genetic basis for the plant to influence 

recruitment and function of the plant microbiome would allow researchers and breeders to work 

toward controlling complex soil microbial communities and plant symbioses across a variety of 

environments and soil types. 

The purpose of this mini-review is to explore the present knowledge of the connection 

between plant genetics and the structure and function of the microbiome and to illustrate the 

viability of incorporating plant microbiome selection traits into breeding programs. We aim to 

cover: 1) how and when do plant genetic factors play a role in shaping the soil microbiome; 2) 

the mechanistic underpinnings by which plant genotype can influence microbiome interaction 

and selection; 3) the link between microbiome selection and ecosystem function. After reviewing 

these topic areas, I will present an overview of how this dissertation contributes to our 

understanding of how plant genetics influence the microbiome. 

 

Plant genotypes influence the soil microbiome:  

i. Evidence for plant species impacts of the rhizosphere microbiome 

A large body of research dating back to the early 19th century has focused on understanding 

how plants alter the physicochemical properties of soil in the zone surrounding the root zone, 

known as the rhizosphere effect (Waksman 1927). These plant rhizosphere effects have been 

shown to influence the establishment of individual soil microorganisms from the environment 

(Bashan 1986; J. L. Neal, Larson, and Atkinson 1973) thereby altering the composition of the 

soil microbial community as a whole (Bulgarelli et al. 2013; Philippot et al. 2013). Plants species 

from agroecosystems (Matthews et al. 2019) to natural systems (Saad et al. 2020) have been 

shown to have the ability to alter soil microbial communities. Furthermore, a variety of plants 
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ranging from citrus (Xu et al. 2018), rice (Edwards et al. 2014; Kim and Lee 2019; Ding et al. 

2019), maize (Peiffer et al. 2013; Walters et al. 2018; ( Favela, Bohn, and Kent 2021), wheat 

(Mahoney, Yin, and Hulbert 2017), barley (Bulgarelli et al. 2015), Arabidopsis (Lundberg et al. 

2012; Schlaeppi et al. 2014), beet (Zachow et al. 2014), lettuce (Cardinale et al. 2015), agave 

(Coleman-Derr et al. 2015), lotus (Zgadzaj et al. 2016), and dessert grasses (Eida et al. 2018; 

Marasco et al. 2018) have to host different microbiome assemblages in the rhizosphere compared 

to bulk soil. Furthermore, evidence suggests that the strength of microbial recruitment across 

plant species varies immensely (Fitzpatrick et al. 2018, 2019). A large amount of literature, 

across several plant species, shows that plants broadly have a selective effect in the rhizosphere, 

yet a functional understanding of why plants do this is still not understood.  

Studies across many of the aforementioned plant species have reported results with varying 

levels if support for a predictive relationship between host genotype and rhizosphere microbiome 

assembly. Within Poaceae for example, plant phylogenetic differences are correlated with 

differential recruitment of the microbial community (Bouffaud et al. 2012; Bouffaud et al. 2014). 

These studies suggest that more highly related grasses recruit more similar microbial 

communities. Additionally, an in-depth analysis of plant microbiome assembly across 30 

angiosperm species, which span 140 million years of evolution, show that while plant species 

still had a rhizosphere microbiome effect, not all bacterial phyla respond to plant-rhizosphere 

selection, or have a phylogenetic signal in the rhizosphere microbiome recruitment (Fitzpatrick 

et al. 2018). Fitzpatrick et al. also determined that specific plant traits (physiology, productivity, 

root, architecture) that are expected to shape the rhizosphere compartment, are themselves 

uncorrelated with host-plant phylogeny. Interestingly, this work shows that plants that recruit 

similar microbial communities have more robust negative soil feedbacks on each other, thereby 
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providing a potential selective pressure against closely related species with similar root 

microbiomes. 

ii. Genes underlying genotypic differences in microbiomes 

Gene-level allelic differences cause substantial variation in microbiome assembly across 

germplasm. For example, knockout mutations in genes related to ATP-binding transporters 

(Badri et al. 2008), secondary metabolite production (Huang et al. 2019), phytohormone 

production (Lebeis 2014), immune system (Castrillo et al. 2017), symbiotic association (Zgadzaj 

et al. 2016), and host circadian clock homeostasis (Hubbard et al. 2017) have all been drivers of 

the rhizosphere microbiome. As the rhizosphere microbiome is an extremely complex 

quantitative trait this is not surprising. Many genes likely play a role in the assembly of the 

rhizosphere microbiome as the roots and their systemic interactions are critical to plant 

productivity. Further work needs to be done to understand the extend of these genes on the 

microbiome in plant.  

iii. Rules of genotype-driven microbial assembly 

Unlike other phenotypic traits, microbiome assembly is highly dependent on ecological 

processes (Agler et al. 2016; Banerjee et al. 2018). Using gene-knockout experiments, Zgadzaj et 

al. (2016) showed that Lotus-diazotroph symbiotic nodule formation additionally reshaped the 

rhizosphere microbial community. In the lotus system, it appears as if symbiotic rhizobia 

populations act as an ecological ‘hub’ within the lotus microbiome for tens of species. Similarly, 

work done in oat has displayed that rhizosphere microbial establishment is sequential, structuring 

and promoting microbial interconnectedness (Zhalnina et al. 2018). Succession and founder 

effects have also been shown to play a substantial role in assembly across the plant (Gupta and 

Sharma 2021). Furthermore, the presence of an individual bacterial genus within the microbial 
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could suppress and alter typical microbiome assembly processes and alter plant growth (Finkel et 

al. 2020). These ecological factors will need to be understood and incorporated to predictively 

select for genetic variation that modifies root-associated microbial communities. 

Importantly for breeders, it has also been shown that within-population genetic variation 

exists that results in the differential recruitment of taxa to the rhizosphere (Peiffer et al. 2013; 

Walters et al. 2018; Bulgarelli et al. 2015; Mahoney et al. 2017; Lundberg et al. 2012; Zgadzaj et 

al. 2016; Xu et al. 2018; Edwards et al. 2014), but this is not always the case. There are 

numerous examples where the genetic variation within and across plant species and populations 

does not appear to impact the recruitment of microbial taxa to the rhizosphere. Understanding 

when and where plant genotype plays a role in the recruitment of taxa, and which taxa are 

actively recruited will allow us to start defining the rules for breeding microbial assembly and 

interaction in the plant rhizosphere. (Inspired by the work of Thomas Whitman’s Genetic 

Community (Whitham et al. 2006, 2012) Specifically, we propose a set of rules governing plant 

microbiome genotype effects. To observe a heritable microbiome, three conditions need to be 

present (Fig. 1.1): (1) There must be plant population genetic variation in the set of phenotypes 

that are driving the microbiome (i.e., no genetic erosion: limitation of the gene pool of a 

population). (2) There must be sufficient microbial species diversity to be shaped by the plant 

phenotype. (i.e., no microbiome erosion: limited number of microbial species diversity). (3) The 

plant and the microbiome must have a common dimension of interaction/limitation (i.e., 

endosymbiosis or ectosymbiosis, share space, nutrient, etc.) Additionally, we want to make the 

point that selective events can decrease genetic variation in the plants and microbiome and can 

lead to genetic and microbiome erosion, which would lead to the absence of a plant genotype-

driven microbiome. 
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Studies that have reported the greatest genotype-driven rhizosphere effects have a few 

common design elements, including 1) observations across a large range of environments (Xu et 

al. 2018; Walters et al. 2018) thereby maximizing the microbial diversity that the genotype may 

select from; 2) a genetically diverse crop (maize, Arabidopsis) (Peiffer et al. 2013; Lundberg et 

al. 2012); or 3) extensive genetic differences exist between the two cultivars (e.g. wild vs 

domesticated) (Bulgarelli et al. 2015; Pérez-Jaramillo et al. 2018). These three factors maximize 

different components of microbial recruitment. Extensive geographical analyses of rice, wheat, 

maize, and citrus microbiomes suggest certain microbes are consistently recruited, considering 

they are present in the starting community. While studies exist that find many plant species 

recruit unique sets of microorganisms, evidence exists showing that this is not always the case. 

For example, different species of speargrass from the climatically extreme Namib desert all 

recruit similar plant-associated microorganisms from the surrounding soil and lack a host-

specific genotype effect. This is interesting as these grasses appear to vary in root traits (i.e., 

sheath-root system morphology), features that are typically associated with differential selection 

of the plant microbiome (Marasco et al. 2018). While other studies have shown that successive 

intense selection on the microbial community through time can reduce microbial diversity and 

supersede previously important plant genotype selection on the microbiome (Morella et al. 

2019). Selection, abiotic or biotic, can erode the genetic diversity and traits of the microbial 

community, limiting the ability of plants to select on the community. Thereby if degradation of 

the microbiome has occurred, genetic variation in plants that typically alters microbiome 

assembly would not be observed as there is no microbial community variation to select upon 

(Fig. 1.1).  
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A mechanistic underpinning of plant microbiome interactions: 

Within the rhizosphere, three genetically-controlled traits have been cited as playing a 

role in mechanistically shaping the microbial community: plant phytochemical allelopathy, 

immune response system, and genes governing symbiotic interactions. Here, I will cover our 

understanding of both the genetic and mechanistic underpinnings of microbial interaction, and 

the challenges in controlling these belowground plant traits. Understanding the relationship of 

these traits to the microbiome is crucial, as they will be important in selection by plant breeders. 

These characteristics are important as they determine the width/strength of microbiome filtering 

present (Fig. 1.1). 

i. Plant phytochemistry 

 Plant allelopathy, commonly defined as biological phenomena by which a plant exudes 

one or more metabolites to influence the survival of a competing organism, has a long history in 

the agricultural and ecological sciences (Cheng and Cheng 2015; Pascale et al. 2020). These 

types of exudates are commonly cited as playing a role in driving the host-associated microbiota 

of plants (Dakora and Phillips 2002; van Dam and Bouwmeester 2016; Sasse, Martinoia, and 

Northen 2018; Canarini et al. 2019). A considerable amount of literature reveals that 

phytochemical alterations in a single plant species influence how the microbial community will 

assemble. For example, in Arabidopsis thaliana, the simple alteration of a regulatory gene 

MYB72 involved in coumarin production and exudation was shown to have sweeping effects on 

the composition of the microbial community they established (Stringlis et al. 2018). 

Additionally, the coumarin, scopoletin, had a differential effect on soil microbes, acting as an 

attractant for nutritional mutualists and an antimicrobial for fungi (Stringlis et al. 2018). 

Interestingly, studies focusing on maize and benzoxazinoid exudation have drawn similar 
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conclusions. Genetic modifications of the plant’s phytochemical production alter rhizosphere 

microbial assembly (Neal et al. 2012; Hu et al. 2018; Cotton et al. 2019; Kudjordjie et al. 2019). 

In controlled settings, benzoxazinoids have also been shown to attract and repel different 

common microorganisms. A single benzoxazinoid molecule can have variable effects enriching 

mutualist bacteria (Pseudomonas putida) and the suppression of pathogens (Ralstonia 

solanacearum) (Neal et al. 2012). Conceptual Fig. 1.2, highlights how genetic variation in a 

single metabolic pathway contributed to altered microbial selection.  

Furthermore, breeding for allopathic characteristics has already been proposed in 

previous research reviews (Cheng and Cheng 2015; Mikic and Ahmad 2018). These reviews 

outline approaches for breeding for these biochemical characteristics. These articles found that a 

significant amount of phenotypic variation exists within the biochemical characteristics of 

numerous crop cultivars and across wild species (Mikic and Ahmad 2018). This is important, as 

without extant genetic variation in metabolite traits, our ability to select the microbiome would 

be severely limited. 

ii. Plant immune system 

 The plant immune system plays a critical role in shaping the microbiome – as it allows 

for the compartmentalized and specialized responses to microbes (Jones and Dangl 2006; 

Chuberre et al. 2018). Several reviews on the plant immune system have shown that roots can 

activate specific defense mechanisms in response to various elicitors including 

molecular/pathogen associated molecular patterns (MAMPS/PAMPS), and signal metabolites 

(Jones and Dangl 2006; Chuberre et al. 2018). Further, research has shown that the exposure of 

specific effectors can trigger plant metabolic pathways related to changes in exudate profiles 

(Stringlis et al. 2018; Sasse, Martinoia, and Northen 2018). In many cases, the immune system-
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mediated responses to the microbial are typically thought to be systemic, thereby if a plant senses 

a specific effector is sensed by the plant entire plant exudation patterns are altered (Korenblum et 

al. 2020). In summary, genetic variation in the plant's immune system should strongly be 

considered as it informs how a plant will respond to the microorganisms. 

iii. Plant symbioses 

 Many agricultural plant species can form a tight symbiosis with fungal and bacterial 

partners (O’Brien et al. 2021; Porter and Sachs 2020). The genetic elements that underlie these 

phenotypes have been shown to have considerable influence on the formation and interaction 

with the entire microbiome (Zgadzaj et al. 2016). This is because microbial symbiosis is a 

process that requires multiple steps of interactions, from microbial attraction via phytochemical 

production, plant immune responses that recognize the symbiotic partner, and genes involved in 

controlling colonization and establishment (Sandal et al. 2006). Research has shown that a 

genetic alteration to any of these elements will result in the alteration of the rhizobacteria to the 

microbiome (Zgadzaj et al. 2016). While covering all of the interactions included under the 

umbrella of plant-microbiome symbioses is out of the scope of this review, here we want to 

highlight how genetic variation in symbiotic partnerships can alter the entity of the rhizosphere 

microbiome.  

 

Microbial genomes under plant selection: 

A functional understanding of microbial assembly should not be limited to only 

understanding plant characteristics. Microorganisms present in soil are immensely speciose and 

highly diverse with complex genomes that encode a huge array of functions, metabolites, and 

metabolic strategies (Vigdis Torsvik 2002; Banerjee et al. 2018; Levy et al. 2018). A large 
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survey of 3,847 bacterial genomes revealed that thousands of gene clusters are involved in plant-

association (Levy et al. 2018). Functionally, genomes of bacteria that associate with plants 

encode for more carbohydrate metabolism pathways and have a lower abundance of genetic 

mobile elements compared to non-plant-associated bacteria. Besides, Levy et al. 2018 found that 

across different bacterial genomes, genes clustered into functional units of common interest (i.e. 

genetic linkage), and those bacterial genes that are enriched in bacterial genomes from the plant 

environment are also likely to be involved in adaptation to the many other organisms that share 

the same niche.  

Under the rhizosphere ecological filter model previously presented (Fig. 1.1), functional 

genes within microorganisms will determine whether a microbe is competent under plant 

rhizosphere selection conditions. Connecting our understanding of bacterial genomics and plant 

genomics is central to providing a useful model for controlling rhizosphere microbial 

communities and simplifying complex ecology to a lock-and-key model. In this metaphor, the 

lock is plant mechanisms of selection (e.g., phytochemistry, immune system, symbiosis) and the 

key is the microbial genome and functional genes. Plant mechanisms underlying microbial 

interaction provide a selection pressure on microbial populations in the microbiome. Well-

adapted microbes will have genes to evade or benefit from plant mechanisms of selection while 

maintaining their primary metabolism for growth. Maladapted microbes will lack the essential 

genes necessary to survive the rhizosphere selection pressure and will be unable to maintain their 

primary metabolism. Clearly defining the interactions between plant mechanisms of selection 

and the microbiome will provide a codex to driving the rhizosphere and ecosystem function.  

Furthermore, we attempt to highlight how to plant mechanisms of selection (both direct 

and indirect) may be interacting with the microbial ecosystem (Fig. 1.3). As mentioned above 
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plant inputs into the microbial ecosystem can differentially select taxa – what is critical about 

this plant selection is that the genetic element in the bacterial genome under selection by the 

plant’s selective pressure for are, in many cases physically linked to other genes. These linked 

genes can carry out functional processes that can be mutualistic, antagonistic, or commensal with 

respect to the plant host and have the potential to alter ecosystem fluxes. In the direct selection 

example (Fig. 1.3A), I use a common metabolite, DIMBOA-Glu, to show how microbial 

interactions (i.e., degradation, detoxification, consumption, derivation) with a plant metabolite 

can alter their proceeding interactions within the soil environment. I further highlight differential 

effects on contrasting functional groups such as nitrifiers (Nitrosomonas) and diazotroph 

(Rhizobium) taxa could take place. In this scenario, the exudate would inhibit the nitrifier thereby 

limiting nitrification, while alternatively, this same metabolite would act as a signal for 

Rhizobium and ultimately lead to N-fixation. Alternatively, in our hypothetical indirect selection 

example, plants would we release signals that would stimulate microbial predators – that would 

then allow the plant to have top-down control of the community (Fig. 1.3B). 

 

Breeding for the rhizosphere microbiome: 

We see two major approaches available to breed for plant-microbiome interactions: 1) 

identify genetic variation that alters the microbiome phenotype then modify the genomic region 

to alter microbial interaction, or 2) approach microbiome function as a plant phenotype to 

characterize across a genetically diverse panel of lines and perform directional selection. The 

first scenario is ideal for well-characterized phenotypes like plant secondary metabolites where 

the genes involved in phytochemical production and the antibiotic capacities of the 

phytochemical are well understood. Breeding for these characteristics is relatively 
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straightforward as marker-assisted selection and genetic manipulation can be carried out on 

existing genetic variation for these traits. As an example, MYB72 gene-dependent coumarin 

production has been shown to recruit plant growth-promoting microorganisms (Stringlis et al. 

2018). This gene can therefore be targeted for selection in breeding programs or be introduced 

into elite lines to gain plant growth-promoting microbial interactions. The major drawback of 

this approach is the limitations of our understanding of the mechanistic traits shaping plant-

microbe interactions. Only a few secondary plant metabolites (of the thousands) have been 

characterized for their effects on soil microbial communities. A secondary approach to breeding 

for plant microbiome interactions is to treat the desired function of the rhizosphere microbiome 

as a phenotype for selection and approach the plant-microbe mechanisms as a “black box”. For 

example, if we were interested in developing lines that stimulated microbial mineralization of 

soil nutrients for organic agriculture, we would grow a breeding population under organic 

conditions and survey rhizosphere microbial communities for their ability to mineralize organic 

nitrogen as the phenotype of interest and select lines with the highest nitrogen mineralization 

rates. After selection on these lines is done, plant traits could then be further characterized to 

identify the causative agents involved in driving changes in microbiome function. The major 

downside of this approach is that it is time-consuming and large enough genetic variation needs 

to be present in the founding population to select for microbiome differences. Several potential 

approaches could be taken to breed plant-microbiome interactions into our modern agricultural 

system. The most straightforward method would be to select a plant trait with a known 

microbial/microbiome phenotype.  
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Overview of dissertation: 

In this dissertation, I attempted to understand how genetic variation in maize altered 

rhizosphere microbiome assembly and related ecosystem processes. The following dissertation 

chapters aim to address these specific objectives: (Ch. 2) examine whether the contemporary 

agricultural practices that maize has experienced over the past 50 years of breeding have altered 

assembly of the rhizosphere N-cycling microbiome assembly, (Ch. 3) determine how modern 

maize rhizosphere microbiome assembly differs from its ancestral progenitor teosinte, (Ch. 4) 

assess whether these genotype driven microbiome assembly processes persist in the field setting 

and influence ecosystem function and finally (Ch. 5) attempt to determine the underlying genetic 

variation and mechanisms contributing to differential microbial community assembly and 

function. Ch. 2 and 3 examined Zea genetic effects on the microbiome under tightly controlled 

greenhouse conditions where the starting soil microbiome inoculum, and nutrients were 

standardized across maize genotypes. Ch. 4 and 5 were both large, randomized-block field 

experiments that tested a genetically diverse panel of maize lines and their influence on 

stochastic soil communities.  

In Ch. 2: Maize germplasm chronosequence shows crop breeding history impacts 

recruitment of the rhizosphere microbiome, I performed a common garden study to characterize 

recruitment of rhizosphere microbiome, functional groups, for 20 expired Plant Variety 

Protection Act maize lines spanning a chronosequence of development from 1949 to 1986. This 

time frame brackets a series of agronomic innovations, namely improvements in inbreeding and 

the application of synthetic nitrogenous fertilizers, technologies that define modern industrial 

agriculture. I found that both genetic relatedness of host plant and decade of germplasm 

development were significant factors in the recruitment of the rhizosphere microbiome. More 
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recently developed germplasm recruited fewer microbial taxa with the genetic capability for 

sustainable nitrogen provisioning and larger populations of microorganisms that contribute to N 

losses. This study indicates that the development of high-yielding varieties and agronomic 

management approaches of industrial agriculture inadvertently modified interactions between 

maize and its microbiome. 

In Ch. 3: Differences in N-cycling microbiome recruitment between inbred and wild Zea 

mays, using a greenhouse experiment I characterized how modern inbred maize differed in 

microbial recruitment to wild teosinte to assess whether potentially beneficial wild plant-

microbiome traits were lost during domestication. Using a combination of high-throughput 

sequencing and quantitative PCR, I found that modern inbred and wild teosinte rhizosphere 

microbiomes differed substantially in taxonomic composition, species richness, and abundance 

of microbial N-cycling genes. Furthermore, the modern vs wild designation explained 27% of 

the variation in the prokaryotic microbiome, 62% of the variation in N-cycling gene richness, 

and 66% of N-cycling gene abundance. Surprisingly, we found that modern inbred genotypes 

had higher taxonomic and functional N-cycling gene diversity within their microbiomes when 

compared to ancestral genotypes. These results imply that inbred maize and wild maize seem to 

differ in their interaction with N-cycling microorganisms in the rhizosphere and that genetic 

variation exists to potentially ‘rewild’ these microbiome-associated traits. 

In Ch. 4: Genetic variation within Zea mays alters microbiome assembly and nitrogen 

cycling function in the agroecosystem, I wanted to determine whether the genetic effects driving 

by microbial community differences within modern maize in Ch. 2 and across maize and teosinte 

Ch. 3 were still present in the field. Specifically, we wanted to characterize whether plants’ 

influence on soil nitrogen cycling activities was heritable (in a field setting) and thereby able to 
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be selected for plant breeding. To capture an extensive amount of genetic diversity within maize 

we sampled ex-PVP inbred lines, hybrids, and wild teosinte (Z. mays ssp. mexicana and Z. mays 

ssp. parviglumis). Within this germplasm panel, we found that plant genetics explained a 

significant amount of variation in the microbiome and across different nitrification and 

denitrification functional genes. We found that potential nitrification, potential incomplete 

denitrification, and overall denitrification rates were influenced by time of sampling (season) and 

plant genetics (genotype and group). Teosinte genotypes suppressed N-cycling activity while 

more modern inbred genotypes stimulated N-cycling activity. Taken together these results 

suggest that modern maize lines may have lost some of their capacity to modulate microbial 

nitrogen cycling activities and that reintroducing teosinte traits into our modern germplasm may 

be a way soil microbiome at both a composition and functional level to improve sustainability. 

Up to this point, results suggested that modern maize lines may have lost some of their 

capacity to modulate microbial nitrogen cycling activities (Ch. 2) and that reintroducing teosinte 

extended phenotypes into modern germplasm may be a way to restore sustainable soil 

microbiome functions (i.e., rewilding) (Ch. 3, 4). In Ch. 5: Mapping the genetic regions 

underlying plant extended phenotype microbiome recruitment and function, to assess the 

viability of “rewilding” and further dissect the genetic basis of these ancestral microbiome traits, 

I used newly developed teosinte-maize near-isogenic lines (NILs). Using NIL populations allows 

the fine mapping of traits to specific genetic loci in the plant genome. From this teosinte-maize 

NIL population, I identified several candidate genetic regions that drove major alterations to the 

root zone microbiome composition and N-cycling function. This study concludes that genetic 

elements originating from maize's wild progenitor teosinte can be used to “rewild” the modern 

maize microbiome interaction towards agricultural improvement. Approaching the microbiome 
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and its functions as an extended phenotype of the plant genome will be a necessary step towards 

optimizing agricultural systems for sustainability. 

 

Significance:  

Modern agricultural practices have resulted in the unprecedented degradation of our 

global nitrogen cycle (Galloway et al. 2008). This N-cycle disruption by agriculture has been 

primarily driven by the over-application of synthetic N fertilizers. On average only about half of 

this applied synthetic N is taken up by our focal crop (Coskun et al. 2017), while the remainder is 

lost through microbiome activities such as nitrification and denitrification. Broadly, the work in 

this dissertation shows that genotype-driven influence on rhizosphere microbiome assembly can 

have a considerable effect on the N-cycling functional groups that carry out nitrification and 

denitrification. Additionally, this dissertation suggests that at least in maize, a global staple crop, 

it appears that breeding has disrupted N-cycling functional group control in the rhizosphere, 

especially when compared to its wild progenitor teosinte. Finally, we show that modern maize 

can regain the ability to influence N-cycling microbes in the rhizosphere with genetic 

introgressions from teosinte. Overall, this dissertation uses a combination of microbial ecology 

and plant genetics to provide some explanations for why our contemporary agricultural system is 

so unsustainable (via N-pollution) and provides some potential solutions to improve it (via. 

rewilding).  
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Figures: 

 
Figure 1.1 Visualization of three major factors playing a role in plant genotype recruitment of 
root microbiome from edaphic soil microbial community. A. The standard model of plant 
microbiome recruitment originally proposed in Bulgarelli et al. 2013. This original two-step 
selection model has been modified by the addition of an edaphic filtering effect which alters the 
microbial diversity present for a plant to select upon. Under the standard conditions, 
microorganisms from the soil environment that interact with the rhizospheres/plant root 
conditions, and then finally are selected upon via individual host genotype differences. B, C, D 
Proposed modifications on the previous model, hypothesized from the literature. B. In this minor 
modification of the model, plant genotype selection plays a strong role in rhizosphere 
microbiome selection. This type of selection strongly narrows the microorganisms that are 
present in the rhizosphere. C. This is an example where edaphic factors have already reduced the 
diversity of the surrounding soil microbial community. While plant root and genetic filters are 
still present, these factors have no microbial diversity to select upon because of microbiome 
erosion. D. An additional scenario where plants lack meaningful genetic variation that would 
enable differential filtering of microorganisms in the rhizosphere. In scenarios C-D no plant-
genotype-specific microbiomes will be present. 
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Figure 1.2 Overview illustrating how genetic variation within a single maize benzoxazinoid 
pathway can contribute to microbiome selection. Several benzoxazinoid synthesis genes exist in 
maize that alter the chemical characteristics of the compound. Modulating these compounds has 
the potential to vary their influence on the microbiome. The pathway is adapted from Dutartre et 
al. 2012 
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Figure 1.3 A. Microbial breakdown of phytochemical products is of interest for shaping 
microbiomes as research has shown that microbial bioproducts can sometimes enhance 
resistance against pathogens and act as a future signal to plants grown in the same soil (Kwak et 
al. 2018). A1. Microorganisms potentially may be breaking down metabolites, thus altering the 
metabolite's interactions with other microbes (specific Pseudomonas, and Ralstonia). A2. 
Genetic elements in the bacterial genome are sensitive to phytochemicals and additionally linked 
to other functional genes. Here N-cycling taxa are used to highlight how phytochemical selection 
can alter ecosystem fluxes from the rhizosphere microbiome. Red arrows show negative 
interactions and blue arrows show positive interactions. Metabolites are from (Neal et al. 2012) 
and the genetic linkage figure comes from Levy et al. 2018. B. An alternative model where a 
plant phytochemical attracts a predator to the microbial community. This is an example of top-
down control by the plant host.  
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CHAPTER 2: MAIZE GERMPLASM CHRONOSEQUENCE SHOWS CROP 

BREEDING HISTORY IMPACTS RECRUITMENT OF THE RHIZOSPHERE 

MICROBIOME1 

Abstract: 

Recruitment of microorganisms to the rhizosphere varies among plant genotypes, yet an 

understanding of whether the microbiome can be altered by selection on the host is relatively 

unknown. Here, we performed a common garden study to characterize recruitment of 

rhizosphere microbiome functional groups for 20 expired Plant Variety Protection Act maize 

lines spanning a chronosequence of development from 1949 to 1986. This time frame brackets a 

series of agronomic innovations, namely improvements in breeding and the application of 

synthetic nitrogenous fertilizers, technologies that define modern industrial agriculture. We 

assessed the impact of chronological agronomic improvements on recruitment of the rhizosphere 

microbiome in maize, with emphasis on nitrogen cycling functional groups. Additionally, we 

quantified the microbial genes involved in nitrogen cycling and predicted functional pathways 

present in the microbiome of each genotype. Both genetic relatedness of host plant and decade of 

germplasm development were significant factors in the recruitment of the rhizosphere 

microbiome. More recently developed germplasm recruited fewer microbial taxa with the genetic 

capability for sustainable nitrogen provisioning and larger populations of microorganisms that 

contribute to N losses. This study indicates that the development of high-yielding varieties and 

agronomic management approaches of industrial agriculture inadvertently modified interactions 

between maize and its microbiome.  

 
1 This is the peer reviewed version of the following article: Favela, A., O. Bohn, M. & D. 
Kent, A. Maize germplasm chronosequence shows crop breeding history impacts recruitment of 
the rhizosphere microbiome. ISME J (2021). https://doi.org/10.1038/s41396-021-00923-z 
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Introduction:  

For the past 70 years, modern industrial agriculture has been characterized by 

technological advances in crop breeding and high input application of nitrogenous fertilizers 

(Evenson and Gollin 2003). Adoption of these agricultural practices has led to increases in global 

food security, human population growth, and spurred industrialization (Evenson and Gollin 

2003). While the benefits of these advances for humanity cannot be overstated, they also have 

far-reaching environmental consequences from the overuse of inorganic nitrogen fertilizers 

(Vitousek et al. 1997). Currently, more than five million tons of nitrogen fertilizer is applied 

annually to maize production in the United States (USDA (National Agricultural Statistics 

Service).). A large fraction of nitrogen fertilizer applied to arable lands is lost through microbial 

transformations that alter the mobility of nitrogen (Robertson and Vitousek 2009; Davidson et al. 

2012). Understanding how the plant-associated microbiome has been altered by technological 

innovations in agriculture could assist in addressing these agronomic problems (Busby et al. 

2017). Sustaining future agricultural demands will require controlling the detrimental outcomes 

of the industrial agricultural systems pioneered over the past century. 

Assembly of the plant rhizosphere microbiome is driven by plant genetic and 

evolutionary history (Yeoh et al. 2017). Plant microbiomes play a major role in altering plant 

resilience, fitness, nutrition, and productivity (Busby et al. 2017). Plant hosts selectively filter 

microorganisms that colonize their rhizosphere (Bulgarelli et al. 2013; Philippot et al. 2013). 

This selective process is heritable across plant cultivars (Peiffer et al. 2013; Walters et al. 2018), 

yet the implication of heritability on rhizosphere microbiome function has been relatively 

unexplored. In modern agriculture, microbiome functions that contribute to crop growth and 

sustainability have been replaced with agronomic management practices, and the development of 
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modern crop germplasm has been carried out without consideration of the plant microbiome and 

its functions as an extended phenotype of the crop genome.  

 Throughout the 20th century, maize breeders have made concerted efforts to optimize 

yield under a range of agronomic management environments (Smith et al. 2004; FAO 2020). 

Since the 1930s, advances in breeding and agricultural management have resulted in steady 

increases in yield (Duvick, Smith, and Cooper 2003). The introduction of synthetic nitrogen 

fertilizers to maize began in the 1940s and reached modern levels around the 1980s (Cao, Lu, 

and Yu 2018). During this time, germplasm was selected to produce the greatest grain yield 

possible under increased nitrogen conditions and plant density (Duvick, Smith, and Cooper 

2003). The selection of maize over this period resulted in alterations to plant nitrogen 

acquisition, root architecture, insect pest interactions, and grain quality (Khush 1999; Haegele et 

al. 2013; Hauck et al. 2014; York et al. 2015). Additionally, similar selection pressures in other 

major cereal crops, rice and wheat, have shown modulation of plant carbon and nitrogen 

metabolism, resulting in less efficient nitrogen usage (Li et al. 2018). Without selection for 

maintenance of microbiome functions that contribute to sustainable nutrient acquisition, crop 

breeding carried out under high nitrogen (N) conditions may have altered how maize interacts 

with its rhizosphere nitrogen cycling taxa.  

Here, we used a germplasm chronosequence of expired Plant Variety Protection Act 

maize inbred lines ranging from 1949 to 1986 (Hauck et al. 2014). These lines act as a genotypic 

time capsule of the extended phenotype selected by the historic agronomic breeding 

environment. This time frame was selected as it covers the introduction and increased usage of 

synthetic N-fertilizers (Fig. 2.1, Table A.1). The lines used in the study come from two major 
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genetic families: Stiff Stalk (SS) and Non-Stiff Stalk (NSS). These heterotic groups represent the 

inbred genetic diversity underlying our modern agricultural elite hybrid varieties.  

The goal of this study was to examine if breeding and selection of maize genotypes 

during the decades of increasing nitrogen application altered how maize germplasm recruits its 

rhizosphere microbiome, as well as microbiome function. First, we set out to determine if the 

bacterial and fungal rhizosphere microbiome changed across our chronosequence of maize 

germplasm. Second, we sought to determine if maize lines developed over the past 50 years 

differ in their ability to recruit microbial functional groups related to nitrification, denitrification, 

and nitrogen fixation. Finally, to understand how the metabolic genes of rhizosphere 

microorganisms change across the germplasm chronosequence, we predicted the metabolic 

pathways of microbes that responded to the germplasm chronosequence. These results will allow 

us to determine if crop breeding for yield combined with changing agricultural practices 

disrupted the interactions between plants and their microbiomes, with potential consequences for 

nutrient cycling in agroecosystems. If modern breeding has unintentionally transformed 

interaction of maize with key functional groups in its microbiome, it must be rewilded to 

improve agroecosystem sustainability.  

 

Materials and Methods:  

Plant genotype selection and greenhouse experiment 

Maize seed stocks were obtained from the USDA North Central Regional Plant 

Introduction Station (Ames, Iowa) and Maize Genetics Cooperation Stock Center (Urbana, 

Illinois). Twenty inbred lines were selected for comparison: these 20 lines span a breeding period 

from 1949-1986, come from two heterotic genetic groups (SS, NSS), and are adapted for maize 
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production in the U.S. Corn Belt (Table A.1). The usage of heterotic groups as a treatment factor 

was validated using genetic information collected in (Romay et al. 2013) and available at 

www.panzea.org. Supplemental Figure A.7 shows that maize genomes cluster based on heterotic 

genetic grouping. Additional metadata on these lines was acquired from Maize GDB 

(www.maizegdb.org) and USDA GRIN (www.ars-grin.gov). More information about the history 

and development of these maize lines is presented in Table A.1. Seeds were surface sterilized by 

soaking for 5 mins in 8.25% NaClO, followed by one rinse with sterilized distilled water, a 

single rinse of 70% ethanol, and three rinses with sterile distilled water. Surface-sterilized seeds 

were dried on sterile filter paper in a sterile petri dish, then stored at 4°C overnight before 

sowing. 

Maize lines were grown in greenhouse conditions to isolate the effects of inbred genotype 

on the microbiome. Planting medium was a combination of live and autoclaved soil mix. The 

live inoculum soil was collected from agricultural soil located on the Crop Sciences Research 

and Education Center - South Farms at the University of Illinois at Urbana-Champaign, Urbana, 

IL. (40°03'31.0"N 88°14'13.4"W). At the time, the soil was out of agricultural rotation (corn-soy) 

for at least 2 years. Inoculum soil was sieved (2mm) then added (10%) to a steam pasteurized 

mix of soil: calcined clay: torpedo sand (1:1:1). An inoculum sample was collected before plant 

growth to characterize the microbiome before plant treatment. For each genotype, 10 replicate 

classic 600 pots (2 gallon) were sown with three seeds in each. Pots were thinned a week after 

germination leaving only a single plant per pot for the remainder of growth. In total, 200 plants 

were grown. They were placed in a completely randomized design in the greenhouse with 16 

hours of light and 8 hours of darkness. All plants were connected to an irrigation system that 

fertilized plants twice a week. Plants were fertilized with a liquid nutrient solution, specifically 
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Cal-Mag (N15-P5-K15), at a rate of 150 ppm. Nitrogen was applied as 11.8% nitrate nitrogen, 

1.1% ammoniacal nitrogen, and 2.1% urea nitrogen. All plant treatments were maintained under 

the same fertilizer regime. While direct comparison of greenhouse fertilization regime to field 

rates is difficult, the nitrogen level used in this study would be comparable to modern high 

fertilization levels (Fig. 2.1). 

Implementation of this study in the greenhouse allowed for reduced complexity of 

environmental factors and homogenization of diverse soil microbiomes typical for a field setting. 

By reducing random variation, we gained further precision and insight on how different 

genotypes alter a standardized microbiome.  

The roots were harvested 36 days after emergence. Plants were approximately in V4-V5 

growth stage with 4-6 fully collared leaves. Plant rhizospheres were harvested by extracting root 

systems from the soil and shaking vigorously to separate loosely adhering soil. Rhizosphere soil 

was extracted by placing the root system in a 1-liter bottle with 40 mL of sterile distilled water 

and shaking vigorously for 5 minutes. The resulting soil slurry was placed into 50 mL centrifuge 

tubes and lyophilized before DNA extraction using the FastDNA for Soil DNA extraction kit 

(MPBio, Solon, OH). Rhizosphere samples of all 10 replicates for each genotype were harvested 

for molecular analysis. 

Microbial community amplicon sequencing 

For this experiment, we characterized the microbiome and diagnostic functional genes 

related to transformations that occur in the nitrogen cycle: nitrogen fixation, nitrification, and 

denitrification. Amplicon sequencing was performed on prokaryotic 16S rRNA genes, fungal 

ITS2, amoA, nirS, nirK, nosZ, norB, and nifH genes. The Fluidigm Access Array IFC chip was 

used to prepare sequencing amplicons. This method allows for the simultaneous amplification of 
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target functional genes using multiple primer sets (Fluidigm, San Francisco, CA). DNA 

sequencing was performed for bacterial, archaeal, and fungal amplicons using an Illumina HiSeq 

2500 Sequencing System (Illumina, San Diego, CA). Primer information is provided in 

supplemental Table A.2. Fluidigm amplification and Illumina sequencing were conducted at the 

Roy J. Carver Biotechnology Center, University of Illinois (Urbana, IL, USA). Fast Length 

Adjustment of Short reads (FLASH) (Mag and Salzberg 2011) software was used to merge 

paired-end sequences from 16S rRNA genes. For functional genes and fungal ITS, only forward 

read sequences were used. Once reads were merged, they were filtered by quality using the 

FASTX-Toolkit (Gordon, Hannon, and Gordon 2014). Reads that did not have a minimum 

quality score of 30 across 90% of the bases were removed. Using the FASTX-Toolkit, nirK reads 

were trimmed to its amplicon size of 165-bp. 

Once quality preprocessing was performed, FASTQ reads were converted to FASTA 

format. Using USEARCH-UPARSE version 8.1 (Edgar 2010a), sequences were binned into 

discrete OTUs based on 97% similarity and singleton DNA sequences were removed. 

Quantitative Insights into Microbial Ecology (QIIME) was used to generate OTU tables for 

downstream statistical analysis and to assign taxonomic information, this is done with a 

combination of the UCLUST algorithm and SILVA database (Edgar 2010b; Quast et al. 2013). 

Once taxonomy was assigned, chloroplast and mitochondrial OTUs were removed from the 

dataset. Rarefaction was performed to correct for differential sequencing depth across samples. 

Functional gene sequences were also assigned using QIIME (Caporaso et al. 2010) with the 

BLAST (Altschul et al. 1997) algorithm and custom gene-specific databases generated from 

reference sequences obtained from the FunGene repository (http://fungene.cme.msu.edu/) (Fish 
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et al. 2013). All OTU tables used in statistical analyses were generated in QIIME. Singleton 

OTUs were filtered prior to statistical analysis.  

The number of raw reads generated from sequencing run, reads present after quality 

filter, and the rarefaction level of reads per sample for 16S rRNA, ITS, and N-cycling genes are 

reported in supplemental Table A.3. Amplicon sequence data for 16S rRNA genes, fungal ITS2 

region, and N-cycling functional genes is available for download on the NCBI SRA database at 

accession number: PRJNA635735	(https://www.ncbi.nlm.nih.gov/sra/PRJNA635735). 	

Quantifying nitrogen cycling functional groups 

Quantitative PCR (qPCR) was used to determine the abundance of functional genes in 

each of the rhizosphere microbial communities. Specific target amplification (STA), explained in 

(Ishii et al. 2014), was carried out on samples and standards to increase template DNA for 

amplification. STA and qPCR master mix recipes from (Edwards et al. 2018) were used for all 

samples. STA product and qPCR master mix were loaded into the Dynamic Array™ 

Microfluidics Fluidigm Gene Expression chip where amplification and quantification of 

functional genes were carried out simultaneously (Fluidigm, San Francisco, CA). All samples 

and standards were analyzed in 12 technical replicates. Fluidigm Real-Time PCR Analysis 

software version 4.1.3 was used to calculate gene threshold cycles (CT). CT values were 

converted to gene copy number using gene length and standard curves. All Fluidigm qPCR was 

conducted at the Roy J. Carver Biotechnology Center (Urbana, IL, USA). The final copy number 

of each functional gene amplicon was standardized by the ng of template DNA in the qPCR 

reaction.  
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Statistical analysis 

The microbial communities were evaluated as separate datasets for each amplicon (16S 

rRNA, fungal ITS, nifH, nosZ, norB, nirK, nirS, bacterial amoA and archaeal amoA). The relative 

effect of genotype, heterotic group, genetic relatedness, and decade of germplasm development 

on the rhizosphere microbiome composition was assessed using permutational analysis of 

variance (PERMANOVA) with the ‘adonis’ function, from the community ecology R package, 

‘vegan’ (Oksanen et al. 2007). To visualize differences from these models, non-metric 

multidimensional scaling (NMDS) ordinations were created using R package ‘phyloseq’ and 

plotted with R package ‘ggplot2’ (McMurdie and Holmes 2013; Wickham 2007). Significant 

differences in functional gene abundance were evaluated using an ANOVA model, and the 

Tukey’s HSD test from the ‘stats’ package in base R (R Core Team 2013). Correlation between 

year of germplasm development and gene abundance was evaluated using ‘cor.test’ and ‘lm’, 

packages in base R (R Core Team 2013). Using the ‘asreml-r’ package (Butler et al. 2017), 

additional restricted maximum-likelihood mixed effects models were used to examine the 

correlation between functional gene abundance and year of germplasm development while 

controlling for the genetic relatedness between maize inbred lines. TASSEL was used to 

calculate the pedigree tree, genetic relatedness matrix, and the haplotype diversity (Tajima’s D) 

across the genome (Bradbury et al. 2007; Korneliussen et al. 2013).  

To control for the variance within individual genotypes when performing our analysis for 

decade and heterotic group effects, we used the mean microbiome for each genotype (n=10) 

(referred to as the genotypic mean microbiome). These mean microbial communities were 

generated using the ‘aggregate’ function in base R; here this function was used to find the mean 

of the amplicon data matrix based on the replicates within each genotype. 
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Modules of microbial taxa responding to the germplasm chronosequence were determined using 

a weighted correlation network analysis (WGCNA) in R (Langfelder and Horvath 2008). Prior to 

WGCNA, amplicon data was transformed using a central log ratio transformation (Gloor et al. 

2017). PICRUSt2 was used to predict functional pathways present in modules of microbial taxa 

that change over the germplasm chronosequence (Douglas et al. 2020). Additional meta-

information on predicted PICRUSt2 output was obtained from MetaCyc Database (Caspi et al. 

2016). Similarity percentages analysis (SIMPER) from the ‘vegan’ package was carried out to 

identify metabolic pathways that were significantly altered in representation across the 

germplasm chronosequence (Clarke 1993). Correlation between year of germplasm release and 

pathway abundance was evaluated using ‘cor.test’ and ‘lm’ packages in R. 

 

Results:  

In this common garden study, we identified 15,072 different 16S rRNA operational 

taxonomic units (OTUs, 97% similarity), and 1027 fungal OTUs were identified from the ITS2 

region.  

Rhizosphere microbiome response across the maize germplasm chronosequence 

The decade of germplasm development, heterotic genetic group, and genotype all had a 

significant effect on rhizosphere microbiome composition. Plant genotype explained a significant 

amount of variance in the rhizosphere microbiome (PERMANOVA	prokaryotic: R2=0.17, 

p<0.001; fungal: R2=0.13, p<0.001). When performing our analysis on the genotypic mean 

microbiome, we revealed that decade of germplasm development explained 16.79% of the 

variance in the prokaryotic microbiome. In comparison, heterotic group explained 8.1% of the 

variance (Fig. 2.2A, 2.2B, decade p<0.01, heterotic p<0.008, Table A.4.1). Fungal microbiomes 
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did not significantly respond to the germplasm chronosequence (p = 0.37) but differed among 

heterotic groups (p = 0.028) (Fig. 2.2C, 2.2D and Table A.4.2).  

Response of nitrogen cycling functional groups to the germplasm chronosequence 

From our analysis of nitrogen cycling functional genes, we observed 1498 nifH OTUs, 95 

archaeal amoA OTUs, 200 bacterial amoA OTUs, 8632 nirK OTUs, 1186 nirS OTUs, 1068 norB 

OTUs, and 1864 nosZ OTUs. In response to the germplasm chronosequence, 3 of 7 nitrogen 

cycling genes showed changes in community membership, and 3 of 7 nitrogen cycling genes 

changed in copy number per ng of DNA (Table A.5). 

Nitrogen fixation genes  

There is a clear shift in the recruitment of nitrogen fixing taxa across the germplasm 

chronosequence (Fig 2.3A, Table A.5). The composition of diazotrophs, detected through the 

nitrogenase nifH gene, was significantly impacted by the decade of germplasm development 

(R2=0.16, p<0.001) and heterotic group (R2=0.13, p<0.009), Fig. 2.3A, Table A.6). The qPCR 

results also showed that the abundance of nifH in the microbiome significantly decreased across 

the germplasm chronosequence (r= -0.44, p<0.05, Fig. 2.3B, linear model statistics in Table 

A.9.3). These differences were detected even though the use of N fertilizer in our experiment 

abrogated any reliance on N fixation. 

Nitrification genes 

The recruitment of nitrifiers (indicated by gene sequences for bacterial and archaeal 

ammonia monooxygenase – amoA) was shown to be significantly impacted by the germplasm 

chronosequence and heterotic group. We found a significant change in the composition of 

bacterial amoA genes (R2=0.13, p<0.05, Fig. 2.3C, Tables A.7.1), but did not see a significant 

change in the abundance of bacterial amoA detected in response to the chronosequence (p=0.14, 
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Table A.9.2). Archaeal nitrifiers showed no change in community composition over the 

chronosequence, but archaeal amoA genes did increase in abundance (p<0.05, Tables A.7.2, 

A.9.1). Total gene abundance of bacterial and archaeal amoA is significantly correlated with our 

chronosequence (r=0.47, p<0.05, Fig. 2.3D, Table A.9).  

Denitrification genes 

Several of the denitrification genes were significantly different among the 

chronosequence and heterotic groups (Figs. 2.3E-F, Tables A.5, A.8). Overall, changes in 

denitrifier communities had the weakest relationship to the chronosequence, but rather were 

consistently driven by heterotic genetic group (Table A.8). Denitrifiers possessing the 

cytochrome cd1-type nitrite reductase, encoded by nirS, were the only denitrifier group showing 

altered composition in response to germplasm development (p=0.07, Fig. 2.3E, Table A.8.1). 

Only nitric oxide reductase, norB, gene abundance was correlated to time (p=0.056, Tables A.5, 

A.9.6). All other denitrification genes lacked a significant correlation to the chronosequence. To 

summarize the gene abundance results, we averaged all the denitrification genes and regressed 

the mean abundance against the chronosequence (Fig. 2.3F). While this regression was not 

significant (p=0.35, Table A.9), gene abundance and chronosequence still had a positive 

relationship (r=0.22). 

Identification and potential function of taxa that respond to the germplasm chronosequence  

Weighted gene correlation network analysis (WGCNA) (Langfelder and Horvath 2008) 

identified three unique sets of OTUs (modules) with a significant response to the germplasm 

chronosequence (Fig. 2.4A, Table A.9). Modules 1 and 2 contained OTUs that were positively 

correlated to the decade of germplasm release, while Module 3 OTUs were negatively correlated 

with time. Module 1 contained 98 OTUs and was dominated by Proteobacteria. Module 2 
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contained 140 OTUs and was dominated by Actinobacteria. Module 3 contained 178 OTUs and 

was dominated by Proteobacteria. Lists of dominant taxonomic classes from each module are 

presented in Table A.10. Metagenomic functional predictions using PICRUSt2 were performed 

to predict the function of the taxa identified by WGCNA. Metagenomic functional predictions 

for the taxa in each module are presented in Figs. A.5-6. PICRUSt2 predicted that the taxa in 

Module 1 had 304 pathways, Module 2 had 286 pathways, and Module 3 had 378 pathways. 

Among all modules, there was a high degree of shared predicted metabolic pathways (Fig. 2.4B). 

Module 1 and 2 (taxa increasing over the chronosequence) cumulatively contained only five 

unique pathways not present in Module 3. Module 3 (taxa decreasing in relative abundance 

across the chronosequence) had 62 unique pathways (Fig. 2.4B, Tables A.12-A.14). All modules 

revealed changes in predicted abundance of pathways across the germplasm chronosequence: 

83% of pathways in Module 1, 85% of pathways in Module 2, and 78% of pathways in Module 3 

significantly changed across the germplasm chronosequence (Table A.14). The rhizosphere 

microbiomes from germplasm developed during the 1940-50s were the most distinct in the 

predicted abundance of pathways compared to the lines released during the 1960s, 1970s, and 

1980s. When comparing predicted microbial metabolic pathway differences among maize lines 

from the 1960-70s to the 1980s, little to no difference in abundance (0 - 0.002%) was found. This 

analysis allowed us to determine the pathways that showed the strongest response to our 

chronosequence (Table A.14). Module 3 showed the most complex patterns of enrichment and 

depletion across our three decadal classifications (Fig. A.5A). Module 1 and 2, while 

taxonomically distinct, appeared to be functionally redundant. Module 3 showed decreases 

across the chronosequence in pathways related to the degradation of organic nitrogen sources 

(Fig. A.5B, Table A.14). Across time all three modules were predicted to contain a greater 
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number of gene pathways related to aerobic respiration and amino acid synthesis (Fig. A.5C-D, 

Table A.14). PICRUSt2 analysis was performed on correlated taxa modules. Description and 

analysis are presented in appendix A.  

Genomic changes across chronosequence 

Supplementary analysis of the genomic variation within these maize lines was performed 

to assess whether we could gain mechanistic insight in the phenotypes causing our observed 

microbiome pattern. First, using TASSEL we scanned the haplotype diversity within the 

chronosequence population and found 87 large genetic regions (p<0.05) showing evidence of 

undergoing recent selection events according to Tajima’s D statistic. Eighty-five of these regions 

were suggestive of a selective sweep and two of balancing selection (supplemental materials Fig. 

A.8). Next, we attempted to determine if changes in genomic variation corresponded to changes 

in our chronosequence timeline (Fig. A.9). Using the maize HapMap, we first determined the 

population G matrix in TASSEL and then found the non-metric multidimensional scaling 

(NMDS) axes that explained most of the genetic variation (Figs. A.7-9). These major NMDS 

axes were then regressed against our chronosequence timeline. Taken together this additional 

genetic analysis on the maize lines used in this study suggest that multiple alleles and a 

considerable amount of genetic variation was changed across this time period of maize 

development. Unfortunately, the design of this study lacks the power to determine the exact 

genes and traits driving this chronosequence microbiome pattern.  

 

Discussion:  

 Plant rhizosphere microbiomes are, in part, shaped by plant genetics (Peiffer et al. 2013; 

Walters et al. 2018). Here we provide one of the few examples showing that selection (via 
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breeding) on the plant genotype across a changing agronomic environment (i.e., increased 

synthetic N, increased plant density) drives changes in recruitment of the plant microbiome. We 

show that altered rhizosphere microbiome recruitment was reflected in functional genes for 

nitrification and nitrogen fixation and predicted metabolic pathways. Ultimately, these results 

suggest that breeding has altered the recruitment of soil microbiome and specific N-cycling 

functional groups in the maize rhizosphere.  

Our results show a shift in rhizosphere prokaryotic microbiomes across a chronosequence 

of inbred maize lines, independent of broad genetic relatedness (heterotic group) (Fig. 2.2). 

These conclusions are based entirely on inbred maize lines and do not include hybrids. We 

decided to focus solely on inbred lines as hybrid maize genotypes exhibit a high degree of 

heterosis (Hauck et al. 2014) and typically represent a highly genetically diverse combination of 

different heterotic pedigrees. This is important, as recent research has now established that this 

hybrid vigor can have considerable impacts on the assembly of the rhizosphere microbiome 

(Wagner, Roberts, et al. 2020; Wagner, Tang, et al. 2020). Consequently, previous studies that 

included hybrids in their attempts to examine the effects of selection on maize through time 

unknowingly confounded heterosis and selection effects (Emmett et al. 2018; Schmidt et al. 

2020). Further research is needed to fully disentangle how hybridization shapes maize’s 

interactions with microbiomes and microbial functions related to agricultural sustainability. 

The consequences of these microbiome changes extended to the composition and 

abundance of microbial genes associated with nitrogen cycling observed in the rhizosphere. We 

saw decreases in the abundance and changes in composition of diazotrophs, indicated by nifH, in 

more recently developed germplasm (Fig. 2.2A, 2.2B). The increased usage of synthetic nitrogen 

fertilization through time has decreased maize’s reliance on microbial N provisioning. It is well 
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established that the maintenance of belowground mutualistic N-fixation comes at a carbon cost 

(Vitousek et al. 2013), and alters aboveground carbon allocation across the plant (Morgan, 

Bending, and White 2005). Additionally, altering nutrient availability modifies how a plant host 

assembles the microbiome (Berg and Koskella 2018). In the breeding process, selection has been 

tuned to grain production (Diamond 2002) and weakened belowground carbon allocation 

(Schmidt, Bowles, and Gaudin 2016). Other findings in maize suggest that some landrace 

cultivars have a heightened ability to recruit associative diazotrophs (Van Deynze et al. 2018). 

Maize lines that host nitrogen-fixing bacteria produce specialized carbon-rich mucilage exudates 

to attract these microbes and gain substantial plant-available nitrogen from this interaction (Van 

Deynze et al. 2018; Vitousek et al. 2013). Allocating carbon resources to the production of 

exudates comes at a cost to yield, and reliance on fixed N from diazotrophs is unnecessary under 

high nitrogen conditions (Morgan, Bending, and White 2005), weakening any selection for 

maintenance of nutritional mutualisms that may have been present in ancestral maize lineages. 

Furthermore, under continuous high nitrogen fertilization, diazotrophs can evolve to become less 

efficient mutualistic nitrogen fixers (Weese et al. 2015). A combination of these factors explains 

why maize’s recruitment of diazotrophs changes as a consequence of decades of crop selection.  

Various functional genes related to denitrification and nitrification increased in 

abundance and changed in composition through the germplasm chronosequence (Fig. 2.2C-F, 

Table A.5). While not all functional genes related to these processes responded to the 

chronosequence, especially those genes related to denitrification, there is still a clear pattern 

across time and germplasm selection. Changes in the abundance of N-cycling genes could be 

important in predicting losses of nitrogen and the production of GHGs from agroecosystems 

(Bowles et al. 2018), as microorganisms that perform denitrification and nitrification can remove 



46 
 

or alter the chemical structure and mobility of plant-available N (Kuypers, Marchant, and Kartal 

2018). Selective exudation of specialized metabolites from maize roots could be an explanation 

for shifts in the nitrifiers and denitrifiers across the germplasm represented in this study. For 

instance, different cereal grasses (sorghum, rice, wheat) have the ability to exude secondary 

phytochemical compounds that can suppress the metabolism of nitrifying organisms (Coskun et 

al. 2017). Here we hypothesize that a narrowing of germplasm diversity by inbreeding (Smith et 

al. 2004) could have eroded complex metabolic characteristics important for shaping interactions 

with nitrogen cycling microbial taxa (Zhou, Richter, and Jander 2018). Breeding of maize may 

have resulted in trait changes that influence how different cultivars recruit nitrogen cycling 

microbes. A growing body of research suggests that plants can drive the variability and activity 

of nitrifiers and denitrifers in the soil ecosystem (Woldendorp 1975; Skiba et al. 2011; Coskun et 

al. 2017; Guyonnet et al. 2017; Achouak et al. 2019). Demonstrating that agroecosystem 

management and crop breeding altered the plant microbiome and potentially its functions suggest 

that plant-microbiome interactions are mutable – theoretically mutable enough that we can 

intentionally select for rhizosphere microbiome traits that contribute to nutrient retention, 

reduced GHG production, and improved soil health.  

Plant species regulate microbial enzyme production and metagenomic capacity in the 

rhizosphere (Reinhold-Hurek et al. 2015; Xu et al. 2018). Here we predicted changes in the 

microbial metagenome as a function of germplasm development. We found increases in the 

relative abundance of gene pathways related to amino acid biosynthesis and aerobic respiration. 

Gene pathways related to nitrogen substrate degradation decreased through the germplasm 

chronosequence (Fig. 2.3, 2.4). These results imply that plants from earlier decades in this 

chronosequence support microbiomes that mineralize soil organic nitrogen, while later lines do 
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the opposite. The rhizosphere microbiome of more recent germplasm is enriched for microbial 

taxa that have greater numbers of predicted metabolic pathways for respiration and amino acid 

synthesis. The predicted metagenome results suggest that the microbiome recruited by more 

modern germplasm is in a state of growth and biosynthesis. Coincidentally, these modern 

microbiomes are also predicted to have a lower capacity to mineralize free organic nitrogen 

sources; we hypothesize they are obtaining their nitrogen for biosynthesis from inorganic 

fertilizers, thereby potentially competing with the plant for nutrients instead of working 

mutualistically. The shift to aerobic respiration and simple sugar breakdown may indicate that 

the newer maize lines are recruiting copiotrophs (Trivedi, Anderson, and Singh 2013). These 

alterations to belowground predicted microbial metabolism could explain the observed yield gap 

between conventional and organic agroecosystems (Kravchenko, Snapp, and Robertson 2017). 

Maize lines that recruit fewer nutrient-mineralizing microbes may be compromised for 

acquisition of nitrogen through organic nitrogen sources, resulting in lower yields. Currently, it is 

not well-established what type of soil metabolism would be ideal to meet our sustainability goals 

(Busby et al. 2017; Leach et al. 2017). However, these results indicate that we could breed 

germplasm to recruit microorganisms with traits that are aligned with soil management practices.  

In conclusion, industrial breeding practices and agronomic management approaches have 

transformed maize’s interactions with its rhizosphere microbiome at a taxonomic and functional 

genomic level. These microbiome differences potentially alter nitrogen processing among plant 

cultivars and the movement of nitrogen in the agroecosystem as a whole. These changes likely 

occurred because of the combination of intense selection for aboveground traits and increased 

use of synthetic nitrogen fertilizers that reduced reliance on microbially-mediated nitrogen 

cycling processes. Modern agricultural practices have disrupted and accelerated the reactive 
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nitrogen cycle. Maize has been a major contributor to this global disruption as it is one of the 

most farmed and fertilized crops in the world (Ladha et al. 2016). Alteration of plant microbiome 

function is indicated by recruitment of distinct assemblages of nitrogen-cycling taxa and 

predicted metabolic pathways in the rhizosphere microbiome of maize germplasm developed in 

different decades. Modern agricultural practices have accomplished the alteration of maize’s 

interaction with its root microbiome in the span of 50 years. Following these observations, the 

next steps would be to determine if the differences in microbiome recruitment are contributing to 

unsustainable outcomes in the agroecosystem and if unsustainable aspects of this microbiome 

recruitment are reversible. Approaching the microbiome and its functions as an extended 

phenotype of the plant genome will be a necessary step towards optimizing agricultural systems 

for sustainability.  
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Figures: 

 
 

 
Figure 2.1 Germplasm chronosequence used in this study mapped on to nitrogen fertilizer use 
over time. Maize-specific nitrogen use rate was derived from Cao et al. 2018. Images highlight 
the changing root phenotype through time and are from Hauck et al. 2015.  
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Figure 2.2 NMDS ordinations based on Bray-Curtis dissimilarity among prokaryotic 16S rRNA 
(A-B) and fungal ITS (C-D) rhizosphere microbiome samples compared among maize genotypes 
representing different decades of germplasm development (A, C) or heterotic group (B, D). The 
two heterotic groups are Non-Stiff Stalk (NSS) and Stiff Stalk (SS). 
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Figure 2.3 Changes in nitrogen cycling genes across chronosequence. A. NMDS ordination 
comparing maize rhizosphere nifH assemblages among decade of germplasm development. B. 
Linear regression of nifH gene copy number across the chronosequence. C. NMDS ordination 
comparing composition of bacterial ammonia oxidzer assemblages across decades of germplasm 
development. D. Linear regression of sum of archaeal amoA and bacterial amoA genes 
abundance across the chronosequence. E. NMDS ordination comparing assemblages of 
denitrifiers (based on nirS gene) across breeding decades. F. Linear regression of the average 
qPCR abundance of the denitrification genes across the chronosequence. A complete list of 
statistical analysis of nitrogen cycling genes present in the supporting information: Tables A.5-
A.10, Fig. A.4.  
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Figure 2.4 Taxa modules and predicted metabolic pathways for the maize rhizosphere 
microbiome based on WGCNA and PICRUSt2 metabolic pathway predictions. A. Modules 
(hierarchical clustered OTUs) that are significantly responding to the germplasm 
chronosequence. Module membership varies in size and taxonomic composition, grouped by 
phylum here. A list of dominant classes is presented in Table A.11. B. Venn diagram shows 
metabolic pathways shared across the three modules. Information on pathways present in Tables 
A.12-A.14.  
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CHAPTER 3: DIFFERENCES IN N-CYCLING MICROBIOME RECRUITMENT 

BETWEEN INBRED AND WILD ZEA MAYS 

Abstract:  

Rewilding our modern agricultural cultivars by reintroducing beneficial ancestral traits 

has been suggested as a means to improve sustainability of modern agricultural systems. In this 

study, we compared recruitment of the rhizosphere microbiome among modern inbred maize and 

wild teosinte to assess whether to assess whether potentially beneficial plant microbiome traits 

have been lost through maize domestication and modern breeding. To do this, we surveyed the 

bacterial, fungal, and nitrogen cycling rhizosphere microbial communities of 6 modern 

domesticated maize genotypes and ancestral wild teosinte genotypes while controlling for 

environmental conditions and starting soil inoculum. Using a combination of high-throughput 

sequencing and quantitative PCR, we found that modern inbred and wild teosinte rhizosphere 

microbiomes differed substantially in taxonomic composition, species richness, and abundance 

of N-cycling functional genes. Furthermore, the modern vs wild designation explained 27% of 

the variation in the prokaryotic microbiome, 62% of the variation in N-cycling gene richness, 

and 66% of N-cycling gene abundance. Surprisingly, we found that modern inbred genotypes 

hosted microbiomes with higher taxonomic and functional gene diversity within their 

microbiomes compared to ancestral genotypes. These results imply that modern maize and wild 

maize seem to differ in their interaction with N-cycling microorganisms in the rhizosphere and 

that genetic variation exists within Zea to potentially ‘rewild’ these microbiome-associated traits.  
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Introduction: 

Domestication is a strong force shaping the ecological and physiological interactions of 

an organism (Diamond 2002b; Jensen et al. 2012). Ecologically complex interactions 

transformed by human domestication of plants range from above-ground chemical defenses 

(Whitehead, Turcotte, and Poveda 2016; Gaillard et al. 2018) to below-ground rhizosphere 

microbiome interactions (Bulgarelli et al. 2015; Shenton et al. 2016; Pérez-Jaramillo et al. 2018). 

While alterations to above-ground chemical defenses have clear consequences to plant 

productivity (Whitehead, Turcotte, and Poveda 2016; Gaillard et al. 2018), the full implications 

of domestication’s effects on the rhizosphere microbiome are still unclear. To implement and re-

wild our modern agricultural plant cultivars we need to comprehend the functional consequences 

of these alterations to the plant's microbiome interaction.  

The rhizosphere microbiome plays a major role in altering plant fitness and productivity 

(Lau et al. 2012; Philippot, Raaijmakers, et al. 2013). Microbial taxa present in the rhizosphere 

have been implicated in providing disease resistance (Ryan et al. 1995), amending plant nutrition 

(Pandey et al. 2017), improving environmental stress tolerance (L. Xu et al. 2018; Panke-Buisse 

et al. 2014), and altering plant phenology (Wagner et al. 2014). Conversely, plant hosts have 

been shown to selectively recruit microorganisms present in their rhizosphere (Philippot, 

Raaijmakers, et al. 2013), a process which has been demonstrated to be heritable across plant 

cultivars (Peiffer et al. 2013; Walters et al. 2018; Favela, Bohn, and Kent 2021). This apparent 

heritability suggests that underlying genetic factors in the host shape how a plant interacts with 

the soil microbial community. Broadly, plant genetics and evolutionary divergence across plant 

species have been demonstrated to shape the microbiota that colonizes the plant, yet what this 

means for rhizosphere microbial community functional groups (i.e. nitrogen fixers, nitrifiers, 
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denitrifiers) has been relatively unexplored (Yeoh et al. 2017; Fitzpatrick et al. 2018). 

Domesticated plant cultivars provide a model to examine the effects of genetic divergence across 

closely related species, while also providing insight into how anthropogenic influences have 

transformed the plant's relationship with microbial functional groups important to ecosystem 

nutrient cycling.  

Soil microbial functional groups (i.e. diazotrophs, nitrifiers, and denitrifiers) play a 

central role in ecosystem nitrogen (N) cycling processes (Stein et al. 2016; Madsen 2011; 

Schimel et al. 2017). In the highly nitrogen fertilized agroecosystem, a significant amount of 

research has been dedicated to controlling the activities of these N-cycling functional groups to 

reduce environmental pollution, maintain soil health, and maximize plant N-use efficiency 

(Philippot, Hallin, and Schloter 2007; Drinkwater and Snapp 2007; Vitousek et al. 1997). 

Previously, we have demonstrated that the recruitment of these nitrogen cycling functional 

groups to the rhizosphere microbiome can be altered by plant genetic variation ( Favela, Bohn, 

and Kent 2021). Additionally, we found that more recently developed germplasm recruited fewer 

microbial taxa with the genetic capability for sustainable nitrogen provisioning and larger 

populations of microorganisms that contribute to N losses (Favela, Bohn, and Kent 2021). 

Following from this study, we explored the extent to which maize’s ability to recruit a 

rhizosphere microbiome that participates in sustainable N cycling processes has eroded since 

domestication of this crop by comparing rhizosphere microbial recruitment between wild 

teosinte, maize’s ancestral progenitor and more modern germplasm.  

Maize was domesticated from its wild ancestor teosinte approximately 9500 years ago in 

southwestern Mexico (Doebley 2004; Matsuoka et al. 2002). In that time, sweeping genome- and 

phenome-wide changes occurred, leading maize to be one of the most consequential 
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industrialized crops (Hufford, Bilinski, et al. 2012; Wright et al. 2005; Swanson-Wagner et al. 

2012; Gaudin, McClymont, and Raizada 2011). Additionally, the domestication of maize was 

associated with a population bottleneck that drastically reduced genomic diversity (Wright et al. 

2005; Hufford, Xu, et al. 2012), led to the increase of deleterious alleles (L. Wang et al. 2017), 

and the development of traits that would be unfit for a wild environment (Pérez-Jaramillo, 

Mendes, and Raaijmakers 2015; Diamond 2002a). Previous work has determined that teosinte 

and modern maize rhizosphere microbiomes differ under the same soil environment (Johnston-

Monje et al. 2014; M. Bouffaud et al. 2014; Szoboszlay et al. 2015; M. L. Bouffaud et al. 2012, 

2016), yet grounding these differences in functional significance has been challenging.  

The goal of this study was to determine if wild teosinte and inbred maize differed in the 

recruitment of N-cycling functional groups in the rhizosphere. First, we set out to characterize 

how the domestication status of the Zea cultivar influenced the diversity and composition of 

bacterial, and fungal rhizosphere microbiome. Specifically, we wanted to determine if 

prokaryotic and fungal taxonomic domains are both affected by the domestication status of a 

cultivar. Second, we determined whether domesticated and wild Zea mays differ in their ability 

to recruit assemblages of microbial functional groups involved in nitrogen fixation, nitrification, 

and denitrification. This study sheds light on the potential impact of domestication on sustainable 

N cycling processes in the maize rhizosphere. Understanding whether there is a functional 

difference in wild plant microbiome traits compared to our modern microbiome traits could be 

potentially useful in identifying (and recovering) traits involved in sustainability that were lost 

during domestication and crop improvement.  
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Methods: 

Plant Genotype Selection and Greenhouse Experiment 

Maize seed stocks were obtained from USDA North Central Regional Plant Introduction 

Station (Ames, Iowa) and Maize Genetics Cooperation stock center (Urbana, Illinois). Twelve 

cultivar lines were selected for comparison: 6 modern inbred maize and 6 ancestral teosintes. 

Within teosinte 2 subspecies were selected, Z. m. mexicana and Z. m. parviglumis. These 

subspecies originated from distinct biogeographic regions in Mexico, and are the closest related 

subspecies to modern maize (Hufford, Xu, et al. 2012). Metadata information about the 

genotypes is presented in supplementary material Table B.1. Seeds were surface sterilized by 

soaking for 5 mins in 8.25% NaClO, followed by one rinse with sterilized distilled water, a 

single rinse of 70% ethanol, and three rinses with sterile distilled water. Surface-sterilized seeds 

were dried on sterile filter paper in a sterile petri dish, then stored at 4°C overnight before 

sowing. 

Maize lines were grown in greenhouse conditions to isolate the effects of genotype on the 

microbiome. Planting medium was a combination of live and autoclaved soil mix. The live 

inoculum soil was collected from agricultural soil located on the Crop Sciences Research and 

Education Center - South Farms at the University of Illinois at Urbana-Champaign, Urbana, IL. 

(40°03'31.0"N 88°14'13.4"W). At the time, the soil was out of agricultural rotation (corn-soy) for 

at least 2 years. Inoculum soil was sieved (2mm) then added (10%) to a steam pasteurized mix of 

soil: calcined clay: torpedo sand (1:1:1). An inoculum sample was collected before plant growth 

to characterize the microbiome before plant treatment.  

For each genotype, 10 replicate classic 600 pots (2 gallon) were sown with three seeds in 

each. Pots were thinned a week after germination leaving only a single plant per pot for the 
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remainder of the growth. In total 120 plants were included in study. They were placed in a 

completely randomized design in the greenhouse with 16 hours of light and 8 hours of darkness. 

All plants were connected to an irrigation system that fertilized plants twice a week. Plants were 

fertilized with a liquid nutrient solution, specifically Cal-Mag (15-5-15), at a rate of 150 ppm. 

Nitrogen was applied as 11.8% nitrate nitrogen, 1.1% ammoniacal nitrogen, and 2.1% urea 

nitrogen. All plant treatments were maintained under the same fertilizer regime. 

The roots were harvested 36 days after emergence. Plants were approximately in V4-V5 

growth stage with 4-6 fully collared leaves. Plant rhizospheres were harvested by extracting root 

systems from the soil and shaking them vigorously to separate soil that is not tightly bound to 

roots. Rhizosphere soil was extracted by placing the root system in a 1-liter bottle with 40 mL of 

sterile distilled water and shaking vigorously for 5 minutes. (Li, Voigt, and Kent 2016). The 

resulting soil slurry was placed into 50 mL centrifuge tubes and lyophilized before DNA 

extraction using the FastDNA for Soil DNA extraction kit (MPBio, Solon, OH). Rhizosphere 

samples of all 10 replicates for each genotype were harvested for molecular analysis. 

Microbial community Amplicon Sequencing 

For this experiment, we characterized diagnostic functional groups related to three major 

transformations that occur in the nitrogen cycle: nitrogen fixation, nitrification, and 

denitrification. Amplicon sequencing was performed on prokaryotic 16S rRNA genes, fungal 

ITS2, bacterial amoA, archaeal amoA, nirS, nirK, nosZ, and nifH genes. The Fluidigm Access 

Array IFC chip was used to prepare sequencing amplicons. This method allows for the 

simultaneous amplification of target functional genes using multiple primer sets (Fluidigm, San 

Francisco, CA). Primer information is provided in supplemental Table B.2. Fluidigm 

amplification and Illumina sequencing were conducted at the Roy J. Carver Biotechnology 
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Center, University of Illinois (Urbana, IL, USA). Fast Length Adjustment of Short reads 

(FLASH) (Mag and Salzberg 2011) software was used to merge paired-end sequences from 16S 

rRNA genes. For functional genes and fungal ITS, only forward read sequences were used. Once 

reads were merged, they were filtered by quality using the FASTX-Toolkit (Gordon, Hannon, 

and Gordon 2014). Reads that did not have a minimum quality score of 30 across 90% of the 

bases were removed. Using the FASTX-Toolkit, nirK reads were trimmed to its amplicon size of 

165-bp. 

Once quality preprocessing was performed, FASTQ reads were converted to FASTA 

format. Using USEARCH-UPARSE version 8.1 (Edgar 2010a), sequences were binned into 

discrete OTUs based on 97% similarity and singleton DNA sequences were removed. 

Quantitative Insights into Microbial Ecology (QIIME) was used to generate OTU tables for 

downstream statistical analysis and to assign taxonomic information, this is done with a 

combination of the UCLUST algorithm and Greengenes database (Edgar 2010b; DeSantis et al. 

2006). Once taxonomy was assigned, chloroplast, mitochondrial and protist OTUs were removed 

from the dataset. Rarefaction was performed to correct for differential sequencing depth across 

samples. Functional gene sequences were also assigned using QIIME (Caporaso et al. 2010) with 

the BLAST (Altschul et al. 1997) algorithm and custom gene-specific databases generated from 

reference sequences obtained from the FunGene repository (http://fungene.cme.msu.edu/) (Fish 

et al. 2013). All OTU tables used in statistical analyses were generated in QIIME. Singleton 

OTUs were filtered prior to statistical analysis.  

The number of raw reads generated from sequencing run, reads present after quality 

filter, and the rarefaction level of reads per sample for 16S rRNA, ITS, and N-cycling genes are 

reported in supplemental Table B.3. Amplicon sequence data for 16S rRNA genes, fungal ITS2 
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region, and N-cycling functional genes is available for download on the NCBI SRA database at 

accession number: PRJNA635735	(https://www.ncbi.nlm.nih.gov/sra/PRJNA635735). 

Quantifying Nitrogen cycling functional groups 

Quantitative PCR (qPCR) was used to determine the abundance of functional genes in 

each of the rhizosphere microbial communities. Specific target amplification (STA), explained in 

(Ishii et al. 2014), was carried out on samples and standards to increase template DNA for 

amplification. STA and qPCR master mix recipes from (Edwards et al. 2018) were used for all 

samples. STA product and qPCR master mix were loaded into the Dynamic Array™ 

Microfluidics Fluidigm Gene Expression chip where amplification and quantification of 

functional genes were carried out simultaneously (Fluidigm, San Francisco, CA). All samples 

and standards were analyzed in 12 technical replicates. Fluidigm Real-Time PCR Analysis 

software version 4.1.3 was used to calculate gene threshold cycles (CT). CT values were 

converted to gene copy number using gene length and standard curves. All Fluidigm qPCR was 

conducted at the Roy J. Carver Biotechnology Center (Urbana, IL, USA). The final copy number 

of each functional gene amplicon was standardized by the ng of template DNA in the qPCR 

amplification.  

Statistical Analysis 

The microbial communities were evaluated as separate datasets for each amplicon (16S 

rRNA, fungal ITS, nifH, nosZ, nirK, nirS, bacterial amoA and archaeal amoA). The relative 

effect of genotype and domestication on the rhizosphere microbiome composition was assessed 

using permutational analysis of variance (PERMANOVA) with the ‘adonis’ function, from the 

community ecology R package, ‘vegan’ (Oksanen et al. 2007). To visualize differences from 

these models, non-metric multidimensional scaling (NMDS) ordinations were created using R 
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package ‘phyloseq’ and plotted with R package ‘ggplot2’ (McMurdie and Holmes 2013; 

Wickham 2007). Significant differences in functional gene abundance were evaluated using an 

ANOVA model, and the Tukey’s HSD test from the ‘stats’ package in base R (R Core Team 

2013). ‘DESeq2' was used to determine OTUs that were significantly different by using a 

pairwise comparison among domestication groups (Love, Huber, and Anders 2014).  

 

Results: 

Domestication status influences the taxonomic rhizosphere microbial community 

Modern inbred maize, teosinte, and the starting bulk soil inoculum all exhibited 

differences in the composition and richness of their rhizosphere microbial communities (Fig. 

3.1). For most, plant genotype explained a significant amount of variance in the rhizosphere 

microbiome (PERMANOVA	prokaryotic: n=120, R2=0.18, p<0.001; fungal: n=120, R2=0.15, 

p<0.003, Tables B.4-B.5). To focus on domestication effects, we carried out our remaining 

analysis on the genotype-mean microbial community as described in the methods. Our analysis 

of the genotype mean microbiome, revealed that domestication status explained 27% of the 

variation of the prokaryotic 16S rRNA, and 21% of the variation in fungal ITS (Fig. 3.1A, 3.1C, 

prokaryotic, n=12, p<0.01, fungal, n=12, p<0.004, Tables B.6-B.7). Furthermore, domesticated 

maize exhibited higher levels of species richness in their prokaryotic and fungal microbial 

communities compared to wild teosinte (Fig. 3.1B, 3.1D, Tukey’s HSD n=120, p<0.05).  

To understand which microbial taxa were most affected by domestication status, we ran a 

differential gene expression analysis (DESeq2). This analysis revealed that domestication status 

influenced microbial membership of 346 different prokaryotic taxa (alpha=0.01). Of these, 260 

OTUs were present in greater relative abundance in the inbred maize rhizosphere, while 86 had 
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greater relative abundance in the teosinte rhizosphere microbiome. Domesticated maize enriched 

OTUs across most of the major bacterial phylum, but was especially pronounced in 

Proteobacteria, and Bacteroidetes (Fig. 3.2). While teosinte microbiomes had greater abundance 

of Firmicutes, Verrucomicrobia, and Actinobacteria (Fig. 3.2). For the fungal microbiome, we 

found that domestication status influenced membership of 48 different fungal taxa (alpha=0.01). 

Of these, 37 had greater representation in the rhizosphere of modern inbred maize, while 11 were 

in greater relative abundance in the teosinte microbiome. Differences in the fungal abundance 

were primarily driven by enrichment in Ascomycota in the inbred maize microbiome.  

Domestication status influences the nitrogen cycling genes present in the rhizosphere 

Diversity, composition, and abundance of N-cycling functional groups were altered by 

domestication status of host plants (Fig. 3.3-4. Table B.8). Specifically, we observed that 

functional genes nifH, bacterial amoA, nirK, nirS, and nosZ were all significantly altered in 

composition in response to domestication status (Fig. 3.4. Table B.9). Furthermore, nifH, 

bacterial amoA, nirS, and nosZ, were all significantly more diverse (Tukey HSD: p<0.05) in the 

domesticated rhizosphere compared to the teosinte rhizosphere (Fig. 3.3A). Archaeal amoA did 

not show significant differences in gene composition or richness across domestication classes. 

Additionally, qPCR results showed that wild teosinte cultivars had higher copy numbers of 

archaeal amoA, bacterial amoA, and nirK (Fig. 3.3B, Tables B.10, Tukey HSD p<0.05). These 

alpha diversity and abundance results showed an inverse relationship at the genotype level 

between functional gene diversity and abundance. Regression analysis revealed a strong negative 

relationship between gene abundance and diversity (Fig. B.1, R2= -0.731, p<0.0123).  

Overall, domestication status explained 62% of the variation in mean richness of N-cycling 

functional groups among genotypes (PERMANOVA: n= 12, p<0.003, Table B.11.1), and 65% 
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of the variation in average abundance of N-cycling functional groups (PERMANOVA: n= 12, 

p<0.005, Table B.11.2).  

 

Discussion: 

In this study we show that modern inbred maize and teosinte differ in microbial 

recruitment and that these differences extend to N-cycling functional groups within the 

microbiome. These findings suggest that the domestication and inbreeding process has resulted 

in an altered microbiome interaction within Zea and that teosinte germplasm contain 

microbiome-associated traits that have a potentially more sustainable N-cycling microbiome. 

Our data shows that domesticated inbred maize hosts different assemblages and diversity 

of prokaryotic and fungal communities in the rhizosphere (Fig. 3.1-2). This result aligns with 

previous studies comparing the microbiome assemblages of teosinte and modern maize (Schmidt 

et al. 2020; Brisson et al. 2019; Johnston-Monje et al. 2014). Surprisingly, this study 

demonstrated that inbred maize displayed greater microbial diversity in the rhizosphere 

microbiome compared to teosinte. These finding suggest either that domesticated maize has an 

enhanced ability to maintain higher levels of diversity in the rhizosphere or a weakened ability to 

filter taxa from the rhizosphere. Furthermore, coincident with this diversity increase, we see 

greater abundance of copiotrophic bacteria (Proteobacteria) and potential pathogenic fungi 

(Ascomycota) (Fierer et al. 2007; Berbee 2001; Favela, Bohn, and Kent 2021). The microbial 

composition data lead us to believe the latter “weakened selection” hypothesis is more likely, 

with some support for this hypothesis coming from research on effects of domestication on 

arbuscular mycorrhizal (AM) symbiosis across 27 crop species (Martín-Robles et al. 2018). 

Martin-Robles et al. found that domesticated cultivars maintained less efficient AM symbiosis 
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with a weakened ability to down-regulate colonization under high nutrient conditions shifting 

their symbiosis from mutualistic to parasitic. A parallel process with domestication could be 

occurring with whole microbiome regulation as we observed in our study, charactered by modern 

maize having “weakened selection” to curb the growth of copiotrophic prokaryotes and 

pathogenic fungi.  

Across other domesticated vs wild plant species, alpha diversity comparisons have shown 

mixed and contradictory results, with some domestication events causing decreases (Fierer et al. 

2013) and other showing increases (Shenton et al. 2016; Coleman-Derr et al. 2015) in 

microbiome diversity. These repeated changes in microbiome diversity across a number of 

species may be suggestive of the strength of selection during domestication or the type of 

phenotypic (i.e., flavor, nutritional, size) selection the species experienced over the 

domestication process. Understanding the drivers of selection may highlight a shared 

domestication syndrome present across different cultivated agricultural crops that can be 

characterized by changes in microbiome diversity. Understanding the trade-offs and potential 

disruptions of microbial symbiosis will be important in improving our modern agricultural lines 

(Porter and Sachs 2020).  

To gain an idea of the functional groups associated with these taxonomic community 

changes we took a targeted functional gene approach through the sequencing and quantification 

of diagnostic N-cycling genes. Understanding how specific functional groups respond to the 

unique rhizosphere effect presented by each plant genotype could be informative of how these 

microorganisms are processing nitrogen in the environment in proximity to the roots (Stein et al. 

2016; Kuypers, Marchant, and Kartal 2018). We focused on diversity and abundance of 

functional genes related to denitrification, nitrification, and nitrogen fixation and found that 



71 
 

domestication played a role in shaping the functional groups related to all of these processes 

(Fig. 3.3-4). N-cycling functional gene abundances are influenced at different rates. Maize 

genotypes appeared to have higher diversity of N-cycling functional groups in the rhizosphere 

compared to teosinte genotypes, while teosinte genotypes had higher abundance of functional 

groups. This negative relationship between abundance and diversity perhaps suggests a trade-off 

in microbial interaction similar to those seen in AM interactions (Porter and Sachs 2020). 

Additionally, this disjunct between the diversity and abundance suggests different mechanisms 

of microbiome interaction across teosinte and maize. While teosinte appears to be more selective 

of the nitrogen transformers it allows to persist in the rhizosphere (lower diversity), it is also 

more effective in its propagation of those microbes (higher abundance). This conflicting 

abundance-diversity relationship is interesting as there is no well-established understanding for 

which microbial community characteristic is most predictive of specific N-cycling function in 

soils (Ma, Zilles, and Kent 2019). Some research in this area suggests that diversity is a more 

significant predictor of ecosystem function (Philippot, Spor, et al. 2013) while others show 

abundance to be more important (Ouyang et al. 2018). In the rhizosphere, further work is needed 

across a wide range of plants and soil type to disentangle the diversity-abundance-function 

relationship.  

Diazotrophs were not significantly different in abundance between the two treatments. 

This finding was not surprising because plants were fertilized with nitrogen during the growing 

period, and diazotrophs would have no competitive advantage under these conditions. As with 

other functional groups, the maize rhizosphere hosted a considerable amount of diversity in nifH 

– we attribute this higher diversity to a potential inability to filter diazotroph colonization in their 

rhizospheres as mentioned above. Recent research displaying that some maize landraces can host 
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N-fixing taxa in their aerial roots (Van Deynze et al. 2018) has highlighted that maize has a more 

complicated relation with diazotrophs then previously understood. In addition, we have 

previously seen that within elite inbred maize, the modern breeding process has resulted in 

reduced nifH abundance and diversity in the rhizosphere since the 1940s ( Favela, Bohn, and 

Kent 2021) . Further work needs to be carried out under a variety of field N conditions to 

understand whether these findings were caused by differences in the domestication or effects of 

fertilization.  

In regard to nitrification functional groups, we were surprised to find that both archaeal 

and bacterial amoA were in higher abundance but lower in diversity in the teosinte rhizosphere 

compared to the maize rhizosphere. This result was surprising as nitrification is commonly 

thought of as a process that competes with plants for available N and can lead to considerable 

losses of N from the agroecosystem (Subbarao et al. 2013; Moreau et al. 2019) . Furthermore in a 

other cereal grass species it has been shown that some plants varieties, typically uncultivated, can 

produce secondary toxic compounds that biologically inhibit nitrification (BNI) (Coskun et al. 

2017a, 2017b). Therefore, our hypothesis going into the study was that if teosinte showed more 

traits related to sustainability, these ancestral genotypes would limit nitrification and would 

presumably recruit a lower abundance of nitrifier taxa. Perhaps, teosinte still contains BNI traits, 

they just manifest as changes in the diversity (lower) of functional groups- but not in abundance 

(higher). This would not be too surprising as most of the established BNI work has been done 

with a single nitrifier in isolation outside of the nitrifier community context (Subbarao et al. 

2006). Unfortunately, we did not characterize nitrification rates, just markers of function, further 

research is needed to determine the best predictors of nitrifier function in the rhizosphere in a soil 

community context.  
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In addition, we observed effects of plant domestication on genes diagnostic for 

denitrification functional groups (Fig. 3.3). Denitrification genes responsible for the conversion 

of nitrite into nitric oxide showed differences in abundance, with nirK being more abundant in 

the teosinte rhizosphere and nirS being greater in the maize rhizosphere. Previous work has 

shown that nirS-type denitrifiers are more sensitive to rhizosphere effects compared to nirK-type 

and that nirK communities have a broader profile for carbon substrate utilization (Bardon et al. 2016; 

Hou et al. 2018). Perhaps, nirS increase in maize rhizospheres is caused by having a weaker 

rhizosphere effect, while increases in nirK could be attributed to teosinte’s likely more complex 

metabolic profile. Furthermore, studies have shown that the response of nirS and nirK functional 

groups to environmental gradients are markedly different, which supports the possibility that the 

two communities occupy different ecological niches (Jones and Hallin 2010; Wei et al. 2015; 

Azziz et al. 2017). Perhaps to the dentification functional groups the maize and teosinte 

rhizosphere present different ecological niches generated by altered patterns in plant exudation. 

These differences in denitrification community recruitment may also be attributed to phenotypic 

differences in biological denitrification inhibition (BDI) (Bardon et al. 2016). BDI, originally 

described in Fallopia has been defined as the ability of the plant to release secondary metabolites 

(like procyanidins) that inhibit denitrifers and therefore conserve nitrates in the rhizosphere 

environment (Bardon et al. 2014). Furthermore, studies across a number of species have shown 

that exudates from a variety of plant species have the ability to alter denitrification abundance 

and activity (Achouak et al. 2019). A key challenge will be understanding the genes and 

subsequent related secondary metabolites driving these ecosystem function differences.  

We hypothesize that our differences in nitrifier and denitrifier communities between 

maize and teosinte are caused by differences in the production of plant secondary compounds 
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originating from domestication and breeding. Many recent comprehensive studies examining 

transcriptome and metabolomic differences between maize and teosinte have shown that 

alkaloids, terpenoids, lipids, and benzoxazinoids and their regulation has been altered during 

maize evolution (G. Xu et al. 2019; X. Wang et al. 2018). We propose that these genetic and 

chemical changes in maize result in altered recruitment of N-cycling functional groups in the 

rhizosphere and may even alter how maize obtains nutrients from the soil matrix. Understanding 

that maize and teosinte differ in recruitment of microbiome groups throughout the nitrogen cycle 

(Fig 3.4) is important as these functional groups play a central role in the movement of nitrogen 

in the agroecosystem (Kuypers, Marchant, and Kartal 2018; Bowles et al. 2018).  

Determining the function of these lost and transformed ancestral plant microbiome traits 

will inform us to their usage in the agricultural system. Currently, a substantial fraction of 

nitrogen fertilizer applied to arable lands is often lost, leading to the pollution of terrestrial and 

aquatic ecosystems (Bowles et al. 2018). This failure of modern agriculture has led to global 

disruption and acceleration of the reactive N cycle. As maize is one of the most farmed and 

fertilized crops in the world and a staple food for many populations, finding a solution in this 

species is vital (Ladha et al. 2016). Misdirection of N away from plants is commonly attributed 

to microorganisms in the soil and rhizosphere that transform and use N. The fact that 

domesticated and wild Zea develop different functional nitrogen cycling genes within their 

rhizospheres suggest that plants may be able to intervene in these microbial activities.  

In conclusion, we have shown that the domestication of teosinte into modern maize has 

resulted in taxonomic and N-cycling functional group changes to the rhizosphere microbiome. 

Modern maize appears to have a “weakened selection” on the rhizosphere microbiome compared 

to teosinte. It still needs to be determined if and how these characteristics influence the N-cycling 
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function of the rhizosphere microbiome in agroecosystem, but this does suggest that ancestral 

functional microbiome characteristics are different than modern agriculture (Pérez-Jaramillo, 

Mendes, and Raaijmakers 2015). The more we understand about how domestication has altered 

the functional microbiome interactions the closer we are to selecting and ‘re-wilding’ our 

modern lines with beneficial traits that contribute to agricultural sustainability.  
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Figures:  

 

 
Figure 3.1 NMDS ordinations based on Bray-Curtis dissimilarity among prokaryotic 16S rRNA 
(A) and fungal ITS (C) rhizosphere microbiome samples compared among inbred maize, 
teosinte, and bulk soil. Statistics present in the figure show PERMANOVA model results (Table 
B.4-B.7). (B, D) Highlight differences in alpha diversity (chao1) across our inbred maize, 
teosinte, and bulk soil. Inbred maize and teosinte have significantly different diversity values 
according to the T-test.  
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Figure 3.2 Denotes significantly different OTUs between inbred maize and teosinte rhizospheres 
as identified by DESEQ2. A) Stack plots show the relative abundance of differential abundant 
prokaryotic 16S rRNA OTUs facetted by phylum. B) Stack plots show the relative abundance of 
differential abundant fungal ITS OTUs facetted by phylum. Greyscale within stack plots are 
included to show taxonomic class identity. List of OTUs differential enriched and stack plots 
within highly abundant taxonomic groups included in supplemental.  
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Figure 3.3 Here we display the comparison of functional gene richness and abundance across the 
maize and teosinte rhizosphere. A) Displays the gene richness (chao1) across the functional 
genes measured in this study. Note that the axis is replotted to correct for the high richness in the 
nirK gene. B) Displays the gene abundance (copies/ng) across the functional genes. Asterisk 
included in both figures to display significance among groups using t-test.  
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Figure 3.4 Minimal Nitrogen cycling is used as a graphical tool to display wherein the N-cycling 
domestication status influenced the composition of the groups. Percentages denote the amount of 
variance in the functional gene composition explained by the domestication factor in 
PERMANOVA.  
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CHAPTER 4: GENETIC VARIATION WITHIN ZEA MAYS ALTERS 

MICROBIOME ASSEMBLY AND NITROGEN CYCLING FUNCTION IN  

THE AGROECOSYSTEM 

Abstract:  

Overuse of synthetic nitrogen fertilizers in agroecosystems causes global level 

environmental pollution and human harm. These nitrogenous fertilizers provide a short-lived 

benefit to crops in the agroecosystem because of microbially-mediated nitrification and 

denitrification the remove N. Recent advances in plant-microbiome science suggest that plants 

can modulate the composition and activity of rhizosphere microbial communities. These 

rhizosphere communities seem to act like extended phenotypes informed by genetic variation in 

the plant host. Genetic variation in traits (e.g., plant secondary metabolites, immune system, etc.) 

act as mechanistic selective agents on the composition of the microbiome. Here we attempted to 

determine whether genetic variation existed in Zea mays for the ability to influence the extended 

phenotype of rhizosphere soil microbiome composition and function. Specifically, we wanted to 

characterize whether plants’ influence on soil nitrogen cycling activities was heritable and 

thereby able to be selected for the purposes of breeding. To capture an extensive amount of 

genetic diversity within maize we sampled ex-PVP inbred lines, hybrids, and wild teosinte (Z. 

mays ssp. mexicana and Z. mays ssp. parviglumis). Within among these Zea lines we found that 

plant genetics explained a significant amounts variation in the microbiome and across different 

nitrification and denitrification functional genes. The greatest differences in rhizosphere 

microbiome recruitment were seen between teosinte genotypes and modern inbred maize 

genotypes, with major shifts in Actinobacteria, Acidobacteria, and Proteobacteria. We found 

that potential nitrification, potential incomplete denitrification, and overall denitrification rates, 
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but not qPCR abundance of N-cycling genes of rhizosphere soils were influenced by time of 

sampling (season) and plant genetics (genotype and group). Additionally, we observed that 

potential N cycling processes were heritable. Teosinte genotypes suppressed N-cycling activity 

while more modern inbred genotypes stimulated N-cycling activity. Taken together these results 

suggest that selection led to the loss of sustainable N-cycling processes in modern lines and that 

reintroducing teosinte traits into our modern germplasm may be a way manipulate soil 

microbiomes at both a composition and functional level to improve sustainability.  

 
Introduction:  

More than half the world’s people depend on crops grown with synthetic nitrogen (N) 

fertilizers (Bowles et al. 2018). Regrettably, most of these synthetic N fertilizers inputs escape 

the agroecosystem and unintendedly pollute and degrade natural systems and harm human health 

(Zhang et al. 2015; Vitousek et al. 2013). Unfettered soil nitrogen cycling microorganisms (i.e. 

nitrifiers and denitrifiers) are major contributors to the leaky N agricultural systems (Kuypers, 

Marchant, and Kartal 2018). To improve the sustainability of our agricultural system, we need to 

understand how ecological drivers, such as plant-microbe interactions, influence soil’s nitrogen 

cycling microorganisms and the movement of nitrogen (Moreau et al. 2015, 2019). 

Genetic variation within crop species has been shown to play a significant role in plant-

microbiome assembly and recruitment (Peiffer et al. 2013; Walters et al. 2018). Across large-

scale and multi-year field trials, researchers find consistent sets of heritable core microbial taxa 

associated with specific plant genotypes (Walters et al. 2018; Xu et al. 2018). These taxonomic 

assembly differences are functionally relevant as microorganisms contain a diverse biochemical 

repertoire that allows plants to escape nutrient, drought, and pathogen stress (Philippot et al. 

2013; Compant et al. 2019; Trivedi et al. 2020). In the rhizosphere plants exude complex 
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cocktails of chemical compounds, the production of which is directed by the plant genome. 

These exudates traits in tandem with root phenology and physiology act as an ecological filter 

which has direct fitness consequences for the surrounding soil microbial communities (Huang et 

al. 2019; Canarini et al. 2019). Soil microorganisms that are phytochemically competent to the 

ecological filter of the rhizosphere survive and persist near the plant root (Philippot et al. 2013). 

It follows, then, that the ecological filtering for rhizosphere occupancy that arises from genotypic 

variation contributing to agents of selection will have direct consequences on biogeochemical 

cycling activities carried out by the rhizosphere microbiome. 

Rhizosphere soil microorganisms are key contributors to essential ecosystem functions. 

Ecosystem processes, nitrification, and denitrification are primarily controlled by 

microorganisms in the soil and can result in a considerable loss of nitrogen from an ecosystem 

(Philippot, Hallin, and Schloter 2007; Davidson et al. 2012). Microorganisms are extremely 

diverse, and variation within species likely play a critical role in shaping how ecosystem 

processes occur in the ecological setting. In many ways, soil microorganism biodiversity is a 

foundational gatekeeper of the pathways by which nutrients can enter and exit an ecosystem. 

Furthermore, emerging research is beginning to show that genetic variation within plant species 

can have a considerable role in driving both soil community composition and biogeochemical 

relevant microorganisms (Subbarao et al. 2013; Pérez-Izquierdo et al. 2019). For example, we 

have shown that historic selection on plant genotype can drive the assemblage of the nitrogen 

cycling rhizosphere microbiome, both by changing the taxonomic composition and 

representation of nitrogen-cycling functional genes ( Favela, Bohn, and Kent 2021). Yet we and 

many others have lacked evidence linking microbiome changes to altered nitrogen cycling 

processes within the ecosystem. Here, we attempted to address this in an agroecological field 
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setting. Specifically, we wanted to determine how predictive plant genotype is as a tool to 

understanding changes in the soil microbiome, particularly microbial functional groups, and to 

connect this extended phenotypic variation back to changes in important nitrogen cycling 

processes. 

To evaluate the plant genetic effects on nitrogen cycling microbial functional groups, we 

grew a diverse panel of Zea mays (including elite inbred, hybrid, and wild lines) and measured 

their contribution to differences in microbial community assembly and nitrogen cycling 

processes. By doing this in a highly replicated manner within a single field, we were able to 

control for stochastic edaphic factors and parse the plant genetic contribution driving soil 

microbiome function in an agronomically relevant field setting. Previously, our research in elite 

inbred maize suggested that breeding of maize resulted in a narrowing and loss of sustainable N-

cycling microbiome functions through the 20th century ( Favela, Bohn, and Kent 2021). Informed 

by this prior research, we included maize hybrids to estimate if microbiome functions would be 

regained through heterosis. In addition to this, within Zea mays, we found microbiome 

recruitment and N-cycling functional groups differed the most between modern inbred maize and 

wild teosinte (Ch. 2: Favela in prep. 2021). Thereby, wild Zea was included as an outgroup to 

evaluate the influence of pre-domestication genetics and their ecological filtering traits influence 

on microbiome assembly and function. These treatments give us an understanding of how much 

plant genetic variation is necessary to induce changes in the microbiome of soils and provide 

insight into how domestication and breeding altered microbiome functions. With this 

information, we hoped to better understand how genetic alterations in maize can have cascading 

effects in plant microbiome recruitment and nitrogen cycling activity. Understanding these 

processes in an agroecological field setting is critical as to improving the sustainability of maize.  
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Methods:  

Field Design 

Field plots were located at the Crop Sciences Research and Education Center - South 

Farms at the University of Illinois, Urbana-Champaign, IL (40°03'30.4"N 88°13'50.4"W). We 

used a panel of Zea lines that encompass modern ex-PVP inbred lines, hybrids, and the wild 

progenitor of maize, teosinte (27 genotypes in total). Teosinte was represented by two subspecies 

Zea mays. mexicana and Zea mays. parvaglumis (3 genotypes of each). Across our field, each 

line had 4 replicate blocks that were arranged in Randomized-Block Design (Fig. C.1A-B). Each 

maize block contained 4 rows with 15 plants in each row. Maize lines were planted on 4/30/17 

while teosinte lines were planted 5/19/17. These differences arose as maize was planted with an 

industrial planter while teosinte needed to be hand planted. Furthermore, due to seed limitations 

teosinte was planted in 2 row blocks as opposed to 4 row blocks like in maize.  

Sample collection  

Blocks were sampled 3 times across the growing season. Plants were sampled in 

approximately sampled in V4 (Both: 6/5/17), V6 (Maize:6/20/17, Teosinte:7/20/17), R2 

(7/12/17, Teosinte: 8/11/17). Staggered sampling of teosinte and maize at later timepoints (T2, 

T3) was done to control for growth delays caused by delayed planting. Within each sampling 

event, four individual plants were sampled within a block, and samples were combined into a 

composite sample. Individual plants were never resampled, thereby maintaining independent 

sampling timepoints. Samples consisted of a soil core (10 cm depth) within the root zone of the 

plant. Rows were sampled by a replicated block to control for sampling effects. Sampled were 

placed on ice until they were transported to the lab. Once in the lab, soils were refrigerated at 
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4°C awaiting potential nitrification assays or potential denitrification assays (within 5 hours). 

Aliquots for DNA extraction were frozen immediately.  

Potential nitrification assay 

The potential nitrification assay was developed and modified from (Schinner et al. 1996). 

This assay was performed at substrate saturation and values presented should be interpreted as 

the maximum potential rate of transformation of ammonia to nitrite, the first-rate limiting step of 

nitrification. In principle, this assay uses ammonium sulfate as the substrate for the first step of 

nitrification during a 5-hour incubation. Nitrite products released during the incubation period 

were extracted with potassium chloride and concentration is determined colorimetrically at 

520nm. Sodium chlorate was added to the assay to inhibit nitrate oxidation during the incubation 

period. Aliquots of homogenized field-moist root-zone soil (5 g) was placed in into two 50ml 

tubes (sample and control). Then we added 20ml of our substrate solution and 0.1 ml of sodium 

chlorate, mixed briefly, and closed the tubes. Sample tubes were incubated on a rotatory shaker 

for 5h and control tubes were stored at -20C for 5h. After incubation and thawing, KCl was used 

to filter both samples and controls. The amount of nitrite present in the samples was measured 

using a color reagent that binds to nitrite. Calibration standard curves were created by weighing 

out and diluting sodium nitrite and combining it with color reagent. Potential nitrification rates 

were arithmetically adjusted by initial soil moisture, soil weight, % dry matter, and initial nitrite 

in the sample.  

Potential nitrification rate calculation below:  

(𝑆 − 𝐶) ∗ 25.1 ∗ 1000 ∗ 100
2.5 ∗ 5 ∗ 5 ∗ %𝑑𝑚 = 𝑛𝑔𝑁 ∗ 𝑔!"𝑑𝑚 ∗ ℎ!" 

S  value of sample (mg N) 
C  value of control (mg N) 
25.1  volume of extract (ml) 
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1000  conversion factor (1 mg N = 1000ng N) 
2.5  aliquot of filtrate (ml) 
5  initial soil weight (g) 
5 hour of assay duration 
100*%-1 dm  factor for soil dry matter  
 

Potential denitrification rates by acetylene-inhibition assay  

Potential denitrification assays were carried out using a modified version of (Schinner et 

al. 1996; Peralta et al. 2016). Field-moist root-zone soil samples were incubated under anaerobic 

conditions in the presence of acetylene for 3h at 25C. The assay was done on 25g of root-zone 

soil in glass Wheaton jars. Incubations were done at substrate saturation of carbon (dextrose) and 

nitrogen (nitrate). Chloramphenicol was added to the incubation to act as a bacteriostatic agent to 

prevent further microbial growth and protein synthesis. Wheaton jars were purged of oxygen 

with either helium or acetylene. Helium samples were used to estimate the amount of incomplete 

denitrification (N2O) occurring in the assay atmosphere. Acetylene purged samples are used to 

measure overall denitrification (N2O + N2). Acetylene is a commonly known inhibitor of nitrous 

oxide reduction. Initial and final gas samples were taken at the start and end of the incubation 

period. Initial and final nitrous oxide in gas samples was quantified using a GC-2014 Gas 

Chromatograph (Shimadzu, Kyoto, Japan) with an electron capture detector (GC-ECD). 

Potential denitrification rates were arithmetically adjusted by initial soil moisture, soil weight, % 

dry matter, sample volume, and headspace. 

Denitrification rate calculation is seen below:  

X ∗ V ∗ 0.6363 ∗ 100
IV ∗ t ∗ SW ∗ %dw = 	µgN#O − N ∗ g!"dm ∗ h!" 

X µg	N#O	of	the	injected	sample	volume 
V total volume of incubation flask minus soil volume (ml) 
0.6363 factor to convert N2O to N2O-N 
IV injected sample volume (ml) 
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t incubation time (h) 
SW initial soil weight  
100*%-1 dm  factor for soil dry matter  
 

Microbial Community Amplicon Sequencing 

For this experiment, we characterized the microbiome and diagnostic functional genes 

related to transformations that occur in the nitrogen cycle: nitrogen fixation, nitrification, and 

denitrification. Amplicon sequencing was performed on bacterial and archaeal 16S rRNA genes, 

fungal ITS2, amoA, nirS, nirK, nosZ, and nifH genes. The Fluidigm Access Array IFC chip was 

used to prepare sequencing amplicons. This method allows for the simultaneous amplification of 

target functional genes using multiple primer sets (Fluidigm, San Francisco, CA). DNA 

sequencing was performed for bacterial, archaeal, and fungal amplicons using an Illumina HiSeq 

2500 Sequencing System (Illumina, San Diego, CA). Primer information is provided in (Favela, 

Bohn, and Kent 2021) Fluidigm amplification and Illumina sequencing were conducted at the 

Roy J. Carver Biotechnology Center, University of Illinois (Urbana, IL, USA). Fast Length 

Adjustment of Short reads (FLASH) (Mag and Salzberg 2011) software was used to merge 

paired-end sequences from bacterial and archaeal 16S rRNA genes. For functional genes and 

fungal ITS, only forward read sequences were used. Once FLASH merging was performed, files 

were filtered by quality using the FASTX-Toolkit (Gordon, Hannon, and Gordon 2014). Reads 

that did not have a minimum quality score of 30 across 90% of the bases were removed. Using 

the FASTX-Toolkit, nirK sequences were trimmed to its amplicon size of 165-bp. 

Once quality preprocessing was performed, FASTQ reads were converted to FASTA format. 

Using USEARCH-UPARSE version 8.1 (Edgar 2010), sequences were binned into discrete 

OTUs based on 97% similarity and singleton DNA sequences were removed. Quantitative 

Insights into Microbial Ecology (QIIME) was used to generate OTU tables for downstream 
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statistical analysis and to assign taxonomic information, this is done with a combination of the 

UCLUST algorithm and GreenGenes database (DeSantis et al. 2006; Edgar 2010; Caporaso et al. 

2010). Once taxonomy was assigned, chloroplast and mitochondrial OTUs were removed from 

the dataset. Rarefaction was performed to correct for differential sequencing depth across 

samples. Functional gene sequences were also assigned using QIIME (Caporaso et al. 2010) with 

the BLAST (Altschul et al. 1997) algorithm and custom gene-specific databases generated from 

reference sequences obtained from the FunGene repository (http://fungene.cme.msu.edu/) (Fish 

et al. 2013). All OTU tables used in statistical analyses were generated in QIIME. Singleton 

OTUs were filtered prior to statistical analysis. 

Statistical Analysis 

Statistical analysis was performed in R, with the packages ‘Vegan’, ‘ASReml’, and 

‘WGCNA’. ‘Vegan’ was used to perform multivariate statistical comparisons across microbiome 

data (Oksanen et al. 2007; Butler et al. 2017; Langfelder and Horvath 2008). ‘ASReml’ was used 

to perform univariate comparisons of potential nitrification, denitrification and nitrogen cycling 

qPCR and potential assay results. WGCNA was carried out to compare our multivariate 

microbiome data to our univariate nitrogen cycling function data. Model factors used in 

statistical analysis were time of sampling, the location of the block, the row of block position, 

range of block position, the genotype within the block, and the interaction between genotype and 

sampling time. Typical model of analysis seen below:  

𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑜𝑚𝑒 = 𝑃𝑙𝑎𝑛𝑡	𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝑇𝑖𝑚𝑒	𝑜𝑓	𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 + 𝐵𝑙𝑜𝑐𝑘 + 𝑅𝑎𝑛𝑔𝑒 + 𝑅𝑜𝑤

+ 𝑅𝑎𝑛𝑔𝑒: 𝑅𝑜𝑤	𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛	 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒: 𝑇𝑖𝑚𝑒	𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠	 
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In the ASReml mixed effect models, plant genotype and the genotype-time interaction were 

treated as fixed factors, while all other factors (block, range, row) were treated as random 

factors. In PERMANOVA models, block factor was constrained in permutations.  

Quantifying nitrogen cycling functional groups 

Quantitative PCR (qPCR) was carried out to determine the abundance of functional genes 

in each of the rhizosphere microbial communities. Specific target amplification (STA), explained 

in (Ishii et al. 2014), was carried out on samples and standards to increase template DNA for 

amplification. STA and qPCR master mix recipes from (Edwards et al. 2018) were used for all 

samples. STA product and qPCR master mix were loaded into the Dynamic Array™ 

Microfluidics Fluidigm Gene Expression chip where amplification and quantification of 

functional genes were carried out simultaneously (Fluidigm, San Francisco, CA). All samples 

and standards were analyzed in 12 technical replicates. Fluidigm Real-Time PCR Analysis 

software version 4.1.3 was used to calculate gene threshold cycles (CT). CT values were 

converted to gene copy number using gene length and standard curves. All Fluidigm qPCR was 

conducted at the Roy J. Carver Biotechnology Center (Urbana, IL, USA). The final copy number 

of each functional gene amplicon was standardized by the ng of template DNA in the qPCR 

reaction.  

In situ N2O flux measurements 

Net soil-atmosphere N2O fluxes were measured weekly from 6/20/17 to 8/23/17, samples 

were collected for a total of 6 weeks. As gas flux measurements are laborious and time 

consuming, sampling was targeted during plant peak primary plant growth and focused on the 

plant treatments that were hypothesized to have the largest effect on the microbiome function 

based on previous studies (Favela, Bohn, and Kent 2021). Specifically, the comparison focuses 
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on B73 inbred maize to PI566677 wild teosinte. Flux measurements were measured using static 

flux chambers as described in USDA-ARS GRACEnet Project protocol (Parkin and Venterea 

2010). Chambers were installed in the field during the first sampling timepoint and remained in 

place throughout the maize growing season. Chambers consisted of two-pieces: PVC pipe with a 

30 cm diameter (base installed 20 cm into soil), and sampling lids (10 cm in height). Gas 

sampling events occurred in the mornings between 10 am-noon; during this time 15 mL of gas 

were collected from chambers every 10 minutes for 30 mins. Samples were stored in evacuated 

aluminum crimp-top glass vials with a chlorobutyl stopper and sealed with clear silicone to 

prevent sample leakage. Gas samples were later quantified using a GC-2014 Gas Chromatograph 

with an electron capture detector (GC-ECD) (Shimadzu, Kyoto, Japan). Standard curves were 

used to quantify the amount of N2O in gas sample. N2O samples were corrected using ambient 

temperature and moisture conditions of day. 4 sampling timepoints were used to determine the 

rate of N2O production (ppm of N2O/min), while the total production was the sum of N20 

measured over the time of collection (ppm).  

 
Results:  

In this field experiment, we identified 37,596 different 16S rRNA operational taxonomic 

units (OTUs, 97% similarity, rarefied to 100000 reads per sample), and 2236 fungal OTUs 

(rarefied to 10000) were identified from the ITS2 region.  

Rhizosphere Microbiome Variation across the Field  

Within the prokaryotic community (based on 16S rRNA gene sequences), we found that 

plant genotype, genotype × time interactions, the location of the block, and sampling time 

explained 74% of the variation within the microbiome; respectfully, 26% of the variation within 

the microbial community was unexplained (PERMANOVA, DF=26, p<0.001; Fig. 4.1; Table 
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C.1-C.3). In total, 34% of the variation in the prokaryotic microbiome was explained by plant 

genetics in some way; 18% of this 34% variation was independent of temporal effects while 16% 

were highly linked to the time of sampling. Interestingly, 20% of the variation in the soil 

microbial community was explained by block location alone. This would mean that across time, 

20% of the microbiome was unchanged across the season. Sampling time (independent of 

genotype) explained 12% of the variation within the microbiome. These results suggest that plant 

driven microbiome assembly is to some degree dependent on date of sampling and growth. 

Roughly, these results suggest that plant genetics explained about a third of the variation in the 

agroecosystem microbiome. Spatial, and temporal effects seem to explain a third of the variation 

each within the microbiome. Finally, an additional third of variation within the soil microbiome 

goes unexplained. These results seem to highlight that plant genotype is a drivers of soil 

microbial community structure as much as random/uncontrollable factors such as time and space. 

Cumulatively, plant genotype explained about 34% of the variation within the microbial 

community. Across plant group (inbred, hybrid, teosinte) showed the greatest differences in 

microbiome recruitment (Fig. 4.1-2; Table C1, C3). Specifically, teosinte and hybrid maize 

treatments have the strongest effect on the composition of the soil microbiome agroecosystem. 

Teosinte rhizosphere soils contained greater relative abundance of Actinobacteria and 

Proteobacteria (specifically, Actinomycetales, Burkholderiales) and less Acidobacteria (iii1-15, 

Solibacteres) compared to modern maize (Fig. C2-3). Additional analysis was carried out within 

plant category (i.e., within inbred, within hybrid, within teosinte), and inbred maize was the only 

category where genotype did not significantly contribute to differential microbiome recruitment.  

Fungal communities showed similar results to the prokaryotic communities except for 

notably weaker effects of space. This may indicate that fungi are more limited spatially than 
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bacterial communities (Table C.1). When comparing the results of this model with bacterial and 

fungal results we can see that time and space interaction explain about half (47%) of the 

variation in fungi communities compared to 7% by bacterial communities. This result makes it 

clear to that fungal communities in the agroecosystem soil are far more context-dependent to the 

exact time and space of the environment compared to prokaryotes. They seem to exist more 

independently in this environment as compared to bacteria which seems to be more dependent on 

plants present.  

Nitrogen Cycling Genes Community Across the Agroecosystem 

From our analysis of nitrogen cycling functional genes, we observed 882 nifH OTUs, 210 

archaeal amoA OTUs, 98 bacterial amoA OTUs, 21022 nirK OTUs, 2607 nirS OTUs, and 7294 

nosZ OTUs. In response to genotype, 4 of 6 nitrogen cycling genes showed changes in 

community membership (Fig. 4.3; Table C.3), 1 of 6 nitrogen cycling genes changed in 

abundance (Table C.2.1). Conversely, plant group (inbred, hybrid, teosinte) affected 4 of 6 

nitrogen cycling genes showed changes in community membership, and 2 of 6 nitrogen cycling 

genes changed in abundance among plant categories (Table C.2.2). Additionally, plant genotype 

and group interactions with time had a significant effect on N-cycling composition and 

functional gene abundance (Table C.2.1-2; Fig. C.5). 

Nitrogen fixation genes  

Plant genotype did not significantly influence the composition or abundance of nifH 

genes in the rhizosphere (Table C.2-3.1-3, Fig. C.5). Spatial and temporal factors within in the 

field were the only significant factors explaining variation in the diazotrophs communities. In 

total, spatial effects explained about 9% of the variation in the community and time explained 

1% of the variation respectfully (Table C.3.1-3). Additionally, plant group (inbred, hybrid, 
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teosinte) did not have a significant influence on nifH community composition; however, it did 

have a significant effect on abundance (log of copies/ng) of nifH genes in the rhizosphere 

(Wald=6.14, p=0.04). Teosinte rhizosphere hosted fewer diazotrophs during the first and last 

sampling timepoints compared to hybrid and inbred maize (Fig. C.5).  

Nitrification genes 

The recruitment of nitrifiers (indicated by gene sequences for bacterial and archaeal 

ammonia monooxygenase – amoA) was not significantly impacted by plant genotype and plant 

group. While plant genotype explained a small but significant amount of variation for archaeal 

amoA (R2=0.08, p<0.001, Fig. 4.3, Tables C.3.7-9), there was not a significant change in 

community composition of bacterial ammonia oxidizers in response to genotype (p=0.16, Fig. 

C.4B-C Table C.9.2). Regarding abundance, neither archaeal nor bacterial ammonia oxidizers 

were significantly influenced by plant genotype (archaeal amoA p=0.61, bacterial amoA p=0.99, 

Table C.4). Plant goups showed the same patterns as genotypes reported above (Fig. C.6, Table 

C.2, C.3.4, C.3.7, C.4).  

Denitrification genes 

All the denitrification genes surveyed were significantly different among genotypes and 

group (Fig. 4.3, C.6, Tables C.2, C.3.10-18). Communities of denitrifiers possessing both the 

cytochrome cd1-type nitrite reductase (encoded by nirS) and the copper containing nitrite 

reductase (encoded by nirK) varied significantly among plant genotypes (nirS: R2=0.09, Fig. 4.3, 

Table C.3.14; nirK: R2=0.09, p=0.003, Fig. 4.3, Table C.3.11) In addition to this, nosZ, the gene 

that encodes typical nitrous oxide reductase, crucial in the consumption of N2O, was found to be 

affected by plant genotype (R2=0.09, p=0.011, Fig. 4.3, Table C.3.17). Quantitative PCR of 

denitrification genes showed no difference in the abundance of genes in the rhizosphere across 
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plant genotype and largely for plant group (Fig. C.5-6, Table C.2). One exception to this was 

nosZ, which was observed to be altered by plant group (p<0.05, Table C.4.11, Fig. C.5G). In 

addition to this, like nifH and bacterial amoA, the denitrification genes showed a strong and 

significant interaction between plant group and time (Fig. C.5). During the first sampling time 

point (V2-V4), the teosinte rhizosphere microbiome contained similar denitrification gene 

abundance, had greater levels of dentification genes during the final (R1-R3) sample point, and 

finally, had lower numbers of denitrification genes compared to inbred and hybrid maize by the 

end of season. Full analysis of plants groups effect and additional genotype models on 

denitrification genes present in Supplemental Tables C.3-4. 

Potential Nitrification Assay  

Potential nitrification rate (ngN/ghr) of rhizosphere soils was influenced by both time of 

sampling in season and plant genetics (Fig. 4.4, Table C.6.1-4). Specifically, M On average, 

teosinte genotypes suppressed potential nitrification rate by 9% compared to inbred maize which 

on average simulated potential nitrification rates by 4% (means difference of 13%, Fig. 4.5, 

C.8.1). It should also be noted that a considerable amount of variation in potential nitrification 

rates could be attributed to plant genotype (p<0.05, Table C.6). Furthermore, the log of potential 

nitrification rates appears to be heritable (i.e., explained by genetic variation), though this effect 

had disappeared by the final timepoint (T1: p=0.012, T2: p<0.05, T3: p=0.73; Table C.5). 

Heritability estimate at the first (V2-V4) time point was 0.14±0.19 and 0.80±0.28 at the second 

time point respectfully (Table C.5, C.6).  

Potential Denitrification Enzyme Assay  

We found that the variation in the potential incomplete denitrification (N2O) and overall 

denitrification (N2O + N2) rate log(ngN/ghr) of rhizosphere soils to be influenced by time of 
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sampling in season and plant genetics (Fig. 4.4B, 4.6-7, incomplete: p<0.001, overall: p<0.001, 

Table C.7.1-6). On average teosinte genotypes suppressed the log of overall denitrification by 

59% compared to inbred maize which stimulated it by 4% (mean difference 63%, Fig. 4.6B, 

Table C.8.2). For potential incomplete denitrification log(ngN/ghr) teosinte genotypes 

suppressed activity by 75% and inbred genotypes on average stimulated potential complete 

denitrification by 32% (mean difference 102%, Fig. 4.7B, Table C.8.3). Additionally, we found 

there to be a considerable amount of significant heritability in potential denitrification across the 

growing season (Table C.5, C.7). For the log of potential overall denitrification, we estimated 

heritability to be 0.34 ±0.17 at the first timepoint (V2-V4), 0.0±0.00 at the second timepoint 

(V10-V12), and 0.28±0.12 at the third (R1-R3) timepoint (Table C.5, C.7). For the log of 

potential incomplete denitrification, we found heritability to be to be 0.41 ±0.13 at the first 

timepoint (V2-V4), 0.03±0.02 at the second timepoint (V10-V12), and 0.06±0.08 at the third 

(R1-R3) timepoint (Table C.5, C.7). 

N2O Flux from static chambers 

To estimate whether our potential denitrification and nitrification rates were reflected in 

ecosystem flux differences, we placed static flux chambers in blocks with two of our genotypes 

(B73 inbred maize and PI566677 wild teosinte). From these static chambers, we found that 

across the season the teosinte genotype soil produced significantly less N2O (ppm/min) (t=2.09, 

df=33, p=0.04, Fig. 4.9A) and had lower total N2O (ppm) compared to the inbred genotype 

(t=2.01, df =29, p=0.05, Fig. 4.9C). In addition to this, we saw a dynamic pattern in both N2O 

production rates (ppm/min) and total N2O (ppm) produced across the season – where early in the 

season fluxes are similar early in the season but differentiate by the end (Fig. 4.9B, D).  
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Relationship between the microbial community and N-cycling function 

To further understand the differential contribution of the rhizosphere microbiome to the 

potential function of a soil sample, we used weighted gene correlation network analysis 

(WGCNA) (Langfelder and Horvath 2008) to identify four unique co-correlated clusters of 

OTUs (modules) with a significant response to potential function (3 modules that were correlated 

to potential nitrification, and 1 module that was correlated to overall denitrification, Fig. 4.8). 

The “brown” taxa module was positively correlated to nitrification (r=0.20, p<0.001) and the 

“turquoise” and “green” modules were negatively correlated to nitrification (turquoise: r=-0.25, 

p<0.001; green: r=-0.20, p<0.001). The brown module contained 129 OTUs and was dominated 

by the presence of Acidobacteria. Interestingly, the second most dominate phylum in this module 

Cholorflexi was recently shown to have the ability to carry out nitrification(Spieck et al. 2020). 

The turquoise module contained 290 OTUs and the green module contained 38 OTUs, both 

modules were dominated by Actinobacteria. The “cyan” module was correlated to the rate of 

overall denitrification (r=0.17, p<0.001), contained 26 OTUs and was dominated by 

Actinobacteria.  

 

Discussion:  

 Modulating plant genetic variation has been shown to alter the rhizosphere microbiome. 

Here, we show that the effect of plant –genotype extends to modulating microbially functions of 

the rhizosphere microbiome. Specifically, we observed that plant genotype influenced the 

recruitment of functional groups related to nitrification (amoA) and denitrification (nirS, nirK, 

nosZ) along with the potential rates of those ecosystem processes. Ultimately, these results 
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suggest that we can select for genetic variability within our agricultural lines that promotes 

sustainable ecosystem processes within the agricultural setting.  

This study demonstrates that genetic variation within Zea mays plays a significant role in 

both the assembly of the microbiome and nitrogen cycling ability of the community, even in the 

stochastic setting of an agroecosystem. Our most genetically divergent treatments (wild and 

hybrid Z. mays) were seen to have the strongest effects on the composition and function of the 

microbiome. Both wild and hybrid Z. mays exerted strong effects on potential nitrification and 

denitrification, while inbred maize did not. We hypothesized that these weak genotypic effects of 

inbred maize were driven by genetic erosion during the inbreeding process that resulted in the 

loss of complex ecologically important traits, such as microbiome recruitment (Smýkal et al. 

2018; Favela, Bohn, and Kent 2021) ; Ch. 2: Favela et al. in prep 2021). Furthermore, if 

ancestral genotypic variation exists in how plants modulate the activity of soil microbial taxa, 

then we can reintroduce this genetic variation in our modern lines and breed germplasm to have 

sustainable interactions with the nitrogen cycling microbes and their activities. Our previous 

results indicated that recruitment of nitrogen-cycling functional groups was altered through 

maize breeding (Favela, Bohn, and Kent 2021), which suggested that breeding for desirable 

microbiome functions is possible in maize. Here we provide a field study demonstrating 

alterations in the structure and nitrogen cycle functions of the rhizosphere microbiome 

corresponding to domestication and breeding. 

In addition to genetic effects, we found that spatio-temporal gradients play a major role in 

shaping the composition and activity of the microbiome. Within these spatiotemporal effects, we 

see that about 20% of the microbiome is unchanging in both time and space and is unique to 

block. This portion of the community may represent and highlight the recalcitrant nature of soil 
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microbial communities. We are not the first research group to report on the recalcitrant nature of 

microorganisms in soils (Arnoldi et al. 2019); many other groups have shown that a large 

fraction of the soil microbiome represents either dormant or relic DNA (Locey 2010; Priscu et al. 

2012; Carini et al. 2016). Here we hypothesize that the fraction of the microbiome that does not 

respond to plant or seasonal phenology represents either relic DNA or dormant microorganisms.  

Furthermore, the effects of seasonal phenology and Zea genotype × time interaction over 

the growing season played a major role in predicting microbiome recruitment and function. We 

interpreted this to suggest that plant growth and development is playing a role in how maize lines 

interact with their soil microbial community. This makes intuitive sense as maize has different 

nutrient requirements across the growing season, and these nutrients are extracted from soil 

environment and its microbial community (Bender et al. 2013). In addition, previous studies 

have shown that the complexity of the microbiome is built through time (Shi et al. 2016). These 

temporal effects are important to consider, as they can dramatically influence the conclusions 

drawn about the interaction between plants and their microbiome.  

We observed that potential nitrification (PN) and denitrification were highly dependent 

on the time of sampling (Fig. 4.4-5). Potential nitrification, for example, seemed to peak in the 

middle of the season, coincident with plant primary productivity (Fig. 4.4A, 4.5A-B). During 

peak growth, it appeared as if Zea was priming soils for release of plant-available nutrients, a 

process observed across plants shown to enhance the release of N (Phillips, Finzi, and Bernhardt 

2011), perhaps explaining the increase in nitrification. Interestingly, inbred and hybrid maize 

showed the largest stimulation of PN over the growing season compared to teosinte (Fig. 4.4-5). 

These results suggest the teosinte may have a previously unrecognized mechanism to 

biologically suppress nitrification activity, an ability that has been lost in modern maize. 
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Biological nitrification inhibition (BNI) has been seen across a variety of different grass species 

(particularly in wild variants) but has not previously been reported within maize (Coskun et al. 

2017b, 2017a). These BNI mechanisms may have been lost through domestication and plant 

breeding, as it confers no benefit and may even be costly in the high nitrogen conditions of 

modern agroecosystems, a parallel to what has been reported for nutritional symbioses with 

nitrogen-fixing microorganisms (Smercina et al. 2019). Investigating whether these wild teosinte 

characteristics that confer BNI can be reincorporated into modern maize maybe of interest to 

future breeders for improving sustainability of maize.  

Interactions with denitrifying microorganisms followed a similar pattern to nitrifiers, 

except with considerably more variation. Over the growing season, genotype and group played a 

significant role in shaping potential denitrification activity (Figs. 4.4B, 4.6-7). These results were 

relatively surprising as maize is typically grown in aerobic soils and denitrification is an 

anaerobic process. Denitifryers are often facultative anaerobes and may not be active under field 

conditions but are in the potential assay. Interestingly, teosinte appears to strongly inhibit both 

potential incomplete denitrification (N2O) and overall denitrification (N2O + N2) leading us to 

the conclusion that teosinte contains biological denitrification inhibition traits (BDI) not 

previously characterized. The mechanisms underlying BDI, like BNI, are typically the release of 

phytochemical that directly interferes with the proteins carrying out the said N-metabolism 

(Bardon et al. 2016). Work in rice, a crop grown in anaerobic soil, has also shown that genetic 

variation exists within the rice that can allow it to inhibit the activity of denitrifiers (Ishii et al. 

2011; Ding et al. 2019). These traits are value to reintroduce to the agroecosystem as they would 

reduce N pollution and improve N conservation.  
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WGCNA identified four modules of microbial taxa that were significantly associated 

with both changes of potential nitrification and denitrification (Fig. 4.8). These results suggest 

that specific taxa and their interactions are play a role in driving the function of the microbiome 

and that, to some degree, plants can influence the activities of specific microbial groups. 

Interestingly, we observed that modules positively correlated with higher potential nitrification 

rates were dominated by gram-negative bacteria (Acidobacteria) while those that were 

negatively correlated with nitrification were dominated by gram-positive bacteria 

(Actinobacteria). Contrastingly, overall denitrification was positively correlated to gram-positive 

bacteria (Actinobacteria). Perhaps, these cell wall differences are playing a role in how plants 

select for taxa to join the microbiome. Surprisingly these modules of correlated OTUs were not 

dominated by known nitrifying taxa, suggesting that nitrification processes may be in part 

dependent on the metabolism of other microbial members (Spieck et al. 2020), that nitrification 

is controlled by the level of transcriptional regulation rather than nitrifying population size or 

some other microbial interaction is controlling nitrification. This could be, in part, because the 

ammonia monooxygenase enzyme is readily inhibited by a variety of phytochemicals (Bedard 

and Knowles 1989). The gram-negative bacteria that are positively correlated with nitrification 

may be breaking down phytochemicals that would otherwise inhibit ammonia monooxygenase 

allowing nitrifiers to continue nitrification. While the negatively correlated gram-positive 

bacteria present in the module may not be breaking down plant phytochemical or producing 

some inhibitory compound. Generally, it has been observed that gram-positive bacteria are major 

producers of antibiotic compounds, while gram-negative bacteria are resistant to them. 

Determining how ecological interactions between microorganism within the microbiome is 

critical in understanding this and predicting the function of this complex system.  
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From a sustainability perspective, this study highlights a potential avenue to reduce 

agricultural GHG emissions generated by microbial actors. N2O static chamber results (Fig. 4.9) 

provide support that these potential nitrification and denitrification assays may, in fact, reflect 

real ecosystem rates. This is an exciting finding as agriculture is the chief producer of N2O 

emissions (Vitousek et al. 1997), and these results may give us a foot-hold on how to potentially 

curve this N pollution. While the results presented in this study are interesting, a major limitation 

of this study is that we only examined these lines in a single field. Further research on how 

heritable microbial function is across a wide range of biogeographic environments and the real 

impacts on ecosystem N conservation is needed to incorporate these into our agricultural 

practices.  

 

Conclusion: 

Plant –control of microbial functions likely evolved as a mechanism to control the 

available nutrients to the plant from the soil matrix (Philippot et al. 2013b; Delaux and 

Schornack 2021). It is becoming more and more clear that plant species can modulate the 

activities of their soil associated microbiome and that these alterations can impact how soil 

functions (Falkowski, Fenchel, and Delong 2008; Bohannan, Morris, and Meyer 2020). 

Identification of the genetic regions that direct microbiome recruitment of N-cycling 

microorganisms or modulation of their activities will enable progress on re-engineering the 

agroecosystem to be a minor contributor to N pollution (Johnson 2006). This paper adds to this 

growing body of work, by showing maize, an agronomically important crop, too has genetic 

variation that contributes to alterations in the microbiomes and function. Potentially, enough 
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variation to breed and incorporate these extended phenotype ecosystem traits into modern 

agricultural lines.  
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Figures: 

 

Figure 4.1 NMDS ordinations based on Bray-Curtis dissimilarity among prokaryotic 16S rRNA 
(A-B) and fungal ITS (C-D) displaying that genetic (A, C) and temporal (B, D) effects are 
driving changes in composition of the root zone microbiome. (A, C) shows that inbred, hybrid, 
and teosinte maize lines host different microbial taxa in the root zone under the same 
environmental conditions. Each point represents a genotypic mean (within mean n= 12) of the 
microbial community across the three different sampling time points. (B, D) highlights the 
temporal effects of the rhizosphere microbiome timepoint 1 (young plants V2-V4), 2 (Fast 
growing approaching flowering V10-V12), 3 (Reproductive R1-R3). (within mean n=4).  
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Figure 4.2 Stack plots showing the differentially abundant OTUs based on DESeq2 determined 
by teosinte and inbred maize comparison. A. Shows the relative abundance of bacterial OTUs 
colored by Phylum. Most contrasting difference seen in Acidobacteria, Actinobacteria, and 
Proteobacteria. B. Shows the same relative abundance data in A but faceted by Phylum and 
colored by taxonomic classification to improve clarity. Supplemental materials C.2-C.3 further 
highlights taxonomic differences in within Acidobacteria, Actinobacteria, and Proteobacteria. 
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Figure 4.3 The figure above displaced the PERMANOVA results for the different nitrogen 
cycling functional genes included in this study. The y-axis shows R2, percent variance explained 
by the treatment factor, and the x-axis shows the functional genes tested. * denote the level of p-
value (*<0.05, **<0.001, ***<0.0001) 
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Figure 4.4 Seasonal variation in potential nitrification and denitrification rate compared among 
germplasm group across the season. LS Means and Standard Error were calculated using 
ASREML-r. A. Potential nitrification rate in (ngN/ghr) across the three sampling time points 
averaged over plant type. B. Overall dentification (ngN/ghr) across the growing season averaged 
over plant type, no differences in among plant classifications was observed, but potential 
denitrification rates increased slightly across the season. Statistical tests associated with figures 
are presented in supplemental materials C.6-C.7.  
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Figure 4.5 Displays the potential nitrification (ngN/ghr) results as influenced by plant genotype 
and type. A. Shows the potential nitrification rate (ngN/ghr) of all genotypes included in the 
study across our three sampling time points colored by plant type. Teosinte genotypes were 
observed as having the lowest nitrification rates in the T1 and T2. No differences were present at 
the T3 sampling time point. B. Shows the average genotypic effect of hybrid, inbred, and 
teosintes genotypes on the potential nitrification significant (ngN/ghr) determined across the 
population. Statistical analysis for both figures in supplemental table C.5-C.6, C.8.1. 
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Figure 4.6 Displays the log of potential overall denitrification log(ngN/ghr) results as influenced 
by plant genotype and type. A. Shows the log of potential overall denitrification log(ngN/ghr) of 
all genotypes included in the study across our three sampling time points colored by plant type. 
B. average genotypic effect of hybrid, inbred, and teosintes genotypes on the log of potential 
overall denitrification log(ngN/ghr) determined across the population. Statistical analysis for 
both figures in supplemental table C.5-C.7, C.8.2.  
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Figure 4.7 Displays the log of potential incomplete denitrification log(ngN/ghr) results as 
influenced by plant genotype and type. A. Shows the log of potential complete denitrification 
log(ngN/ghr) of all genotypes included in the study across our three sampling time points colored 
by plant type. B. Shows the average genotypic effect of hybrid, inbred, and teosintes genotypes 
on the log of potential incomplete denitrification log(ngN/ghr) determined across the population. 
Statistical analysis for both figures in supplemental table C.5-C.7, C.8.3.  
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Figure 4.8 Shows the WGCNA results between potential denitrification and potential 
nitrification and microbial community composition. WGCNA starts by clustering microbial 
OTUs into modules of highly correlated taxa (based on abundance). These modules are then 
regressed against our explanatory factor (here that is denitrification and nitrification. A. Shows 
the strength and significance of correlation between microbial modules and nitrogen cycling 
function. B. Shows how correlated the microbial modules generated in the clustering process are 
to each other. C. Highlights the composition of significant modules that were correlated to 
changes in potential nitrification.  
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Figure 4.9 Displays the N2O static flux chamber results over the growing season. A. Shows the 
N2O production rate (ppm/min) comparing teosinte and B73 maize averaged over all the 
timepoints. B. Shows the N2O production rate (ppm/min) comparing teosinte and B73 maize 
displaying all timepoints. C. Shows the total N2O produced (ppm) averaged over the season 
comparing teosinte and B73 maize. D. Shows the total N2O produced (ppm) for each sampling 
timepoint.  
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CHAPTER 5: MAPPING THE GENETIC REGIONS UNDERLYING PLANT 

EXTENDED PHENOTYPE MICROBIOME RECRUITMENT AND FUNCTION 

 

Significance:  

There are genetic elements in organisms that directly shape the niche construction. The 

rhizosphere is an omnipresent example of niche construction carried out by plants. When plants 

alter their root niche, they are altering the capacity of microorganisms to colonize and grow in 

their surrounding soil. These alterations can influence how a soil processes and moves nutrients. 

These rhizosphere effects have the capacity to alter ecosystem-level processes. Using a panel of 

maize-teosinte near isogenic lines, we have identified genetic elements that alter the niche-

forming capacity of the rhizosphere to exclude or enhance the colonization of microbes that work 

against sustainability. These genetic elements originated from maize's wild progenitor teosinte; 

thereby “rewilding” modern maize rhizosphere traits to recreate elements of the rhizosphere 

niche of the progenitor. This study suggests that we can determine plant alleles that modulate 

microbiome processes and interactions in the rhizosphere and potentially use this information to 

design a more sustainable agricultural system. These near-isogenic lines allow access to all the 

genetic variation within the evolutionary history of Zea to identify ancestral state plant niche-

construction traits that may enable better management of the ecological inheritance caused by 

our agricultural system.  

 

Abstract: 

Plant genetics have been shown to play a significant role in shaping the microbiota, yet 

little work has been done to identify specific loci driving the structure and function of the 
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rhizosphere microbiome. Identifying host genetic elements influencing assembly or function of 

the host-associated microbiome could provide us with a novel method to manage and understand 

rhizosphere functions. To dissect the genetic basis of these ancestral microbiome traits, we used 

newly developed teosinte-maize near-isogenic lines (NILs). Using NIL populations allows for 

the fine mapping of extended phenotypes to specific genetic loci in the plant genome. A panel of 

42 NILs, along with the parental lines (B73 and teosinte), were grown in the field and root zone 

microbiomes were characterized though amplicon sequencing and potential nitrogen cycling 

assays. From this maize-teosinte NIL experimental population, we identified 13 candidate 

genetic regions that drove major alterations to the root zone microbiome. Overall, teosinte near 

isogenic introgressions genetic variation explained a considerable amount of variation in the 

bacterial and fungal communities, along with nitrification and denitrification functional groups. 

From our potential activity assays, we identified eight unique NILs that altered the microbial 

communities N-cycling activity: two were shown to suppress potential nitrification rates, three 

were shown to suppress incomplete denitrification (N2O), and three were shown to suppress 

overall denitrification (N2O+N2). A number of unique metabolites were associated with the 

NILs involved in suppression of nitrification, suggesting potential mechanisms responsible for 

this trait, which has not previously been reported in maize. . Overall, these findings show how 

the plant genome can influence the recruitment, structure, and function of the microbiome. 

Furthermore, we show that wild cultivars possess ecologically important extended phenotypes 

that can be reincorporated into modern cultivars to improve sustainability. This type of 

understanding could provide us with a novel biological method by which to manage our 

agricultural ecosystems and global nitrogen cycle. 
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Introduction: 

Feeding a growing world population amidst global change requires reducing the resource 

use and environmental impacts of agricultural production. A potential solution to this goal is to 

understand and harness the plant-associated microbiome and incorporate it into modern 

agriculture (Antwis et al. 2017). To accomplish this, we must comprehend the major ecological 

drivers of the microbial community, and determine if changes to these communities have 

functional consequences (Schimel and Gulledge 1998; Vigdis Torsvik 2002; Falkowski et al. 

2008). Broadly, plant genetics have been shown to play a significant role in shaping the 

microbiota, yet what this means for microbial function has not entirely been resolved (Bulgarelli 

et al. 2013; Philippot et al. 2013). Research is needed to determine how, and which genes and 

genetic loci play a dominant role in interactions that influence microbial functional groups 

involved in nitrogen cycling in order to meaningfully manage the nitrogen cycle of our 

agroecosystem.  

The degree to which plant genetics regulate microbial communities is of interest to crop 

breeders and evolutionary biologists. This is because the heritability of the microbiome 

determines whether the microbiome and its functions can evolve in response to selection on the 

host plant (Anderson et al. 2014; Wagner et al. 2016). Greenhouse and field studies have 

confirmed that genotypic variability in the host can alter the microbial community that 

establishes in the rhizosphere, the zone of soil tightly bound to the roots (Lundberg et al. 2012; 

Peiffer et al. 2013; Wagner et al. 2016). These intraspecific genetic differences extend past 

populations and have been seen across species (Berg and Smalla 2009; Yeoh et al. 2017). Further 

support across the phylogenetic tree of the angiosperm phylum demonstrates that evolutionary 

distance across plant species affects root microbial diversity and macro-ecologically relevant 
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traits (Fitzpatrick et al. 2018). Conversely, the rhizosphere microbiome is strongly influenced by 

the indigenous soil microbial communities which, in turn, is shaped by climate and edaphic 

factors (Ulrich and Becker 2006; Schreiter et al. 2014; Bakker et al. 2015). These environmental 

and plant genetic factors combine and ultimately shape the observed microbiome (Marques et al. 

2014; Lambers et al. 2009; Qiao et al. 2017; Bulgarelli et al. 2013). However, microbial 

ecologists still lack an exact understanding of what shifts in these rhizosphere microbial 

communities mean functionally to both the plant and the ecosystem as a whole (Antwis et al. 

2017; Graham et al. 2016; Mendes et al. 2013). 

Nitrogen (N) cycling functions are of particular interest, as both plants and 

microorganisms require N for survival and growth (Zak et al. 1990; Kuzyakov and Xu 2013). 

Plant-microbe interactions are invoked when discussing plant strategies for nutrient acquisition 

(Moreau et al. 2015; Cantarel et al. 2015). In many cases, essential plant nutrients are converted 

to more usable forms by microbes before assimilation by plants (Edwards et al. 2014; H. Zhang 

et al. 2009; Long 1989; Bolan 1991). A mutualistic outcome of this interaction is not always the 

case (Bardgett et al. 2003; Kuzyakov and Xu 2013). Functionally, microbes in the soil ecosystem 

can either remove (denitrification or immobilization), increase (N-fixation or mineralization) or 

alter (nitrification or dissimilatory reduction of nitrate to ammonium) available reactive N 

(Sylvia et al. 2005; Kuypers, Marchant et al. 2018). While the effects of increased and decreased 

N on plant productivity are intuitive (Ingestad 1997), changing the chemical form of N is not, as 

plant species differ in their preferences for N form (nitrate, ammonium or organic nitrogen) 

(Boudsocq et al. 2012; Britto and Kronzucker 2013). The relative activity of these microbial 

processes can therefore either improve or hinder plant N acquisition. However, a systematic 



128 
 

understanding of how plant hosts and their genetic variability (and resulting phenotype) interact 

with these N-cycling microbial communities remains unknown (Coskun et al. 2017a).  

Maize was domesticated from its wild ancestor teosinte approximately 9500 years ago in 

southwestern Mexico (Matsuoka et al. 2002; Piperno et al. 2009; van Heerwaarden et al. 2011). 

In that time sweeping genome- and phenome-wide changes occurred, leading maize to be one of 

the most consequential industrialized crops (Cassman et al. 2003; Lobell et al. 2011; Thenkabail 

et al. 2010; Jones and Thornton 2003). In addition, we have previously reported that modern 

breeding practices, characteristic of Green Revolution technologies, have altered recruitment of 

the maize rhizosphere microbiome in ways that are potentially less agriculturally sustainable 

(Favela, Bohn, and Kent 2021). Further, we have found that teosinte and modern elite maize 

varieties strongly differ in their interactions with the N-cycling microbiome and their ecosystem 

functions in both greenhouse and field settings (Chapter 2; Chapter 3). The expansive genetic 

variability within the Zea genus represents an ecologically diverse collection of plant species 

including domesticated maize and its closest wild relative, teosinte. Here, we use a panel of 

recently developed teosinte-maize near-isogenic lines (NIL) (Liu, Cook, et al. 2016) to dissect 

the genetic regions driving our previously established differences in recruitment of microbial 

functional groups between teosinte and maize, and to understand the relationship between host 

genetics and functions of the rhizosphere microbiome. Using NIL populations allows for the fine 

mapping of the previously reported microbial “extended phenotypes” to specific genetic loci in 

the plant genome as each NIL contains on average 4% of teosinte DNA in a random location 

(Fig. 5.1).  

The overarching goal of this study was to determine if individual teosinte genetic 

introgressions into modern maize influence or predict changes in the rhizosphere microbiome 
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structure and nitrogen cycling function, and to identify potential mechanisms by which they are 

influencing this extended phenotype. Within these NILs, we assessed changes in microbial 

community composition and N-cycling function (potential nitrification and denitrification) in 

response to different genetic introgressions from teosinte. These results will allow us to 

determine if teosinte introgressions shape rhizosphere N-cycling functional groups and allow us 

to narrow down the genetic regions contributing to this phenotype. Furthermore, with the use of 

metabolomics we will gain further insight into the mechanisms driving differential microbial 

recruitment.  

 
Methods and materials:  

Germplasm and Field Experimental Design 

We used a recently developed teosinte-maize near-isogenic lines (NILs) (Liu, Cook, et al. 

2016). These lines were obtained partially through the authors of the paper and from the 

USDA/ARS Maize Genetics Cooperation Stock Center, located at the University of Illinois at 

Urbana-Champaign. The full table of NILs is presented in supplemental materials (Table D.1). 

NILs have previously been used to identify quantitative trait loci (QTL) and finely map specific 

genes in maize (Simić et al. 2012; G. I. Graham, Wolff, and Stuber 1997; Szalma et al. 2007; 

Liu, Garcia, et al. 2016), rice (Y. Zhang et al. 2006), and soybean (Jiang et al., 2009). The NILs 

used here(Liu, Cook, et al. 2016) contained an average of 2.4 chromosomal segments, 

encompassing about 4% of the teosinte genome, with the rest being homogenous B73 (Fig. 5.1). 

A set of 42 NILs was necessary to appropriately tile the teosinte genome within B73 and were 

included the experiment (Fig. 5.1). In addition to these NILs, the parental lines (B73 and 

PI384071) and their F1 hybrids were grown in the same field. By examining both of the parents 
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and their F1 hybrids, we should be able to capture the majority of the genetic variability driving 

differences in the microbiome between teosinte and maize (Langlade et al. 2005).  

Field plots were located at the Crop Sciences Research and Education Center - South 

Farms at the University of Illinois, Urbana-Champaign, IL (40°03'46.7"N 88°13'44.8"W). We 

grew a total of 45 accessions (42 NILs, 2 parents, 1 hybrid). Plants were grown in 4-row blocks 

(24 plants per row) and were replicated and randomized four times across the field (180 total 

plots). To capture stochastic microbial community variability, present in the system, we sampled 

three technical replicates within each plot (45 accessions * 3 technical replicates * 4 replicate 

plots = 540 plants total). Plants were sampled twice, once during the vegetative growth stage V5-

V6 (7/16/2018) and again during flowering (8/21/18). Samples consisted of a soil core (10 cm 

depth) within the root zone of the plant. As a control, field bulk soil was collected before 

planting and at each sampling time point. Sampled were placed on ice until they were transported 

to the lab. Once in the lab, soils were refrigerated at 4°C awaiting potential nitrification assays or 

potential denitrification assays (within 5 hours). Aliquots for DNA extraction were frozen 

immediately. 

DNA Sequencing and Functional Gene qPCR 

For this experiment, we characterized the microbiome and diagnostic functional genes 

related to transformations that occur in the nitrogen cycle: nitrogen fixation, nitrification, and 

denitrification. Amplicon sequencing was performed on bacterial and archaeal 16S rRNA genes, 

fungal ITS2, amoA, nirS, nirK, nosZ, and nifH genes. The Fluidigm Access Array IFC chip was 

used to prepare sequencing amplicons. This method allows for the simultaneous amplification of 

target functional genes using multiple primer sets (Fluidigm, San Francisco, CA). DNA 

sequencing was performed for bacterial, archaeal, and fungal amplicons using an Illumina HiSeq 
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2500 Sequencing System (Illumina, San Diego, CA). Primer information is provided in 

supplemental Table D.2. Fluidigm amplification and Illumina sequencing were conducted at the 

Roy J. Carver Biotechnology Center, University of Illinois (Urbana, IL, USA). Fast Length 

Adjustment of Short reads (FLASH) (Mag and Salzberg 2011) software was used to merge 

paired-end sequences from bacterial and archaeal 16S rRNA genes. For functional genes and 

fungal ITS, only forward read sequences were used. Once FLASH merging was performed, files 

were filtered by quality using the FASTX-Toolkit (Gordon, Hannon, and Gordon 2014). Reads 

that did not have a minimum quality score of 30 across 90% of the bases were removed. Using 

the FASTX-Toolkit, nirK sequences were trimmed to its amplicon size of 165-bp. 

Once quality preprocessing was performed, FASTQ reads were converted to FASTA format. 

Using USEARCH-UPARSE version 8.1 (Edgar 2010), sequences were binned into discrete 

OTUs based on 97% similarity and singleton DNA sequences were removed. Quantitative 

Insights into Microbial Ecology (QIIME) was used to generate OTU tables for downstream 

statistical analysis and to assign taxonomic information, this is done with a combination of the 

UCLUST algorithm and GreenGenes database (DeSantis et al. 2006; Edgar 2010; Caporaso et al. 

2010). Once taxonomy was assigned, chloroplast and mitochondrial OTUs were removed from 

the dataset. Rarefaction was performed to correct for differential sequencing depth across 

samples. Taxonomy was also assigned to functional gene sequences using QIIME (Caporaso et 

al. 2010) with the BLAST (Altschul et al. 1997) algorithm and custom gene-specific databases 

generated from reference sequences obtained from the FunGene repository 

(http://fungene.cme.msu.edu/) (Fish et al. 2013). All OTU tables used in statistical analyses were 

generated in QIIME. Singleton OTUs were filtered prior to statistical analysis. 
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Quantitative PCR (qPCR) was carried out to determine the abundance of functional genes 

in each of the rhizosphere microbial communities. Specific target amplification (STA), explained 

in (Ishii et al. 2014), was carried out on samples and standards to increase template DNA for 

amplification. STA and qPCR master mix recipes from (Favela, Bohn, and Kent 2021)were used 

for all samples. STA product and qPCR master mix were loaded into the Dynamic Array™ 

Microfluidics Fluidigm Gene Expression chip where amplification and quantification of 

functional genes were carried out simultaneously (Fluidigm, San Francisco, CA). All samples 

and standards were analyzed in 12 technical replicates. Fluidigm Real-Time PCR Analysis 

software version 4.1.3 was used to calculate gene threshold cycles (CT). CT values were 

converted to gene copy number using gene length and standard curves. All Fluidigm qPCR was 

conducted at the Roy J. Carver Biotechnology Center (Urbana, IL, USA). The final copy number 

of each functional gene amplicon was standardized by the ng of template DNA in the qPCR 

reaction.  

Potential Assays  

Potential denitrification assays were carried out using a modified version of the assay 

described in (Schinner et al. 1996; Peralta et al. 2016). Field-moist root-zone soil samples were 

incubated under anaerobic conditions in the presence of acetylene for 3h at 25°C. The assay was 

performed on 25g of root-zone soil in glass Wheaton jars. Incubations were carried out at 

substrate saturation of carbon (dextrose) and nitrogen (nitrate). Chloramphenicol 10 mg/Lwas 

added to the incubation to act as a bacteriostatic agent to prevent further microbial growth and 

protein synthesis. Wheaton jars were purged of oxygen with either helium or acetylene. Helium 

samples were used to estimate the amount of incomplete denitrification (N2O) occurring in the 

assay atmosphere. Acetylene purged samples are used to measure overall denitrification (N2O + 
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N2). Acetylene is a commonly known inhibitor of nitrous oxide reduction. Initial and final gas 

samples were taken at the start and end of the incubation period. Initial and final nitrous oxide in 

gas samples was quantified using a GC-2014 Gas Chromatograph (Shimadzu, Kyoto, Japan) 

with an electron capture detector (GC-ECD). 

The potential nitrification assay was developed and modified from (Schinner et al. 1996). 

This assay was performed at substrate saturation and values presented should be interpreted as 

the maximum potential rate of transformation of ammonia to nitrite, the first-rate limiting step of 

nitrification. In principle, this assay uses ammonium sulfate as the substrate for the first step of 

nitrification during a 5-hour incubation. Sodium chlorate is added to the assay to inhibit nitrate 

oxidation during the incubation period. Aliquots of homogenized field-moist root-zone soil (5 g) 

were placed in into two 50ml tubes (sample and control). Nitrite products released during the 

incubation period was extracted with potassium chloride and concentration was determined 

colorimetrically at 520nm.  

Greenhouse Follow-up Experiment  

To validate and elucidate a causal mechanism to explain differences in function, a 

greenhouse trial was carried out to 1) validate suppression of potential nitrification observed for 

NILs Z031E0021 and Z031E0047, 2) narrow down the introgression regions responsible for this 

phenotype using additional overlapping NILs not previously grown in the field, 3) determine a 

causal mechanism underlying microbiome function alterations. Greenhouse treatments included 

15 NILs with overlapping introgressions to Z031E0021 and 11 NILs with overlapping 

introgressions to Z031E0047, along with B73 and bulk soils as controls (in total 30 treatments). 

Seeds were surface sterilized by soaking for 5 mins in 8.25% NaClO, followed by one rinse with 

sterilized distilled water, a single rinse of 70% ethanol, and three rinses with sterile distilled 
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water. Surface-sterilized seeds were dried on sterile filter paper in a sterile petri dish, then stored 

at 4°C overnight before sowing. Planting medium was a combination of live and autoclaved soil 

mix. The live inoculum soil was collected from agricultural soil located on the Crop Sciences 

Research and Education Center - South Farms at the University of Illinois at Urbana-Champaign, 

Urbana, IL. (40°04'58.7"N 88°12'43.6"W). Inoculum soil was sieved (2mm) then added (25%) to 

a steam pasteurized mix of soil: calcined clay: torpedo sand (1:1:1). For each line, 5 replicate 6’’ 

classic 200 pots (1 liter) were sown with three seeds in each. Pots were thinned a week after 

germination, leaving only a single plant per pot for the remainder of growth. In total, 150 plants 

were grown. They were placed in a completely randomized design in the greenhouse with 16 

hours of light and 8 hours of darkness. All plants were connected to an irrigation system that 

fertilized plants once a week. Plants were fertilized with a liquid nutrient solution, specifically 

Cal-Mag (N15-P5-K15), at a rate of 150 ppm. Nitrogen was applied as 11.8% nitrate nitrogen, 

1.1% ammoniacal nitrogen, and 2.1% urea nitrogen. All plant treatments were maintained under 

the same fertilizer regime.  

Seeds were planted 1/15/2020 and were grown for a total of a total of 5 weeks. Harvest 

occurred on 2/17/20. When collected, plants were cut into four samples: 1) the above ground 

portion used for plant biomass, 2) root zone soil which was collected for potential nitrification 

assay, 3) half of the root system with rhizosphere intact for microbiome, and 4) washed root 

system free of soil for metabolome. Rhizosphere samples were placed on ice until stored at -20 

°C. Root tissue samples were immediately flash frozen and stored at -80°C.  

Root Metabolite Extraction, GC-MS, and LC-MS Analysis 

Root tissue were lyophilization and homogenized by grinding with a mortar and pestle in 

liquid nitrogen. Processed plant tissue (100 mg) was combined with 1 mL of LC-MS grade 
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acetonitrile:isoprpanol:H2O 3:3:2 (v:v:v) solvent was added to the vial. The resulting supernatant 

was divided into two aliquots for LC-MS and GC-MS metabolite analysis. 

Samples were analyzed using a GC-MS and LC-MS system at the Metabolomics 

Laboratory of Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, 

United States. 

LC-MS conditions were used as previously described in (Elolimy et al. 2019). Briefly, 

Samples were analyzed with the Q-Exactive MS system (Thermo. Bremen, Germany). Xcalibur 

4.1.31.9 was used for data acquisition. The Dionex Ultimate 3000 series HPLC system (Thermo, 

Germering, Germany) used had a degasser, an autosampler and a binary pump. The LC 

separation was performed on a Phenomenex Kinetex C18 column (4.6 × 100 mm, 2.6 μm) with 

mobile phase A (H2O with 0.1% formic acid) and mobile phase B (acetonitrile with 0.1% formic 

acid). The flow rate was 0.25 mL/min. The linear gradient was as follows: 0–3 min, 100% A; 

20–30 min, 0% A; 31–36 min, 100% A. The autosampler was set to 15°C and injection volume 

was 20 μL. Mass spectra were acquired under both positive (sheath gas flow rate: 45; aux gas 

flow rate: 11; sweep gas flow rate: 2; spray voltage: 3.5 kV; capillary temp: 250°C; Aux gas 

heater temp: 415°C) and negative electrospray ionization (sheath gas flow rate: 45; aux gas flow 

rate: 11; sweep gas flow rate: 2; spray voltage: −2.5 kV; capillary temp: 250°C; Aux gas heater 

temp: 415°C). The full scan mass spectrum resolution was set to 70,000 with scan range of m/z 

67 ∼ m/z 1,000, and AGC target was 1E6 with a maximum injection time of 200 ms. The 4-

Chloro-DL-phenylalanine was spiked into the sample as the internal standard. LC-MS data were 

further analyzed with Thermo Compound Discoverer software (v. 2.1 SP1) for chromatographic 

alignment and compound/feature identification/quantitation. The workflow is Untargeted 

Metabolomics with Statistics Detect Unknowns with ID Using Online Databases. The following 
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settings were used in Select Spectra: minimum precursor mass (65 Da) and maximum precursor 

mass (5,000 Da); in Align Retention Time: Maximum shift (1 min) and Mass tolerance (5 ppm); 

in Detect unknown compounds: Mass tolerance (5 ppm), Intensity tolerance (30 %), S/N (3), and 

Minimum peak intensity (1000000). 

GC-MS conditions were used as previously described in (Borgogna et al. 2020). Briefly,  

Metabolite profiles were acquired using a gas-chromatography mass-spectrometry (GC-MS) 

system (Agilent Inc, CA, USA) consisting of an Agilent 7890 gas chromatograph, an Agilent 

5975 MSD and 7683B autosampler, as previously described. Briefly, gas chromatography was 

performed on a ZB-5MS (60 m × 0.32 mm I.D. and 0.25 mm film thickness) capillary column 

(Phenomenex, CA, USA). The inlet and MS interface temperatures were 250 °C, and the ion 

source temperature was adjusted to 230 °C. An aliquot of 1 ml was injected with the split ratio of 

10:1. The helium carrier gas was kept at a constant flow rate of 2.4 ml/min. The temperature 

program was: 5-min isothermal heating at 70 °C, followed by an oven temperature increase of 

5 °C/min to °C after which a final 10 min incubation at 310 °C was performed. The mass 

spectrometer was operated in positive electron impact mode (EI) at 69.9 eV ionization energy at 

m/z 30–800 scan range. The spectra of all chromatogram peaks were evaluated using the AMDIS 

2.71 (NIST, MD, USA) using a custom-built database (460 unique metabolites) of the University 

of Illinois Carver Metabolomics Center. Throughout the sample preparation, data-acquisition and 

data-preprocessing, samples were compared to the QCs to evaluate potential variation that may 

have arisen in the dataset throughout the analytical study. All known artificial peaks were 

identified and removed prior to data mining. To allow comparison between samples, all data 

were normalized to the internal standard in each chromatogram and sample volume. The 

instrument variability was within the standard acceptance limit (5%). 
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Statistical Analysis 

The microbial communities were evaluated as separate datasets for each amplicon 

(prokaryotic 16S rRNA, fungal ITS, nifH, nosZ, nirK, nirS, bacterial amoA and archaeal amoA). 

The relative effect of NIL, sampling time, range, row, and block on the root zone microbiome 

and root metabolome composition was assessed using permutational analysis of variance 

(PERMANOVA) with the ‘adonis’ function, from the community ecology R package, ‘vegan’ 

(Oksanen et al. 2007). To visualize differences from these models, non-metric multidimensional 

scaling (NMDS) ordinations were created using R package ‘phyloseq’ and plotted with R 

package ‘ggplot2’ (McMurdie and Holmes 2013; Wickham 2007). Genetic marker-microbiome 

comparisons were done using the ‘matrixEQTL’ package in R (Shabalin 2012). This method 

allowed for fast an efficient comparison of NIL genome and microbiome data. Using the 

‘asreml-r’ package (Butler et al. 2017), additional restricted maximum-likelihood mixed effects 

models were used to examine the relationship between functional potential assay and 

introgression while controlling for edaphic environmental conditions. Modules of microbial taxa 

responding to the NIL germplasm were determined using a weighted correlation network 

analysis (WGCNA) in R (Langfelder and Horvath 2008). Prior to WGCNA, amplicon data was 

transformed using a central log ratio transformation (Gloor et al. 2017). Root metabolomic 

comparison was done in ‘DESEQ2’ in R (Love, Huber, and Anders 2014). 

 

Results: 

In this field experimental study, we identified 14,041 different 16S rRNA operational 

taxonomic units (OTUs, 97% similarity, rarefied to 30,152 reads per sample), and 2246 fungal 

OTUs (rarefied to 2302 reads per sample) were identified from the ITS2 region.  
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Introgressions influence on the rhizosphere microbiome  

With the prokaryotic (16S rRNA) and fungal communities (ITS2), we found that genetic 

introgression (NIL genotype), time, location of block, and range and row explained 56% 

(prokaryotic) and 52% (fungal) of the variation in the microbiome. Genetic introgressions (NIL 

genotype) explained 13% of the variation in the prokaryotic 16S rRNA and 12% of the variation 

in the fungal ITS communities (PERMANOVA: 16SrRNA DF= 41, p<0.001; ITS2 DF=41, 

p<0.001; Table D.3-D.4). It should be noted that block location explained the greatest amount of 

variation in the both the prokaryotic and fungal communities around 30% and 28%, respectively. 

These models were all performed using the NIL genotype as a treatment factor. As shown in the 

genomic map (Fig. 5.1B), there is a considerable amount of complexity in the size, 

heterozygosity, and overlap of the genetic introgressions. To account for this variation, we also 

looked at the effects of each individual introgressions on the root zone microbiome. This analysis 

revealed that 23% of the loci in the Zea genome mapped to some change in the rhizosphere 16S 

rRNA microbiome, and most of the loci had a small effect on the relative abundance of OTUs. A 

total of 8 regions genomic regions had large effects (influencing more than 80 OTUs) on the 16S 

rRNA microbiome (Fig. 5.2).  

Introgressions influence on the Nitrogen cycling functional group community 

From our analysis of nitrogen cycling functional genes, we observed 1456 nifH OTUs, 74 

archaeal amoA OTUs, 55 bacterial amoA OTUs, 4739 nirK, 1187 nirS OTUs, and 1655 nosZ 

OTUs. In response to teosinte introgressions (NIL genotype), 4 of 6 nitrogen cycling genes 

surveyed showed to changes in community membership (Table D.5), while none of the nitrogen 

cycling genes changed in abundance. The changes in N-cycling group membership were 

primarily in nitrification and denitrification. In regard to nitrification, variation in both archaeal 



139 
 

amoA, and bacterial amoA functional groups in the root zone were significantly explained by 

teosinte introgressions (NIL genotype), (PERMANOVA: archaeal R2=0.15, DF= 41, p<0.001; 

bacterial R2=0.13 n=313, DF=41, p<0.008; Table D.5.2-3). For denitrification, we observed that 

nirK and nosZ functional group community were also observed to be significantly influenced by 

teosinte introgressions (NIL genotype), (PERMANOVA: nirK R2=0.13, DF= 41, p<0.022; nosZ 

R2=0.12 n=329, DF=41, p<0.046; Table D.5.5-6). nifH and nirS were unresponsive to teosinte 

introgressions (Table D.5.1, D.5.4). Full statistical PERMANOVA model for all functional genes 

is present in supplemental information Tables D.5.  

Introgressions influence potential nitrification and denitrification  

We found that potential nitrification rate (ng N/g hr) of rhizosphere soils was influenced 

by teosinte genetic introgression (Fig. 5.3A, E, Table D.6). Furthermore, we only observed NIL 

genotypes effects at our second sampling timepoint, mid-season during peak growth (Wald test: 

p=0.005), but not during the first sampling timepoint (Wald test: p= 0.7509). From the second 

time point, we observed Z031E0047 and Z031E0021 NILs were shown to have similar teosinte-

like nitrification phenotypes (Ch. 3). These NILs were shown to have a 50% (9% log-

transformed) reduction in potential nitrification rate compared to the B73 control. Interestingly, a 

large number of NILs (T1:33/42, T2:34/42) were shown to stimulate potential nitrification rate 

compared to B73 (Fig. D.2). 

Furthermore, potential incomplete denitrification (N2O) and overall denitrification 

(N2O+N2) rate, log (ng N/g hr), of rhizosphere soils were influenced by teosinte introgressions 

(Fig. 5.3, Wald test incomplete: p<0.001, overall: p<0.001; Table D.6). Much like nitrification 

rates, it should be noted that the effects of introgressions in denitrification were variable across 

sampling timepoints. A significant effect of teosinte introgression on potential incomplete 
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denitrification (N2O) was observed during the first sampling time point (Wald test: p<0.001), but 

not during the second sampling time point (Wald test: p=0.10). During the first timepoint, the 

NILs with the greatest effect on incomplete denitrification (Z31E0559, Z031E0047, and 

Z31E0059) suppressed potential incomplete denitrification (N2O) 58% (20% log-transformed) 

more than control B73. Overall denitrification (N2O+N2) assays were not found to be 

significantly influenced by teosinte introgression during the first sampling time point (Wald test: 

p=0.48) but were during our secondary time point (Wald test: p<0.01). During the second 

timepoint, NILs Z031E0071, Z031E0012, and Z031E0591 displayed the greatest suppression of 

overall denitrification potential (N2O+N2) – 52% (37% log-transformed) more than control B73. 

During our first sampling timepoint we observed that most of the introgressions stimulated 

incomplete (T1:26/42, T2:7/42) and overall denitrification (T1:40/42, T2:8/42), while the 

opposite was observed during our later time points.  

Linking Introgressions, microbiome function, and potential N-cycling rates 

Weighted-gene correlation network analysis was used to identify co-correlated OTU 

modules in the microbiome that were related to introgression identity and rhizosphere N-cycling 

function. Analysis focused on our secondary sampling timepoint as this is where introgressions 

were seen to influence both potential nitrification and potential overall denitrification. From this 

analysis, we observed 18 OTU modules correlated with potential nitrification rates (11 modules: 

p<0.05, 7 modules: p<0.10). 12 of these 18 modules were negatively correlated (-0.18:-0.12), 

while 6 were positively correlated (0.12:0.16) with potential nitrification rates. Two separate 

OTU modules were correlated with the BNI NILs (Z031E0021, Z031E0047). The Z031E0021-

associated module (cor =0.13, p=0.07) was negatively correlated to potential nitrification rates 

(cor=-0.15, p=0.05). The Z031E0047-associated module (cor=-0.15, p=0.05) was positively 
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correlated to potential nitrification rates (cor=0.15, p=0.05). So as these taxa increase or decrease 

in the root zone, we see the subsequent change in potential nitrification. For denitrification 

results, we observed 8 modules correlated to overall denitrification (N2O+N2) and 11 modules 

correlated to incomplete denitrification (N2O) (p<0.10). Two modules shared a correlation with 

both incomplete (sharedM1: cor=0.14, p=0.06, sharedM2: cor=-0.15, p=0.048) and overall 

denitrification (sharedM1: cor=0.17, p=0.02, sharedM2: cor=-0.12, p=0.09). One module was 

correlated with overall DI NILs (Z031E0012) and another module was correlated with our 

incomplete DI NIL (Z031E0523). The Z031E0012-associated module (cor=0.15, p=0.04) was 

positively correlated with potential overall denitrification (cor=0.13, p=0.09), while the 

Z031E0523-associated module (cor=-0.14, p=0.06) was positively correlated with potential 

incomplete denitrification (cor=0.16, p=0.03). These modules potentially represent the taxa that 

are being selected and/or suppressed and are directly contributing to our potential functional 

differences.  

Validating BNI introgressions and determining potential mechanism 

Potential nitrification by Z031E0021 and Z031E0047 (Fig. 5.4A-B) was confirmed in a 

greenhouse trial focusing on BNI. Through analysis of NILs with overlapping introgressions, 

additional NILs with the ability to suppress nitrification activity in the soil were identified (Fig. 

5.4A-B). This analysis narrowed down candidate introgression regions to Chr5: 

190689917…192848761, Chr9: 18782106…25727342, and Chr9:88651842…110988044. Using 

MaizeGDB gene center (Portwood et al. 2019), we determined that the chromosome 5 

introgression contained 61 previously mapped genes, while chromosome 9 introgressions 

contained 621 previously mapped genes (Table D.7). Genes related to phytochemical derivation 

and synthesis were present in both chromosome 5 introgressions (i.e, phenylalanine ammonia 
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lyase7, defense-like protein4) and chromosome 9 (i.e., acid phosphatase1, arginine 

decarboxylase1). These findings led to metabolomic characterization of NILs root tissue to 

potentially determine genes and mechanisms of BNI by NILs.  

Using a combination of GC-MS and LC-MS, we characterized the metabolic profile of 

the root tissues of the B73 control, original BNI NILs, overlapping NILs with the BNI phenotype 

and negative control NILs without the BNI phenotype. Targeted GC-MS identified 152 

metabolites, while untargeted LC-MS identified 2384 metabolites. Root metabolite analysis 

comparing contrasting BNI phenotypes, revealed significant differences in tissue levels of 

proline and raffinose (p<0.05, Fig. 5.4C-E) between lines with suppressed nitrifier activity in the 

root zone. Interestingly, increased galactose concentrations were reported in B73 compared to all 

NILs (Fig. 5.4E). Phenotype comparison of LC-MS data revealed that 12 metabolites were 

enriched in NILs with the ability to suppress nitrification. Paired comparisons of B73 

metabolome to each individual NIL was performed and 13:17 (GC-MS:LC-MS) metabolites 

were found to be significantly enriched in the Chr5 BNI NIL root tissue compared to B73 

(p<0.05, Table D.8). Only three metabolites related to Chr5 introgressions were classified: 

costunolide (Fig. 5.4F), icosadienoicacid, and stachydrine (Fig. 5.4G). One unclassified 

metabolite, C15H29NO, was found to be significantly enriched across both Chr 5 BNI NILs. 

While 8:46 (GC-MS:LC-MS) metabolites were found to be significantly enriched in the Chr9 

BNI NIL root tissue compared to B73 (p<0.05, Table D.8). Chr9 introgressions showed 6 

classified metabolites [6]-gingerol (Fig. 5.4H), quercetin-3β-D-glucoside, D-(-)-quinic acid, 

(1R,9S)-11-[(methylsulfanyl)acetyl]-3-(2-thienyl)-7,11-diazatricyclo[7.3.1.02,7]trideca-2,4-dien-

6-one, 7,9-dimethyl-4-{[5-(4-pyridinyl)-1,3,4-oxadiazol-2-yl]sulfanyl}pyrido[3',2' 
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4,5]thieno[3,2-d]pyrimidine, and chlorogenic acid; 4 unclassified compounds were enriched 

across both of the BNI NILs.  

 
Discussion: 

Variation across genotypes has been shown to influence and contribute to the heritability 

of rhizosphere microbiome and N-cycling functions (Ch. 1-4) (Favela, Bohn, and Kent 2021). 

Using a panel of teosinte-maize near-isogenic lines, we show here that specific teosinte genetic 

loci are associated with altered root zone microbiome assembly and N-cycling function. 

Additionally, we identified specific teosinte introgressions that restore maize’s ability to suppress 

nitrification (BNI) and denitrification (BDI) activities; traits which have not been previously 

reported in modern maize Furthermore, metabolomic analysis of root tissue collected from NILs 

capable of BNI revealed that altered root chemistry is likely a driving factor in altered 

nitrification suppression. Taken together, these findings suggest that we can genetically select 

and “rewild” how agricultural cultivars interact with their rhizosphere microbiome and effect 

desirable changes in microbiome functions. This potential breakthrough paves a novel way 

forward to breed agricultural cultivars with extended phenotypes that result in desired ecosystem 

services that improve sustainability of agroecosystems. 

This field study demonstrates that NILs can be used to map genetic regions associated 

with changes in the microbiome (Fig. 5.2). Specifically, we observed teosinte introgressions to 

explain variation in the prokaryotic and fungal microbiome, along with N-cycling functional 

groups (bacterial amoA, archeal amoA, nirK, nosZ). Furthermore, using the NIL HapMap (Fig. 

5.1), we identified loci correlated to changes in microbial taxa abundance and identified 8 major 

introgression regions causing large shifts in the rhizosphere prokaryotic microbiome. Work has 

been done across animals and plants to understand the underlying genetic loci that drive host 
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microbial communities, with many cases successfully identifying candidate genes related to the 

phenotype of interest (Horton et al. 2014; Belheouane et al. 2017; Lynch et al. 2017; Wallace et 

al. 2018; Goodrich et al. 2016). To date, the studies that have attempted to elucidate the 

relationship between plant genetic loci and the host microbiome have primarily focused on leaf-

associated microbial communities (Horton et al. 2014; Wallace et al. 2018). Here we show that 

this work is viable in the complex soil rhizosphere environment and we take a step forward by 

characterizing the effects of specific loci on N-cycling functional groups and related potential 

function.  

We have previously identified that maize breeding chronologically transformed the 

rhizosphere microbiome of elite inbred varieties to potentially be less agriculturally sustainable 

(Favela, Bohn, and Kent 2021). Additionally, we found that teosinte recruited differential 

microbial taxa and N-cycling functional groups in both greenhouse and field settings compared 

to modern maize (Chapter 2-3, Favela, Bohn, and Kent 2021). Further work on these teosinte 

lines have also shown that they can suppress potential nitrification and denitrification activity in 

the field setting, while modern elite varieties do not (Chapter 3, Favela, Bohn, and Kent 2021). 

An additional take away of our NIL study is that “rewilding” modern maize by the 

reincorporation of key teosinte loci may be a viable method to regain lost ecologically important 

traits such as microbial partnership or microbiome control. 

Importantly, the effects of microbiome-associated loci manifest themselves as changes in 

microbial activity. Here, we determined that NILs with the ability to suppress potential 

nitrification and overall denitrification were also associated with changes in the prokaryotic 

microbiome (Fig 5.2). These results show a through line in microbiome recruitment to function, 

where teosinte genetic elements likely code for a metabolite that influences selection of taxa in 
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the rhizosphere and thereby limits or enhances the activity of these microbial functions. Work 

performed with synthetic microbial communities has shown that differences in exudation play a 

considerable role in altering microbial community recruitment in the rhizosphere (Sasse et al. 

2018; Korenblum et al. 2020). Here we show that this additionally manifests as a change in the 

activity and function of the community.  

Metabolomic analysis strengthened this microbial recruitment and function through line 

as it provided a potential mechanism by which to connect the two. From those results, we 

observed that root tissues of NILs capable of suppressing nitrification contained enriched levels 

of metabolites not present in the B73 parent or other negative controls. Other work in BNI and 

BDI have shown that certain plant species contain genes that code for secondary plant 

metabolites that are inhibitory to the activities of soil nitrifiers and denitrifers (Coskun et al. 

2017b; Bardon et al. 2016). It is hypothesized that these secondary defensive metabolites were 

co-opted in plants as a way to limit potential N losses that can occur when microbial nitrification 

and denitrification are rampant (Coskun et al. 2017b; Bardon et al. 2016). Here, we hypothesize 

that our teosinte introgressions are returning some gene (or gene cluster) to modern maize that 

were lost during the domestication process. The restored gene then codes for a previously lost 

phytochemical used to alter microbiome composition and inhibit the growth of nitrifiers or 

denitrifers. Furthermore, the follow-up greenhouse experiment in this study was designed to 

determine whether we could identify a causal metabolite present in our candidate nitrification 

suppression lines. Those results showed a number of metabolites enriched in the NILs compared 

to the controls, some of which have strikingly similar structure to previously identified BNI 

compounds (Coskun et al. 2017b; Bardon et al. 2016; Bedard and Knowles 1989). One example 

of this is [6]-gingerol (Fig. 5.4H), a phenylpropanoid, synthesized from phenylalanine (a known 
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BNI compound) (Bedard and Knowles 1989). Interesting, [6]-gingerol has already been shown to 

have anti-microbial properties (Ficker et al. 2003) and may also inhibit nitrification. This is an 

important result as, to date, BNI and BDI compounds have yet to be reported in maize, and the 

discovery of which has the potential to improve the sustainability of the crop.  

Unfettered microbial nitrification and denitrification processes within the soil ecosystem 

reduce agricultural sustainability. Nitrification results in the conversion of stable ammonium to 

readily leached nitrate, denitrification contributes to the loss of N and can result in the production 

of N2O a potent greenhouse house gas. While historically these processes have been shown to be 

primarily controlled by soil edaphic conditions – a growing body of work is now highlighting 

that plant hosts can significantly alter the activity of N-cycling groups (Subbarao et al. 2013; 

Coskun et al. 2017b; Bardon et al. 2016). This study builds on our understanding of how genetic 

variation influences ecosystem processes mediated by microbial activity and finds novel 

candidate introgressions that drive the rhizosphere microbiome. These may be important findings 

to build our understand of ecosystem from a gene level.  

 

Conclusion: 

Our findings suggest that wild cultivars have genes and extended phenotypes that 

manipulate the rhizosphere microbiome. We identified a number of loci influencing the structure 

and N-cycling functions of the rhizosphere microbiome, and further used this genetic mapping to 

better understand mechanistically how these loci are achieving their extended phenotype. Our 

results suggest that we can tailor the maize genome to have predictable belowground rhizosphere 

microbiome interactions, and that “wild” genetic variation may present a reservoir of useful 

sustainability related traits. If these microbiome-related genes are incorporated into our modern 
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breeding practices, there is potential to manage agricultural microbiomes in a way that does not 

require major chemical inputs (pesticides, fertilizers, herbicides, novel bioinoculants, etc.) 

typical of our contemporary agricultural system. These plant microbiome interactions can further 

be selected to improve overall agricultural sustainability and management of the soil nitrogen 

cycle. Incorporating an understanding of microbiomes into our agroecosystems is essential in 

facing our future anthropogenic issues in feeding the world and dealing with the pressures of 

climate change.  
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Figures: 

 

Figure 5.1 Near-isogenic line minimum tiling path used in study. A) NILs were generated by 
crossing B73 with Teosinte, then repeated backcrossing with B73 until the NILs contained an 
average of 4% teosinte loci. These lines were then grown and replicated in the field. Rhizosphere 
microbiome and potential N-cycling was characterized. B) Genetic map of NILs used in this 
study. Chr# indicates chromosome number. D.2 shows the number of teosinte introgressions 
present in a locus from the second backcrossing included in this study. DH represents the number 
of double haploids at that locus.   
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Figure 5.2 Prokaryotic OTUs were mapped to the maize genome. The x-axis displays the genetic 
map markers used in the study, while the Y axis includes number of OTUs significantly 
correlated to the introgression identified by Fast-exQTL. Significant OTUs are colored by 
phylum level identify to highlight the taxonomic differences in mapping. Significant NILs 
related to the suppression of potential nitrification and overall denitrification were overlayed on 
to map to highlight to show that these functional NILs influence the microbiome.  
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Figure 5.3 Potential nitrification, incomplete denitrification, and overall denitrification results 
across NILs. Potential N-cycling functions of the rhizosphere microbiome were compared among 
the B73 parent, teosinte parent, and F1 hybrid, along with 2 NILs each whose rhizosphere 
microbiome displayed the maximum and minimum N cycling rates across our different sampling 
timepoints. A) Potential nitrification rates in at timepoint 1. B) Potential nitrification rates at 
timepoint 2. C) Potential incomplete dentification rates at timepoint 1. D) Potential incomplete 
denitrification rates at timepoint 2. E) Potential overall dentification rates at timepoint 1. F) 
Potential overall denitrification rates at timepoint 2. Full set of potential N-cycling results is 
presented in supplemental material Figure D.2.  
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Figure 5.4 Potential mechanisms driving BNI suppression in NILs. A-B) BNI suppression in 
candidate NILs was confirmed in a greenhouse study and NILs with shared genetic regions also 
demonstrated suppression of nitrification activity. A) NILs with an introgression on chromosome 
5. B) NILs with an introgression on chromosome 9. C-E) GC-MS metabolomic results collected 
from root tissue samples using the B73 (BNI -) and teosinte (BNI+) phenotypes highlighted in 
figure A-B. F-H) Classified LC-MS metabolome results present pair wise comparisons each 
individual chromosome introgression (BNI+) to B73 (BNI-). F-G) Show chromosome 5 
differences compared to B73. H) Shows off these differences in chromosome 9. Full list of 
differentially enriched metabolites presents in Table D.8. 
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CHAPTER 6: CONCLUSIONS 

The rhizosphere is the interface between plant roots and soil where interactions among a 

myriad of microorganisms affect biogeochemical cycling, plant growth, and tolerance to stress 

(Philippot et al. 2013). At this interface, we and many others have shown that plant genetics 

plays a role in predicting which microorganisms can grow and thrive (Lundberg et al. 2012; 

Walters et al. 2018; Xu et al. 2018; Favela, Bohn, and Kent 2021). These differences in 

rhizosphere microbial diversity are important as biodiversity within the microbiome will drive 

ecosystem functions of soil, as different microorganisms carryout different activities (Delgado-

Baquerizo and Eldridge 2019) To date, we have not incorporated our understanding of genotype-

driven microbiome recruitment into modern agriculture. This lack of incorporation is likely 

because we do not understand what having a different rhizosphere microbiome means 

functionally.  

 This dissertation focuses on characterizing some of the nitrogen cycling functions 

associated with plant genotype modification to rhizosphere microbiome recruitment. We pointily 

selected maize as our model system as it is a staple food crop, has undergone extensive genetic 

selection, and is one of the most fertilized crops in modern agriculture. By combining our 

understanding of plant genetics and microbial ecology we were able to show that: 1) historic 

breeding has altered the genetics related to how maize interacts with N-cycling taxa of the 

rhizosphere, 2) teosinte, maize’s wild progenitor, recruits a different more sustainable N-cycling 

rhizosphere microbiome compared to modern maize, 3) these genotype recruitment effects 

replicate in the field and are heritable, 4) different specific genetic loci are related to rhizosphere 

microbiome recruitment and N-cycling function, 5) the modern maize microbiome can be 

improved by the reincorporation of “wild” teosinte loci, 6) genetics can be used as a tool to 
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develop a mechanistic understanding of how plants assemble their rhizospheres. These insights 

will hopefully allow us to improve the sustainability of our agricultural systems. Moreover, this 

dissertation critically highlights how we have consequently and inadvertently disturbed maize’s 

rhizosphere microbiome, while also providing solutions to improve it.  

While this dissertation has addressed several questions, it has resulted in the advent of 

many more. Under our simplified model, plant genotypes contain genes/phenes that selectively 

filter the microbiome by ether leading to the enhancement or suppression of specific taxa (Fig. 

6.1A). These selected taxa can be associated with particular ecosystem functions (e.g., nitrifiers 

to nitrification). Yet further research needs to be done to determine how the rhizosphere effects 

scale up to the ecosystem level and if this would considerably reduce N loss from the 

agroecosystem. Additionally, research needs to be done to understand the legacy effects of this 

rhizosphere microbiome selection (Fig. 6.1B) – does this plant extended phenotype of filtering 

soil microbiome have consequences to the next crop (potentially harming or benefiting it)? Will 

these microbial communities under plant filtering eventually adapt/escape selection over time or 

will they disappear from the soil (i.e., microbial erosion)? On the plant genetics side, we are 

interested in understanding what the key gene/phenes that we should be targeting to have our 

preferred microbiome. Further, do these microbial association traits come at a cost to yield? 

Finally, can we use a combination of different plant species (and genotypes) to generationally 

select soil microbiomes with sustainable ecosystem functions (Fig. 6.1C)? Addressing these 

questions will enable us to improve and manage the microbiome using plant rhizosphere 

selection from the genotype to the ecosystem level. 

 Furthermore, while we have only shown maize to have genetic variation contributing to 

altered microbiome recruitment – this ability has been documented in phylogenetic distant taxa 
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from monocots (Bouffaud et al. 2016) and dicots (Xu et al. 2018; Lundberg et al. 2012). This 

leads me to conclude the rhizosphere microbiome recruitment is a fundamental function of the 

root and likely plays many important roles we have just begun to characterize (Bulgarelli et al. 

2013). Moreover, we know that secondary plant metabolites play a large role in controlling the 

microbiome (Canarini et al. 2019) and we know that evolution of plants is intimately tied to the 

development of novel secondary plant metabolite (Anderberg et al. 2003). Is the evolution of 

these secondary plant metabolites in part driven by microbiome interaction and would we see 

rhizosphere microbiomes to be predicted by broader evolutionary relatedness? Understanding 

how rhizosphere microbiomes have evolutionarily shaped plants could allow us to connect 

concepts from ecology, evolution, and ecosystem sciences.  

 

Final remarks: 

For now, my work has shown that selection on the maize genetics can cause changes in 

the N-cycling rhizosphere microbiome, there are many regions of the maize genome that have 

large contributions to microbiome recruitment, and that this interaction is mediated by specific 

loci related to plant phytochemistry. In maize, it seems like teosinte provides a reservoir of 

ecologically important traits related to niche construction (Odling-smee et al. 2013) in a wild 

setting and can be used to identify candidate genes related to complex microbiome phenotypes. 

Also, this work shows how genetics can be leveraged to understand the basis of the microbiome-

associated ecosystem processes, further supporting the genes to ecosystems framework 

(Whitham et al. 2006).  

Applied, this dissertation has the potential to tame microbial activities such as 

nitrification and denitrification which contribute to the disruption of the global N-cycle (Coskun 
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et al. 2017; Galloway et al. 2008) and provides an example of how we can find genetic variation 

associated with microbial recruitment. In theory, agronomists could pair management practices 

(Huffman et al. 2018) with known plant microbiome selection (i.e., organic system, a genotype 

that enriches microbial mineralization) to have the germplasm work with the agricultural 

environment. This type of coordination between plant rhizosphere metabolic selection and 

agricultural fertilizer management practices could allow us to optimize the agroecosystems in a 

manner previously inaccessible. Yet, improving agroecosystem sustainability will require an 

understanding of trade-offs involved in the selection of the rhizosphere microbiome. It is 

possible that managing soil microbiomes through plant interactions will come at a cost to yield 

and will be challenging due to the complexity of microbiomes. Foundational research is needed 

to understand the limitations and mechanisms by which plants drive changes in soil 

microbiomes. Furthermore, ideas parallel to these are viable in animal agriculture (Wallace et al. 

2019); suggesting that the future of agricultural sustainability will incorporate an understanding 

of the microbiome.  
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Figure:

 

Figure 6.1 Conceptual diagram highlighting questions posed in the text. A) Shows the simplified 
model of plant selection. B) Shows the connection between plant microbiome selection and 
ecosystem processes C) Shows an idealized agricultural system where we know how genetic 
variation selects on soils and we intentionally grow lines to limit ecosystem actives. 
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APPENDIX A: SUPPLEMENTAL INFORMATION CHAPTER 2 

Maize germplasm chronosequence shows crop breeding history impacts recruitment of the 
rhizosphere microbiome 
 
 
Figures:  
 

  
Figure A.1 Visual abstract highlighting the major conclusion of the research. Circles represent 
the microbial taxa present in the rhizosphere after microbial recruitment and arrows represent 
microbial-plant interaction with nutrient environment. The goal of the figure is to highlight the 
changing nutrient environment that maize has experienced across different agricultural breeding 
settings during the 21st century, and how this altered maize root systems and microbial 
interaction.  
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Figure A.2 Shows the relationship between the heterotic groups and genetic relatedness of the 
lines used in the study based on HapMap2 genetic information from Panzea (www.panzea.com). 
A. Non-metric multidimensional scaling (NMDS) ordination based on genetic distance data of 
the genotypes used in the study. NonStiffStalk lines are colored as red. StiffStalk lines are 
colored as blue. This figure validates the usage of heterotic group as a proxy for genetic 
relatedness. B. Dendrogram showing how maize lines mostly cluster by heterotic group. 
NonStiffStalk lines are colored as red. StiffStalk lines are colored as blue. PHJ40 and Mo17 are 
the only exception to the heterotic group clustering.  
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Figure A.3 Workflow for Module analysis using WGCNA and PICRUSt2. Microbial 
communities were first run through a weighted correlation network analysis (WGCNA) to 
determine taxa responding to our consequence. These OTUs were then subset into modules and 
run through PICRSt2 where we were able to determine the predicted genes for the responding 
OTUs. BioCyc database was used to obtain functional additional metadata on genes and 
pathways of interest. This additional BioCyc metadata allowed to classify pathways by nuance 
categories such as super pathways, pathway inputs/outputs, and genes involved in pathway. 
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Figure A.4 Ordinations displaying sequence composition for genes related to nitrification. A. 
archaeal amoA gene composition across breeding decade. B. archaeal amoA gene composition by 
heterotic groups. C. Denitrification nirK gene composition by heterotic groups. D. Dentification 
nirK gene composition across heterotic groups. E. nosZ gene composition by breeding decade F. 
nosZ composition by heterotic group G. norB composition by breeding decade H. norB 
composition by heterotic group 
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Figure A.5 Abundance of nitrogen cycling genes changes (determined by qPCR) across the 
germplasm chronosequence. A. Bacterial amoA. B. nirK. C. nosZ. 
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Figure A.6 Changes in predicted pathways across chronosequence. A. Heatmap displaying 
predicted pathway differences of Module 3 across the germplasm chronosequence. Decade of 
germplasm development is present on the right y-axis. Colors on the top x-axis indicate bins 
representing broad functional categories for each pathway. Dendrogram on the left y-axis 
represents the similarity of the treatment categories. Darker colors signify higher Z-score 
abundances of pathways. Z-scores are relative based on pathway abundance. Heatmaps for other 
modules present in supplemental information Fig A.6. B. Locally estimated scatter plot 
smoothing (LOESS) regression plot of the abundance for N degradation pathways over time. C. 
LOESS regression plot of the relative abundance of amino acid synthesis pathways over time. D. 
LOESS regression plot of the abundance of energy metabolism pathways across time. 
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Figure A.7 Heatmap results displaying predicted pathway differences across the taxonomic 
modules: A. module 1, B. module 2. Decade of germplasm release is indicated on the right y-
axis. Colors on the top x-axis represent the broader functional category that the pathway is part 
of. Dendrogram on the left y-axis represents the similarity of the treatment categories. Darker 
colors signify higher Z-score abundances of pathways. Z-scores are relative based on pathway 
abundance. 
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Figure A.8 Highlights the genomic changes that have occurred in these inbred lines over the 
chronosequence study. A. Non-metric multidimensional scaling (NMDS) ordination based on 
genetic distance data of the genotypes used in the study. Datapoint in this NMDS are the same as 
that in Fig A.7A. labeled with the breeding decade color. B. Shows the Tajima’s D statistics 
across the HapMap of the lines included in this study. Tajima’s D is a basic genetic test used to 
understand whether genetic regions are evolving under selection pressures or neutrally/randomly 
within a population. This analysis revealed that 85 genomic regions experienced selective 
sweeps within our population, 2 under balancing selection, and the majority evolving randomly. 
The dotted lines in this figure are threshold lines which are 3 standard deviations away from the 
mean. The dots outside of this threshold compromise the 87 regions under suggested selection.  
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Figure A.9 These figures make it clear that a significant amount of genetic variation is 
associated with the germplasm chronosequence. Panels A and B show a regression between the 
NMDS axes in Fig B.8A and the year of germplasm development used in this study. Both figures 
show a significant amount of genomic variation is associated with the year of development. A. 
Highlights the regression between NMDS1 and year of development. B. Highlights the 
regression between NMDS2 and the year of development. These changes in genetic variation are 
likely what is driving microbiome patterns. Panels C-F. As NMDS dimensions are typically not 
used in regression analysis, we also ran a principal coordinates analysis (PCoA) to confirm our 
findings in A-B. The PCoA found 15 total axes in the HapMap genetic data. 10 of which were 
significantly correlated to with the year of development. Here we present the 4 significant 
correlations with the highest R values. 
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Tables:  
 
Table A.1 Metadata of germplasm used in this study, sourced from the Mazie Genetic and 
Genomic Database (GDB).  

Genotype Heterotic group Pedigree Year  State  Decade 

B14 StiffStalk StiffStalkSyntheticC0 1953 Iowa 1940-50s 
B37 StiffStalk StiffStalkSyntheticC0 1958 Iowa 1940-50s 
OH43 NonStiffStalk Lancaster/Non-StiffStalk 1949 Iowa 1940-50s 
A619 NonStiffStalk Non-StiffStalk 1961 Minnesota 1960-70s 
A632 StiffStalk (Mt42 x B14)B14^3 1964 Minnesota 1960-70s 

A634 StiffStalk 
(Mt42 x 
B14)B14@B14^2 1965 Minnesota 1960-70s 

B73 StiffStalk StiffStalkSyntheticC5 1972 Iowa 1960-70s 
LH1 StiffStalk (B37 x 644) B37 1974 Iowa 1960-70s 
Mo17  NonStiffStalk Lancaster 1964 Missouri  1960-70s 
Pa91 NonStiffStalk Non-StiffStalk 1971 Pennsylvania  1960-70s 
W64A NonStiffStalk Non-StiffStalk 1964 Wisconsin 1960-70s 
LH123 NonStiffStalk Broadbase 1983 Iowa 1980s 
LH82 NonStiffStalk Broadbase/Minnesota 1985 Iowa 1980s 
PH207 NonStiffStalk Iodent 1982 Iowa 1980s 
PHG35 NonStiffStalk Oh07-Midland/Iodent 1983 Iowa 1980s 

PHG39 StiffStalk 
Stiff Stalk C0/Maiz 
Amargo 1983 Iowa 1980s 

PHG47 NonStiffStalk Oh43/Broadbase 1986 Iowa 1980s 

PHG84 NonStiffStalk 
Oh07-
Midland/Broadbase 1986 Iowa 1980s 

PHJ40 StiffStalk StiffStalkC0/Broadbase 1986 Iowa 1980s 
PHZ51 NonStiffStalk Lancaster/Broadbase 1986 Iowa 1980s 
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Table A.2 Primers used in amplicon sequencing and qPCR characterization of rhizosphere 
microbial community  

Target Encodes Primer Name Sequence  Reference 

16S rRNA Ribosomal RNA 515F 5'-GTGYCAGCMGCCGCGGTAA-3' 
Fierer et al. 
2011  

16S rRNA Ribosomal RNA 806R 5'-GGACTACVSGGGTATCTAAT-3' 
Fierer et al. 
2011  

ITS 

Internal 
Transcribed 
Spacer ITS1F 5'-TTCGTAGGTGAACCTGCGG-3' 

White et al. 
1990 

ITS 

Internal 
Transcribed 
Spacer ITS4R 5'-TCCTCCGCTTATTGATATGC-3' 

White et al. 
1990 

nifH Nitrogenase  PolF 5'-TGCGAYCCSAARGCBGACTC-3' Poly et al. 2001 
nifH Nitrogenase  PolR 5'-ATSGCCATCATYTCRCCGGA-3' Poly et al. 2001 
bacterial 
amoA 

Ammonia 
Monooxygenase  amoA-1F 5'-GGGGTTTCTACTGGTGGT-3' Oakley et al. 

2005 
bacterial 
amoA 

Ammonia 
Monooxygenase  amoA-2R 

5'-CCCCTCKGSAAAGCCTTCTTC-
3' 

Oakley et al. 
2005 

archeal 
amoA 

Ammonia 
Monooxygenase  CrenamoA23f 5'-ATGGTCTGGCTWAGACG-3' 

Francis et al. 
2005 

archeal 
amoA 

Ammonia 
Monooxygenase  CrenamoA616r 5'-GCCATCCATCTGTATGTCCA-3' 

Francis et al. 
2005 

Typical 
nosZ 

Nitrous oxide 
reductase nosZ1F 

5'-
WCSYTGTTCMTCGACAGCCAG-3' 

Henry et al. 
2006 

Typical 
nosZ 

Nitrous oxide 
reductase nosZ1R 

5'-
ATGTCGATCARCTGVKCRTTYTC-
3'  

Henry et al. 
2006 

nirK 
Nitrite 
Reductase nirK876  5'-ATYGGCGGVCAYGGCGA-3' 

Henry et al. 
2004 

nirK 
Nitrite 
Reductase nirK1040  5'-GCCTCGATCAGRTTRTGGTT-3' 

Henry et al. 
2004 

nirS 
Nitrite 
Reductase nirSCd3aF  5'-AACGYSAAGGARACSGG-3' 

Kandeler et al. 
2006 

nirS 
Nitrite 
Reductase nirSR3cd  

5'-
GASTTCGGRTGSGTCTTSAYGAA-
3' 

Kandeler et al. 
2006 

norB 
Nitric Oxide 
Reductase cnorB2F 5'-GACAAGNNNTACTGGTGGT-3' 

Braker et al. 
2003 

norB 
Nitric Oxide 
Reductase cnorB6R 5'-GAANCCCCANACNCCNGC-3' 

Braker et al. 
2003 
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Table A.3 Molecular sequencing raw reads generated from sequencing run, reads present after 
FASTX toolkit quality filter, and the rarefaction level of reads per sample for each gene used in 
this study.  

Amplicon  Raw Reads Quality Filtered Reads Rarefaction 
Level 

16S rRNA gene 45,616,533 39,079,559 34,000 
fungal ITS 4,686,224 3,443,164 1,722 

bacterial amoA 2,196,316 1,348,496 915 
archaeal amoA 3,724,966 572,784 430 

nifH 5,739,697 2,105,704 1353 
nirK 13,544,866 4,972,273 999 
nirS 3,375,608 1,102,622 165 
nosZ 6,727,004 2,489,774 132 
norB 2,317,818 560,953 100 
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Table A.4 Permutational multivariate ANOVA model results at the genotypic level for 16S 
rRNA genes, and Fungal ITS. Standard model was run on all amplicon sequence data. Bray-
Curtis distance was used to calculate dissimilarity between microbiomes. 999 permutations were 
used in analysis. All factors in the model were run as fixed effect: Microbial Community Matrix 
= Decade of release + Heterotic Group + Residuals. This model was used to all other nitrogen 
cycling genes compositional changes.  
 
Table A.4.1 16S rRNA: Genotypic means in PERMANOVA model 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Decade 2 0.07246 0.036231 1.7886 0.16792 0.001 *** 
Heterotic 1 0.03496 0.034958 1.7257 0.08101 0.007 ** 
Residuals 16 0.3241 0.020257 0.75107       
Total 19 0.43152 1         

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Table A.4.2 Fungal ITS: Genotypic means in PERMANOVA model 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Decade 2 0.20778 0.103889 1.047 0.1073 0.34   
Heterotic 1 0.14093 0.140935 1.4203 0.07278 0.028 * 
Residuals 16 1.58763 0.099227 0.81991       
Total 19 1.93635 1         

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 
Table A.5 Functional genes that display significant patterns in composition and abundance 
across decades. Complete PERMANOVA and linear model outputs listed below. PERMANOVA 
Models: N-cycling Gene Matrix = Decade of release + Heterotic Group + Residuals. 

Process  Genes 
Beta-Diversity 
Significance 

(p<0.05) 

qPCR Abundance 
Significance in 

Relation to Time 
(p<0.05 ) 

Nitrogen Fixation  nifH Significant * Significant * 
Nitrification  Bacterial amoA Significant * Non-Significant  
Nitrification  Archeal amoA Non-Significant  Significant * 
Denitrification  nirK Non-Significant  Non-Significant  
Denitrification  nirS Near-Significant• Non-Significant  
Denitrification  norB Non-Significant  Significant * 
Denitrification  nosZ Non-Significant  Non-Significant  
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Table A.6 Nitrogen cycling functional groups PERMANOVA result. Model: N-cycling Gene 
Matrix = Decade of release + Heterotic Group + Residuals. Includes nifH, Bacterial amoA, 
Archaeal amoA, nirS, nirK, nosZ, norB.  
 
Table A.6.1 nifH gene: Genotypic Means PERMANOVA Model 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Decade 2 0.07853 0.039263 1.7024 0.16123 0.001 *** 
Heterotic 1 0.03952 0.039515 1.7133 0.08113 0.003 ** 
Residuals 16 0.36902 0.023064 0.75764       
Total 19 0.48706 1         

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Table A.6.2 Bacterial amoA gene: Genotypic Means PERMANOVA Model 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
 Decade 2 0.11113 0.055564 1.4361 0.1376 0.044 * 
Heterotic 1 0.07745 0.077454 2.0019 0.0959 0.008 ** 
Residuals 16 0.61905 0.038691 0.7665       
Total 19 0.80763 1         

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Table A.6.3 Archaeal amoA gene: Genotypic Means PERMANOVA Model 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
 Decade 2 0.020158 0.010079 0.77578 0.07965 0.755   
Heterotic 1 0.02505 0.02505 1.92813 0.09898 0.054 . 
Residuals 16 0.207874 0.012992 0.82137       
Total 19 0.253082 1         

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Table A.6.4 nirS gene: Genotypic Means PERMANOVA Model 

Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
 Decade 2 0.33868 0.16934 1.2166 0.12427 0.077 . 
Heterotic 1 0.15965 0.15965 1.1469 0.05858 0.213   
Residuals 16 2.2271 0.13919 0.81716       
Total 19 2.72543 1         

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table A.6.5 nirK gene: Genotypic Means PERMANOVA Model 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
 Decade 2 0.4336 0.2168 1.0147 0.10599 0.365   
Heterotic 1 0.2387 0.23873 1.1173 0.05835 0.059 . 
Residuals 16 3.4188 0.21367 0.83566       
Total 19 4.0911 1         

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Table A.6.6 nosZ gene: Genotypic Means PERMANOVA Model 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
 Decade 2 0.5213 0.26066 0.93175 0.0975 0.841   
Heterotic 1 0.3497 0.34968 1.24996 0.0654 0.017 * 
Residuals 16 4.4761 0.27975 0.83711       
Total 19 5.3471 1         

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Table A.6.7 norB gene: Genotypic Means PERMANOVA Model 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
 Decade 2 0.6115 0.30577 1.0037 0.10355 0.445   
Heterotic 1 0.4202 0.42021 1.3794 0.07115 0.005 ** 
Residuals 16 4.8741 0.30463 0.8253       
Total 19 5.9059 1         

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table A.7 Mixed effect models comparing qPCR of functional genes and year of germplasm 
release while corrected for the genetic relatedness between lines used in the study. Year of 
release was run as a fixed effect, genetic relatedness between lines was run as a random effect. 
Wald tests performed on statistical models to calculate significance. Statistical models were run 
in ‘asreml-r’. 
 
Table A.7.1 nifH gene: 
asreml(fixed=nifH qPCR~1+Year, Random=vm(Genotype, inverseGmatrix) 

Terms  Df Sum of Sq 
Wald 
Statistic Pr(Chisq)   

(Intercept) 1 14097925 860.68 <2e-16 *** 
Year 1 66351 4.05 0.04415 * 
residual (MS)   16380       

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Variance components of GMatrix 
  component std.error z.ratio bound %ch 
vm(Genotype, 
InvGMatrix) 22757.97 10339.839 2.200998 P 0.2 
units!R 16380.04 5723.233 2.862025 P 0 

 
Table A.7.2 Bacterial amoA gene: 
asreml(fixed=BamoAqPCR~1+Year, Random=vm(Genotype, inverseGmatrix) 

Terms  Df Sum of Sq 
Wald 
Statistic Pr(Chisq)   

(Intercept) 1 1548270 332.22 <2e-16 *** 
Year 1 10159 2.18 0.1398   
residual 
(MS)   4660       

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Variance components of GMatrix 
  component std.error z.ratio bound %ch 
vm(Genotype, 
InvGMatrix) 22757.97 10339.839 2.200998 P 0.2 
units!R 16380.04 5723.233 2.862025 P 0 
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Table A.7.3 Archaeal amoA gene: 
asreml(fixed=ArchamoA qPCR~1+Year, Random=vm(Genotype, inverseGmatrix) 

Terms  Df Sum of Sq 
Wald 
Statistic Pr(Chisq)   

(Intercept) 1 15789973 97.925 <2e-16 *** 
Year 1 714521 4.431 0.03529 * 
residual (MS)   161245       

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Variance components of GMatrix 
  component std.error z.ratio bound %ch 
vm(Genotype, 
InvGMatrix) 204081.8 109931.36 1.856448 P 0.2 
units!R 161244.8 55997.15 2.879517 P 0 

 
Table A.7.4 Sum of archaeal and bacterial amoA genes:  
asreml(fixed=AamoA qPCR+BamoA qPCR~1+Year, Random=vm(Genotype, inverseGmatrix) 

Terms  Df Sum of Sq 
Wald 
Statistic Pr(Chisq)   

(Intercept) 1 27023187 138.268 2.00E-16 *** 
Year 1 895278 4.581 0.03233 * 
residual (MS)   195441       

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Variance components of GMatrix 
  component std.error z.ratio bound %ch 
vm(Genotype, InvGMatrix) 225302.6 143531.36 1.56971 P 0.2 
units!R 195440.6 67901.14 2.878311 P 0 

 
Table A.7.5 nirK gene: 
asreml(fixed=nirK qPCR~1+Year, Random=vm(Genotype, inverseGmatrix) 

Terms  Df Sum of Sq 
Wald 
Statistic Pr(Chisq)   

(Intercept) 1 5796044 357.98 <2e-16 *** 
Year 1 12693 0.78 0.3759   
residual (MS)   16191       

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Variance components of GMatrix 
  component std.error z.ratio bound %ch 
vm(Genotype, 
InvGMatrix) 4915.47 17857.128 0.2752666 P 23.5 
units!R 16191.05 5676.988 2.8520498 P 0 
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Table A.7.6 nirS gene: 
Here asreml-r model did not converge so we used a general genotypic means in linear Model 
Terms  Estimate Std. Error t value Pr(>|t|) 
(Intercept) -198.9049 528.6676 -0.376 0.711     
qPCR vs 
Year 0.1135 0.268 0.424 0.677     

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Table A.7.7 norB gene: 
asreml(fixed=norB qPCR~1+Year, Random=vm(Genotype, inverseGmatrix) 

Terms  Df Sum of Sq 
Wald 
Statistic Pr(Chisq)   

(Intercept) 1 883.96 46.404 9.62E-12 *** 

Year 1 87.37 4.586 0.03223 * 

residual (MS)   19.05       
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Variance components of GMatrix 
  component std.error z.ratio bound %ch 
vm(Genotype, 
InvGMatrix) 10.45639 17.18785 0.6083591 P 19.3 
units!R 19.04921 6.68549 2.8493364 P 0 

 
Table A.7.8 nosZ gene: 
asreml(fixed=nosZ qPCR~1+Year, Random=vm(Genotype, inverseGmatrix) 

Terms  Df Sum of Sq 
Wald 
Statistic Pr(Chisq)   

(Intercept) 1 6530366 6340.7 <2e-16 *** 
Year 1 154 0.1 0.6988   
residual (MS)   1030       

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Variance components of GMatrix 
  component std.error z.ratio bound %ch 
vm(Genotype, 
InvGMatrix) 142.2504 6049.3431 0.02351502 ? 93.7 
units!R 1029.9048 737.2589 1.39693766 P 0 
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Table A.7.9 Average of denitrification genes:  
asreml(fixed=nosZ+norB+nirK+nirS)/4~1+Year, Random=vm(Genotype, inverseGmatrix) 

Terms  Df Sum of Sq 
Wald 
Statistic Pr(Chisq)   

(Intercept) 1 706604 410.01 <2e-16 *** 
Year 1 1178 0.68 0.4084   
residual (MS)   1723       

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Variance components of GMatrix 
  component std.error z.ratio bound %ch 
vm(Genotype, InvGMatrix) 967.5626 1614.2786 0.5993777 P 19.8 
units!R 1723.3808 607.6169 2.836295 P 0 

 
 
Table A.8 Statistically significant modules and all WGCNA Results. Supplemental table with 
full correlations between microbial modules is available for downloaded.  
Module Trait Cor pval Sig 
Module 3 Year -0.2816814 5.33E-05 TRUE 
Module 2 Year 0.1454025 0.03994247 TRUE 
Module 1 Year 0.34856317 4.24E-07 TRUE 
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Table A.9 Dominant taxonomic classes present in modules identified from the WGCNA. 
Module 1 Module 2 Module 3 

Class Count Class Count Class Count 
Betaproteobacteria 16 Subgroup 6 23 Alphaproteobacteria 58 
Alphaproteobacteria 16 Sphingobacteriia 17 Betaproteobacteria 29 
Opitutae 11 Alphaproteobacteria 13 Gammaproteobacteria 19 
Sphingobacteriia 10 Betaproteobacteria 13 Sphingobacteriia 16 
Cytophagia 14 Gammaproteobacteria 11 Clostridia 10 
Fibrobacteria 1 Blastocatellia 10 Gemmatimonadetes 7 
Deltaproteobacteria 7 Gemmatimonadetes 9 Actinobacteria 5 
Solibacteres 1 Holophagae 8 Deltaproteobacteria 4 
Gammaproteobacteria 5 Nitrospira 6 Negativicutes 4 
Melainabacteria 2 Deltaproteobacteria 5 Cytophagia 3 

Flavobacteriia 3 
S0134 terrestrial 
group 4 Verrucomicrobiae 3 

Chlorobia 2 Cytophagia 3 Bacteroidia 2 
Gemmatimonadetes 4 OPB35 soil group 2 Nitrospira 2 
OPB35 soil group 3 Subgroup 5 2 Flavobacteriia 2 
Verrucomicrobiae 1 Phycisphaerae 2 Holophagae 2 
vadinHA49 2 Solibacteres 2 Subgroup 6 2 

  Verrucomicrobiae 2 Fimbriimonadia 1 
  Spartobacteria 1 Longimicrobia 1 
  Subgroup 17 1 Planctomycetacia 1 
  Anaerolineae 1 Opitutae 1 
  Longimicrobia 1 Fibrobacteria 1 
  OM190 1 WCHB1-32 1 
  Subgroup 11 1 Proteobacteria 1 
  Planctomycetacia 1 Acidimicrobiia 1 
  uncultured bacterium 1 OPB35 soil group 1 
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Additional Date Tables: Appendix A_Tables A.10-A.12.6.xlsx 
 
Table A.10 Displays the list of pathways predicted for each of the taxonomic modules from 
PICRUSt2 analysis. Additional meta-information of the pathways is present in supplemental 
excel tables. Pathway names are in MetaCyc formatting. Supplemental excel table available for 
download. 
 
Table A.11 Number of pathways significantly different pathways across decade of germplasm 
development from SIMPER comparison. Table A.14 contains full pathway names. Supplemental 
excel table available for download. 
 
Table A.12 SIMPER results displaying pathways that are significantly different across the 
germplasm chronosequence. The mean differences values signify the differences in predicted 
gene abundance in pathway between the decades of comparisons. All pathways listed were 
shown to be statistically significant (p<0.05), pathways are organized by the degree of mean 
difference between the groups. Supplemental excel table available for download. 
 
Table A.12.1 Results from Module 1 comparison between germplasm developed in the 1940-50s 
to the 1960-70s. 
 
Table A.12.2 Results from Module 1 comparison between germplasm developed in the 1940-50s 
to the 1980s. 
 
Table A.12.3 Results of Module 2 comparison between germplasm developed in the 1940-50s to 
the 1960-70s. 
 
Table A.12.4 Results of Module 2 comparison between germplasm developed in the 40-50s to 
the 80s. 
 
Table A.12.5 Results of Module 3 comparison between germplasm developed in the 1940-50s to 
the 1960-70s. 
 
Table A.12.6 Results of Module 3 comparison between germplasm developed in the 1940-50s to 
the 1980s. 
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APPENDIX B: SUPPLEMENTAL INFORMATION CHAPTER 3 

Differences in N-cycling microbiome recruitment between inbred and wild Zea mays.  
 
 
Figure:  

 
 
 
Figure B.1 Relationship between genotypic-mean of functional gene richness and functional 
gene abundance. Averaged across all functional genes included in this study.  
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Tables:  

Table B.1 Germplasm used in this study. 
Genotypes  Type Group 
A632 Modern Inbred 
B73 Modern Inbred 
LH82 Modern Inbred 
Mo17 Modern Inbred 
Pa91 Modern Inbred 
PH207 Modern Inbred 
PI566674 Teosinte Teo.Mexicana  
PI566677 Teosinte Teo.Mexicana  
PI566680 Teosinte Teo.Mexicana  
Ames21786 Teosinte Teo.Parviglumis 
Ames21789 Teosinte Teo.Parviglumis 
Ames21809 Teosinte Teo.Parviglumis 
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Table B.2 Primers used in amplicon sequencing and qPCR characterization of rhizosphere 
microbial community  

Target Encodes Primer Name Sequence  Reference 

16S rRNA Ribosomal RNA 515F 
5'-GTGYCAGCMGCCGCGGTAA-
3' Fierer et al. 2011  

16S rRNA Ribosomal RNA 806R 
5'-GGACTACVSGGGTATCTAAT-
3' Fierer et al. 2011  

ITS 

Internal 
Transcribed 
Spacer ITS1F 5'-TTCGTAGGTGAACCTGCGG-3' White et al. 1990 

ITS 

Internal 
Transcribed 
Spacer ITS4R 5'-TCCTCCGCTTATTGATATGC-3' White et al. 1990 

nifH Nitrogenase  PolF 
5'-TGCGAYCCSAARGCBGACTC-
3' Poly et al. 2001 

nifH Nitrogenase  PolR 
5'-ATSGCCATCATYTCRCCGGA-
3' Poly et al. 2001 

bacterial 
amoA 

Ammonia 
Monooxygenase  amoA-1F 5'-GGGGTTTCTACTGGTGGT-3' Oakley et al. 

2005 
bacterial 
amoA 

Ammonia 
Monooxygenase  amoA-2R 

5'-
CCCCTCKGSAAAGCCTTCTTC-3' 

Oakley et al. 
2005 

archeal 
amoA 

Ammonia 
Monooxygenase  CrenamoA23f 5'-ATGGTCTGGCTWAGACG-3' 

Francis et al. 
2005 

archeal 
amoA 

Ammonia 
Monooxygenase  

CrenamoA616
r 

5'-GCCATCCATCTGTATGTCCA-
3' 

Francis et al. 
2005 

Typical nosZ 
Nitrous oxide 
reductase nosZ1F 

5'-
WCSYTGTTCMTCGACAGCCAG-
3' Henry et al. 2006 

Typical nosZ 
Nitrous oxide 
reductase nosZ1R 

5'-
ATGTCGATCARCTGVKCRTTYT
C-3'  Henry et al. 2006 

nirK Nitrite Reductase nirK876  5'-ATYGGCGGVCAYGGCGA-3' Henry et al. 2004 

nirK Nitrite Reductase nirK1040  
5'-GCCTCGATCAGRTTRTGGTT-
3' Henry et al. 2004 

nirS Nitrite Reductase nirSCd3aF  5'-AACGYSAAGGARACSGG-3' 
Kandeler et al. 
2006 

nirS Nitrite Reductase nirSR3cd  

5'-
GASTTCGGRTGSGTCTTSAYGA
A-3' 

Kandeler et al. 
2006 

norB 
Nitric Oxide 
Reductase cnorB2F 5'-GACAAGNNNTACTGGTGGT-3' 

Braker et al. 
2003 

norB 
Nitric Oxide 
Reductase cnorB6R 5'-GAANCCCCANACNCCNGC-3' 

Braker et al. 
2003 
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Table B.3 Molecular sequencing raw reads generated from sequencing run, reads present after 
FASTX toolkit quality filter, and the rarefaction level of reads per sample for each gene used in 
this study.  
 

Amplicon  Raw Reads Quality Filtered Reads Rarefaction 
Level 

16S rRNA gene 45,616,533 39,079,559 34,000 
fungal ITS 4,686,224 3,443,164 1,722 

bacterial amoA 2,196,316 1,348,496 915 
archaeal amoA 3,724,966 572,784 430 

nifH 5,739,697 2,105,704 1353 
nirK 13,544,866 4,972,273 999 
nirS 3,375,608 1,102,622 165 
nosZ 6,727,004 2,489,774 132 
norB 2,317,818 560,953 100 
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Table B.4 PERMANOVA results 16S Prokaryotic rRNA from rhizosphere. Models below 
consider all replicate samples.  
 
Table B.4.1 Genotype model comparing the microbial community of lines presented in Table 
B.1. 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Genotype  11 2.3111 0.210104 2.3412 0.19254 0.001 *** 
Residuals 108 9.6921 0.089742 0.80746       
Total 119 12.0033 1         
 
Table B.4.2 Subspecies model comparing subsp. mays, subsp parviglumis, subsp mexicana 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Subspecies  2 1.0549 0.52744 5.6365 0.08788 0.001 *** 
Residuals 117 10.9484 0.09358 0.91212       
Total 119 12.0033 1         

 
Table B.4.3 Domestication model comparing the microbiome teosinte v. maize 

Terms Df 
SumsOfSq
s 

MeanSq
s 

F.Mode
l R2 Pr(>F) Sig 

Domesticatio
n  1 0.7556 0.75561 7.9272 0.06295 0.001 *** 
Residuals 118 11.2477 0.09532 0.93705       
Total 119 12.0033 1         

 
 
Table B.5. PERMANOVA results ITS Fungal from rhizosphere. Models below consider all 
replicates samples.  
 
Table B.5.1 Genotype model comparing the ITS community of lines presented in Table B.1. 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Genotype  11 5.616 0.51052 1.7448 0.15089 0.001 *** 
Residuals 108 31.601 0.2926 0.84911       
Total 119 37.217 1         

 
Table B.5.2 Subspecies model comparing subsp. mays, subsp parviglumis, subsp mexicana 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Subspecies  2 1.975 0.98736 3.2779 0.05306 0.001 *** 
Residuals 117 35.242 0.30121 0.94694       
Total 119 37.217 1         
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Table B.5.3 Domestication model comparing the microbiome teosinte v. maize 

Terms Df 
SumsOfSq
s 

MeanSq
s 

F.Mode
l R2 Pr(>F) Sig 

Domesticatio
n  1 1.577 1.57732 5.2224 0.04238 0.001 *** 
Residuals 118 35.639 0.30203 0.95762       
Total 119 37.217 1         

 
 
Table B.6. PERMANOVA results 16S Prokaryotic rRNA from rhizosphere comparing the 
genotypic means. Note that this was achieved by calculating the mean abundance of each OTU 
within a genotype classification across replicates.  
 
Table B.6.1 Subspecies model comparing subsp. mays, subsp parviglumis, subsp mexicana 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Subspecies  2 0.12574 0.06287 3.0721 0.40571 0.001 *** 
Residuals 9 0.18419 0.020465 0.59429       
Total 11 0.30993 1         

 
Table B.6.2 Domestication model comparing the microbiome teosinte v. maize 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Domestication  1 0.085129 0.085129 3.7869 0.27467 0.001 *** 
Residuals 10 0.224798 0.02248 0.72533       
Total 11 0.309927 1         

 
 
Table B.7. PERMANOVA results Fungal ITS from rhizosphere comparing the genotypic means. 
Note that this was achieved by calculating the mean abundance of each OTU within a genotype 
classification across replicates.  
 
Table B.7.1 Subspecies model comparing subsp. mays, subsp parviglumis, subsp mexicana 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Subspecies  2 0.44138 0.22069 2.0635 0.31439 0.002 ** 
Residuals 9 0.96254 0.10695 0.68561       
Total 11 1.40393 1         

 
Table B.7.2 Domestication model comparing the microbiome teosinte v. maize 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Domestication  1 0.2981 0.2981 2.6957 0.21233 0.005 ** 
Residuals 10 1.1058 0.11058 0.78767       
Total 11 1.4039 1         
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Table B.8 Overview of the statistical significance of the different functional genes characterized. 
 

Ecosystem Process Gene  
Significant Composition 

Across Domestication 
(p<0.05) 

qPCR Abundance 
Significance in 

Relation to 
Domestication 

(p<0.05 ) 
Nitrogen Fixation  nifH Significant  Non-Significant  

Nitrification  Bacterial 
amoA Significant  Significant  

Nitrification  Archeal 
amoA Non-Significant  Significant  

Denitrification  nirK Significant  Significant  
Denitrification  nirS Significant  Non-Significant  
Denitrification  nosZ Significant  Non-Significant  

 
 
Table B.9 Compositional differences in functional genes. 
 
Table B.9.1 nifH  
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Domestication 1 0.09092 0.090918 3.6134 0.26543 0.003 ** 
Residuals 10 0.25161 0.025161 0.73457       
Total 11 0.34253 1         

 
Table B.9.2 Bacterial amoA 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Domestication 1 0.10311 0.103111 2.7683 0.21681 0.009 ** 
Residuals 10 0.37247 0.037247 0.78319       
Total 11 0.47558 1         

 
Table B.9.3 Archeal amoA 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Domestication 1 0.020754 0.020754 1.2809 0.11355 0.224   
Residuals 10 0.162023 0.016202 0.88645       
Total 11 0.182776 1         

 
Table B.9.4 nirK 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Domestication 1 0.30708 0.30708 1.2975 0.11485 0.001 *** 
Residuals 10 2.36668 0.23667 0.88515       
Total 11 2.67376 1         
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Table B.9.5 nirS 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Domestication 1 0.33949 0.33949 1.8963 0.1594 0.004 ** 
Residuals 10 1.79029 0.17903 0.8406       
Total 11 2.12978 1         

 
Table B.9.6 nosZ 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Domestication 1 0.4995 0.49949 1.5048 0.1308 0.006 ** 
Residuals 10 3.3193 0.33193 0.8692       
Total 11 3.8188 1         

 
 
Tables B.10 Functional gene qPCR of these listed above  
 
Table B.10.1 nifH 

Terms Df SumOfSqs 
Wald 
Statisitic 

Pr 
(ChiSq) Sig 

(Intercept) 1 14554998 177.805 2.20E-16 *** 
Domestication 1 80715 0.986 0.3207   
Residuals (MS)   81859       

 
Table B.10.2 Bacterial amoA 

Terms Df SumOfSqs 
Wald 
Statisitic 

Pr 
(ChiSq) Sig 

(Intercept) 1 30681256 241.934 2.20E-16 *** 
Domestication 1 6391292 50.398 1.26E-12 *** 
Residuals (MS)   126816       

 
Table B.10.3 Archeal amoA 

Terms Df SumOfSqs 
Wald 
Statisitic 

Pr 
(ChiSq) Sig 

(Intercept) 1 193212039 59.846 1.02E-14 *** 
Domestication 1 68951105 21.357 3.81E-06 *** 
Residuals (MS)   3228508       
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Table B.10.4 nirK 

Terms Df SumOfSqs 
Wald 
Statisitic 

Pr 
(ChiSq) Sig 

(Intercept) 1 44381821 786.45 2.20E-16 *** 
Domestication 1 1467441 26 3.41E-07 *** 
Residuals (MS)   56433       

Table B.10.5 nirS 

Terms Df SumOfSqs 
Wald 
Statisitic 

Pr 
(ChiSq) Sig 

(Intercept) 1 84279 41.256 1.34E-10 *** 
Domestication 1 1116 0.546 0.4598   
Residuals (MS)   2043       

 
Table B.10.6 nosZ 

Terms Df SumOfSqs 
Wald 
Statisitic 

Pr 
(ChiSq) Sig 

(Intercept) 1 2148091 338.37 2.20E-16 *** 
Domestication 1 5374 0.85 0.3576   
Residuals (MS)   6348       

 
 
Table B.11 Here we treated the N-cycling functional genes as a multivariate dataset to access the 
overall effect of domestication status on the N-cycling functional groups we accessed. We 
compared the overall alpha diversity of these functional genes and the overall abundance of these 
functional genes as explained by domestication status. 
 
Table B.11.1 Alpha diversity (chao1) of functional groups as explained by domestication status 
of cultivars  
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Domestication 1 0.100267 0.100267 16.415 0.62143 0.002 ** 
Residuals 10 0.061081 0.006108 0.37857       
Total 11 0.161348 1         

 
 
Table B.11.2 Functional genes of functional groups as explained by domestication status of 
cultivars. 
Terms Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
Domestication 1 0.41099 0.41099 19.152 0.65697 0.007 ** 
Residuals 10 0.21459 0.02146 0.34303       
Total 11 0.62558 1         
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APPENDIX C: SUPPLEMENTAL INFORMATION CHAPTER 4 
 
Genetic variation within Zea mays alter microbiome assembly and nitrogen cycling 
function in the Agroecosystem  
 
 
Figures:

 
Figure C.1 A. Graphical abstract displaying the underlying concept of the study. It has been 
shown that plant genotype plays a role in microbial requitement- here we were interested in 
understanding if genotype driven differential requitement of the rhizosphere microbiome will 
result in alterations to microbial mediated ecosystem functions. To assess this question, we used 
extremely contrasting genetic models: modern agricultural inbred of maize and wild teosinte 
progenitors. This gives us a potential ceiling to how much of a role plant genetic can play.  
 
 

Genetic Variation within Zea mays alter soil microbiome assembly 
and nitrogen function in the Agroecosystem
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Figure C.1 B. Highlights the physical structure of the field setting. Replicate rectangular blocks 
are colored in teal and include all the genotypes included in the study. Individual genotype 
blocks are colored in brown and are randomized within the block. Range and row factors were 
included in model as continuous factors to represent space within the field. This scheme allowed 
us to control for stochastic spatial effects within our experiment.  
  

Range 

Row

Individual 
Replicate 
block 

Block
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Figure C.2 Stack plots showing the differential abundant OTUs based on DESeq2 determined by 
teosinte and inbred maize comparison. A. Displays within order Actinobacteria differences 
among teosinte and inbred maize. B. Displays within order Acidobacteria differences among 
teosinte and inbred maize. C. Displays within order Proteobacteria differences among teosinte 
and inbred maize. 
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Figure C.3 Stack plots showing the differential abundant OTUs based on DESeq2 determined by 
teosinte and inbred maize comparison. These plots were made as these taxa were major 
contributors to the microbiome differences. A. Displays within order Actinomycetales differences 
among teosinte and inbred maize. B. Displays within order Burkholderiales differences among 
teosinte and inbred maize.  
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Figure C.4 Shows the potential nitrification of individual genotypes in study across different 
sampling timepoints. LS Means and Standard Error were calculated using ASREML-r. 
Supplemental Statistic are present in Table C.6. A. Shows the genotypic mean of potential 
nitrification at time point 1. B. Shows the genotypic mean of potential nitrification at time point 
2. C. Shows the genotypic mean of potential nitrification at time point 3. 
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Figure C.5 Quantitative PCR Results for functional genes surveyed in the study across different 
timepoints over the season across plant type. LS Means and Standard Error were calculated using 
ASREML-r. Supplemental Statistic are present in Table C.2, C.4. A. Displays the log of nifH 
qPCR abundance across timepoints. B. Displays the log of archaeal amoA qPCR abundance 
across timepoints. C. Displays the log of bacterial amoA qPCR abundance across timepoints. D. 
Displays the log of nirS qPCR abundance across timepoints. E. Displays the log of nirK qPCR 
abundance across timepoints. G. Displays the log of nosZ qPCR abundance across timepoints.  
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Figure C.6 Quantitative PCR Results for functional genes surveyed in the study averaged cross 
different timepoints displayed as genotypic means. LS Means and Standard Error were 
calculated using ASREML-r. Supplemental Statistic are present in Table C.2, C.4. A. Displays 
the log of nifH qPCR abundance across genotypes. B. Displays the log of archaeal amoA qPCR 
abundance across genotypes. C. Displays the log of bacterial amoA qPCR abundance across 
genotypes. D. Displays the log of nirS qPCR abundance across genotypes. E. Displays the log of 
nirK qPCR abundance across genotypes. G. Displays the log of nosZ qPCR abundance across 
timepoints.  
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Tables: 

Tables C.1 Permutational multivariate ANOVA model results at the genotypic level for 16S 
rRNA genes, and Fungal ITS. Standard model was run on all amplicon sequence data. Bray-
Curtis distance was used to calculate dissimilarity between microbiomes. 999 permutations were 
used in analysis. All factors in the model were run as fixed effect: Microbial Community Matrix 
= Type x Sampling Time + Row x Range + Residuals. This model was used to all other nitrogen 
cycling genes compositional changes. Interactions between plant type and time were 
incorporated to understand plant growth changes, while row and range interactions were used to 
understand spatial effects. Row and Range factors were stratified as they were random factors.  
 
Table C.1.1 Type (inbred, hybrid, teosinte) x Time Prokaryotic 16S rRNA Model 
 
Factor Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 1.8712 0.93559 12.4209 0.06447 0.001 *** 
Time 2 2.0925 1.04623 13.8897 0.07209 0.001 *** 
Row 1 1.0681 1.06807 14.1797 0.0368 0.001 *** 
Range 1 0.3445 0.34454 4.5741 0.01187 0.001 *** 
Block 91 8.3838 0.09213 1.2231 0.28884 0.001 *** 
Type:Time 4 1.1803 0.29507 3.9174 0.04066 0.001 *** 
Residuals 187 14.0856 0.07532 0.48528       
Total 288 29.026 1         

‘ 
Table C.1.2 Here is the Genotype x Time Prokaryotic 16S rRNA Model (included all genotypes) 
 
Factor Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Genotype 26 4.2653 0.16405 2.2087 0.14695 0.001 *** 
Time 2 2.0737 1.03683 13.9596 0.07144 0.001 *** 
Row 1 0.8968 0.89683 12.0748 0.0309 0.001 *** 
Range 1 0.3204 0.32043 4.3142 0.01104 0.001 *** 
Block 72 6.6467 0.09231 1.2429 0.22899 0.001 *** 
Genotype:Time 52 4.8705 0.09366 1.2611 0.1678 0.001 *** 
Residuals 134 9.9526 0.07427 0.34289       
Total 288 29.026 1         
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Table C.1.3 Nested Genotype-Type x Time Prokaryotic 16S rRNA Model  
 
Factor Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 1.8712 0.93559 12.5966 0.06447 0.001 *** 
Time 2 2.0925 1.04623 14.0862 0.07209 0.001 *** 
Row 1 1.0681 1.06807 14.3803 0.0368 0.001 *** 
Range 1 0.3445 0.34454 4.6388 0.01187 0.001 *** 
Block 91 8.3838 0.09213 1.2404 0.28884 0.001 *** 
Type:Genotype 5 0.4428 0.08855 1.1922 0.01525 0.069 . 
Type:Time 4 1.1669 0.29174 3.9279 0.0402 0.001 *** 
Type:Genotype:Time 48 3.7036 0.07716 1.0388 0.1276 0.164   
Residuals 134 9.9526 0.07427 0.34289       
Total 288 29.026 1         

 
Table C.1.4 Type (inbred, hybrid, teosinte) x Time Fungal ITS Model 
 
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 3.731 1.86552 6.0405 0.03629 0.001 *** 
Time 2 2.267 1.13329 3.6696 0.02205 0.001 *** 
Row 1 0.955 0.95467 3.0912 0.00929 0.001 *** 
Range 1 0.527 0.52721 1.7071 0.00513 0.003 ** 
Block 91 30.989 0.34054 1.1027 0.30143 0.001 *** 
Type:Time 4 4.423 1.10563 3.58 0.04302 0.001 *** 
Residuals 194 59.914 0.30883 0.58279       
Total 295 102.805 1         

 
Table C.1.5 Here is the Genotype x Time Fungal ITS Model (included all genotypes) 
 
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Genotype 26 12.028 0.4626 1.5136 0.11699 0.001 *** 
Time 2 2.246 1.12316 3.675 0.02185 0.001 *** 
Row 1 0.995 0.99467 3.2546 0.00968 0.001 *** 
Range 1 0.536 0.53647 1.7553 0.00522 0.007 ** 
Block 72 24.303 0.33754 1.1044 0.2364 0.001 *** 
Genotype:Time 52 19.604 0.377 1.2336 0.19069 0.001 *** 
Residuals 141 43.093 0.30562 0.41917       
Total 295 102.805 1         
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Table C.1.6 Nested Genotype-Type x Time Fungal ITS Model 
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 3.731 1.86552 6.1041 0.03629 0.001 *** 
Time 2 2.267 1.13329 3.7082 0.02205 0.001 *** 
Row 1 0.955 0.95467 3.1237 0.00929 0.001 *** 
Range 1 0.527 0.52721 1.7251 0.00513 0.002 ** 
Block 91 30.989 0.34054 1.1142 0.30143 0.001 *** 
Type:Genotype 5 1.64 0.32795 1.0731 0.01595 0.191   
Type:Time 4 4.423 1.10563 3.6176 0.04302 0.001 *** 
Type:Genotype:Time 48 15.181 0.31628 1.0349 0.14767 0.155   
Residuals 141 43.093 0.30562 0.41917       
Total 295 102.805 1         

 
 
Table C.2 Functional gene summary of amplicon functional composition gene and qPCR 
abundance data from PerMANOVA and ASREML statistical analysis. C.2.1 displays the 
genotype summary. C.2.2 displays the plant type summary. Full statistical model presented in 
C.3-C.4.  
Table C.2.1 Overview of statistical analysis for genotypes effects on different functional genes.  

Ecosystem 
Process Gene  

Significant 
Composition 

Across 
Genotype 
(p<0.05) 

Significant 
Composition 

Genotype:Time 
Interaction 

(p<0.05) 

qPCR 
Abundance 
Significance 
in Relation 

to 
Genotype 
(p<0.05 ) 

qPCR 
Abundance 
Significance 

Genotype:Time 
Interaction 

(p<0.05) 

Nitrogen 
Fixation  nifH 

Non-
Significant  Non-Significant  

Non-
Significant  Non-Significant  

Nitrification  
Bacterial 
amoA 

Non-
Significant  Significant  

Non-
Significant  Non-Significant  

Nitrification  
Archeal 
amoA Significant  

Near 
Significant   

Non-
Significant  Non-Significant  

Denitrification  nirK Significant  Non-Significant  
Non-
Significant  

Near-
Significant  

Denitrification  nirS Significant  Non-Significant  
Non-
Significant  

Near-
Significant  

Denitrification  nosZ Significant  Non-Significant  
Near-
Significant  

Near-
Significant  
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Table C.2.2 Overview of statistical analysis for Type effects on different functional genes. 

Ecosystem 
Process Gene  

Significant 
Composition 
Across Type 

(p<0.05) 

Significant 
Composition 
Type:Time 
Interaction 

(p<0.05) 

qPCR 
Abundance 
Significance 

in Relation to 
Type 

(p<0.05) 

qPCR 
Abundance 
Significance 
Type:Time 
Interaction 

(p<0.05) 
Nitrogen 
Fixation  nifH 

Non-
Significant  

Non-
Significant  Significant  Significant  

Nitrification  
Bacterial 
amoA 

Non-
Significant  Significant  

Non-
Significant  Significant  

Nitrification  
Archeal 
amoA Significant  Significant  

Non-
Significant  

Non-
Significant  

Denitrification  nirK Significant  
Non-
Significant  

Non-
Significant  Significant  

Denitrification  nirS Significant  
Non-
Significant  

Non-
Significant  Significant  

Denitrification  nosZ Significant  Significant  Significant  Significant  
 
 
Table C.3 Functional Gene Summary of amplicon functional from PerMANOVA models. 999 
permutations were used in analysis. All factors in the model were run as fixed effect: Microbial 
Community Matrix = Genotype (or Type) x Sampling Time + Row x Range + Residuals. 
Interactions between plant type and time were incorporated to understand plant growth changes, 
while row and range interactions were used to understand spatial effects. Row and Range factors 
were stratified as they were random factors  
 
Table C.3.1 nifH gene type (inbred, hybrid, teosinte) model  
 
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 1.049 0.52467 1.07541 0.00731 0.13   
Time 2 1.176 0.58813 1.20546 0.00819 0.007 ** 
Row 1 0.617 0.61742 1.2655 0.0043 0.012 * 
Range 1 0.635 0.63503 1.3016 0.00442 0.01 ** 
Block 91 44.958 0.49405 1.01263 0.31318 0.15   
Type:Time 4 1.932 0.48298 0.98995 0.01346 0.545   
Residuals 191 93.186 0.48788 0.64913       
Total 292 143.554 1         
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Table C.3.2 nifH gene genotype Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Genotype 26 12.611 0.48502 0.99506 0.08785 0.566   
Time 2 1.185 0.59253 1.21561 0.00826 0.007 ** 
Row 1 0.655 0.65498 1.34373 0.00456 0.009 ** 
Range 1 0.628 0.62806 1.2885 0.00438 0.006 ** 
Block 72 35.756 0.49661 1.01883 0.24908 0.08 . 
Genotype:Time 52 25.453 0.48948 1.0042 0.17731 0.361   
Residuals 138 67.266 0.48743 0.46858       
Total 292 143.554 1         

 
Table C.3.3 nifH gene nested genotype/type Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 1.049 0.52467 1.0764 0.00731 0.117   
Time 2 1.176 0.58813 1.20657 0.00819 0.007 ** 
Row 1 0.617 0.61742 1.26667 0.0043 0.016 * 
Range 1 0.635 0.63503 1.3028 0.00442 0.009 ** 
Block 91 44.958 0.49405 1.01356 0.31318 0.133   
Type:Genotype 5 2.399 0.47972 0.98417 0.01671 0.668   
Type:Time 4 1.932 0.48298 0.99086 0.01346 0.535   
Type:Genotype:Time 48 23.521 0.49002 1.00531 0.16385 0.36   
Residuals 138 67.266 0.48743 0.46858       
Total 292 143.554 1         

 
Table C.3.4. Bacterial amoA Type (inbred, hybrid, teosinte) model 
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 0.594 0.29722 0.86977 0.0056 0.661   
Time 2 1.691 0.84538 2.47386 0.01593 0.001 *** 
Row 1 0.533 0.53302 1.55979 0.00502 0.102   
Range 1 0.413 0.41304 1.20869 0.00389 0.256   
Block 91 35.427 0.38931 1.13926 0.3337 0.007 ** 
Type:Time 4 1.897 0.4742 1.38768 0.01787 0.028 * 
Residuals 192 65.611 0.34172 0.618       
Total 293 106.166 1         
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Table C.3.5 Bacterial amoA Genotype Model 
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Genotype 26 9.403 0.36164 1.0811 0.08857 0.158   
Time 2 1.73 0.86514 2.5862 0.0163 0.001 *** 
Row 1 0.533 0.53267 1.5923 0.00502 0.087 . 
Range 1 0.396 0.39591 1.1835 0.00373 0.274   
Block 72 28.34 0.39362 1.1767 0.26694 0.007 ** 
Genotype:Time 52 19.266 0.3705 1.1076 0.18147 0.042 * 
Residuals 139 46.499 0.33452 ng       
Total 293 106.166 1         

 
Table C.3.6 Bacterial amoA Nested Genotype/Type Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 0.594 0.29722 0.88849 0.0056 0.623   
Time 2 1.691 0.84538 2.52712 0.01593 0.001 *** 
Row 1 0.533 0.53302 1.59338 0.00502 0.066 . 
Range 1 0.413 0.41304 1.23471 0.00389 0.242   
Block 91 35.427 0.38931 1.16378 0.3337 0.001 *** 
Type:Genotype 5 1.743 0.34868 1.04231 0.01642 0.38   
Type:Time 4 1.897 0.4742 1.41756 0.01787 0.033 * 
Type:Genotype:Time 48 17.369 0.36186 1.08171 0.1636 0.101   
Residuals 139 46.499 0.33452 0.43798       
Total 293 106.166 1         
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Table C.3.7 Archeal amoA Type Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 0.464 0.232 2.452 0.01165 0.008 ** 
Time 2 6.806 3.403 35.955 0.17089 0.001 *** 
Row 1 3.224 3.2242 34.066 0.08096 0.001 *** 
Range 1 0.387 0.3867 4.086 0.00971 0.003 ** 
Block 91 9.43 0.1036 1.095 0.23678 0.123   
Type:Time 4 1.154 0.2886 3.049 0.02898 0.001 *** 
Residuals 194 18.361 0.0946 0.46103       
Total 295 39.827 1         

 
Table C.3.8 Archeal amoA Genotype Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Genotype 26 3.346 0.1287 1.374 0.08401 0.007 ** 
Time 2 6.798 3.3989 36.285 0.17068 0.001 *** 
Row 1 2.708 2.7076 28.905 0.06799 0.001 *** 
Range 1 0.406 0.4062 4.337 0.0102 0.002 ** 
Block 72 7.812 0.1085 1.158 0.19614 0.027 * 
Genotype:Time 52 5.55 0.1067 1.139 0.13935 0.075 . 
Residuals 141 13.208 0.0937 0.33163       
Total 295 39.827 1         

 
Table C.3.9 Archeal amoA nested Genotype/Type Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 0.464 0.232 2.477 0.01165 0.005 ** 
Time 2 6.806 3.403 36.329 0.17089 0.001 *** 
Row 1 3.224 3.2242 34.42 0.08096 0.001 *** 
Range 1 0.387 0.3867 4.129 0.00971 0.003 ** 
Block 91 9.43 0.1036 1.106 0.23678 0.101   
Type:Genotype 5 0.758 0.1516 1.618 0.01903 0.024 * 
Type:Time 4 1.154 0.2886 3.081 0.02898 0.001 *** 
Type:Genotype:Time 48 4.396 0.0916 0.978 0.11037 0.591   
Residuals 141 13.208 0.0937 0.33163       
Total 295 39.827 1         
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Table C.3.10 nirK Type Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 1.11 0.555 1.43 0.00933 0.004 ** 
Time 2 3.188 1.59391 4.1068 0.0268 0.001 *** 
Row 1 0.688 0.68803 1.7727 0.00578 0.002 ** 
Range 1 0.472 0.47213 1.2165 0.00397 0.09 . 
Block 91 36.562 0.40178 1.0352 0.30733 0.042 * 
Type:Time 4 1.654 0.41339 1.0651 0.0139 0.21   
Residuals 194 75.295 0.38812 0.6329       
Total 295 118.968 1         

 
Table C.3.11 nirk Genotype Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Genotype 26 10.984 0.42248 1.0986 0.09233 0.003 ** 
Time 2 3.142 1.57106 4.0854 0.02641 0.001 *** 
Row 1 0.556 0.55561 1.4448 0.00467 0.011 * 
Range 1 0.483 0.48293 1.2558 0.00406 0.064 . 
Block 72 29.081 0.4039 1.0503 0.24444 0.019 * 
Genotype:Time 52 20.5 0.39424 1.0252 0.17232 0.162   
Residuals 141 54.222 0.38455 0.45577       
Total 295 118.968 1         

 
Table C.3.12 nirK Genotype/Type Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 1.11 0.555 1.4432 0.00933 0.001 *** 
Time 2 3.188 1.59391 4.1448 0.0268 0.001 *** 
Row 1 0.688 0.68803 1.7892 0.00578 0.001 *** 
Range 1 0.472 0.47213 1.2277 0.00397 0.089 . 
Block 91 36.562 0.40178 1.0448 0.30733 0.024 * 
Type:Genotype 5 2.226 0.44521 1.1577 0.01871 0.027 * 
Type:Time 4 1.654 0.41339 1.075 0.0139 0.159   
Type:Genotype:Time 48 18.847 0.39264 1.021 0.15842 0.206   
Residuals 141 54.222 0.38455 0.45577       
Total 295 118.968 1         
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Table C.3.13 nirS Type Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 1.303 0.65133 1.7675 0.01149 0.001 *** 
Time 2 1.415 0.70762 1.9202 0.01248 0.001 *** 
Row 1 1.224 1.22417 3.3219 0.0108 0.003 ** 
Range 1 0.799 0.79936 2.1691 0.00705 0.001 *** 
Block 91 35.535 0.3905 1.0597 0.31342 0.001 *** 
Type:Time 4 1.609 0.40222 1.0915 0.01419 0.185   
Residuals 194 71.492 0.36851 0.63056       
Total 295 113.377 1         

 
Table C.3.14 nirS Genotype Model 
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Genotype 26 10.581 0.40697 1.08047 0.09333 0.031 * 
Time 2 1.409 0.70462 1.8707 0.01243 0.001 *** 
Row 1 1.015 1.01503 2.69481 0.00895 0.001 *** 
Range 1 0.798 0.79755 2.11741 0.00703 0.001 *** 
Block 72 28.471 0.39543 1.04984 0.25112 0.054 . 
Genotype:Time 52 17.994 0.34603 0.91868 0.15871 0.998   
Residuals 141 53.109 0.37666 0.46843       
Total 295 113.377 1         

 
Table C.3.15 nirS Nested Genotype/Type Model 
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 1 0.34 0.3401 0.8887 0.00364 0.677   
Time 3 2.347 0.78227 2.04408 0.02512 0.001 *** 
Row 1 0.98 0.97993 2.56059 0.01049 0.001 *** 
Range 1 0.818 0.81839 2.13847 0.00876 0.002 ** 
Block 80 31.504 0.39379 1.029 0.33723 0.171   
Type:Time 2 0.748 0.37406 0.97742 0.00801 0.541   
Type:Genotype:Time 43 14.967 0.34808 0.90954 0.16022 0.999   
Residuals 109 41.714 0.3827 0.44653       
Total 240 93.418 1         
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Table C.3.16 nosZ Type Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 1.288 0.64412 1.407 0.00935 0.001 *** 
Time 2 1.857 0.92856 2.0283 0.01347 0.001 *** 
Row 1 0.805 0.80456 1.7574 0.00584 0.001 *** 
Range 1 0.581 0.58138 1.2699 0.00422 0.001 *** 
Block 91 42.41 0.46604 1.018 0.30771 0.001 *** 
Type:Time 4 2.07 0.51758 1.1306 0.01502 0.013 * 
Residuals 194 88.813 0.4578 0.64439       
Total 295 137.825 1         

 
Table C.3.17 nosZ Genotype Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Genotype 26 12.225 0.4702 1.0274 0.0887 0.011 * 
Time 2 1.856 0.92801 2.0277 0.01347 0.001 *** 
Row 1 0.786 0.78573 1.7168 0.0057 0.151   
Range 1 0.546 0.54594 1.1929 0.00396 0.057 . 
Block 72 33.931 0.47126 1.0297 0.24619 0.034 * 
Genotype:Time 52 23.951 0.4606 1.0064 0.17378 0.271   
Residuals 141 64.53 0.45766 0.4682       
Total 295 137.825 1         

 
Table C.3.18 nosZ Genotype/Type Model  
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)   
Type 2 1.288 0.64412 1.40742 0.00935 0.006 ** 
Time 2 1.857 0.92856 2.02893 0.01347 0.001 *** 
Row 1 0.805 0.80456 1.75799 0.00584 0.003 ** 
Range 1 0.581 0.58138 1.27033 0.00422 0.008 ** 
Block 91 42.41 0.46604 1.01831 0.30771 0.008 ** 
Type:Genotype 5 2.403 0.4805 1.04992 0.01743 0.193   
Type:Time 4 2.07 0.51758 1.13093 0.01502 0.018 * 
Type:Genotype:Time 48 21.881 0.45585 0.99605 0.15876 0.468   
Residuals 141 64.53 0.45766 0.4682       
Total 295 137.825 1         
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Table C.4. Mixed effect models comparing qPCR of functional genes and genotype, type, space, 
and time. Genotype and time of sampling were run as a fixed effect, while sampling block, 
range, and row were run as random factors. Wald tests performed on statistical models to 
calculate significance. Statistical models were run in ‘asreml-r’. 
 
Table C.4.1 nifH qPCR Type Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 16756611 89.194 2.00E-16 *** 
Type 2 1153454 6.14 0.04643 * 
Time 2 3239876 17.246 0.00018 *** 
Type:Time 4 2423834 12.902 0.01177 * 
residual   187867       

 
Table C.4.2 nifH qPCR Genotype Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 13762521 69.647 2.20E-16 *** 
Genotype 26 4214024 21.325 0.724974   
Time 2 3245682 16.425 0.0002712 *** 
Genotype:Time 52 10876363 55.041 0.3602899   
residual   197605       

 
Table C.4.3 Bacterial amoA qPCR Type Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 167727 135.24 2.20E-16 *** 
Type 2 157 0.127 0.93856   
Time 2 10205 8.229 0.01634 * 
Type:Time 4 35000 28.221 1.13E-05 *** 
residual   1240       

 
Table C.4.4 Bacterial amoA qPCR Genotype Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 159311 120.66 2.00E-16 *** 
Genotype 26 15361 11.634 0.99305   
Time 2 9378 7.103 0.02868 * 
Genotype:Time 52 83863 63.517 0.13144   
residual   1320       
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Table C.4.5 Arch amoA qPCR Type Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 468689956 37.761 8.00E-10 *** 
Type 2 35436473 2.855 0.2399   
Time 2 43443468 3.5 0.1738   
Type:Time 4 76664810 6.177 0.1863   
residual   12412117       

 
Table C.4.6 Arch amoA qPCR Genotype Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 772154049 59.269 1.38E-14 *** 
Genotype 26 305307733 23.435 0.6082   
Time 2 42938857 3.296 0.1924   
Type:Time 52 669965740 51.426 0.4964   
residual   13027864       

 
Table C.4.7 nirK qPCR Type Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 3191339410 494.32 2.20E-16 *** 
Type 2 4872529 0.75 0.6856658   
Time 2 59666289 9.24 0.0098429 ** 
Type:Time 4 137359821 21.28 0.0002791 *** 
residual   6455991       

 
Table C.4.8 nirK qPCR Genotype Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 3085673717 472.49 2.20E-16 *** 
Genotype 26 113556098 17.39 0.896892   
Time 2 61635999 9.44 0.008925 ** 
Genotype:Time 52 448758443 68.72 0.060059 . 
residual   6530707       

 
Table C.4.9 nirS qPCR Type Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 142927550 50.098 1.46E-12 *** 
Type 2 12327195 4.321 0.115275   
Time 2 91423589 32.045 1.10E-07 *** 
Type:Time 4 39142572 13.72 0.008244 ** 
residual (MS) 2852939       
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Table C.4.10 nirS qPCR Genotype Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 3085673717 472.49 2.20E-16 *** 
Genotype 26 113556098 17.39 0.896892   
Time 2 61635999 9.44 0.008925 ** 
Genotype:Time 52 448758443 68.72 0.060059 . 
residual   6530707       

 
Table C.4.11 nosZ qPCR Type Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 294866123 20.09 7.39E-06 *** 
Type 2 295357031 20.124 4.27E-05 *** 
Time 2 1221569930 83.23 2.20E-16 *** 
Type:Time 4 719736962 49.038 5.73E-10 *** 
residual   14677047       

 
Table C.4.12 nosZ qPCR Genotype Model  
Factor Df Sum of Sq Wald Pr(Chisq)   
(Intercept) 1 5127618121 308.503 2.00E-16 *** 
Genotype 26 607829600 36.57 0.08167 . 
Time 2 1227441338 73.849 2.00E-16 *** 
Genotype:Time 52 1118209396 67.277 0.07547 . 
residual   16620956       
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Table C.5 Heritability estimates from mixed effect model in ‘asreml-r’ where all factors were 
running as random variable to calculate the variance attributed by each factor. Factors included 
genotype, block, range, and row. Model was run within each of the sampling timepoints. H2 was 
estimated by dividing the total variance attributed by genotype dived by the total variance in the 
model using the ‘vpredict’ function in ‘asreml-r’. 
Ecosystem Phenotype Time Point h2 Estimate SE P-Value 
Log (nitrification rate) 1 0.144365 0.1933236 0.01218 
Log (nitrification rate) 2 0.8034402 0.2779798 2.20E-16 
Log (nitrification rate) 3 0 0.0497557 0.7337 
Log (overall denitrification) 1 0.3469187 0.1770689 0.00997 
Log (overall denitrification) 2 0 0 0.6158 
Log (overall denitrification) 3 0.2840111 0.1233058 0.00689 
Log (incomplete denitrification) 1 0.4143898 0.1300028 0.00022 
Log (incomplete denitrification) 2 0.02828494 0.0265748 0.00598 
Log (incomplete denitrification) 3 0.06985824 0.0840599 0.00676 
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Table C.6 Mixed effect models comparing potential nitrification and genotype, type, space, and 
time. Genotype and time of sampling were run as a fixed effect, while sampling block, range, 
and row were run as random factors. Wald tests performed on statistical models to calculate 
significance. Statistical models were run in ‘asreml-r’. 
 
Table C.6.1 Nitrification Rates per genotype  

Terms DF Sum of Sq 
Wald 
Statistic  Pr (Chisq) Significant 

(Intercept) 1 5.44E+10 801.02 < 2.2e-16 *** 
Genotype  26 2.65E+09 39.06 0.0480908 * 
Time 2 4.06E+08 5.99 0.0501316 . 
Genotype:Time 49 6.38E+09 94.04 0.0001154 *** 
residual   6.79E+07       

 
 
Table C.6.2 Log of Nitrification Rate Per Genotype 

Terms DF Sum of Sq 
Wald 
Statistic  Pr (Chisq) Significant 

(Intercept) 1 4598.5 86160 2.00E-16 *** 
Genotype  26 2.7 51 0.00214 ** 
Time 2 0.4 8 0.01644 * 
Genotype:Time 49 2.3 43 0.70185   
residual   0.1       

 
Table C.6.3 Nitrification Rate Type  

Terms Terms DF Sum of Sq 
Wald 
Statistic  Pr (Chisq) 

(Intercept) 1 5.62E+10 871.66 2.20E-16 *** 
Type 2 1.33E+09 20.66 3.26E-05 *** 
Time 2 3.46E+08 5.36 0.06848 . 
Type:Time 4 4.02E+09 62.35 9.31E-13 *** 
residual   6.45E+07       

 
Table C.6.4 log of Nitrification Rate per Type 

Terms Terms DF Sum of Sq 
Wald 
Statistic  Pr (Chisq) 

(Intercept) 1 4551.7 110078 2.20E-16 *** 
Type 2 2.3 57 4.75E-13 *** 
Time 2 0.7 16 0.0003174 *** 
Type:Time 4 1 24 8.10E-05 *** 
residual   0       
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Table C.7. Mixed effect models comparing potential denitrification and genotype, type, space, 
and time. Genotype and time of sampling were run as a fixed effect, while sampling block, 
range, and row were run as random factors. Wald tests performed on statistical models to 
calculate significance. Statistical models were run in ‘asreml-r’. 
 
Table C.7.1 Overall Denitrification Enzyme Assay Genotype Model 
Terms DF Sum of Sq Wald Statistic  Pr (Chisq) Significant 
(Intercept) 1 22114 22.219 2.43E-06 *** 
Genotype  26 30475 30.621 0.2426957   
Time 2 16499 16.578 0.0002513 *** 
Genotype:Time 52 52263 52.513 0.454031   
residual   995       

 
Table C.7.2 log Overall Denitrification Enzyme Assay Genotype Model 
Terms DF Sum of Sq Wald Statistic  Pr (Chisq) Significant 
(Intercept) 1 4.039 2.227 0.13559   
Genotype  26 126.899 69.971 6.70E-06 *** 
Time 2 11.549 6.368 0.04142 * 
Genotype:Time 52 127.85 70.495 0.04474 * 
residual   1.814       

 
Table C.7.3 Overall Denitrification Enzyme Assay Type Model 
Terms DF Sum of Sq Wald Statistic  Pr (Chisq) Significant 
(Intercept) 1 36370 37.667 8.39E-10 *** 
Type 2 12806 13.263 0.0013183 ** 
Time 2 16442 17.028 0.0002006 *** 
Type:Time 4 10703 11.085 0.0256288 * 
residual   966       

 
Table C.7.4 Incomplete Denitrification Enzyme Assay Genotype Model 

Terms DF Sum of Sq 
Wald 
Statistic  Pr (Chisq) Significants 

(Intercept) 1 772215 0.782 0.37639   
Genotype  26 29266385 29.654 0.28217   
Time 2 4429458 4.488 0.10602   
Genotype:Time 52 68615086 69.525 0.05261   
residual   986914       
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Table C.7.5 Log of Incomplete Denitrification Enzyme Assay Genotype Model  

Terms DF Sum of Sq 
Wald 
Statistic  Pr (Chisq) Significants 

(Intercept) 1 200.446 148.726 2.20E-16 *** 
Genotype  26 122.241 90.7 4.29E-09 *** 
Time 2 22.864 16.965 0.0002071 *** 
Genotype:Time 52 58.044 43.067 0.806586   
residual   1.348       

 
Table C.7.6 Incomplete Denitrification Enzyme Assay Type Model 

Terms DF Sum of Sq 
Wald 
Statistic  Pr (Chisq) Significants 

(Intercept) 1 200.446 148.726 2.20E-16 *** 
Genotype  26 122.241 90.7 4.29E-09 *** 
Time 2 22.864 16.965 0.0002071 *** 
Genotype:Time 52 58.044 43.067 0.806586   
residual   1.348       
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Table C.8. Genotype effect calculations for potential nitrification, incomplete denitrification, 
and complete denitrification rates. Table includes genotype mean, variance, genotype effects 
which was calculated as the difference between the genotypes mean – the population mean, and 
the percent change which is the genotypic effects divided by the population mean. These metrics 
were adapted from Bernardo et al. Breeding for Quantitative Traits in Plants. 
 
Table C.8.1 Genotype effects on Potential Nitrification  

Genotypes Type  Mean  Variance 
Genotype 
Effect 

Percent 
Change 

Ames21785 Teosinte 3223.202 1081182.57 -691.15308 -0.176568847 
Ames21786 Teosinte 2774.953 88433.44 -1139.40144 -0.291082838 
Ames21809 Teosinte 3133.105 746022.14 -781.24917 -0.199585692 
B73 Inbred 3932.59 2127444.5 18.23587 0.004658717 
B73/PHJ40 Hybrid 4063.868 2198144.3 149.51344 0.038196191 
B73/PHZ51 Hybrid 3307.112 1437775.21 -607.24263 -0.155132249 
CHECK1 Hybrid 3795.58 2885350.12 -118.77462 -0.030343348 
CHECK2 Hybrid 3889.966 1355353.96 -24.38811 -0.006230428 
LH1 Inbred 4412.906 1914200.4 498.55092 0.127364782 
LH123 Inbred 4243.162 675978.9 328.80741 0.084000415 
LH82 Inbred 4265.879 3109219.15 351.52435 0.089803911 
LH82/PH207 Hybrid 5856.937 28458139.93 1942.58205 0.496271353 
LH82/PHJ40 Hybrid 2983.589 3277029.92 -930.76514 -0.237782532 
Mo17 Inbred 4000.014 1853836.7 85.6593 0.021883378 
PH207 Inbred 4369.633 3803350.28 455.27798 0.116309845 
PHG35 Inbred 3714.55 3813926.52 -199.8045 -0.051044047 
PHG39 Inbred 3401.902 2167152.55 -512.45228 -0.130916162 
PHG39/PHZ51 Hybrid 3243.783 4451418.24 -670.57131 -0.171310824 
PHG47 Inbred 3825.386 3776140.43 -88.96846 -0.02272877 
PHG47/PHG84 Hybrid 4195.987 5260178.39 281.63267 0.071948687 
PHG47/PHJ40 Hybrid 3163.181 1001909.37 -751.17393 -0.191902373 
PHG84 Inbred 4927.571 3589665.08 1013.2166 0.258846401 
PHJ40 Inbred 4235.362 2139689.2 321.00759 0.082007795 
PHZ51 Inbred 3673.76 1545063.7 -240.595 -0.061464796 
PI566677 Teosinte 2987.754 1989648.34 -926.60081 -0.23671867 
PI658188 Teosinte 4287.181 26627889.28 372.82631 0.095245921 
PI658205 Teosinte 4870.039 26617163.44 955.68488 0.244148777 
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Table C.8.2 Genotype effects on Overall Denitrification  

Genotypes Type  Mean  Variance 
Genotype 
Effect 

Percent 
Change 

Ames21785 Teosinte 12.225411 779.658009 -6.063614 -0.33154387 
Ames21786 Teosinte 1.418217 7.923932 -16.870808 -0.92245529 
Ames21809 Teosinte 20.975168 4754.027636 2.686142 0.14687182 
B73 Inbred 26.411203 950.937289 8.122178 0.4441012 
B73/PHJ40 Hybrid 20.062967 1457.794312 1.773942 0.09699487 
B73/PHZ51 Hybrid 12.719734 120.740613 -5.569291 -0.30451545 
CHECK1 Hybrid 38.901194 4490.550549 20.612169 1.12702391 
CHECK2 Hybrid 11.884273 274.847049 -6.404752 -0.3501965 
LH1 Inbred 11.165771 161.450221 -7.123254 -0.38948243 
LH123 Inbred 12.949991 113.369208 -5.339034 -0.29192559 
LH82 Inbred 15.97309 642.964529 -2.315935 -0.12662977 
LH82/PH207 Hybrid 21.952365 250.834562 3.663339 0.20030261 
LH82/PHJ40 Hybrid 41.578123 1951.876885 23.289098 1.27339201 
Mo17 Inbred 25.755179 860.418624 7.466154 0.4082314 
PH207 Inbred 27.86796 1651.695357 9.578935 0.52375319 
PHG35 Inbred 23.894519 927.46544 5.605494 0.30649493 
PHG39 Inbred 8.609285 73.497137 -9.67974 -0.52926496 
PHG39/PHZ51 Hybrid 14.804714 201.503919 -3.484311 -0.19051378 
PHG47 Inbred 27.369599 2933.639208 9.080574 0.49650398 
PHG47/PHG84 Hybrid 25.585344 457.123644 7.296319 0.39894523 
PHG47/PHJ40 Hybrid 34.053087 1716.381409 15.764062 0.86194108 
PHG84 Inbred 24.404597 2230.25515 6.115572 0.3343848 
PHJ40 Inbred 15.48927 355.858064 -2.799755 -0.15308389 
PHZ51 Inbred 15.445163 208.991664 -2.843862 -0.15549553 
PI566677 Teosinte 3.194778 37.371736 -15.094247 -0.82531722 
PI658188 Teosinte 6.021103 68.286632 -12.267923 -0.67078056 
PI658205 Teosinte 1.354084 5.715189 -16.934941 -0.92596192 

 
  



222 
 

Table C.8.3 Genotype effects on Incomplete Denitrification  

Genotypes Type  Mean  Variance 
Genotype 
Effect 

Percent 
Change 

Ames21785 Teosinte 0.9733998 3.854093 -7.98603912 -0.891354826 
Ames21786 Teosinte 1.3051623 6.296865 -7.6542766 -0.85432544 
Ames21809 Teosinte 1.6059257 4.038354 -7.35351324 -0.820755999 
B73 Inbred 16.8188358 405.154126 7.85939689 0.877219763 
B73/PHJ40 Hybrid 7.4729687 48.611804 -1.48647024 -0.165911086 
B73/PHZ51 Hybrid 8.1838818 32.706687 -0.7755571 -0.086563133 
CHECK1 Hybrid 7.8783329 35.574311 -1.08110598 -0.120666705 
CHECK2 Hybrid 8.4449126 45.474519 -0.51452636 -0.057428413 
LH1 Inbred 8.6419164 55.18519 -0.31752254 -0.035440003 
LH123 Inbred 37.2180497 3699.631325 28.25861081 3.154060322 
LH82 Inbred 11.6609163 102.192998 2.70147736 0.301523051 
LH82/PH207 Hybrid 10.7900266 38.394728 1.83058766 0.204319454 
LH82/PHJ40 Hybrid 11.4109879 39.199536 2.45154898 0.273627512 
Mo17 Inbred 12.0360989 190.165106 3.07665997 0.343398733 
PH207 Inbred 8.5943683 34.988491 -0.36507061 -0.040747039 
PHG35 Inbred 8.2722852 49.910295 -0.68715377 -0.076696072 
PHG39 Inbred 9.8503228 80.708558 0.89088383 0.099435225 
PHG39/PHZ51 Hybrid 6.9874882 20.942325 -1.97195076 -0.220097573 
PHG47 Inbred 9.0023327 35.816546 0.04289375 0.004787548 
PHG47/PHG84 Hybrid 10.5552713 38.582969 1.59583234 0.178117441 
PHG47/PHJ40 Hybrid 9.0040367 74.346892 0.04459775 0.004977739 
PHG84 Inbred 9.5751494 39.744606 0.61571051 0.068721995 
PHJ40 Inbred 9.184837 40.428247 0.22539803 0.025157606 
PHZ51 Inbred 12.2326943 46.872466 3.27325542 0.365341563 
PI566677 Teosinte 2.7090858 8.303989 -6.25035314 -0.697627741 
PI658188 Teosinte 1.0254465 8.225691 -7.93399238 -0.885545674 
PI658205 Teosinte 5.9606611 106.052389 -2.99877777 -0.334705979  
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APPENDIX D: SUPPLEMENTAL INFORMATION CHAPTER 5 
 

Mapping the genetic regions underlying plant extended phenotype microbiome recruitment 
and function 
 
 
Tables: 

Table D.1 List of NILs used in study. Highlighting the genetic composition of each lines.  
Lines  %B73 homozygote %heterozygote %teo homozygote %introgression 
Z031E0009 89.64285714 5.357142857 4.642857143 10 
Z031E0011 91.33064516 7.459677419 6.451612903 13.91129032 
Z031E0012 93.39285714 2.678571429 3.035714286 5.714285714 
Z031E0016 93.75 3.571428571 2.321428571 5.892857143 
Z031E0021 94.46428571 2.321428571 3.214285714 5.535714286 
Z031E0022 95.71428571 0.535714286 3.571428571 4.107142857 
Z031E0028 92.5 2.678571429 4.642857143 7.321428571 
Z031E0031 90.17857143 5.535714286 3.392857143 8.928571429 
Z031E0035 96.22302158 1.618705036 1.798561151 3.417266187 
Z031E0038 95.17857143 3.571428571 1.071428571 4.642857143 
Z031E0040 92.67857143 3.75 3.571428571 7.321428571 
Z031E0042 95.53571429 3.928571429 0 3.928571429 
Z031E0047 96.41577061 0 3.584229391 3.584229391 
Z031E0050 90.32258065 1.792114695 7.52688172 9.318996416 
Z031E0052 93.75 3.571428571 2.321428571 5.892857143 
Z031E0054 82.97491039 13.44086022 2.688172043 16.12903226 
Z031E0057 97.12230216 3.057553957 0.179856115 3.237410072 
Z031E0058 88.92857143 6.785714286 3.928571429 10.71428571 
Z031E0059 94.28571429 0 5.714285714 5.714285714 
Z031E0061 96.07142857 0.178571429 3.035714286 3.214285714 
Z031E0067 95.35714286 2.321428571 1.964285714 4.285714286 
Z031E0068 100.3649635 0.364963504 0 0.364963504 
Z031E0070 95.34050179 3.584229391 0.896057348 4.480286738 
Z031E0071 96.04316547 1.618705036 2.338129496 3.956834532 
Z031E0074 94.10714286 3.392857143 2.321428571 5.714285714 
Z031E0507 90.25270758 0.36101083 9.566787004 9.927797834 
Z031E0523 92.83154122 0 7.168458781 7.168458781 
Z031E0526 95.71428571 0 4.285714286 4.285714286 
Z031E0536 89.28571429 0 10.71428571 10.71428571 
Z031E0537 91.78571429 0 8.214285714 8.214285714 
Z031E0545 98.01444043 0 2.346570397 2.346570397 
Z031E0556 95.27272727 0.363636364 4.909090909 5.272727273 
Z031E0559 98.21428571 0 1.607142857 1.607142857 
Z031E0560 96.04316547 0 4.136690647 4.136690647 
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Table D.1 (cont.) List of NILs used in study. Highlighting the genetic composition of each lines.  
Lines  %B73 homozygote %heterozygote %teo homozygote %introgression 
Z031E0577 97.14285714 0 2.678571429 2.678571429 
 Z031E0578 97.82608696 1.086956522 1.630434783 2.717391304 
Z031E0580 98.55072464 0 1.992753623 1.992753623 
Z031E0585 95.16129032 0.537634409 3.94265233 4.480286738 
Z031E0591 97.29241877 0 2.346570397 2.346570397 
Z031E0594 95.68345324 0.35971223 4.316546763 4.676258993 
B73 100 0 0 0 
B73xPI384071 50 50 50 0 
PI384071 0 0 100 0 

 
 
Table D.2 Primers 

Target Encodes Primer Name Sequence  Reference 
16S 
rRNA Ribosomal RNA 515F 5'-GTGYCAGCMGCCGCGGTAA-3' 

Fierer et 
al. 2011  

16S 
rRNA Ribosomal RNA 806R 5'-GGACTACVSGGGTATCTAAT-3' 

Fierer et 
al. 2011  

ITS 

Internal 
transcribed 
spacer ITS1F 5'-TTCGTAGGTGAACCTGCGG-3' 

White et 
al. 1990 

ITS 

Internal 
transcribed 
spacer ITS4R 5'-TCCTCCGCTTATTGATATGC-3' 

White et 
al. 1990 

archaeal 
16S Ribosomal RNA Arch349F 5'-GYGCASCAGKCGMGAAW-3' 

Park et al. 
2009 

archaeal 
16S Ribosomal RNA Arch806R 5'GGACTACVSGGGTATCTAAT-3' 

Park et al. 
2009 

nifH Nitrogenase  PolF 5'-TGCGAYCCSAARGCBGACTC-3' 
Poly et al. 
2001 

nifH Nitrogenase  PolR 5'-ATSGCCATCATYTCRCCGGA-3' Poly et al. 
2001 

bacterial 
amoA 

Ammonia 
Monooxygenase  amoA-1F 

5'-GGGGTTTCTACTGGTGGT-3' Oakley et 
al. 2005 

bacterial 
amoA 

Ammonia 
Monooxygenase  amoA-2R 

5'-CCCCTCKGSAAAGCCTTCTTC-
3' 

Oakley et 
al. 2005 

archeal 
amoA 

Ammonia 
Monooxygenase  CrenamoA23f 5'-ATGGTCTGGCTWAGACG-3' 

Francis et 
al. 2005 

archeal 
amoA 

Ammonia 
Monooxygenase  CrenamoA616r 5'-GCCATCCATCTGTATGTCCA-3' 

Francis et 
al. 2005 

Typical 
nosZ 

Nitrous oxide 
reductase nosZ1F 

5'-
WCSYTGTTCMTCGACAGCCAG-3' 

Henry et 
al. 2006 

Typical 
nosZ 

Nitrous oxide 
reductase nosZ1R 

5'-
ATGTCGATCARCTGVKCRTTYTC-
3'  

Henry et 
al. 2006 
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Table D.2 (cont.) Primers 
Target Encodes Primer Name Sequence  Reference 

nrfA Nitrite Reductase nrfAR1 5'-TWNGGCATRTGRCARTC-3' 
Cole et al. 
2004 

nirK Nitrite Reductase nirK876  5'-ATYGGCGGVCAYGGCGA-3' 
Henry et 
al. 2004 

nirK Nitrite Reductase nirK1040  5'-GCCTCGATCAGRTTRTGGTT-3' 
Henry et 
al. 2004 

nirS Nitrite Reductase nirSCd3aF  5'-AACGYSAAGGARACSGG-3' 
Kandeler 
et al. 2006 

nirS Nitrite Reductase nirSR3cd  

5'-
GASTTCGGRTGSGTCTTSAYGAA-
3' 

Kandeler 
et al. 2006 

 
 
Table D.3 Introgressions (NIL genotypes) effects on amplicon diversity summary 
Amplicon  Group R2 Pr(>F)   
16S rRNA Prokaryotic 0.12836 0.001 * 
ITS Fungal 0.12399 0.001 * 
nifH Nitrogen Fixation 0.12677 0.101   
arch amoA Nitrification 0.15176 0.001 * 
bac amoA Nitrification 0.12605 0.008 * 
nirS Denitrification 0.12665 0.273   
nirK Denitrification 0.12643 0.022 * 
nosZ Denitrification 0.12399 0.046 * 

 
 
Table D.4 PERMANOVA 16S Genes. Here and in the text, we use NIL genotype and 
introgression interchangeably.  
 
Table D.4.1 Prokaryotic 16SrRNA  
Term Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
NILGenotype 41 3.3834 0.08252 1.1609 0.12836 0.001 *** 
Time 1 0.3749 0.3749 5.274 0.01422 0.001 *** 
Row 21 1.9677 0.0937 1.3181 0.07465 0.001 *** 
Range 7 1.2873 0.18389 2.587 0.04883 0.001 *** 
Block 98 7.9018 0.08063 1.1343 0.29977 0.001 *** 

Residuals 161 11.4445 0.07108 0.43417 
-

0.56583     
Total 329 26.3595 1         
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Table D.4.2 Fungal ITS  
Term Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
NILGenotype 41 13.138 0.32043 1.0334 0.12399 0.001 *** 
Time 1 2.285 2.28518 7.3697 0.02157 0.001 *** 
Row 21 6.805 0.32405 1.0451 0.06422 0.001 *** 
Range 7 3.73 0.53279 1.7182 0.0352 0.001 *** 
Block 98 29.766 0.30374 0.9795 0.28093 0.001 *** 

Residuals 162 50.233 0.31008 0.47409 
-

0.52591     
Total 330 105.956 1         

 
 
Table D.5 Functional Gene PERMANOVA Models. Here and in the text, we use NIL genotype 
and introgression interchangeably.  
 
Table D.5.1 nifH nitrogen-fixation functional group 
Term  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
NILGenotype 41 17.954 0.4379 1.036 0.12677 0.101   
Time 1 0.545 0.54519 1.2898 0.00385 0.054 . 
Row 21 9.795 0.46642 1.1034 0.06916 0.077 . 
Range 7 3.707 0.52952 1.2527 0.02617 0.214   
Block 98 42.833 0.43707 1.034 0.30245 0.234   
Residuals 158 66.787 0.4227 0.47159       
Total 326 141.62 1         

 
Table D.5.2 Bacterial amoA nitrification functional group 
Term Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
NILGenotype 41 10.688 0.26068 0.97963 0.12605 0.008 ** 
Time 1 0.595 0.59455 2.23433 0.00701 0.015 * 
Row 21 5.455 0.25978 0.97626 0.06434 0.083 . 
Range 7 3.622 0.51742 1.94445 0.04272 0.026 * 
Block 98 25.843 0.26371 0.99102 0.3048 0.005 ** 
Residuals 145 38.584 0.2661 0.45507       
Total 313 84.787 1         

 
  



227 
 

Table D.5.3 Archaeal amoA nitrification functional group 
Term Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
NILGenotype 41 3.8991 0.095101 1.6246 0.15176 0.001 *** 
Time 1 0.2996 0.299628 5.1185 0.01166 0.001 *** 
Row 21 1.9779 0.094187 1.609 0.07698 0.001 *** 
Range 7 1.0956 0.156511 2.6737 0.04264 0.001 *** 
Block 98 8.996 0.091796 1.5681 0.35014 0.001 *** 
Residuals 161 9.4246 0.058538 0.36682       
Total 329 25.6929 1         

 
Table D.5.4 nirS denitrification functional group 
Term Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
NILGenotype 41 11.621 0.28345 1.0947 0.12665 0.273   
Time 1 0.31 0.31033 1.1985 0.00338 0.2   
Row 21 7.162 0.34103 1.3171 0.07805 0.209   
Range 7 2.829 0.4041 1.5607 0.03083 0.265   
Block 98 28.926 0.29517 1.14 0.31524 0.441   
Residuals 158 40.91 0.25892 0.44584       
Total 326 91.758 1         

 
Table D.5.5 nirK dentification functional group 
Term Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
NILGenotype 41 15.609 0.3807 1.0523 0.12643 0.022 * 
Time 1 0.506 0.50563 1.3977 0.0041 0.02 * 
Row 21 8.414 0.40067 1.1075 0.06815 0.018 * 
Range 7 3.199 0.45702 1.2633 0.02591 0.14   
Block 98 37.489 0.38254 1.0574 0.30365 0.031 * 
Residuals 161 58.245 0.36177 0.47177       
Total 329 123.461 1         

 
Table D.5.6 nosZ denitrification functional group 
Term Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Sig 
NILGenotype 41 18.163 0.443 1.0116 0.12399 0.046 * 
Time 1 0.609 0.60897 1.3906 0.00416 0.021 * 
Row 21 9.394 0.44736 1.0216 0.06413 0.087 . 
Range 7 3.649 0.52129 1.1904 0.02491 0.229   
Block 98 44.17 0.45071 1.0292 0.30152 0.106   
Residuals 161 70.504 0.43791 0.48129       
Total 329 146.489 1         
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Table D.6 ASREML-r linear model of Potential Function 
 
Table D.6.1 Timepoint 1 – Potential Nitrification Rates 
Terms Df SumsOfSqs MeanSqs Wald statistic  Pr(Chisq) 
(Intercept) 1 4897 27807.7 2.00E-16 *** 
NILGenotype 43 6.4 36.4 0.7509   
Residual (MS)   0.2       

 
Table D.6.2 Timepoint 2 – Potential Nitrification Rates 

Terms Df SumsOfSqs MeanSqs 
Wald 
statistic  Pr(Chisq) 

(Intercept) 1 26826.1 79479 2.20E-16 *** 
NILGenotype 43 23.9 71 0.004753 ** 
Residual (MS)   0.3       

 
Table D.6.3 Timepoint 1 – Potential Incomplete Denitrification (N2O) Rates 

Terms Df SumsOfSqs MeanSqs 
Wald 
statistic  Pr(Chisq) 

(Intercept) 1 1.67241 121.82 2.20E-16 *** 
NILGenotype 43 1.09625 79.85 0.0005432 *** 
Residual (MS)   0.01373       

 
Table D.6.4 Timepoint 2 – Potential Incomplete Denitrification (N2O) Rates 

Terms Df SumsOfSqs MeanSqs 
Wald 
statistic  Pr(Chisq) 

(Intercept) 1 98.818 1028.85 2.00E-16 *** 
NILGenotype 43 5.28 54.98 0.1041   
Residual (MS)   0.096       

 
Table D.6.5 Timepoint 1 – Potential Overall Denitrification (N2O+N2) Rates 

Terms Df SumsOfSqs MeanSqs 
Wald 
statistic  Pr(Chisq) 

(Intercept) 1 13.3095 63.896 1.33E-15 *** 
NILGenotype 43 8.9015 42.735 0.4827   
Residual (MS)   0.2083       

 
Table D.6.6 Timepoint 2 – Potential Overall Denitrification (N2O+N2) Rates 

Terms Df SumsOfSqs MeanSqs 
Wald 
statistic  Pr(Chisq) 

(Intercept) 1 46.466 336.75 2.20E-16 *** 
NILGenotype 43 10.095 73.16 0.002786 ** 
Residual (MS)   0.138       
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Table D.7 Genes in BNI introgressions as predicted by MaizeGDB from pervious mapping 
studies. Titles of subtables includes the genetic regions that were searched for previously 
established genetic regions.  
 
Table D.7.1 Chr5: 190689917…192848761 

Locus Name Full Name Gene Model Line Type Chr Version 

cl18897_1   Zm00001d017317 B73 protein_coding Chr5 Zm00001d.2 

def4 defensin-like protein4 Zm00001d017292 B73 protein_coding Chr5 Zm00001d.2 

ein3 ethylene insensitive3 Zm00001d017280 B73 protein_coding Chr5 Zm00001d.2 

ga2ox4 
gibberellin 2-
oxidase4 Zm00001d017294 B73 protein_coding Chr5 Zm00001d.2 

GRMZM2G153368  Zm00001d017293 B73 protein_coding Chr5 Zm00001d.2 

myb41 
MYB-transcription 
factor 41 Zm00001d017268 B73 protein_coding Chr5 Zm00001d.2 

pal1 

phenylalanine 
ammonia lyase 
homolog1 Zm00001d017274 B73 protein_coding Chr5 Zm00001d.2 

pal7 
phenylalanine 
ammonia lyase7 Zm00001d017279 B73 protein_coding Chr5 Zm00001d.2 

pal8 
phenylalanine 
ammonia lyase8 Zm00001d017276 B73 protein_coding Chr5 Zm00001d.2 

pal9 
phenylalanine 
ammonia lyase9 Zm00001d017275 B73 protein_coding Chr5 Zm00001d.2 

pip2d 
plasma membrane 
intrinsic protein2 Zm00001d017288 B73 protein_coding Chr5 Zm00001d.2 

ppck3 
phosphoenolpyruvate 
carboxylase kinase3 Zm00001d017270 B73 protein_coding Chr5 Zm00001d.2 

scoal1 succinyl-CoA ligase1 Zm00001d017258 B73 protein_coding Chr5 Zm00001d.2 

ysl14 
yellow stripe-like 
transporter14 Zm00001d017323 B73 protein_coding Chr5 Zm00001d.2 

Zm00001d017285  Zm00001d017285 B73 protein_coding Chr5 Zm00001d.2 
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Table D.7.2 Chr9:88651842…110988044 
Locus Name Full Name Gene Model Line Type Chr Version 

acs3 

1-aminocyclopropane-1-
carboxylate synthase3 Zm00001d045479 B73  protein_coding Chr9 Zm00001d.2 

adc1 arginine decarboxylase1 Zm00001d045470 B73  protein_coding Chr9 Zm00001d.2 

AY105451   Zm00001d045430 B73  protein_coding Chr9 Zm00001d.2 

AY109570    Zm00001d045478 B73  protein_coding Chr9 Zm00001d.2 

baf1 barren stalk fastigiate1 Zm00001d045427 B73  protein_coding Chr9 Zm00001d.2 

bbr4 

BBR/BPC-transcription 
factor 4 Zm00001d045477 B73  protein_coding Chr9 Zm00001d.2 

bub3 

budding inhibited by 
benzimidazoles homolog3 Zm00001d045389 B73  protein_coding Chr9 Zm00001d.2 

cl10045_1a   Zm00001d045488 B73  protein_coding Chr9 Zm00001d.2 

cl10614_1b   Zm00001d045421 B73  protein_coding Chr9 Zm00001d.2 

cl18247_1   Zm00001d045494 B73  protein_coding Chr9 Zm00001d.2 

cl34718_1   Zm00001d045351 B73  protein_coding Chr9 Zm00001d.2 

cl59603_1   Zm00001d045521 B73  protein_coding Chr9 Zm00001d.2 

cys3 cysteine synthase3 Zm00001d045344 B73  protein_coding Chr9 Zm00001d.2 

cys4 cysteine synthase4 Zm00001d045350 B73  protein_coding Chr9 Zm00001d.2 

cys5 cysteine synthase5 Zm00001d045327 B73  protein_coding Chr9 Zm00001d.2 

cys6 cysteine synthase6 Zm00001d045340 B73  protein_coding Chr9 Zm00001d.2 

cys7 cysteine synthase7 Zm00001d045341 B73  protein_coding Chr9 Zm00001d.2 

cys8 cysteine synthase8 Zm00001d045347 B73  protein_coding Chr9 Zm00001d.2 

dbb11 

double B-box zinc finger 
protein11 Zm00001d045323 B73  protein_coding Chr9 Zm00001d.2 

dxs3 deoxy xylulose synthase3 Zm00001d045383 B73  protein_coding Chr9 Zm00001d.2 

e2f10 

E2F-DP-transcription 
factor 210 Zm00001d045365 B73  protein_coding Chr9 Zm00001d.2 

eno1 enolase1 Zm00001d045431 B73  protein_coding Chr9 Zm00001d.2 

eps1 

enolpyruvylshikimate 
phosphate synthase1 Zm00001d045450 B73  protein_coding Chr9 Zm00001d.2 

er3 erecta-like3 Zm00001d045481 B73  protein_coding Chr9 Zm00001d.2 

ereb33 

AP2-EREBP-transcription 
factor 33 Zm00001d045378 B73  protein_coding Chr9 Zm00001d.2 

fat2 

fatty acyl-ACP 
thioesterase2 Zm00001d045387 B73  protein_coding Chr9 Zm00001d.2 

ftr1 ferredoxin-thioredoxin1 Zm00001d045366 B73  protein_coding Chr9 Zm00001d.2 

gras42 

GRAS-transcription factor 
42 Zm00001d045507 B73  protein_coding Chr9 Zm00001d.2 

GRMZM2G114098   Zm00001d045417 B73  protein_coding Chr9 Zm00001d.2 

hb4 

Homeobox-transcription 
factor 4 Zm00001d045400 B73  protein_coding Chr9 Zm00001d.2 
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Table D.7.2 (cont.) Chr9:88651842…110988044 
Locus Name Full Name Gene Model Line Type Chr Version 

hb77 

Homeobox-transcription 
factor 77 Zm00001d045398 B73  protein_coding Chr9 Zm00001d.2 

mkk2 

mitogen-activated protein 
kinase kinase2 Zm00001d045359 B73  protein_coding Chr9 Zm00001d.2 

mpk2 MAP kinase2 Zm00001d045310 B73  protein_coding Chr9 Zm00001d.2 

msr3 

methionine sulfoxide 
reductase3 Zm00001d045418 B73  protein_coding Chr9 Zm00001d.2 

nactf86 

NAC-transcription factor 
86 Zm00001d045463 B73  protein_coding Chr9 Zm00001d.2 

pco063808   Zm00001d045516 B73 protein_coding Chr9 Zm00001d.2 

pco083693   Zm00001d045529 B73 protein_coding Chr9 Zm00001d.2 

pco095664   Zm00001d045373 B73 protein_coding Chr9 Zm00001d.2 

pco103628   Zm00001d045509 B73 protein_coding Chr9 Zm00001d.2 

pco136657   Zm00001d045358 B73 protein_coding Chr9 Zm00001d.2 

prf5 Profilin homolog5 Zm00001d045323 B73 protein_coding Chr9 Zm00001d.2 

pza01272   Zm00001d045315 B73 protein_coding Chr9 Zm00001d.2 

rpp13lk3 

recognition of Peronospora 
parasitica 13 like protein 3 Zm00001d045512 B73 protein_coding Chr9 Zm00001d.2 

rps22a 

ribosomal protein S22 
homolog Zm00001d045448 B73 protein_coding Chr9 Zm00001d.2 

si687009g07   Zm00001d045381 B73 protein_coding Chr9 Zm00001d.2 

TIDP9202   Zm00001d045476 B73 protein_coding Chr9 Zm00001d.2 

tk1 transketolase 1 Zm00001d045451 B73 protein_coding Chr9 Zm00001d. 

umc1586   Zm00001d045517 B73 protein_coding Chr9 Zm00001d.2 

umc1634   Zm00001d045468 B73 protein_coding Chr9 Zm00001d.2 

umc1698   Zm00001d045392 B73 protein_coding Chr9 Zm00001d.2 

wrky39 

WRKY-transcription 
factor 39 Zm00001d045375 B73 protein_coding Chr9 Zm00001d.2 

wx1 waxy1 Zm00001d045462 B73 protein_coding Chr9 Zm00001d.2 
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Table D.7.3 Chr9: 18782106…25727342 
Locus Name Full Name Gene Model Line Type Chr Version 
acp1 acid phosphatase1 Zm00001d046593 B73 protein_coding Chr9 Zm00001d.2 
ago101 argonaute101 Zm00001d046438 B73 protein_coding Chr9 Zm00001d.2 

AI812156   Zm00001d046613 B73 protein_coding Chr9 Zm00001d.2 

arid10 

ARID-transcription 
factor 10 Zm00001d046719 B73 protein_coding Chr9 Zm00001d.2 

arpg1 

acid phosphatase-
regulating gene1 Zm00001d046743 B73 protein_coding Chr9 Zm00001d.2 

arr4 

ARR-B-transcription 
factor 4 Zm00001d046755 B73 protein_coding Chr9 Zm00001d.2 

asg63a   Zm00001d046501 B73 protein_coding Chr9 Zm00001d.2 

AW257883   Zm00001d046742 B73 protein_coding Chr9 Zm00001d.2 
AY103770   Zm00001d046697 B73 protein_coding Chr9 Zm00001d.2 

BE518809   Zm00001d046533 B73 protein_coding Chr9 Zm00001d.2 

bhlh69 

bHLH-transcription 
factor 69 Zm00001d046759 B73 protein_coding Chr9 Zm00001d.2 

bnl5.04   Zm00001d046793 B73 protein_coding Chr9 Zm00001d.2 

brc2 

brassinosteroid 
catabolism2 Zm00001d046422 B73 protein_coding Chr9 Zm00001d.2 

bzip35 

bZIP-transcription 
factor 35 Zm00001d046664 B73 protein_coding Chr9 Zm00001d.2 

bzip60 

bZIP transcription 
factor60 Zm00001d046718 B73 protein_coding Chr9 Zm00001d.2 

bzip70 

bZIP-transcription 
factor 70 Zm00001d046751 B73 protein_coding Chr9 Zm00001d.2 

c3h18 
C3H-transcription 
factor 318 Zm00001d046740 B73 protein_coding Chr9 Zm00001d.2 

cer2 eceriferum2 Zm00001d046865 B73 protein_coding Chr9 Zm00001d.2 
cl44093_1   Zm00001d046778 B73 protein_coding Chr9 Zm00001d.2 

cl54126_1   Zm00001d046790 B73 protein_coding Chr9 Zm00001d.2 

com1 

completion of meiotic 
recombination1 Zm00001d046761 B73 protein_coding Chr9 Zm00001d.2 

csu147   Zm00001d046746 B73 protein_coding Chr9 Zm00001d.2 

csu193   Zm00001d046489 B73 protein_coding Chr9 Zm00001d.2 

dbptf4 

DBP-transcription 
factor 4 Zm00001d046450 B73 protein_coding Chr9 Zm00001d.2 

dps1 

dihydrodipicolinate 
synthase1 Zm00001d046898 B73 protein_coding Chr9 Zm00001d.2 

elfa9 

elongation factor 1-
alpha9 Zm00001d046449 B73 protein_coding Chr9 Zm00001d.2 

elm2 elongated mesocotyl2 Zm00001d046492 B73 protein_coding Chr9 Zm00001d.2 

emb18 embryo specific18 Zm00001d046555 B73 protein_coding Chr9 Zm00001d.2 
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Table D.7.3 (cont.) Chr9: 18782106…25727342 
Locus Name Full Name Gene Model Line Type Chr Version 

ereb203 

AP2-EREBP-
transcription factor 203 Zm00001d046651 B73 protein_coding Chr9 Zm00001d.2 

fae2 fatty acid elongase2 Zm00001d046444 B73 protein_coding Chr9 Zm00001d.2 

farl14 

FAR1-like-
transcription factor 14 Zm00001d046441 B73 protein_coding Chr9 Zm00001d.2 

fat1 fatty acyl thioesterase1 Zm00001d046454 B73 protein_coding Chr9 Zm00001d.2 

gl15 glossy15 Zm00001d046621 B73 protein_coding Chr9 Zm00001d.2 
gpm68   Zm00001d046723 B73 protein_coding Chr9 Zm00001d.2 

gras70 

GRAS-transcription 
factor 70 Zm00001d046783 B73 protein_coding Chr9 Zm00001d.2 

GRMZM2G031370   Zm00001d046882 B73 protein_coding Chr9 Zm00001d.2 
GRMZM2G085218   Zm00001d046888 B73 protein_coding Chr9 Zm00001d.2 

GRMZM2G145104   Zm00001d046624 B73 protein_coding Chr9 Zm00001d.2 
GRMZM2G398615   Zm00001d046828 B73 protein_coding Chr9 Zm00001d.2 

haf101b   Zm00001d046579 B73 protein_coding Chr9 Zm00001d.2 

hagtf35 

GNAT-transcription 
factor 35 Zm00001d046823 B73 protein_coding Chr9 Zm00001d.2 

hak10 

potassium high-affinity 
transporter10 Zm00001d046679 B73 protein_coding Chr9 Zm00001d.2 

hggt1 

homogentisate 
geranylgeranyl 
transferase1 Zm00001d046558 B73 protein_coding Chr9 Zm00001d.2 

hlt1 high leaf temperature 1 Zm00001d046643 B73 protein_coding Chr9 Zm00001d.2 

hm2 

Helminthosporium 
carbonum 
susceptibility2 Zm00001d046811 B73 protein_coding Chr9 Zm00001d.2 

ho3 heme oxygenase3 Zm00001d046493 B73 protein_coding Chr9 Zm00001d.2 

hpt1 

homogentisate 
phytyltransferase1 Zm00001d046909 B73 protein_coding Chr9 Zm00001d.2 

hscf1 

heat shock 
complementing factor1 Zm00001d046913 B73 protein_coding Chr9 Zm00001d.2 

IDP717   Zm00001d046513 B73 protein_coding Chr9 Zm00001d.2 

knox2 

knotted related 
homeobox2 Zm00001d046568 B73 protein_coding Chr9 Zm00001d.2 

lim166   Zm00001d046916 B73 protein_coding Chr9 Zm00001d.2 
ltp2 lipid transfer protein2 Zm00001d046596 B73 protein_coding Chr9 Zm00001d.2 

mch1 maize CRY1 homolog1 Zm00001d046583 B73 protein_coding Chr9 Zm00001d.2 

mha10 

membrane H( )-
ATPase10 Zm00001d046560 B73 protein_coding Chr9 Zm00001d.2 
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Table D.7.3 (cont.) Chr9: 18782106…25727342 
Locus Name Full Name Gene Model Line Type Chr Version 

mlo7 

barley mlo defense 
gene homolog7 Zm00001d046781 B73 protein_coding Chr9 Zm00001d.2 

myb112 

MYB-transcription 
factor 112 Zm00001d046632 B73 protein_coding Chr9 Zm00001d.2 

myb122 

MYB-transcription 
factor 122 Zm00001d046517 B73 protein_coding Chr9 Zm00001d.2 

myb82 

MYB-transcription 
factor 82 Zm00001d046518 B73 protein_coding Chr9 Zm00001d.2 

myb87 

MYB-transcription 
factor 87 Zm00001d046519 B73 protein_coding Chr9 Zm00001d.2 

pco060490   Zm00001d046530 B73 protein_coding Chr9 Zm00001d.2 

pco069828   Zm00001d046569 B73 protein_coding Chr9 Zm00001d.2 
pco071634b   Zm00001d046472 B73 protein_coding Chr9 Zm00001d.2 

pco081548   Zm00001d046488 B73 protein_coding Chr9 Zm00001d.2 

pco082226   Zm00001d046682 B73 protein_coding Chr9 Zm00001d.2 
pco095310   Zm00001d046456 B73 protein_coding Chr9 Zm00001d.2 

pco099302   Zm00001d046749 B73 protein_coding Chr9 Zm00001d.2 
pco100106   Zm00001d046654 B73 protein_coding Chr9 Zm00001d.2 

pco103251   Zm00001d046552 B73 protein_coding Chr9 Zm00001d.2 
pco106241   Zm00001d046661 B73 protein_coding Chr9 Zm00001d.2 

pco119060   Zm00001d046890 B73 protein_coding Chr9 Zm00001d.2 

platz16 

PLATZ-transcription 
factor 16 Zm00001d046688 B73 protein_coding Chr9 Zm00001d.2 

pld5 phospholipase D5 Zm00001d046508 B73 protein_coding Chr9 Zm00001d.2 

prh21 
protein phosphatase 
homolog21 Zm00001d046506 B73 protein_coding Chr9 Zm00001d.2 

prh23 

protein phosphatase 
homolog23 Zm00001d046831 B73 protein_coding Chr9 Zm00001d.2 

rdr3 

RNA-dependent RNA 
polymerase3 Zm00001d046875 B73 protein_coding Chr9 Zm00001d.2 

rpo2 RNA polymerase2 Zm00001d046835 B73 protein_coding Chr9 Zm00001d.2 
rz682   Zm00001d046855 B73 protein_coding Chr9 Zm00001d.2 

sal1 

supernumerary 
aleurone1 Zm00001d046599 B73 protein_coding Chr9 Zm00001d.2 

sbp4 SBP-domain protein4 Zm00001d046906 B73 protein_coding Chr9 Zm00001d.2 
si606045f03   Zm00001d046765 B73 protein_coding Chr9 Zm00001d.2 

si707015f08   Zm00001d046485 B73 protein_coding Chr9 Zm00001d.2 
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Table D.7.3 (cont.) Chr9: 18782106…25727342 
Locus Name Full Name Gene Model Line Type Chr Version 
si707066f01   Zm00001d046923 B73 protein_coding Chr9 Zm00001d.2 
smr3 siamese-related3 Zm00001d046896 B73 protein_coding Chr9 Zm00001d.2 

TIDP2779   Zm00001d046813 B73 protein_coding Chr9 Zm00001d.2 
TIDP2910   Zm00001d046745 B73 protein_coding Chr9 Zm00001d.2 

TIDP3051   Zm00001d046729 B73 protein_coding Chr9 Zm00001d.2 

tipd1 tip growth defective1 Zm00001d046590 B73 protein_coding Chr9 Zm00001d.2 
umc114   Zm00001d046690 B73 protein_coding Chr9 Zm00001d.2 

umc1267   Zm00001d046786 B73 protein_coding Chr9 Zm00001d.2 
umc1743   Zm00001d046705 B73 protein_coding Chr9 Zm00001d.2 

umc2700   Zm00001d046460 B73 protein_coding Chr9 Zm00001d.2 

vpp5 

vacuolar-type H -
pyrophosphatase5 Zm00001d046591 B73 protein_coding Chr9 Zm00001d.2 

vq51 

VQ motif-transcription 
factor51 Zm00001d046496 B73 protein_coding Chr9 Zm00001d.2 

vq52 

VQ motif-transcription 
factor52 Zm00001d046728 B73 protein_coding Chr9 Zm00001d.2 

wrky124 

WRKY-transcription 
factor 124 Zm00001d046805 B73 protein_coding Chr9 Zm00001d.2 

Zm00001d046658   Zm00001d046658 B73 protein_coding Chr9 Zm00001d.2 

Zm00001d046758   Zm00001d046758 B73 protein_coding Chr9 Zm00001d.2 
znf1 zinc finger protein1 Zm00001d046767 B73 protein_coding Chr9 Zm00001d.2 
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Table D.8 Metabolomic results from Deseq2 comparison of enriched small molecules. D.8.1-2) 
show LC-MS results differently expressed between our candidate NILs and B73. Red 
compounds are shared across both suppression NILs. D.8.3-4) show GC-MS results and display 
the log-fold-change between suppression NIL and B73. 
 
Table D.8.1 Chromosome 5  

Compound ID Possible Name Possible 
Formula 

Molecular 
Weight 

Retention 
time [min] ESI polarity 

Compound1   C24 H30 O6 414.20413 1.003 positive 
Compound2082*   C15 H29 N O 239.2246 17.395 positive 
Compound2269 Costunolide C15 H20 O2 232.14598 21.281 positive 
Compound2366 Icosadienoicacid C20 H36 O2 308.27086 29.138 positive 
Compound2381   C25 H44 O 360.33885 30.6 positive 
Compound620 Stachydrine C7 H13 N O2 143.09453 4.087 positive 
 
 
Table D.8.2 Chromosome 9 

Compound ID Possible Name Possible Formula Molecular 
Weight 

Retention 
time [min] 

ESI 
polarity 

Compound620 Stachydrine C7 H13 N O2 143.09453 4.087 positive 
Compound649   C14 H28 N3 P S2 333.14766 4.122 positive 
Compound796   C5 H18 Cl N8 O2 P 288.09747 4.213 negative 
Compound836 Chlorogenic acid C16 H18 O9 354.09492 4.242 positive 
Compound840 Chlorogenic acid C16 H18 O9 376.07675 4.245 positive 
Compound852   C15 H21 N O3 S 295.12386 4.261 positive 

Compound884 

7,9-Dimethyl-4-{[5-(4-
pyridinyl)-1,3,4-oxadiazol-2-
yl]sulfanyl}pyrido[3',2' 
4,5]thieno[3,2-d]pyrimidine C18 H12 N6 O S2 392.05044 4.343 positive 

Compound938*   C17 H12 N2 S 276.07204 4.962 Positive 
Compound1009   C7 H11 Cl O10 290.00371 5.297 Positive 
Compound1122   C22 H29 N5 O7 475.2053 10.181 positive 
Compound1142   C7 H10 N5 O5 P 275.04204 10.293 positive 

Compound1147 

(1R,9S)-11-
[(Methylsulfanyl)acetyl]-3-(2-
thienyl)-7,11-
diazatricyclo[7.3.1.02,7]trideca
-2,4-dien-6-one C18 H20 N2 O2 S2 360.10291 10.31 positive 

Compound1158 

(1R,9S)-11-
[(Methylsulfanyl)acetyl]-3-(2-
thienyl)-7,11-
diazatricyclo[7.3.1.02,7]trideca
-2,4-dien-6-one C18 H20 N2 O2 S2 338.12089 10.333 positive 
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Table D.8.2 (cont.) Chromosome 9 

Compound ID Possible Name Possible Formula Molecular 
Weight 

Retention 
time 
[min] 

ESI 
polarity 

Compound1160   C13 H18 O8 302.09975 10.342 positive 
Compound1294     169.15218 11.277 positive 
Compound1315   C15 H21 N O3 S 295.12392 11.601 positive 
Compound1332 D-(-)-Quinic acid C7 H12 O6 192.06228 11.732 negative 
Compound1342   C45 H27 N10 O4 P 802.19545 11.77 negative 
Compound1470   C35 H30 O2 S 514.19477 12.352 positive 
Compound1498   C34 H37 O5 P3 S 650.1574 12.401 positive 
Compound1687*     1100.25559 13.301 positive 
Compound1704   C18 H12 N4 O6 380.07435 13.432 negative 
Compound1709* Quercetin-3β-D-glucoside C21 H20 O12 464.09538 13.476 positive 
Compound1870   C36 H43 N O8 617.29854 15.209 negative 
Compound2090*   C22 H39 N O6 413.27745 17.508 positive 
Compound2136 [6]-Gingerol C17 H26 O4 294.1832 18.263 negative 
Compound2156   C17 H33 N O 267.25557 18.869 positive 
Compound2316   C34 H55 N O5 557.40758 26.227 positive 
Compound2327   C15 H28 O2 240.2085 27.47 positive 
Compound2381   C25 H44 O 360.33885 30.6 positive 
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Table D.8.3 GCMS chromosome 5. LFC between the two treatments being compared.  
Sig Compound LFC Treatment 
X11.Octadecenoic.acid 9.693099 E0065.B73 
Uridine -8.632235 E0065.B73 
Levulinic.acid.enol -2.428683 E0065.B73 
Sedoheptulose -2.241839 E0065.B73 
Inosine 6.729508 E0065.B73 
X2.Hexadecanoylglycerol -6.588503 E0065.B73 
X3.Methylthiopropylamine 6.410037 E0065.B73 
XYLONIC.ACID.LACTONE 5.933746 E0065.B73 
X2.Octadecanoylglycerol 8.521013 E0065.B73 

Galactose 
-

12.947282 E0065.B73 
X11.Octadecenoic.acid 9.077978 E0025.B73 
Tetracosanol 8.310725 E0025.B73 
Inosine 6.99775 E0025.B73 
X9.12.15.Octadecatrienoic.acid 10.150196 E0025.B73 
proline 9.606501 E0025.B73 
adipic.acid 5.174632 E0025.B73 
X11.Octadecenoic.acid 10.011003 E0021.B73 
tyrosine 9.938063 E0021.B73 
X2.Octadecanoylglycerol 9.109783 E0021.B73 
X9.12.15.Octadecatrienoic.acid 8.823397 E0021.B73 
UREA 6.702277 E0021.B73 
Sedoheptulose -1.831775 E0021.B73 
X2.Hexadecanoylglycerol -6.204784 E0021.B73 
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Table D.8.4 GCMS chromosome 6. LFC between the two treatments being compared. 
Sig Compound LFC Treatment 
X11.Octadecenoic.acid 9.81541 E0047.B73 
proline 10.975642 E0047.B73 
X9.12.15.Octadecatrienoic.acid 21.660819 E0047.B73 
UREA 6.714503 E0047.B73 
X3.Methylthiopropylamine 6.197698 E0047.B73 
Galactose -12.438638 E0047.B73 
X11.Octadecenoic.acid 9.79392 E0022.B73 
Sedoheptulose -2.022724 E0022.B73 
X11.Octadecenoic.acid 8.8732264 E0079.B73 
tyrosine 10.0168686 E0079.B73 
X2.Hexadecanoylglycerol -6.0502467 E0079.B73 
Inositol..myo -0.7625842 E0079.B73 
lactic.acid -1.5023245 E0079.B73 
p.coumaric.acid 1.1266603 E0079.B73 
X9.12.15.Octadecatrienoic.acid 9.8493631 E0079.B73 

 


