Blow-up in semilinear parabolic equations with weak diffusion

By Mark Short¹ & Ashwani K. Kapila²

¹Theoretical and Applied Mechanics, University of Illinois, Urbana, IL 61801 ²Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180

Finite time blow-up in the semilinear reactive-diffusive parabolic equation $\phi_t = \mu \phi_{xx} + e^{\phi}$ is examined in the limit of weak diffusion $\mu \ll 1$, for a Cauchy initial value problem with $\phi(x, t = 0) = \phi_i(x)$ in which $\phi_i(x)$ possesses a smooth global maximum. An asymptotic description of the evolution of ϕ is obtained from the initial time through blow-up using singular perturbation techniques. Near blow-up, an exact self-similar focusing structure for ϕ , identical to that previously associated with non-diffusive thermal runaway, is shown to be appropriate. However, in an exponentially small layer close to the blow-up time, the focusing structure must be modified to ensure a uniformly valid solution. This modification uncovers the asymptotically self-similar focusing structure previously recognized for blow-up in equations of the form $\phi_t = \phi_{xx} + e^{\phi}$. In contrast to previous studies, however, the structure arises here as a natural consequence of removing the non-uniformity in the expansions which occurs exponentially close to blow-up when the effects of diffusion have to be reinstated. Identical weakdiffusion limit asymptotics can be applied to a variety of semilinear or quasilinear parabolic equations that exhibit finite time blow-up in order to reveal the associated focusing structure.

1. Introduction

A number of reactive-diffusive processes which undergo rapid transient behaviour in short time intervals are modelled by semilinear or quasilinear parabolic equations which exhibit singular behaviour or blow-up in a finite time interval. Examples are the heterogeneous reaction-diffusion equation,

$$\phi_t = \phi_{xx} + e^{\phi},\tag{1.1}$$

with an exponential rate law (Kassoy & Poland 1980, Kapila 1980), or alternatively,

$$\phi_t = \phi_{xx} + \phi^p, \quad p > 1, \tag{1.2}$$

with a power rate law, and the porous-medium reaction-diffusion equations,

$$\phi_t = (|\phi_x|^{\sigma} \phi_x)_x + e^u, \quad \sigma > 0, \tag{1.3}$$

(Budd, Dold & Galaktionov 1993), or

$$\phi_t = (\phi_x^{\alpha} \phi_x)_x + u^p, \quad \alpha > 0, \quad p > 1, \tag{1.4}$$

(Galaktionov & Posashkov 1991). A knowledge of the spatial structure of blow-up is a pre-requisite to understanding the physical dynamics associated with such systems which lead to the rapid transient behaviour. Moreover, this knowledge can be useful in developing very accurate numerical algorithms for computing blow-up profiles (Berger & Kohn 1988, Budd, Huang & Russell 1996). Determining both the nature and spatial structure of blow-up in many semilinear and quasilinear parabolic equations is in general a difficult task, and is a topic that has received much attention by many researchers, as described in Bebernes & Eberly (1989). In the present paper we explore the idea of using weak-diffusion limit asymptotics to derive analytical solutions to reaction-diffusion equations of the form (1.1) - (1.4), from which both the spatial structure and time of blow-up can be obtained formally. In particular, analytical solutions will be obtained for equation (1.1), although solutions for equations (1.2) - (1.4) follow along analogous lines.

Equation (1.1) describes the induction stage of a reactive-diffusive evolution in a combustible atmosphere with a one-step Arrhenius reaction in which diffusion and reaction time scales are initially comparable. Kapila (1980) and Kassoy & Poland (1980) independently proposed that the spatial structure of blow-up, or thermal runaway, could be described in terms of the exactly self-similar focusing variable

$$s = \frac{x}{\sqrt{t_I - t}}, \quad s \sim O(1) \text{ and fixed as } t \to t_I,$$
 (1.5)

where

$$\phi(x,t) \sim -\ln(t_I - t) + G(s) + \cdots, \text{ as } t \to t_I, \tag{1.6}$$

with t_I the blow-up time and G an order one function of s. This choice of focusing variable corresponds to a situation where diffusion and reaction would have equal importance through thermal runaway. In a paper that exhibited remarkable insight and ingenuity, Dold (1985) suggested that the influence of diffusion should diminish relative to reaction through blow-up and proposed that the proper variable to describe the spatial structure of thermal runaway should have the alternate, asymptotically self-similar form,

$$\eta = \frac{x}{\sqrt{t_I - t}(\alpha + \ln(t_I - t))}, \ \eta \sim O(1) \text{ and fixed as } t \to t_I,$$
(1.7)

with α a constant. Extensive research followed, e.g., Bebernes & Troy (1987), Bebernes & Kassoy (1988) and Dold (1991), which established rigorously that the focusing variable (1.5) could not yield a self-consistent asymptotic description of blow-up in equations of the form (1.1) or (1.2). In this context and of relevance to the present analysis, Dold (1991) also investigated the possibility of nearly uniform solutions conforming to the variable (1.5) near to blow-up. In terms of the variable (1.7), Dold (1991) has additionally derived high-order solutions for the spatial structure of ϕ near blow-up in equation (1.1) using a coordinate-perturbation analysis. Finally, a rigorous justification that (1.7) is indeed the correct focusing variable for describing blow-up in equations of the form (1.1) and (1.2) was given by Bebernes & Bricher (1992), Filippas & Kohn (1992) and Herrero & Velazquez (1993) based on center manifold techniques.

All these studies, however, concentrate on regimes asymptotically close to blowup, and to date no analytical solutions of equation (1.1) have been presented from which the focusing structure (1.7) can be recovered naturally from a formal asymptotic solution from the initial time. In this paper such an analysis is presented, which uses the limit of weak diffusion to obtain asymptotic descriptions of the evolution of $\phi(x,t)$ in (1.1) from the initial time through blow-up for a Cauchy initial value problem with $\phi(x,0) = \phi_i(x)$. We reiterate that the weak diffusion limit asymptotics applied here to (1.1) can be used for a variety of semilinear or quasilinear parabolic equations that exhibit finite time blow-up in order to reveal the focusing structure associated with the blow-up.

2. A reaction-diffusion equation with an exponential rate-law

Equation (1.1) describes the induction stage of a reactive-diffusive thermal explosion in which the temperature T of the mixture has the form,

$$T \sim 1 + \epsilon \phi,$$
 (2.1)

where ϵ is the large inverse activation energy for the one-step Arrhenius reaction and ϕ satisfies the semilinear parabolic equation,

$$\phi_t = \mu \phi_{xx} + e^{\phi}. \tag{2.2}$$

The parameter μ is the ratio of the reaction time t_r to diffusion time t_d ,

$$\mu = t_r/t_d \tag{2.3}$$

where for a given reference length scale l_r ,

$$t_d = l_r^2 / \kappa \tag{2.4}$$

where κ is the thermal diffusivity of the mixture. The reaction time t_r is defined by,

$$t_r = \frac{\epsilon}{Q} t_{ch}, \tag{2.5}$$

where t_{ch} is the standard chemical time of the mixture and Q the heat release factor. When diffusion and reaction time-scales are of comparable magnitude initially, $\mu=1$. On the other hand, when the time-scale for diffusion is much longer than that associated with the reaction scale, as occurs for spatially slowly-varying initial disturbances, the role of diffusion is weaker than that of reaction initially and $\mu \ll 1$.

We consider Cauchy problems with initial data,

$$\phi(x,0) = \phi_i(x) \tag{2.6}$$

where $\phi_i(x)$ is assumed to have a smooth global maximum $\phi_i = 0$ at x = 0.

3. Asymptotic solution for negligible diffusion

When μ is vanishingly small, $\mu \to 0$, i.e. for diffusion times t_d significantly longer than reaction times t_r , equation (2.2) describes thermal runaway in an unconfined, constant pressure, non-diffusive system. The solution of (2.2) for $\mu = 0$, subject to (2.6) is

$$\phi = -\ln\left(e^{-\phi_i(x)} - t\right). \tag{3.1}$$

It is easily established that blow-up first occurs at x = 0 as $t \to 1$, with the spatial structure of blow-up given by

$$\phi = -\ln \tau + \ln(1 - \frac{1}{2} \left[\phi_i''(0)\right] s) + o(1)$$
(3.2)

(Dold 1988, Jackson, Kapila & Stewart 1989), where $\tau = 1 - t$ and s is the exact self-similar focusing variable

$$s = \frac{x^2}{\tau} \sim O(1)$$
 and fixed as $\tau \to 0$. (3.3)

Thus the spatial extent of the blow-up layer shrinks like $x = O(\sqrt{\tau})$ as $\tau \to 0$.

4. Asymptotic solution for weak diffusion

When diffusion is weak but finite the assumption $\mu \ll 1$ is appropriate. However, in order to ensure the validity of (2.2), the ordered limit

$$1 \gg \mu \gg \epsilon \tag{4.1}$$

is assumed. Anticipating that the time of blow-up t_I will be modified by the inclusion of the diffusive term, the transformation

$$\tau = t_I - t, \quad t_I \sim t_{I0} + \mu t_{I1} + \cdots,$$
 (4.2)

is made. At this stage it is also convenient to introduce the transformation

$$\phi = -\ln \psi,\tag{4.3}$$

whereupon (2.2) becomes

$$\psi_{\tau} = \mu \left[-\psi_{,xx} + \frac{\psi_{,x}^2}{\psi} \right] + 1. \tag{4.4}$$

An expansion for ψ should now take the regular form

$$\psi(x,\tau;\mu) = \psi_0(x,\tau) + \mu \psi_1(x,\tau) + \cdots, \tag{4.5}$$

where ψ_0 and ψ_1 are subject to the initial conditions,

$$\psi_{i0}(x, t_{I0}) = e^{-\phi_i(x)}, \quad \psi_{i1}(x, t_{I0}) = -t_{I1}\psi_{i0,\tau}(x, t_{I0}).$$
(4.6)

(a) Leading-order equation

By substituting (4.5) into (4.4), it can be shown that ψ_0 satisfies the equation

$$\psi_{0,\tau} = 1. \tag{4.7}$$

Its solution, subject to the first of (4.6), is

$$\psi_0 = A(x) + \tau, \quad A(x) = e^{-\phi_i(x)} - t_{I0}.$$
 (4.8)

(b) First-order equation

Similarly, ψ_1 can be shown to satisfy the equation,

$$\psi_{1,\tau} = -\psi_{0,xx} + \frac{\psi_{0,x}^2}{\psi_0}. (4.9)$$

Its solution, subject to the second of (4.6), is

$$\psi_1 = A''(x)(t_{I0} - \tau) + A'^2(x)\left[\ln(A(x) + \tau) - \ln(A(x) + t_{10})\right] - t_{I1} \tag{4.10}$$

(c) Analysis of outer layer blow-up structure

For a singularity to develop in ϕ in a finite time, it is clear that as both $\tau \to 0$ and $x \to 0$, $\psi \to 0$. Now as $x \to 0$,

$$e^{-\phi_i(x)} \sim 1 + ax^2 + bx^4, \quad a = -\frac{1}{2}\phi_i''(0), \quad b = -\frac{1}{24}\phi_i'''(0) + \frac{1}{8}\phi_i''^2(0), \quad (4.11)$$

so that as $\tau \to 0$,

$$\psi_0 \sim 1 - t_{I0} + ax^2 + bx^4 + \tau, \tag{4.12}$$

and

$$\psi_1 \sim (2a + 12bx^2)[1 - \tau] + 4a^2x^2\ln(ax^2 + \tau) - t_{I1}.$$
 (4.13)

The requirement that $\psi \to 0$ thus implies

$$t_{I0} = 1, \quad t_{I1} = 2a. \tag{4.14}$$

The form of equations (4.12) and (4.13) suggests, as before, the introduction of the exact self-similar focusing variable,

$$s = \frac{x}{\sqrt{\tau}}, \ s > 0 \text{ and fixed as } \tau \to 0.$$
 (4.15)

Then, ψ_0 (4.12) can be shown to have the behaviour

$$\psi_0 = \tau(1 + as^2) + O(\tau^2). \tag{4.16}$$

Similarly, the expression (4.13) for ψ_1 can be shown to have the form,

$$\psi_1 = \tau \left[4a^2s^2 \ln \tau + 4a^2s^2 \ln(1 + as^2) - 2a + 12bs^2 \right] + O(\tau^2 \ln \tau). \tag{4.17}$$

Combining (4.16) and (4.17),

$$\psi \sim \tau \left(1 + as^2 + \mu \left[4a^2s^2 \ln \tau + 4a^2s^2 \ln(1 + as^2) - 2a + 12bs^2 \right] \right), \tag{4.18}$$

and upon using (4.3), an expression for the behaviour of ϕ near blow-up can be obtained as,

$$\phi \sim -\ln \tau - \ln(1 + as^2) - \frac{\mu}{1 + as^2} \left(4a^2s^2 \ln \tau + 4a^2s^2 \ln(1 + as^2) - 2a + 12bs^2 \right) + \cdots$$
(4.19)

As $\tau \to 0$, at fixed s, this expression indicates a non-uniformity occurs in the expansions when

$$\ln \tau = O(\mu^{-1}),\tag{4.20}$$

suggesting the presence of an exponentially small inner layer to account for the non-uniformity before the end of the induction zone is reached, which occurs when $\ln \tau = O(\epsilon^{-1})$. The presence of a non-uniformity in regions exponentially close to blow-up, but still within regions in which the induction zone expansion (2.1) is valid, has previously been found in problems associated with reactive-acoustic thermal runaway (Blythe & Crighton 1989, Short 1996), but to the authors' knowledge, has not be seen before in a problems associated with reactive-diffusive thermal-runaway. As observed below, it plays an critical role in modifying the nature of the spatial focusing of ϕ near blow-up.

5. Analysis of the inner layer blow-up structure

To analyse the structure of the exponentially small inner layer blow-up structure, it is appropriate to define a new time variable,

$$\sigma = -\mu \ln \tau, \quad (\tau = e^{-\sigma/\mu}) \tag{5.1}$$

In (s, σ) variables, equation (2.2) becomes

$$\phi_{\sigma} = -\frac{s\phi_s}{2\mu} + \phi_{ss} + \frac{1}{\mu}e^{\phi - \sigma/\mu}.$$
 (5.2)

The form of the outer behaviour (4.19) suggests an expansion for ϕ in the form

$$\phi = \frac{\sigma}{\mu} + \Theta(s, \sigma; \mu), \tag{5.3}$$

where

$$\Theta(s,\sigma;\mu) = \Theta_0(s,\sigma) + \mu\Theta_1(s,\sigma) + \mu^2\Theta_2(s,\sigma) + \cdots$$
 (5.4)

The solution of the system (5.2)–(5.4) both must match with the outer layer behaviour (4.19) as $\sigma \to 0$, and satisfy conditions of spatial regularity at s = 0.

(a) Leading-order behaviour

By substituting (5.3) & (5.4) in (5.2) and collecting terms of $O(\mu^{-1})$, Θ_0 can be shown to satisfy the equation

$$\frac{s}{2}\Theta_{0,s} + 1 = e^{\Theta_0}. (5.5)$$

Its solution is

$$\Theta_0 = -\ln\left(1 + A(\sigma)s^2\right),\tag{5.6}$$

where the function $A(\sigma)$ is as yet undetermined.

(b) First-order behaviour

Similarly, collecting terms at O(1), Θ_1 can be shown to satisfy the equation

$$\frac{s}{2}\Theta_{1,s} - e^{\Theta_0}\Theta_1 = \Theta_{0,ss} - \Theta_{0,\sigma},\tag{5.7}$$

whose solution is

$$\Theta_{1} = \frac{s^{2} \ln s}{(1 + A(\sigma)s^{2})} \left[8A^{2}(\sigma) + 2A'(\sigma) \right] + \frac{2A(\sigma)}{(1 + A(\sigma)s^{2})} - \frac{4A^{2}(\sigma)s^{2}}{(1 + A(\sigma)s^{2})} \ln(1 + A(\sigma)s^{2}) + \frac{B(\sigma)s^{2}}{(1 + A(\sigma)s^{2})}.$$
(5.8)

where the function $B(\sigma)$ is unknown. It is readily seen that the term in the square brackets generates a singular behaviour in the second derivative of Θ_1 as $s \to 0$. Thus the terms in the square brackets must be set to zero, so that

$$4A^2(\sigma) = -A'(\sigma) \tag{5.9}$$

generating an equation for $A(\sigma)$. The solution of (5.9) is,

$$A(\sigma) = \frac{1}{4\sigma + C} \tag{5.10}$$

for a constant C. At this stage, the equation for ϕ in the inner layer can be written as

$$\phi = \frac{\sigma}{\mu} - \ln\left(1 + A(\sigma)s^{2}\right) + \mu \left[\frac{2A(\sigma)}{(1 + A(\sigma)s^{2})} - \frac{4A^{2}(\sigma)s^{2}}{(1 + A(\sigma)s^{2})} \ln(1 + A(\sigma)s^{2}) + \frac{B(\sigma)s^{2}}{(1 + A(\sigma)s^{2})}\right] + \mu^{2}\Theta_{2}(s, \sigma) + \cdots$$
(5.11)

Matching with (4.19) as $\sigma \to 0$ requires

$$C = \frac{1}{a}, \quad B(0) = -12b.$$
 (5.12)

To complete the solution for ϕ at $O(\mu)$, the function $B(\sigma)$ can be determined by considering the second-order term Θ_2 .

(c) Second-order behaviour

Collecting terms of $O(\mu)$ after substituting (5.3) and (5.4) in (5.2), the equation for Θ_2 is given by

$$\frac{s}{2}\Theta_{2,s} - e^{\Theta_0}\Theta_2 = \Theta_{1,ss} - \Theta_{1,\sigma} + \frac{\Theta_1^2}{2}e^{\Theta_0}.$$
 (5.13)

Near s = 0, the expression (5.8) for Θ_1 has the behaviour,

$$\Theta_1 = 2A(\sigma) + s^2 \left(B(\sigma) - 2A^2(\sigma) \right) - s^4 \left[2A^3(\sigma) + B(\sigma)A(\sigma) \right] + \cdots$$
 (5.14)

Requiring also that Θ_2 have the regular solution

$$\Theta_2 \sim \Theta_{20}(\sigma) + \Theta_{21}(\sigma)s^2 + \cdots, \tag{5.15}$$

as $s \to 0$, substituting (5.14) and (5.15) in (5.13) implies that the two conditions

$$\Theta_{20}(\sigma) = 2A^2(\sigma) + 2A'(\sigma) - 2B(\sigma) \tag{5.16}$$

and

$$B'(\sigma) + 8A(\sigma)B(\sigma) = -32A^{3}(\sigma) + 2A(\sigma)A'(\sigma), \tag{5.17}$$

must hold. Equation (5.17) determines $B(\sigma)$ with solution,

$$B(\sigma) = -\frac{10\ln(4\sigma + C)}{(4\sigma + C)^2} + \frac{D}{(4\sigma + C)^2}.$$
 (5.18)

From the second of matching conditions (5.12),

$$D = -12bC^2 + 10\ln C. (5.19)$$

To $O(\mu)$, the equation for ϕ can finally be written as,

$$\phi = \frac{\sigma}{\mu} - \ln\left(1 + A(\sigma)s^{2}\right) + \mu\left[\frac{2A(\sigma)}{(1 + A(\sigma)s^{2})} - \frac{4A^{2}(\sigma)s^{2}}{(1 + A(\sigma)s^{2})}\ln(1 + A(\sigma)s^{2}) + \frac{\left[A^{2}(\sigma)\left(10\ln A(\sigma) + D\right)\right]s^{2}}{(1 + A(\sigma)s^{2})}\right] + \cdots$$
(5.20)

Equation (5.20) now indicates the presence of a new focusing structure η that is appropriate in the inner layer, defined by

$$\eta^2 = A(\sigma)s^2 = \frac{x^2}{(4\sigma + C)e^{-\sigma/\mu}} = \frac{x^2}{(-4\mu \ln \tau + C)\tau},$$
(5.21)
 $\eta > 0 \text{ and fixed for } \sigma = O(1), \ \tau \to 0.$

But this is precisely the form of the asymptotically self-similar focusing variable (1.7) previously identified with blow-up in equations of the form (1.1). Here the variable is found to be the appropriate focusing variable in an exponentially small inner layer near to blow-up, which arises due to a requirement to remove a non-uniformity in the outer layer expansions obtained under the assumption of a weakly diffusing process. Near blow-up, the outer layer expansions are associated with an exactly self-similar focusing structure. The physical reason for the appearance of the modified focusing structure can be explained as follows. In the outer layer, diffusion plays a negligible role. As the spatial extent of the outer layer shrinks, like $x = \sqrt{\tau}$, a regime is reached exponentially close to the blow-up time where diffusive processes again become important and must be reinstated. The role of diffusion is to conduct heat away from x=0, and thus broaden the spatial extent of the blow-up layer. The presence of diffusive processes is reflected in the form of the modified focusing variable (5.21), the constant C relating to the non-diffusive exactly self-similar focusing structure, but the 4σ term relating to the role played by diffusion in broadening the blow-up layer.

In terms of the variable η , (5.20) can be written in the form

$$\phi \sim \frac{\sigma}{\mu} - \ln\left(1 + \eta^2\right) + \mu A(\sigma) \left[\frac{2}{(1 + \eta^2)} - \frac{4\eta^2}{(1 + \eta^2)} \ln(1 + \eta^2) + \frac{\left[(10\ln A(\sigma) + D)\right]\eta^2}{(1 + \eta^2)}\right] + \cdots$$
(5.22)

As $\sigma \to \infty$, $A(\sigma) \sim 1/4\sigma$, and further increases in ϕ are governed by the structure

$$\phi = \frac{\sigma}{\mu} - \ln\left(1 + \eta_1^2\right) + O\left[\mu\sigma^{-1}\ln\sigma^{-1}\right],\tag{5.23}$$

where

$$\eta_1^2 \sim \frac{x^2}{4\sigma e^{-\sigma/\mu}}, \eta_1 > 0 \text{ and fixed } \sigma \to \infty.$$
(5.24)

This form was previously obtained by Dold (1991), by anticipating (1.7) to be the appropriate structure, and considering regimes asymptotically close to blow-up. In contrast, it is recovered here by considering the limit of a weakly diffusively process. Apart from influencing the blow-up time t_I , the expression (5.23) is essentially independent of the initial conditions, but reflects the stronger role played by diffusion as the blow-up layer shrinks further.

6. Summary

Finite time blow-up in the semilinear reactive-diffusive parabolic equation $\phi_t = \mu \phi_{xx} + e^{\phi}$ has been examined as a singular perturbation problem using the limit

of weak diffusion where $\mu \ll 1$. An outer zone, whose temporal extent is of order unity, describes the behaviour of ϕ from the initial to a time near blowup. An exact self-similar focusing variable determines the spatial structure of blow-up. In an exponentially small layer close to the blow-up time, however, expansions for the outer layer become non-uniform. An examination of this inner layer reveals that diffusive processes, which conduct heat away from x=0, have begun to play a significant role. The result is that the focusing structure must be modified to ensure a uniformly valid solution, and this modification uncovers the asymptotically self-similar focusing structure previously recognized for blow-up in equations of the form $\phi_t = \phi_{xx} + e^{\phi}$. In contrast to previous studies, however, here the focusing structure arises as a natural consequence of removing, from the asymptotic expansion, a nonuniformity that occurs under the assumption of an initially weak diffusion. Identical weak-diffusion limit asymptotics can be applied to a variety of other semilinear or quasilinear parabolic equations that exhibit finite time blow-up in order to reveal the associated focusing structures.

Acknowledgements

MS was supported by the U.S. Air Force Office of Scientific Research (F49620-96-1-0260). AKK was supported by the Los Alamos National Laboratory and by the National Science Foundation.

References

- Bebernes, J. & Bricher, S. 1992 Final time blowup profiles for semilinear parabolic equations via centre manifold theory. SIAM J. Appl. Math. 23 852-869.
- Bebernes, J. & Troy, W. 1987 On the existence of solutions to the Kassoy problem in dimension 1. SIAM J. Math. Anal. 18 1157-1162.
- Bebernes, J. & Eberly, D. 1989 Mathematical problems for combustion theory. Springer-Verlag.
- Bebernes, J. & Kassoy, D.R. 1988 Characterizing self-similar blow-up. in *Mathematical Modelling of Combustion and Related Topics*, Brauner, C.M. & Schmidt-Laine, C., eds., Martinus Nijhoff, Dordecht, 383–392.
- Berger, M. & Kohn, R.V. 1988 A rescaling algorithm for the numerical calculation of blowing-up solutions. Comm. Pure Appl. Math. 41 841-863.
- Blythe, P.A. & Crighton, D.G. 1989 Shock Generated Ignition: the induction zone. Proc. R. Soc. Lond. A 426 189-209.
- Budd, C.J., Dold, J.W. & Galaktionov, V.A. 1993 Self-similar solutions of a quasilinear diffusion problem. Advances in Differ. Equat., to appear.
- Budd, C.J., Huang, W.H. & Russell, R.D. 1996 Moving mesh methods for problems with blow-up. SIAM J. Sci. Comput. 17 305-327.
- Dold, J.W. 1985 Analysis of the early stage of thermal runaway. Quart. J. Mech. Appl. Math. 38, 361-387.
- Dold, J.W. 1988 Dynamic Transition of a Self-Igniting Region. in Mathematical Modelling of Combustion and Related Topics, Brauner, C.M. & Schmidt-Laine, C., (Eds.), Martinus Nijhoff, Dordecht, 461-470.
- Dold, J.W. 1991 On asymptotic forms of reactive diffusive runaway. Proc. Roy. Soc. Lond. A 433, 521-545.
- Filippas, S. & Kohn, R. 1992 Refined asymptotics for the blow up of $u_t + \Delta u = u^p$, Comm. Pure Appl. Math. 45 821-869.
- Galaktionov, V.A. & Posashkov, S.A. 1991 Single point blow-up for N-dimensional quasilinear equations with gradient diffusion and source, *Indiana Univ. Math. J.* 40 1041-1060.

- Herrero, M. & Velaquez, J. 1993 Blow-up behaviour for one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincare, Analyse nonlineaire 10 131–189.
- Jackson, T.L., Kapila, A.K. & Stewart, D.S. 1989 Evolution of a reaction center in an explosive material. SIAM. J. Appl. Math. 49 432-458.
- Kassoy, D. & Poland, J. 1980 The thermal explosion confined by a constant temperature boundary: I. The induction period solution. SIAM J. Appl. Math. 39, 412–430.
- Kapila, A.K. 1980 Reactive-diffusive system with Arrhenius kinetics: Dynamics of ignition. SIAM J. Appl. Math. 39, 21–36.
- Short, M. 1997 On the critical conditions for the initiation of detonation in a non-uniformly perturbed reactive fluid. SIAM J. Appl. Math. 57, 1242-1280.

·

List of Recent TAM Reports

No.	Authors	Title	Date
786	Riahi, D. N.	Finite bandwidth, long wavelength convection with boundary imperfections: Near-resonant wavelength excitation— <i>International Journal of Mathematics and Mathematical Sciences</i> 21 , 171–182 (1997)	Mar. 1995
787	Turner, J. A., and R. L. Weaver	Average response of an infinite plate on a random foundation— Journal of the Acoustical Society of America 99 , 2167–2175 (1996)	Mar. 1995
788	Weaver, R. L., and D. Sornette	The range of spectral correlations in pseudointegrable systems: GOE statistics in a rectangular membrane with a point scatterer— <i>Physical Review E</i> 52 , 341 (1995)	Apr. 1995
789	Students in TAM 293– 294	Thirty-second student symposium on engineering mechanics, J. W. Phillips, coordinator: Selected senior projects by K. F. Anderson, M. B. Bishop, B. C. Case, S. R. McFarlin, J. M. Nowakowski, D. W. Peterson, C. V. Robertson, and C. E. Tsoukatos	Apr. 1995
790	Figa, J., and C. J. Lawrence	Linear stability analysis of a gravity-driven Newtonian coating flow on a planar incline	May 1995
791	Figa, J., and C. J. Lawrence	Linear stability analysis of a gravity-driven viscosity-stratified Newtonian coating flow on a planar incline	May 1995
792	Cherukuri, H. P., and T. G. Shawki	On shear band nucleation and the finite propagation speed of thermal disturbances—International Journal of Solids and Structures, in press (1996)	May 1995
793	Harris, J. G.	Modeling scanned acoustic imaging of defects at solid interfaces— Chapter in <i>IMA Workshop on Inverse Problems in Wave Propagation</i> , eds. G. Chevant, G. Papanicolaou, P. Sacks and W. E. Symes, 237– 258, Springer-Verlag, New York (1996)	May 1995
794	Sottos, N. R., J. M. Ockers, and M. J. Swindeman	Thermoelastic properties of plain weave composites for multilayer circuit board applications	May 1995
795	Aref, H., and M. A. Stremler	On the motion of three point vortices in a periodic strip— <i>Journal of Fluid Mechanics</i> 314 , 1–25 (1996)	June 1995
796	Barenblatt, G. I., and N. Goldenfeld	Does fully-developed turbulence exist? Reynolds number independence versus asymptotic covariance— <i>Physics of Fluids</i> 7, 3078–3082 (1995)	June 1995
797	Aslam, T. D., J. B. Bdzil, and D. S. Stewart	Level set methods applied to modeling detonation shock dynamics— <i>Journal of Computational Physics</i> , 126 , 390–409 (1996)	June 1995
798	Nimmagadda, P. B. R., and P. Sofronis	The effect of interface slip and diffusion on the creep strength of fiber and particulate composite materials—Proceedings of the ASME Applied Mechanics Division 213, 125–143 (1995)	July 1995
799	Hsia, K. J., TL. Zhang, and D. F. Socie	Effect of crack surface morphology on the fracture behavior under mixed mode loading— <i>ASTM Special Technical Publication</i> 1296, in press (1996)	July 1995
800	Adrian, R. J.	Stochastic estimation of the structure of turbulent fields— <i>Eddy Structure Identification</i> , ed. J. P. Bonnet, Springer: Berlin 145–196 (1996)	Aug. 1995
801	Riahi, D. N.	Perturbation analysis and modeling for stratified turbulence	Aug. 1995
802	Thoroddsen, S. T.	Conditional sampling of dissipation in high Reynolds number turbulence— <i>Physics of Fluids</i> 8 , 1333–1335	Aug. 1995
803	Riahi, D. N.	On the structure of an unsteady convecting mushy layer—Acta Mechanica, in press (1996)	Aug. 1995
804	Meleshko, V. V.	Equilibrium of an elastic rectangle: The Mathieu-Inglis-Pickett solution revisited— <i>Journal of Elasticity</i> 40 , 207–238 (1995)	Aug. 1995
805	Jonnalagadda, K., G. E. Kline, and N. R. Sottos	Local displacements and load transfer in shape memory alloy composites	Aug. 1995
	· 		

List of Recent TAM Reports (cont'd)

No.	Authors	Title	Date
806	Nimmagadda, P. B. R., and P. Sofronis	On the calculation of the matrix–reinforcement interface diffusion coefficient in composite materials at high temperatures— <i>Acta Metallurgica et Materialia</i> , 44 , 2711–2716 (1996)	Aug. 1995
807	Carlson, D. E., and D. A. Tortorelli	On hyperelasticity with internal constraints— <i>Journal of Elasticity</i> 42 , 91–98 (1966)	Aug. 1995
808	Sayre, T. L., and D. N. Riahi	Oscillatory instabilities of the liquid and mushy layers during solidification of alloys under rotational constraint— <i>Acta Mechanica</i> 121 , 143–152 (1997)	Sept. 1995
809	Xin, YB., and K. J. Hsia	Simulation of the brittle–ductile transition in silicon single crystals using dislocation mechanics	Oct. 1995
810	Ulysse, P., and R. E. Johnson	A plane-strain upper-bound analysis of unsymmetrical single-hole and multi-hole extrusion processes	Oct. 1995
811	Fried, E.	Continua described by a microstructural field— <i>Zeitschrift für</i> angewandte Mathematik und Physik, 47 , 168–175 (1996)	Nov. 1995
812	Mittal, R., and S. Balachandar	Autogeneration of three-dimensional vortical structures in the near wake of a circular cylinder	Nov. 1995
813	Segev, R., E. Fried, and G. de Botton	Force theory for multiphase bodies— <i>Journal of Geometry and Physics</i> , in press (1996)	Dec. 1995
814	Weaver, R. L.	The effect of an undamped finite-degree-of-freedom "fuzzy" substructure: Numerical solutions and theoretical discussion— <i>Journal of the Acoustical Society of America</i> 100 , 3159–3164 (1996)	Jan. 1996
815	Haber, R. B., C. S. Jog, and M. P. Bendsøe	A new approach to variable-topology shape design using a constraint on perimeter— <i>Structural Optimization</i> 11 , 1–12 (1996)	Feb. 1996
816	Xu, ZQ., and K. J. Hsia	A numerical solution of a surface crack under cyclic hydraulic pressure loading	Mar. 1996
817	Adrian, R. J.	Bibliography of particle velocimetry using imaging methods: 1917–1995—Produced and distributed in cooperation with TSI, Inc., St. Paul, Minn.	Mar. 1996
818	Fried, E., and G. Grach	An order-parameter based theory as a regularization of a sharp-interface theory for solid–solid phase transitions— <i>Archive for Rational Mechanics and Analysis,</i> in press (1996)	Mar. 1996
819	Vonderwell, M. P., and D. N. Riahi	Resonant instability mode triads in the compressible boundary-layer flow over a swept wing— <i>International Journal of Engineering Science</i> , in press (1997)	Mar. 1996
820	Short, M., and D. S. Stewart	Low-frequency two-dimensional linear instability of plane detonation— <i>Journal of Fluid Mechanics</i> , in press (1997)	Mar. 1996
821	Casagranda, A., and P. Sofronis	On the scaling laws for the consolidation of nanocrystalline powder compacts—Proceedings of the IUTAM Symposium on the Mechanics of Granular and Porous Materials (1996)	Apr. 1996
822	Xu, S., and D. S. Stewart	Deflagration-to-detonation transition in porous energetic materials: A comparative model study— <i>Journal of Fluid Mechanics</i> , in press (1997)	Apr. 1996
823	Weaver, R. L.	Mean and mean-square responses of a prototypical master/fuzzy structure— <i>Journal of the Acoustical Society of America</i> , in press (1996)	Apr. 1996
824	Fried, E.	Correspondence between a phase-field theory and a sharp-interface theory for crystal growth—Continuum Mechanics and Thermodynamics, in press (1997)	Apr. 1996
825	Students in TAM 293–294	Thirty-third student symposium on engineering mechanics, J. W. Phillips, coordinator: Selected senior projects by W. J. Fortino II, A. A. Mordock, and M. R. Sawicki	May 1995
826	Riahi, D. N.	Effects of roughness on nonlinear stationary vortices in rotating disk flows— <i>Mathematical and Computer Modeling,</i> in press (1996)	June 1996
827	Riahi, D. N.	Nonlinear instabilities of shear flows over rough walls	June 1996
828	Weaver, R: L.	Multiple scattering theory for a plate with sprung masses: Mean and mean-square responses	July 1996

List of Recent TAM Reports (cont'd)

No.	Authors	Title	Date
829	Moser, R. D., M. M. Rogers, and D. W. Ewing	Self-similarity of time-evolving plane wakes	July 1996
830	Lufrano, J. M., and P. Sofronis	Enhanced hydrogen concentrations ahead of rounded notches and cracks—Competition between plastic strain and hydrostatic constraint	July 1996
831	Riahi, D. N.	Effects of surface corrugation on primary instability modes in wall-bounded shear flows	Aug. 1996
832	Bechel, V. T., and N. R. Sottos	Measuring debond length in the fiber pushout test—Proceedings of the ASME Mechanics and Materials Conference (1996)	Aug. 1996
833	Riahi, D. N.	Effect of centrifugal and Coriolis forces on chimney convection during alloy solidification— <i>Journal of Crystal Growth</i> 179 , 287–296 (1997)	Sept. 1996
834	Cermelli, P., and E. Fried	The influence of inertia on configurational forces in a deformable solid— <i>Proceedings of the Royal Society of London A</i> , in press (1996)	Oct. 1996
835	Riahi, D. N.	On the stability of shear flows with combined temporal and spatial imperfections	Oct. 1996
836	Carranza, F. L., B. Fang, and R. B. Haber	An adaptive space-time finite element model for oxidation-driven fracture	Nov. 1996
837	Carranza, F. L., B. Fang, and R. B. Haber	A moving cohesive interface model for fracture in creeping materials	Nov. 1996
838	Balachandar, S., R. Mittal, and F. M. Najjar	Properties of the mean wake recirculation region in two-dimensional bluff body wakes— <i>Journal of Fluid Mechanics</i> , in press (1997)	Dec. 1996
839	Ti, B. W., W. D. O'Brien, Jr., and J. G. Harris	Measurements of coupled Rayleigh wave propagation in an elastic plate	Dec. 1996
840	Phillips, W. R. C.	On finite-amplitude rotational waves in viscous shear flows	Jan. 1997
841	Riahi, D. N.	Direct resonance analysis and modeling for a turbulent boundary layer over a corrugated surface— <i>Acta Mechanica</i> , in press (1998)	Jan. 1997
842	Liu, ZC., R. J. Adrian, C. D. Meinhart, and W. Lai	Structure of a turbulent boundary layer using a stereoscopic, large format video-PIV	Jan. 1997
843	Fang, B., F. L. Carranza, and R. B. Haber	An adaptive discontinuous Galerkin methods for viscoplastic analysis	Jan. 1997
844	Xu, S., T. D. Aslam, and D. S. Stewart	High-resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries	Jan. 1997
845	Zhou, J., C. D. Meinhart, S. Balachandar, and R. J. Adrian	Formation of coherent hairpin packets in wall turbulence	Feb. 1997
846	Lufrano, J. M., P. Sofronis, and H. K. Birnbaum	Elastoplastically accommodated hydride formation and embrittlement	Feb. 1997
847	Keane, R. D., N. Fujisawa, and R. J. Adrian	Unsteady non-penetrative thermal convection from non-uniform surfaces	Feb. 1997
848	Aref, H., and M. Brøns	On stagnation points and streamline topology in vortex flows	Mar. 1997
849	Asghar, S., T. Hayat, and J. G. Harris	Diffraction by a slit in an infinite porous barrier	Mar. 1997
850	Shawki, T. G., H. Aref, and J. W. Phillips	Mechanics on the Web—Proceedings of the International Conference on Engineering Education (Aug. 1997, Chicago)	Apr. 1997

List of Recent TAM Reports (cont'd)

3 . 7 -	A (1	Tid.	Data
No.	Authors	Title	Date
851	Stewart, D. S., and J. Yao	The normal detonation shock velocity–curvature relationship for materials with non-ideal equation of state and multiple turning points	Apr. 1997
852	Fried, E., A. Q. Shen, and S. T. Thoroddsen	Traveling waves, standing waves, and cellular patterns in a steadily forced granular medium	Apr. 1997
853	Boyland, P. L., H. Aref, and M. A. Stremler	Topological fluid mechanics of stirring	Apr. 1997
854	Parker, S. J., and S. Balachandar	Viscous and inviscid instabilities of flow along a streamwise corner	May 1997
855	Soloff, S. M., R. J. Adrian, and ZC. Liu	Distortion compensation for generalized stereoscopic particle image velocimetry— <i>Measurement Science and Technology</i> 8 , 1–14 (1997)	May 1997
856	Zhou, Z., R. J. Adrian, S. Balachandar, and T. M. Kendall	Mechanisms for generating coherent packets of hairpin vortices in near-wall turbulence	June 1997
857	Neishtadt, A. I., D. L. Vainshtein, and A. A. Vasiliev	Chaotic advection in a cubic Stokes flow	June 1997
858	Weaver, R. L.	Ultrasonics in an aluminum foam	July 1997
859	Riahi, D. N.	High gravity convection in a mushy layer during alloy solidification	July 1997
860	Najjar, F. M., and S. Balachandar	Low-frequency unsteadiness in the wake of a normal flat plate	Aug. 1997
861	Short, M.	A parabolic linear evolution equation for cellular detonation instability	Aug. 1997
862	Short, M., and D. S. Stewart	Cellular detonation stability—I: A normal-mode linear analysis	Sept. 1997
863	Carranza, F. L., and R. B. Haber	A numerical study of intergranular fracture and oxygen embrittlement in an elastic-viscoplastic solid	Oct. 1997
864	Sakakibara, J., and R. J. Adrian	Whole-field measurement of temperature in water using two-color laser-induced fluorescence	Oct. 1997
865	Riahi, D. N.	Effect of surface corrugation on convection in a three-dimensional finite box of fluid-saturated porous material	Oct. 1997
866	Baker, C. F., and D. N. Riahi	Three-dimensional flow instabilities during alloy solidification	Oct. 1997
867	Fried, E.	Introduction (only) to <i>The Physical and Mathematical Foundations of the Continuum Theory of Evolving Phase Interfaces</i> (book containing 14 seminal papers dedicated to Morton E. Gurtin)	Oct. 1997
868	Folguera, A., and J. G. Harris	Coupled Rayleigh surface waves in a slowly varying elastic waveguide	Oct. 1997
869	Stewart, D. S.	Detonation shock dynamics: Application for precision cutting of metal with detonation waves	Oct. 1997
870	Shrotriya, P., and N. R. Sottos	Creep and relaxation behavior of woven glass/epoxy substrates for multilayer circuit board applications	Nov. 1997
871	Riahi, D. N.	Boundary wave–vortex interaction in channel flow at high Reynolds numbers	Nov. 1997
872	George, W. K., L. Castillo, and M. Wosnik	A theory for turbulent pipe and channel flows	Nov. 1997
873	Aslam, T. D., and D. S. Stewart	Detonation shock dynamics and comparisons with direct numerical simulation	Dec. 1997
874	Short, M., and A. K. Kapila	Blow-up in semilinear parabolic equations with weak diffusion	Dec. 1997