Effects of a vertical magnetic field on chimney convection in a mushy layer

D.N. Riahi

Department of Theoretical and Applied Mechanics
216 Talbot Laboratory, University of Illinois at Urbana-Champaign
104 S. Wright Street, Urbana, IL 61801 U.S.A.

Abstract

Nonlinear compositional convection in cyclindrical chimneys within a mushy layer during alloy solidification is investigated under an externally imposed magnetic field in the vertical direction. These chimneys produce freckles in the final form of the solidified materials. Freckles are imperfections that reduce the quality of the solidified materials. The undesirable effects of the chimneys can be reduced by reducing the effects of convection within the chimneys. Asymptotic and scaling examinations are done to weakly nonaxisymmetric convection in the chimneys. The effects of the externally imposed magnetic field is represented by the Chandrasekhar number Q. It is found that for sufficiently large values of Q, convection and the volume flux in the chimneys decrease with increasing Q. Conditions on Q and other parameters are determined under which the walls of the chimneys can or cannot be in the vertical direction.

1 Introduction

Convection effects during alloy solidification are known to be important. The convective flow affects the solid-liquid content within thin mushy layer adjacent to the solid-liquid interface and influences the flow pattern and the critical conditions for the generation of flow instabilities within the liquid zone of the solidification system. It is important to reduce the undesirable effects of convection as much as possible for the solidified system and also develop controlling procedures to prevent formation of localized channels, also called chimneys, within the mushy layer for such system, since it is known that chimney convection can lead to serious defects and imperfections in the solidified materials. These chimneys are vertical channels of negligible solid fraction and they eventually become locations of severe compositional nonhomogenities which in their final form are called freckles. Freckles are imperfections that unterrupt

the uniformity of the solidified materials causing areas of mechanical weakness.

Worster [1, 2] developed and analysed the governing equations for a mushy layer in the asymptotic limit of large solutal Rayleigh number. He proposed a model in which there is downward flow everywhere in the mushy zone, except in and near localized chimneys. The chimneys support upward convective flow driven by compositional buoyancy. Chimney convection is governed by the Navier-Stokes, continuity, temperature and solute equations under Boussinesq approximation. Using asymptotic and scaling analyses, Worster [2] derived simple solutions, based on the governing equations for the flow within and outside the chimneys, to determine the structure of the mushy layer for strong natural convection. These results were determined under the restriction of infinite Prandtl number. Riahi [3, 4, 5] extended the model developed by Worster [2] to more general flow cases and under both normal [4] and high gravity environments [3, 5].

The magnetohydrodynamic effects on convection during solidification are of interest to the crystal growing community. In industrial crystal growth processes it is desirable to impose certain external constraints, such as rotation and/or magnetic field(s), in an optimized manner, upon the solidification system in order to suppress or at least reduce the undesirable effects of convection which can lead to micro defect density in the crystal and, thus, reduce the quality of the produced crystal. The possible beneficial effects of rotation has already been explored by Riahi [3, 5] for the solidification system. It was found that the external constraint of rotation can reduce the undesirable effects of convection in the mushy zone and in the chimneys, provided the axis of rotation is inclined with respect to the so-called high gravity axis, which is supposed to be perpendicular to the average location of the free surface of melt, and, furthermore, the values of the Coriolis parameter T and the centrifugal acceleration parameter A should lie in certain domain in (T, A)-space. However, this later condition may be difficult to be met in practice. Thus, it is quite desirable to explore the possibility of beneficial effects of a magnetic field in the solidification system. The present paper under takes such investigation by taking into account the effects of a vertical magnetic field on chimney convection in a mushy layer. We have found interesting results and, in particular, predicted certain domains for the magnetic field parameter Q (Chandrasekhar number) under which the stabilizing effects of the field can be effective in reducing the strength of the chimney convection.

2 Basic equations

The formulation for the solidification system used here follows most closely the approach of Worster [1, 2] in the absence of magnetohydrodynamic effects. The mushy region is treated thermodynamically as a single continuum phase. The temperature and the composition of the interstitial liquid are assumed to be uniform over length scales of the interdentric spacing. No expansion or contraction upon changes of phase is assumed, the solute diffusion D_s in the solid phase is ignored, and the volume changes upon change of phase is also ignored. The reader is referred to Worster

[2] for supporting arguments and justification regarding these and other assumptions and modeling formulation of the present solidification system.

Within the mushy zone we take into account continuity equation in its non-divergence form for the volume flux of the interdendric fluid. The mushy layer is considered as a porous medium, and Darcy's law is used to describe the equations for the fluid flow within the mushy zone and outside the chimneys. The permeability Π of the mushy layer is, in general, a function of the liquid fraction $(1-\phi)$, where ϕ is the volume fraction of solid dendrites or simply solid fraction. However, an explicit form of the functional dependence of Π on ϕ is not needed in our present analysis. In any case, Π decreases with increasing ϕ .

We consider a thin mushy layer adjacent to solidifying surface of a binary alloy melt and of thickness \tilde{h} . The binary alloy melt of constant composition c_0 and constant temperature T_∞ is solidified at a constant rate V_0 , with the eutectic temperature T_e at the position z=0 held fixed in a frame moving with the solidification velocity in the vertical z-direction which is anti-parallel to the direction of the gravity force. A representative figure for the solidification system is the figure 1 given in [3] and will not be repeated here.

The magnetohydrodynamic aspect of the physical model is based on the Maxwell equations combined with the governing equations for the convective flow that are given in Chandrasekhar [6]. The governing system of equations for the solidifying system, subjected to an external magnetic field $B\hat{z}$ in the vertical direction of uniform strength B, is non-dimensionalized using $V_0, K/V_0, K/V_0^2, \beta\Delta c\rho_0 gK/V_0, \Delta c$, ΔT and B as scales for velocity, length, time, pressure, solute, temperature and magnetic field, respectively. Here K is the thermal diffusivity, $\Delta c = c_0 - c_e$, $\Delta T = T_L - T_e$, c_e is the eutectic concentration, T_L is the local liquidus temperature at $c = c_0$, \hat{z} is a unit vector in the positive z-direction and β is the expansion coefficient for solute.

Since we will be concerned mainly with convection in the melt and in any cylindrical chimney, whose axis is assumed to be parallel to the z-axis, we consider the governing equations in a cylindrical coordinate whose axial direction is along the z-axis. We also consider weakly non-axisymmetric flow of the type developed by Riahi [3]. For the analysis of convection in a cylindrical chimney, we shall assume that the chimney's axis coincides with the z-axis. The investigation will be based on asymptotic and scaling analyses in the limit of strong compositional buoyancy, negligible thermal buoyancy and large Lewis number K/D, where D is the solute diffusivity.

The non-dimensional form of the basic equations for the hydromagnetic convective flow of the melt in the liquid zone above the mushy zone as well as inside the chimneys are given below in their steady state form which will be analysed in this paper

$$\frac{1}{P_{\tau}} \left(-\frac{\partial}{\partial z} + \boldsymbol{u} \cdot \nabla \right) \boldsymbol{u} = -HR(\nabla p + s\hat{z}) + \nabla^2 \boldsymbol{u} + \frac{HQ}{\tau} \left(\frac{\partial}{\partial z} + \boldsymbol{b} \cdot \nabla \right) \boldsymbol{b}, \tag{1a}$$

$$\left(-\frac{\partial}{\partial z} + \boldsymbol{u} \cdot \nabla\right) \boldsymbol{b} = \left(\frac{\partial}{\partial z} + \boldsymbol{b} \cdot \nabla\right) \boldsymbol{u} + \frac{1}{\tau} \nabla^2 \boldsymbol{b},\tag{1b}$$

$$\nabla \cdot \boldsymbol{u} = 0, \tag{1c}$$

$$\nabla \cdot \boldsymbol{b} = 0, \tag{1d}$$

$$\left(-\frac{\partial}{\partial z} + \boldsymbol{u} \cdot \nabla\right)\boldsymbol{\theta} = \nabla^2 \boldsymbol{\theta},\tag{1e}$$

$$\left(-\frac{\partial}{\partial z} + \boldsymbol{u} \cdot \nabla\right) s = 0,\tag{1f}$$

where $u=u\hat{r}+v\hat{\xi}+w\hat{z}$ is the velocity vector, u is the radial component of u, \hat{r} is a unit vector in the radial r-direction, v is the azimuthal component of u, $\hat{\xi}$ is a unit vector in the azimuthal ξ -direction, w is the axial component of u, b is the induced magnetic field, $b=(b_r,b_\xi,b_z)$, $p=\tilde{p}/\rho_0+|(B\hat{z}+b)|^2\mu/(8\pi\rho_0)$ is the modified pressure, ρ_0 is the reference density (a constant), μ is the magnetic permeability, \tilde{p} is the pressure, $s=c/\Delta c$, c is dimensional solute concentration, θ is the temperature, $P_r=\nu/K$ is the Prandtl number, ν is the kinematic viscosity, $R=\beta\Delta cgK^2/(V_0^3\nu H)$ is the solutal Rayleigh number, g is the acceleration due to gravity, $H=K^2/(V_0^2\Pi_0)$ is a non-dimensional parameter representing ratio of a liquid type Rayleigh number to that of a mush type Rayleigh number, Π_0 is a reference value of the permeability Π of the porous medium, $Q=\mu B^2K^2/(4\pi\rho_0\nu\eta V_0^2H)$ is the Chandrasekhar number, $\tau=K/\eta$ is the Roberts number and η is the magnetic diffusivity.

The non-dimensional steady state form of the basic equations for the mushy zone outside the chimneys are

$$\boldsymbol{u}/\Pi = -R(\nabla p + s\hat{z}) + \frac{Q}{\tau} \left(\frac{\partial}{\partial z} + \boldsymbol{b} \cdot \nabla\right) \boldsymbol{b},$$
 (2a)

$$\left(-\frac{\partial}{\partial z} + \boldsymbol{u} \cdot \nabla\right) \boldsymbol{b} = \left(\frac{\partial}{\partial z} + \boldsymbol{b} \cdot \nabla\right) \boldsymbol{u} + \frac{1}{\tau} \nabla^2 \boldsymbol{b},\tag{2b}$$

$$\nabla \cdot \boldsymbol{u} = 0, \tag{2c}$$

$$\nabla \cdot \boldsymbol{b} = 0, \tag{2d}$$

$$\left(-\frac{\partial}{\partial z} + \boldsymbol{u} \cdot \nabla\right) \theta = \nabla^2 \theta - S_t \frac{\partial \phi}{\partial z},\tag{2e}$$

$$\frac{\partial}{\partial z} \left[(1 - \phi)(c_r - s) \right] + \boldsymbol{u} \cdot \nabla s = 0, \tag{2f}$$

where $S_t = L/(\tilde{c}\Delta T)$ is the Stefan number, \tilde{c} is the specific heat per unit volume, L is the latent heat of solidification per unit volume, $c_r = (c_s - c_0)/\Delta c$ is a concentration ratio, and c_s is the composition of the solid phase forming the dendrites. The boundary conditions for the solidification system are given in Worster [2] and for the induced magnetic field can be of the form given in Riahi [7]. These boundary conditions are not repeated here since their explicit use are not needed in the present analyses though the resulting leading order solutions are consistent with such boundary conditions. Analysis in [2] indicates that $\theta = s$ in the mushy zone outside the chimneys which is also valid here.

In the next section we shall proceed with asymptotic and scaling analyses for the equations given in this section in the asymptotic limit of sufficiently large R, to determine the strongly nonlinear steady state for weakly non-axisymmetric flows in the mushy zone and mainly in the chimneys in three ranges for high (or moderate) P_r values. It will be assumed mostly that the Roberts number τ is small as is the case in the laboratory experiments, though the order one value of τ will not be discarded. The value of the Chandrasekhar number Q will be assumed arbitrary and, as will be seen in the next section, certain parameter regimes for Q are predicted under which chimney convection behaves quite differently. The analyses presented in the next section are based on the assumptions of the type already given in [3, 5], and a number of results remain the same as those predicted in [3, 5]. Consequently, we shall refer to [3, 5] whenever there is no need to provide those already given in [3, 5] and, instead, we shall present explicitly those new results, which are mostly due to the presence of the magnetic field.

3 Analysis and results

Consider a chimney, whose axis coincides with the vertical z-axis, and its radius $a(\xi, z)$ is small (a << 1). The maximum orders of magnitude of r, ξ and z are considered to be a, 1 and 1 (or less than one), respectively. Assuming the magnitude of the flow velocity to be of order one in the mushy layer, then (2a) implies that to the leading term pressure field in the mushy layer is unaffected by the flow velocity and $\theta = s$ is independent of r and ξ . The equations (2b) and (2e)-(2f) for the assumed r and ξ independent leading order variables $\theta_0(z), \phi_0(z), w_0(z)$ and $\theta_{z0}(z)$ then imply equation (4a,b) given in [5] plus the following equations

$$-w_0' + (w_0 - 1)b_{z0}' = b_{z0} \cdot w_0' + \frac{1}{\tau}b_{z0}'', \tag{3a}$$

$$(1 - w_0)b_{z0}'' + w_0''(1 + b_{z0}) + b_{z0}'''/\tau = 0, (3b)$$

where a prime denotes differentiation with respect to z. As in the earlier work in [2], $c_{\tau} >> \theta$ is assumed in the mushy zone.

A weakly non-axisymmetric flow assumes [3] that the azimuthal velocity does not exceed the order of magnitude of the radial velocity and the azimuthal derivative of any dependent variables is much smaller than the dependent variable itself. Under such assumption, (1c)-(1d) imply that, to the leading terms, stream functions $\psi(r, \xi, z)$ and $h(r, \xi, z)$ for the flow velocity and the induced field, respectively, can be introduced, so that

$$(u,w) = \left(-\frac{1}{r}\frac{\partial \psi}{\partial z}, \frac{1}{r}\frac{\partial \psi}{\partial r}\right),\tag{4a}$$

$$(b_r, b_z) = \left(-\frac{1}{r}\frac{\partial h}{\partial z}, \frac{1}{r}\frac{\partial h}{\partial r}\right). \tag{4b}$$

For flow in the chimney, it is assumed that $s \sim 1$ and w >> 1. Then scalings of the form (6) in [3] follow (1a). The assumption that the inertia terms in (1a) can be, at most, as large as the viscous terms in (1a) together with the above scaling in [3] imply that

$$P_r \ge 0(HRa^4). \tag{5}$$

This is the range under which the analysis of the present study is valid and is classified as the high (or moderate) P_r range [5].

3.1 Case of strong field

Due to a comparison of the magnetic field and buoyancy terms in (1a), under the assumptions that the nonlinear magnetic field term $b \cdot \nabla b$ is, at most, as large as the $\frac{\partial b}{\partial z}$ and $b_z \leq 0(1)$, we find

$$Q \ge 0(R\tau),\tag{6}$$

$$b_z \sim R\tau/Q, \quad b_r \sim aR\tau/Q, \quad h \sim a^2R\tau/Q.$$
 (7)

The range (6) is classified here as strong magnetic field range where the strength B of the external field is assumed to be sufficiently large that (6) is satisfied.

Designating $\theta_1(r, \xi, z)$ to be the deviation of θ from θ_0 , using (1e) or (2e) and the condition on HR given by (7) in [3], we find $\theta_1 << 1$. Using these results, (1a), (1c), (1e) and (1f), we simplify (1e), integrate it in r from r=0 to r=a and follow ref. [2]. We then find the result (9) in [3].

Assuming

$$\tau \le 0(1) \tag{8}$$

and designating $b_{z1}(r, \xi, z)$ to be the deviation of b_z from b_{z0} , then the simplified form of (1b) implies $b_{z1} << 1$. Integrating the simplified form of (1b) in r from r=0 to r=a, we find

$$b_{z1} \sim -\tau \psi_a' \mathbf{1}_n r, \tag{9a}$$

where

$$2\pi\psi_1 = \int_0^a 2\pi r w d_r \tag{9b}$$

is the vertical volume flux in the chimney.

Using (4a), we find (10) in [3], while (4b) implies

$$b_r \sim -h_a'/r$$
 at $r \to a$, (10a)

where

$$2\pi h_a = \int_0^a 2\pi r b_z d_r \tag{10b}$$

is the vertical magnetic flux in the chimney. Using (2a) and (10), we find

$$\Delta_r p \sim (\psi_a'/R) 1_n a + [Q/(\tau R)] [(h_a')^2/(2a^2) - (1_n a)(1 + b_{z0}) h_a''], \tag{11}$$

where $\Delta_r p$ represents the radial pressure difference near the wall of the chimney. Using (9) and the result for θ_1 given in [3], we find that (2a) yield an expression for w which can be simplified to the form

$$w \sim -R(\psi_a + \psi_a''Q/R)1_n a. \tag{12}$$

This result holds near the wall of the chimney, and it implies the following condition in an average sense

$$Q \le 0[\min(R, R/\lambda_1)], \quad \lambda_1 \equiv |\langle \psi_a'' \rangle / \langle \psi_a \rangle|, \tag{13}$$

which is also a range of the validity of the present analysis. Here an angular bracket denotes a vertical average from z = 0 to the top of the chimney at $z = z_0$.

Using (2f) and the condition $c_r >> 1$ [3], (2f) is simplified and (14)-(17) in [3] follow under further restrictions that u << 1 and $\phi c_r \sim 1$ [3] near the wall of the chimney and in the mushy zone. In particular

$$w \sim 1. \tag{14}$$

The following results in this paragraph hold near the wall of the chimney. Using (14), the scaling relations (6) given in [3], the result (9) in [3] and making use of (9) and (12), we find

$$a \sim \{ [RH(R + \lambda_1 Q)] | 1_n [RH(R + \lambda_1 Q)] | \}^{-1/4},$$
 (15)

$$\theta - \theta_0 \sim -1/(R + \lambda_1 Q),\tag{16}$$

$$b_z - b_{z0} \sim \frac{-\tau Q(\psi_a''/\psi_a)'}{(R + \lambda_1 Q)^2}.$$
 (17)

$$u\frac{\partial\theta_1}{\partial r} \sim \left[\frac{HRa^2}{(R+\lambda_1Q)1_na}\right].$$
 (18)

Thus, $u\frac{\partial\theta_1}{\partial r}$ term in the simplified form of (2f) is negligible if the right-hand-side in (18) is small. For

$$HRa^2 \ge 0[(R + \lambda_1 Q)|1_n a|],$$
 (19)

all the main three terms in the simplified form of (2f) [3] must balance and, thus,

$$w \sim R^2 H^2 a^6. \tag{20}$$

The result in (20) is more restricted than the result in (14) since the former is under the condition of (19). Using (12), (20) and the scaling relations given by (6) in [3], we find

$$a \sim \left[\left(\frac{R + Q\lambda_1}{RH} \right) \left| 1_n \left(\frac{R + Q\lambda_1}{RH} \right) \right| \right]^{1/2}$$
 (21)

Using (21) in (11) and taking into consideration the scalings (6) given in [3], we obtain

$$\Delta_r p \sim a^2 \left[(1 + \lambda_1 Q/R) (1_n a)^2 \right] + \left(\frac{Q}{\tau R} \right) \left[(h_a')^2 / (2a^2) - (1 + b_{z0}) h_a''(1_n a) \right]. \tag{22}$$

Vertical and horizontal advection of solute balance here in this regime where (19) holds. Using (2e), (20) and (21), we find

$$\frac{\partial \phi}{\partial z} \sim \frac{-(R + \lambda_1 Q)^3}{RH} \left[1_n \left(\frac{R + \lambda_1 Q}{RH} \right) \right]^3. \tag{23}$$

The right-hand-side in (23) is small if

$$\left[(R + Q\lambda_1) 1_n \left(\frac{R + Q\lambda_1}{RH} \right) \right]^3 << RH.$$
 (24)

Following [3], defining the wall of the chimney as zero values of $(1 - \phi)$ and taking derivative with respect to z of ϕ , we find

$$a'/a \sim \frac{\partial \phi}{\partial z}$$
. (25)

Thus the wall of the chimney is in the axial direction to the leading order terms if (24) holds, while it can not be concluded such results from (23) and (25) if (24) does not hold.

Following [2, 4], we find that the total volume flux $2\pi\psi_a$ in the chimney, due to upward flow, is satisfied, to the leading terms, by the following equation:

$$\frac{\partial^2 \psi_a}{\partial z^2} + \tilde{s}^2 \psi_a = -16\gamma R(1 + \theta_0)/(Q1_n a), \tag{26a}$$

$$\tilde{s} = 4/[a^2(-HQ1_n a)^{1/2}],\tag{26b}$$

where γ is a positive constant of order one. The condition $\psi'_a \geq 0(\psi_a)$ then implies the following restriction on the parameter regime

$$a^4 HQ|1_n a| \le 0(1). \tag{27}$$

The solution to (26a), subjected to the initial conditions

$$\psi_a = \frac{\partial \psi_a}{\partial z} + 16\gamma R B_0 / (Q \mathbf{1}_n a) = 0 \quad \text{at} \quad z = 0, \tag{28}$$

is found by standard methods [8] to be

$$\psi_a = \left(\frac{-16\gamma R}{Q1_n a}\right) \left\{ B_0 z + (1/\tilde{s}) \int_0^z \sin(\tilde{s}z - \tilde{s}\eta) [1 + \theta_0(\eta) - \tilde{s}^2 B_0 \eta] d\eta \right\}. \tag{29}$$

Here B_0 is a positive constant.

3.2 Case of moderate field

Due to a comparison of the magnetic field and buoyancy terms in (1a), under the assumptions that the nonlinear magnetic field term $b \cdot \nabla b$ dominates over $\frac{\partial b}{\partial x}$ term and $b_z >> 1$, we find

$$Q << R\tau, \tag{30}$$

$$b_z \sim (R\tau/Q)^{1/2}, \quad b_\tau \sim a(R\tau/Q)^{1/2}, \quad h \sim a^2(R\tau/Q)^{1/2}$$
 (31)

The range (30) is classified here as moderate magnetic field range where the strength B of the external field is assumed to be moderately small that (30)-(31) are satisfied.

A number of results presented in the previous subsection are also valid here, and thus, we present here only those results which are new and different from those given in the subsection 3.1. But one result, which is essentially valid for both cases of moderate and strong field and was not presented in the previous subsection, is based on the induction equation (1b) for the flow in the chimney. Assuming $b_{z0}(z)$ to be the leading order variable for b_z then (1d) implies

$$b_{r0} = -(r/2)b'_{z0}, (32)$$

where $b_{r0}(r, z)$ is the leading order variable for b_r . Using (30) in (1b), simplify, multiply by r and integrate in r from r = 0 to r = a in the chimney. We then find

$$[a^2/(2\tau)]b_{z0}'' + (a^2/2)b_{z0}' + \psi_a'(b_{z0} + 1) = 0.$$
(33)

The results (32)-(33) are valid for both moderate and strong field regimes.

Using the result for θ_1 , referred to in the subsection 3.1, in (2a) and simplify, we find

$$w \sim -R\theta_0' \psi_a 1_n a + [Q/(2\tau)](b_{z0}^2)'. \tag{34}$$

Following the analysis given in the subsection 3.1, the results (10)-(11) and (14) follow here as well.

The following results in this paragraph hold near the wall of the chimney. Using (14), the scaling relations (6) given in [3], the result (9) in [3] and making use of (34), we find

$$a \sim \left[\frac{1 - \lambda_2 Q/(2\tau)}{R^2 H} \right]^{1/4} \left\{ 1_n \left[\frac{1 - \lambda_2 Q/(2\tau)}{R^2 H} \right] \right\}^{1/2}, \lambda_2 \equiv |\langle (b_{z0}^2)' \rangle|, \tag{35}$$

$$\theta - \theta_0 \sim [-1 + (b_{z0}^2)'Q/(2\tau)]/R,$$
 (36)

$$u\frac{\partial\theta_1}{\partial r}\sim (RHa^3)^2.$$
 (37)

It is seen from (2f) and (37) that $u\frac{\partial\theta_1}{\partial r}$ term in the simplified form of (2f) is negligible if the right-hand-side in (37) is small. For

$$(RHa^3) \ge 0(1),\tag{38}$$

all the main three terms in the simplified form of (2f) [3] must balance and, thus (20) follows. The result (20) for the present moderate field case is more restricted than (14) since the former is under the condition of (38). Using (20), (34) and the scaling relations given by (6) in [3], we find

$$a \sim \begin{cases} [Q\lambda_2/(2\tau H^2 R^2)]^{1/6} & \text{for } Ha^2 >> |1_n a| \\ \left[\left(\frac{Q\lambda_2}{2HR^2\tau} \right) / 1_n \left(\frac{Q\lambda_2}{2HR^2\tau} \right) \right]^{1/4} & \text{for } Ha^2 \leq 0(|1_n a|). \end{cases}$$
(39)

Using (39) in (9), (11), the expression for θ_1 given in [3] and taking into consideration the scalings (6) given in [3], we can obtain the result for $\Delta_r p$, θ_1 and b_{z1} for condition under which (37) holds in the present case.

Vertical and horizontal advection of solute balance here in this regime where (38) holds. Using (2e), (20) and (39), we find

$$\frac{\partial \phi}{\partial z} \sim \begin{cases} \left(\frac{Q\lambda_2}{2\tau}\right) & \text{for } Ha^2 >> |1_n a| \\ \frac{\sqrt{H}}{R} \left[\left(\frac{Q\lambda_2}{2\tau}\right)/1_n \left(\frac{Q\lambda_2}{2\tau HR^2}\right)\right]^{3/2} & \text{for } Ha^2 \leq 0(|1_n a|). \end{cases}$$
(40)

Following the analysis of the previous subsection, it follows that the wall of the chimney is in the axial direction to the leading order terms if the right-hand-side in (40) is small in respective range of values for Ha^2 , while it can not be concluded such result if the right-hand-side in (40) is not small.

Following [2, 4], we find that the total volume flux in the chimney, due to upward flow, is given by

$$2\pi\psi_a = 2\pi H a^4 [\gamma R(1+\theta_0) - Q b_{z0} b'_{z0} / (16\tau), \tag{41}$$

where γ is a positive constant of order one. It is seen that (41) is coupled with (33). A solution to these equations was attempted subjected to the appropriate boundary conditions for b_{z0} treating ψ_a a given function of z to the leading term. This solution is lengthy and will not be given here, but it indicates that ψ_a is independent of Q to the leading term after substituting back the solution for b_{z0} in (41).

3.3 Case of weak field

Under the assumption that the Lorentz force in (1a) is small in comparison with the buoyancy term, we find that (30) still holds, but (31) is replaced by

$$b_z << (R\tau/Q)^{1/2}, \quad b_r \sim ab_z, \quad h \sim a^2 b_z.$$
 (42)

Following the analysis presented in the previous subsection, we find that various results are simplified under the conditions (42) and, in particular, (34) is replaced by

$$w \sim -R\theta_0'\psi_a 1_n a,\tag{43}$$

(35)-(36) are replaced by

$$a \sim [R^2 H 1_n (R^2 H)]^{-1/4},$$
 (44)

$$\theta - \theta_0 \sim -1/R,\tag{45}$$

(37)-(38) remain the same, (39)-(40) are replaced by

$$a \sim (H^{-1}1_n H)^{1/2},$$
 (46)

$$\frac{\partial \phi}{\partial z} \sim (RHa^3)^2,\tag{47}$$

and, finally, (41) is reduced to

$$2\pi\psi_a = 2\pi\gamma a^4 R H (1 + \theta_0). \tag{48}$$

The results (43)-(48) all agree with those in the absence of a magnetic field obtained by Worster [2].

3.4 Discussion of the results

The analyses, presented in the last three subsections, were based on the condition (5) for P_r which was classified earlier [5] as the high (or moderate) P_r regime. As can be seen from the presented analyses, all the results were found to be independent of P_r , to the leading terms, in this P_r regime. For the solidification problem under an external constraint of rotation [5], it was also found that the results were independent of P_r , to the leading terms, in the regime (5).

The equations (3a) and (3b), which are derived respectively from the axial and radial components of the induction equation (2b) for the flow in the mushy zone and outside the chimneys, represent the leading term for the axial component of the induced magnetic field for a given $w_0(z)$. The expression for $w_0(z)$ is given by [2, 4, 5]

$$w_0 = -2\pi\psi_a N,$$

where N is the number density of all the chimneys in the mushy zone. This result is based on the principle of mass conservation that the downward flow through the mushy zone and outside the chimneys must be equal to the total

upflow through all the chimneys per unit horizontal area. It should also be noted that (3a) and (3b) are not independent and (3b) can be derived directly by taking derivative with respect to z of (3a).

For the strong magnetic field case, where the Lorentz force is mainly due to the externally imposed field and the range (6) holds, there are essentially two different regimes classified here as regime I, where mainly (14)-(15) hold, and regime II, where mainly (20)-(21) hold. The result (29) for the volume flux in the chimney hold for both of these regimes. It can be seen from (15),(21) and other results given for the strong field case that these results depend on λ_1 which is due to the result (29). Restricting the strong field limit to the case, under which only inequality sign in (27) holds, we determined the order of magnitude of different quantities, dependence on different parameters and dependence on the strength of the magnetic field of various results, by making use of approximated version of (29), and found, in particular, the following main results to the leading order terms. For the case where the regime I holds, $\lambda_1 Q$ is independent of Q, and the radius of the chimney is independent of Q but decreases with increasing either R or H. The non-azimuthal speed of the flow, defined by

$$V_n = \sqrt{u^2 + w^2},$$

decreases with increasing Q but increases with either R or H. The volume flux in the chimney decreases with increasing either Q or R (or H). For the case where the regime Π holds, $\lambda_1 Q$ is again independent of Q, and the radius of the chimney is independent of Q and decreases with increasing H. However, a is independent of R for $A_1Q << R$, while it decreases with increasing R for $A_1Q \sim R$. Based on the results for A_1 in the case of regime Π , the condition (24) does not appear to be satisfied in the asymptotic range of sufficiently large R, and, thus, the radius of the chimney can depend on R. The non-azimuthal flow speed in the chimney decreases with increasing either R or R and increases with R. The volume flux in the chimney decreases with increasing either R or R and increases with R.

For the moderate magnetic field case, there are again two regimes I and II, where mainly (14) and (35) hold for the regime I and (20) and (39) hold for the regime II. The result (41) for the volume flux in the chimney hold for both of these two regimes. It can be seen from (35) and (39) that these results depend on the coefficient λ_2 which is due to the results (33) and (41). As we stated in the previous subsection, these later two equations for b_{z0} and ψ_a were solved subjected to the boundary conditions

$$b_{z0} = b'_{z0} = 0$$
 at $z = 0$.

The results indicated that ψ_a is independent of Q to the leading order terms and $b_{z0} \sim [R\tau/Q]^{1/2}$ for both of regimes I and II. However, ψ_a decreases with either R or H in both of the regimes I and II, except for $Ha^2 >> |1_n a|$ in the

regime II, where ψ_a actually increases with R. In both of the regimes I and II, the radius of the chimney decreases with increasing either R or H, but it is independent of Q. The quantity $\lambda_2 Q/(\tau R)$ is a constant of order one. The non-azimuthal flow speed in the chimney is independent of Q in both of the regimes I and II. However, it increases with either R or H in regime II, except that it is independent of H for $Ha^2 >> |1_na|$ in the regime II. In the regime I, it decreases with increasing either R or H. It can be seen from (40) that the right-hand-side term for $Ha^2 >> |1_na|$ is of order R and is definitely not small. Thus the wall of the chimney can not be in the axial direction in the range II for $Ha^2 >> |1_na|$.

For the case of a weak magnetic field, $\lambda_2 < 0(\tau R/Q)$. The radius of the chimney decreases with increasing either R and H in the regime I, while it is independent of R and decreases with increasing H in the regime II. The volume flux in the chimney decreases with increasing either R or H in the regime I, while it increases with R and decreases with increasing H in the regime II. The non-azimuthal flow speed in the chimney increases with H and decreases with increasing H in the regime I, while it increases with H and decreases with increasing H in the regime II. All the main results to the leading order terms are independent of H and H. These results all agree with those in the absence of a magnetic field due to Worster [2].

4 Some conclusions

(i). Three cases of strong, moderate and weak magnetic field effects were detected and analysed in this paper which effectively correspond, respectively, to the conditions

$$Qb_z \sim R\tau(Q \geq 0(R\tau)),$$

$$Qb_z^2 \sim R\tau(Q << R\tau)$$

and

$$Qb_z^2 << R\tau(Q << R\tau).$$

The effect of the imposed magnetic field becomes significant only in the case where the field is strong.

(ii). The presence of the externally imposed magnetic field in the vertical direction and with a uniform strength is either stabilizing, in the case of the strong field, or is ineffective, in the case of the moderate (or weak) field as far as the leading order effects in the asymptotic limit of sufficiently large R are concerned.

- (iii). The results of the present study, which are based on the moderate or small values of the Roberts number τ , indicated that the main results, such as those for the radius of the chimney, the flow speed in the chimney and the volume flux in the chimney, are mostly insensitive with respect to τ to the leading order terms, while results about the induced field and the pressure difference across the chimney depend significantly on τ .
- (iv). The results of the present study, which are based on the moderate or large values of the Prandtl number P_r , indicated that all the main results are independent of P_r to the leading order effects. This result agrees with those in the absence of a field and in the absence [2, 4] or presence of an externally imposed rotation [3, 5] that P_r effect is insignificant so long as the condition (5) is satisfied.
- (v). The results of the stabilizing effects of the strong magnetic field reported in this paper agree with the results of related magneto convection studies [7, 9, 10, 11, 12] that presence of externally imposed vertical magnetic field, with sufficiently strong strength, in buoyancy driven flows can lead to significant weakening of the convection. However, the extent that such stabilizing effects of the magnetic field can be practical or be desired in an actual crystal growth application will require quantitative studies, and optimized flow controlling procedure may also suggest applications of combined externally imposed magnetic field and rotation upon the solidification system.

References

- [1] M.G. Worster, J. Fluid Mech. 167 (1986) 481.
- [2] M.G. Worster, J. Fluid Mech. 224 (1991) 335.
- [3] D.N. Riahi, J. Crystal Growth 179 (1997) 287.
- [4] D.N. Riahi, Acta Mechanica 127 (1998) 83.
- [5] D.N. Riahi, J. Crystal Growth 204 (1999) 00382.
- [6] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press (1961).
- [7] D.N. Riahi, J. Math. Phys. Sci. 26 (1992) 429.
- [8] I. Stakgold, Boundary Value Problem of Mathematical Physics, Volume I, The Macmillan Comp., London (1969)
- [9] S. R. Coriell, M.R. Cordes, W.J. Boettinger and R.F. Sekerka, J. Crystal Growth 49 (1981) 13.
- [10] N. Riahi, Aust. J. Phys. 33 (1980) 47.
- [11] N. Riahi, Bull. Aust. Math. Soc. 23 (1981) 321.
- [12] N. Riahi, Aust. J. Phys. 34 (1981) 251.

List of Recent TAM Reports

No.	Authors	Title	Date
827	Riahi, D. N.	Nonlinear instabilities of shear flows over rough walls, Far East Journal of Applied Mathematics 2, 211–228 (1998)	June 1996
828	Weaver, R. L.	Multiple scattering theory for a plate with sprung masses, mean responses— <i>Journal of the Acoustical Society of America</i> 101 , 3466–3414 (1997)	July 1996
8 29	Moser, R. D., M. M. Rogers, and D. W. Ewing	Self-similarity of time-evolving plane wakes <i>Journal of Fluid Mechanics</i> 367 , 255–289 (1998)	July 19 9 6
830	Lufrano, J. M., and P. Sofronis	Enhanced hydrogen concentrations ahead of rounded notches and cracks: Competition between plastic strain and hydrostatic stress— <i>Acta Materialia</i> 46 , 1519–1526 (1998)	July 1996
831	Riahi, D. N.	Effects of surface corrugation on primary instability modes in wall-bounded shear flows	Aug. 1996
832	Bechel, V. T., and N. R. Sottos	Application of debond length measurements to examine the mechanics of fiber pushout, <i>Journal of Mechanics and Physics of Solids</i> 46 , 1675–1697 (1998)	Aug. 1996
833	Riahi, D. N.	Effect of centrifugal and Coriolis forces on chimney convection during alloy solidification— <i>Journal of Crystal Growth</i> 179, 287–296 (1997)	Sept. 1996
834	Cermelli, P., and E. Fried	The influence of inertia on configurational forces in a deformable solid— <i>Proceedings of the Royal Society of London A</i> 453 , 1915–1927 (1997)	Oct. 1996
835	Riahi, D. N.	On the stability of shear flows with combined temporal and spatial imperfections	Oct. 1996
836	Carranza, F. L., B. Fang, and R. B. Haber	An adaptive space—time finite element model for oxidation-driven fracture, Computer Methods in Applied Mechanics and Engineering, in press (1997)	Nov. 1996
837	Carranza, F. L., B. Fang, and R. B. Haber	A moving cohesive interface model for fracture in creeping materials, <i>Computational Mechanics</i> 19 , 517–521 (1997)	Nov. 1996
838	Balachandar, S., R. Mittal, and F. M. Najjar	Properties of the mean wake recirculation region in two-dimensional bluff body wakes—Journal of Fluid Mechanics, in press (1997)	Dec. 1996
839	Ti, B. W., W. D. O'Brien, Jr., and J. G. Harris	Measurements of coupled Rayleigh wave propagation in an elastic plate—Journal of the Acoustical Society of America 102, 1528–1531	Dec. 1996
840	Phillips, W. R. C.	On finite-amplitude rotational waves in viscous shear flows— Studies in Applied Mathematics 100, in press (1998)	Jan. 1997
841	Riahi, D. N.	Direct resonance analysis and modeling for a turbulent boundary layer over a corrugated surface—Acta Mechanica 131, 225–233 (1998)	Jan. 1997
842	Liu, ZC., R. J. Adrian, C. D. Meinhart, and W. Lai	Structure of a turbulent boundary layer using a stereoscopic, large format video-PIV—Developments in Laser Techniques and Fluid Mechanics, 259–273 (1997)	Jan. 1997
843	Fang, B., F. L. Carranza, and R. B. Haber	An adaptive discontinuous Galerkin method for viscoplastic analysis—Computer Methods in Applied Mechanics and Engineering 150, 191–198 (1997)	Jan. 1997
844	Xu, S., T. D. Aslam, and D. S. Stewart	High-resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries—Combustion Theory and Modeling 1, 113–142 (1997)	Jan. 1997
845	Zhou, J., C. D. Meinhart, S. Balachandar, and R. J. Adrian	Formation of coherent hairpin packets in wall turbulence—In <i>Self-Sustaining Mechanisms in Wall Turbulence</i> , R. L. Panton, ed. Southampton, UK: Computational Mechanics Publications, 109–134 (1997)	Feb. 1997
846	Lufrano, J. M., P. Sofronis, and H. K. Birnbaum	Elastoplastically accommodated hydride formation and embrittlement— <i>Journal of Mechanics and Physics of Solids</i> , in press (1998)	Feb. 1997

List of Recent TAM Reports (cont'd)

No.	Authors	Title	Date
847	Keane, R. D., N. Fujisawa, and R. J. Adrian	Unsteady non-penetrative thermal convection from non-uniform surfaces—In <i>Geophysical and Astrophysical Convection</i> , R. Kerr, ed. (1997)	Feb. 1997
848	Aref, H., and M. Brøns	On stagnation points and streamline topology in vortex flows— <i>Journal of Fluid Mechanics</i> 370, 1–27 (1998)	Mar. 1997
849	Asghar, S., T. Hayat, and J. G. Harris	Diffraction by a slit in an infinite porous barrier—Wave Motion, in press (1998)	Mar. 1997
850	Shawki, T. G., H. Aref, and J. W. Phillips	Mechanics on the Web—Proceedings of the International Conference on Engineering Education (Aug. 1997, Chicago)	Apr. 1997
851	Stewart, D. S., and J. Yao	The normal detonation shock velocity–curvature relationship for materials with non-ideal equation of state and multiple turning points—Combustion 113, 224–235 (1998)	Apr. 1997
852	Fried, E., A. Q. Shen, and S. T. Thoroddsen	Wave patterns in a thin layer of sand within a rotating horizontal cylinder— <i>Physics of Fluids</i> 10 , 10–12 (1998)	Apr. 1997
853	Boyland, P. L., H. Aref, and M. A. Stremler	Topological fluid mechanics of stirring—Bulletin of the American Physical Society 41, 1683 (1996)	Apr. 1997
854	Parker, S. J., and S. Balachandar	Viscous and inviscid instabilities of flow along a streamwise corner—Bulletin of the American Physical Society 42, 2155 (1997)	May 1997
855	Soloff, S. M., R. J. Adrian, and ZC. Liu	Distortion compensation for generalized stereoscopic particle image velocimetry—Measurement Science and Technology 8, 1–14 (1997)	May 1997
856	Zhou, Z., R. J. Adrian, S. Balachandar, and T. M. Kendall	Mechanisms for generating coherent packets of hairpin vortices in near-wall turbulence—Bulletin of the American Physical Society 42, 2243 (1997)	June 1997
857	Neishtadt, A. I., D. L. Vainshtein, and A. A. Vasiliev	Chaotic advection in a cubic stokes flow— <i>Physica D</i> 111, 227 (1997).	June 1997
858	Weaver, R. L.	Ultrasonics in an aluminum foam—Ultrasonics 36, 435–442 (1998)	July 1997
859	Riahi, D. N.	High gravity convection in a mushy layer during alloy solidification—In <i>Nonlinear Instability, Chaos and Turbulence,</i> D. N. Riahi and L. Debnath, eds., 1, 301–336 (1998)	July 1997
860	Najjar, F. M., and S. Balachandar	Low-frequency unsteadiness in the wake of a normal plate, Bulletin of the American Physical Society 42, 2212 (1997)	Aug. 1997
861	Short, M.	A parabolic linear evolution equation for cellular detonation instability—Combustion Theory and Modeling 1, 313–346 (1997)	Aug. 1997
862	Short, M., and D. S. Stewart	Cellular detonation stability, I: A normal-mode linear analysis— Journal of Fluid Mechanics 368, 229–262 (1998)	Sept. 1997
863	Carranza, F. L., and R. B. Haber	A numerical study of intergranular fracture and oxygen embrittlement in an elastic–viscoplastic solid— <i>Journal of the Mechanics and Physics of Solids</i> , in press (1997)	Oct. 1997
864	Sakakibara, J., and R. J. Adrian	Whole-field measurement of temperature in water using two-color laser-induced fluorescence— <i>Experiments in Fluids</i> 26 , 7–15 (1999)	Oct. 1997
865	Riahi, D. N.	Effect of surface corrugation on convection in a three-dimensional finite box of fluid-saturated porous material— <i>Theoretical and Computational Fluid Dynamics</i> , in press (1999)	Oct. 1997
866	Baker, C. F., and D. N. Riahi	Three-dimensional flow instabilities during alloy solidification	Oct. 1997
867	Fried, E.	Introduction (only) to <i>The Physical and Mathematical Foundations of the Continuum Theory of Evolving Phase Interfaces</i> (book containing 14 seminal papers dedicated to Morton E. Gurtin), Berlin: Springer-Verlag, in press (1998)	Oct. 1997
868	Folguera, A., and J. G. Harris	Coupled Rayleigh surface waves in a slowly varying elastic waveguide— <i>Proceedings of the Royal Society of London,</i> in press (1998)	Oct. 1997
869	Stewart, D. S.	Detonation shock dynamics: Application for precision cutting of metal with detonation waves	Oct. 1997

List of Recent TAM Reports (cont'd)

No.	Authors	Title	Date	
870	Shrotriya, P., and N. R. Sottos	Creep and relaxation behavior of woven glass/epoxy substrates for multilayer circuit board applications— <i>Polymer Composites</i> 19 , 567–578 (1998)	Nov. 1997	
871	Riahi, D. N.	Boundary wave-vortex interaction in channel flow at high Reynolds numbers, <i>Fluid Dynamics Research</i> 25 , 129–145 (1999)	Nov. 1997	
872	George, W. K., L. Castillo, and M. Wosnik	A theory for turbulent pipe and channel flows—paper presented at Disquisitiones Mechanicae (Urbana, Ill., October 1996)	Nov. 1997	
873	Aslam, T. D., and D. S. Stewart	Detonation shock dynamics and comparisons with direct numerical simulation—Combustion Theory and Modeling, in press (1999)	Dec. 1997	
874	Short, M., and A. K. Kapila	Blow-up in semilinear parabolic equations with weak diffusion	Dec. 1997	
875	Riahi, D. N.	Analysis and modeling for a turbulent convective plume— Mathematical and Computer Modeling 28, 57–63 (1998)	Jan. 1998	
876	Stremler, M. A., and H. Aref	Motion of three point vortices in a periodic parallelogram—Journal of Fluid Mechanics, in press (1999)	Feb. 1998	
877	Dey, N., K. J. Hsia, and D. F. Socie	On the stress dependence of high-temperature static fatigue life of ceramics	Feb. 1998	
878	Brown, E. N., and N. R. Sottos	Thermoelastic properties of plain weave composites for multilayer circuit board applications	Feb. 1998	
879	Riahi, D. N.	On the effect of a corrugated boundary on convective motion— Journal of Theoretical and Applied Mechanics, in press (1999)	Feb. 1998	
880	Riahi, D. N.	On a turbulent boundary layer flow over a moving wavy wall	Mar. 1998	
881	Riahi, D. N.	Vortex formation and stability analysis for shear flows over combined spatially and temporally structured walls— <i>Mathematical Problems in Engineering</i> , in press (1999)	June 1998	
882	Short, M., and D. S. Stewart	The multi-dimensional stability of weak heat release detonations	June 1998	
883	Fried, E., and M. E. Gurtin	Coherent solid-state phase transitions with atomic diffusion: A thermomechanical treatment— <i>Journal of Statistical Physics</i> , in press (1999)	June 1998	
884	Langford, J. A., and R. D. Moser	Optimal large-eddy simulation formulations for isotropic turbulence	July 1998	
885	Riahi, D. N.	Boundary-layer theory of magnetohydrodynamic turbulent convection— <i>Proceedings of the Indian National Academy (Physical Science)</i> , in press (1999)	Aug. 1998	
886	Riahi, D. N.	Nonlinear thermal instability in spherical shells—in Nonlinear Instability, Chaos and Turbulence 2, in press (1999)	Aug. 1998	
887	Riahi, D. N.	Effects of rotation on fully non-axisymmetric chimney convection during alloy solidification— <i>Journal of Crystal Growth</i> 204 , 382–394 (1999)	Sept. 1998	
888	Fried, E., and S. Sellers	The Debye theory of rotary diffusion	Sept. 1998	
889	Short, M., A. K. Kapila, and J. J. Quirk	The hydrodynamic mechanisms of pulsating detonation wave instability	Sept. 1998	
890	Stewart, D. S.	The shock dynamics of multidimensional condensed and gas phase detonations—Proceedings of the 27th International Symposium on Combustion (Boulder, Colo.)	Sept. 1998	
891	Kim, K. C., and R. J. Adrian	Very large-scale motion in the outer layer	Oct. 1998	
892	Fujisawa, N., and R. J. Adrian	Three-dimensional temperature measurement in turbulent thermal convection by extended range scanning liquid crystal thermometry	Oct. 1998	
893	Shen, A. Q., E. Fried, and S. T. Thoroddsen	Is segregation-by-particle-type a generic mechanism underlying finger formation at fronts of flowing granular media?—Particulate Science and Technology, in press (1999)	Oct. 1998	
894	Shen, A. Q.	Mathematical and analog modeling of lava dome growth	Oct. 1998	

List of Recent TAM Reports (cont'd)

No.	Authors	Title	Date
895	Buckmaster, J. D., and M. Short	Cellular instabilities, sub-limit structures, and edge-flames in premixed counterflows	Oct. 1998
896	Harris, J. G.	Elastic waves—Part of a book to be published by Cambridge University Press	Dec. 1998
897	Paris, A. J., and G. A. Costello	Cord composite cylindrical shells	Dec. 1998
898	Students in TAM 293–294	Thirty-fourth student symposium on engineering mechanics (May 1997), J. W. Phillips, coordinator: Selected senior projects by M. R. Bracki, A. K. Davis, J. A. (Myers) Hommema, and P. D. Pattillo	Dec. 1998
899	Taha, A., and P. Sofronis	A micromechanics approach to the study of hydrogen transport and embrittlement	Jan. 1999
900	Ferney, B. D., and K. J. Hsia	The influence of multiple slip systems on the brittle-ductile transition in silicon	Feb. 1999
901	Fried, E., and A. Q. Shen	Supplemental relations at a phase interface across which the velocity and temperature jump	Mar. 1999
902	Paris, A. J., and G. A. Costello	Cord composite cylindrical shells: Multiple layers of cords at various angles to the shell axis	Apr. 1999
903	Ferney, B. D., M. R. DeVary, K. J. Hsia, and A. Needleman	Oscillatory crack growth in glass	Apr. 1999
904	Fried, E., and S. Sellers	Microforces and the theory of solute transport	Apr. 1999
905	Balachandar, S., J. D. Buckmaster, and M. Short	The generation of axial vorticity in solid-propellant rocket-motor flows	May 1999
906	Aref, H., and D. L. Vainchtein	The equation of state of a foam	May 1999
907	Subramanian, S. J., and P. Sofronis	Modeling of the interaction between densification mechanisms in powder compaction	May 1999
908	Aref, H., and M. A. Stremler	Four-vortex motion with zero total circulation and impulse	May 1999
909	Adrian, R. J., K. T. Christensen, and ZC. Liu	On the analysis and interpretation of turbulent velocity fields	May 1999
910	Fried, E., and S. Sellers	Theory for atomic diffusion on fixed and deformable crystal lattices	June 1999
911	Sofronis, P., and N. Aravas	Hydrogen induced shear localization of the plastic flow in metals and alloys	June 1999
912	Anderson, D. R., D. E. Carlson, and E. Fried	A continuum-mechanical theory for nematic elastomers	June 1999
913	Riahi, D. N.	High Rayleigh number convection in a rotating melt during alloy solidification	July 1999
914	Riahi, D. N.	Buoyancy driven flow in a rotating low Prandtl number melt during alloy solidification	July 1999
915	Adrian, R. J.	On the physical space equation for large-eddy simulation of inhomogeneous turbulence	July 1999
916	Riahi, D. N.	Wave and vortex generation and interaction in turbulent channel flow between wavy boundaries	July 1999
917	Boyland, P. L., M. A. Stremler, and H. Aref	Topological fluid mechanics of point vortex motions	July 1999
918	Riahi, D. N.	Effects of a vertical magnetic field on chimney convection in a mushy layer	Aug. 1999