The coalescence-cascade of a drop

S. T. Thoroddsen*, K. Takehara+

*Department of Theoretical and Applied Mechanics
University of Illinios at Urbana-Champaign
Urbana, IL 61801, USA
e-mail: stt@uiuc.edu

+Department of Civil Engineering
Kinki University
Kowakae, Higashi-Osaka 577, Japan

Abstract

When a drop is deposited gently onto the surface of a layer of the same liquid, it sits momentarily before coalescing into the bottom layer. High-speed video imaging reveals that the coalescence process is not instantaneous, but rather takes place in a cascade where each step generates a smaller drop. This cascade is self-similar and we have observed up to 6 steps. The time associated with each partial coalescence scales with the surface tension time-scale. The cascade will however not proceed ad infinitum due to viscous effects, as the Reynolds number of the process is proportional to square root of drop diameter. Viscous effects will therefore begin to be important for the very smallest drops. This cascade is very similar to the one observed previously by Charles & Mason [J. Colloid Sci. 15, 236 (1960)] for two immiscible liquids, where one of the liquids replaces the air in our setup.

We report here a curious phenomenon, which occurs when one deposits a drop onto a layer of the same liquid. The drop hesitates briefly before coalescing into the bulk fluid, due to the draining of a thin layer of air sitting between the two liquid masses. As contact is established the unbalanced surface tension forces initiate a capillary wave which greatly deforms the drop which coalesces only partially, pinching off a new drop at its top, as shown in Fig. 1(a). The daughter drop bounces and comes to rest at the surface, repeating this partial coalescence. We have observed up to 6 steps in this cascade, starting with drop diameters around 3 mm and decreasing in diameter by approximately a half during each step.

Such cascades have previously been studied for systems of two immiscible liquids, one of which replaces the air in our setup^{1,2}. The evolution we see here is very similar to this previously discovered cascade, but progresses at much higher speeds due to the negligible inertia of the surrounding medium. Furthermore, the satellite drops observed in the two-liquid case are rarely observed here. These are pinched off in the neck region and occur here only occasionally for the largest drops.

We have observed this phenomenon for liquids having widely different properties (water, alcohol and to lesser extent for mercury) and it should thereby be quite ubiquitous, but may have escaped much notice due to its rapidity, which makes the process barely perceptible to the naked eye. The six steps expire in about a quarter of a second. This cascade could be of considerable interest to the natural generation of mist and rain drops³, bouncing of droplets^{4,5}, mixing at an interface⁶ and the generation of vorticity⁷⁻¹². Video images of natural rain do indeed show partial coalescences of the drop which is pinched off at the top of the Worthington jet.

The remarkable similarity of each step in the cascade is demonstrated in Fig. 1(b), which shows the pinch-off shapes for the same drop at the subsequent stage. The large number of steps also suggests a dynamic similarity. Such similarity arises from the assumption that the coalescence is governed solely by the surface tension and the inertia of the liquid. We thereby neglect viscous friction as well as gravity, which serves the sole purpose of bringing each generation of drops to the flat surface, as the daughter drops tend to bounce, with the smallest drops bouncing highest. The physical parameters of importance are therefore the strength of the surface tension σ , the size of the drop D and its density ρ . These quantities

form a time-scale associated with the surface-tension driven distortions of the drop^{8,9}, i.e.

$$\tau_{\sigma} = \sqrt{\rho D^3 / \sigma} \tag{1}$$

The problem has an inherent geometric similarity at every step. However, for complete similarity the same fraction of the drop volume must coalesce in each step of the cascade, requiring a characteristic velocity. The excess capillary pressure inside the drop ($\Delta p = 4\sigma/D$) will accelerate some fraction of the drops' mass ρL^3 during the characteristic capillary time τ_{σ} , which gives a velocity $U_{\sigma} = \tau_{\sigma} \Delta p D^2/(\rho L^3)$. Using this velocity we can estimate the relative importance of inertia and surface tension by the Weber number $We = U_{\sigma} \sqrt{\rho D/\sigma}$. Substituting for U_{σ} and using eq. (1) we obtain $We = D^3/L^3$ which is a constant, by assumption. The similarity of the cascade therefore follows directly from the validity of eq. (1), which is demonstrated for alcohol drops in Fig. 2. The duration of τ_{σ} was determined by counting frames from the high-speed video camera¹³ operated at frame-rates as high as 40500 f/s. These extreme frame-rates are required for resolving the coalescence process for the smallest drops, which are less than 200 μ m in diameter.

The horizontal drop diameters were measured from the video frames and corrected for the distortions due to gravity. This was done by measuring the volumes of a few different-size drops from images taken as they are pinched off from a nozzle. The horizontal diameters of the resting drops were then measured and a correction factor constructed to convert the horizontal diameter to the corresponding diameter of the same-volume sphere. This correction depends on drop size, but is only significant for the larger drops.

It remains an intriguing possibility² that further steps exist in such cascades, especially if those steps would generate drops too small for the current optical setup. This is however unlikely due to the damping effects of viscosity, the strength of which is characterized by the Reynolds number (UD/ν) , where ν is the kinematic viscosity of the liquid. Its value can be estimated using the characteristic velocity as $U = D/\tau_{\sigma}$. Therefore, $Re \propto \sqrt{D}$ and for very small drops viscosity will inevitably start slowing down the process destroying the similarity. However, for the smallest drops observed here $Re \approx 100$ justifying the neglecting of viscous effects. Were one to arbitrarily select a Re of 20 as the cut-off where viscous forces become dominant, this would correspond to an alcohol drop of 8 μm in diameter.

It is worth noting that at high viscosities the pinch-off of a drop from a nozzle posesses a cascade of instabilities which have been investigated and successfully modeled^{13,14}.

High-speed video clips showing the present coalescence cascade are available at http://www.tam.uiuc.edu/Faculty/Thoroddsen/Cascade.html

References

- ¹G.E. Charles and S.G. Mason, The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces, J. Colloid Sci., **15**, 105-122 (1960).
- ²G.E. Charles and S.G. Mason, The coalescence of liquid drops with flat liquid/liquid interfaces, J. Colloid Sci. 15, 236-267 (1960).
- ³H.T. Ochs III, K. V. Beard, R.R. Czys, N.F. Laird, D.E. Schaufelberger and D.J. Holdridge, Collisions between small precipitation drops. Part I: Laboratory measurements of bounce, coalescence and temporary coalescence, J. Atmos. Sci., 52, 2258-2275 (1995).
- ⁴O.W. Jayaratne and B.J. Mason, The coalescence and bouncing of water drops at an air/water interface, Proc. R. Soc. London, A, 280, 545-564 (1964).
- ⁵B. Ching, M.W. Golay and T.J. Johnson, *Droplet inpacts upon liquid surfaces*, Science, **226**, 535-537 (1984).
- ⁶A.V. Anilkumar, C.P. Lee and T.G. Wang, Surface-tension-induced mixing following coalescence of initially stationary drops, Phys. Fluids A 3, 2587-2591 (1991).
- ⁷J.J. Thomson and H.F. Newall, On the formation of vortex rings by drops falling into liquids, and some allied phenomena, Proc. R. Soc. London 39, 417-436 (1885).
- ⁸P.N. Shankar and M. Kumar, Vortex rings generated by drops just coalescing with a pool, Phys. Fluids, 7, 737-746 (1995).
- ⁹M. Hsiao, S. Lichter and L.G. Quintero, The critical Weber number for vortex and jet formation for drops impinging on a liquid pool, Phys. Fluids, **31** 3560-3562 (1988).
- ¹⁰B. Peck and L. Sigurdson, The three dimensional vortex structure of an impacting water drop, Phys. Fluids, 6, 564-576 (1994).
- ¹¹B.S. Dooley, A.E. Warncke, M. Gharib and G. Tryggvason, Vortex ring generation due to the coalescence of a water drop at a free surface, Exp. Fluids, 22, 369-374 (1997).
- ¹²F. Rodriguez and R. Mesler, *The penetration of drop-formed vortex rings into pools of liquid*, J. Colloid Interface Sci., **121**, 121-129 (1988).
 - ¹³T. Etoh and K. Takehara, *Ultra high-speed multiframing camera with an automatic*

trigger, SPIE, Vol. 1757, 53-57 (1992).

¹⁴J. Eggers and T.F. Dupont, Drop formation in a one-dimensional approximation of the Navier-Stokes equations, J. Fluid Mech. **262** p. 205 (1994)

¹⁵X.D. Shi, M.P. Brenner and S. R. Nagel, "A cascade of structure in a drop falling from a faucet" *Science*, **265**, pp. 219-221 (1994).

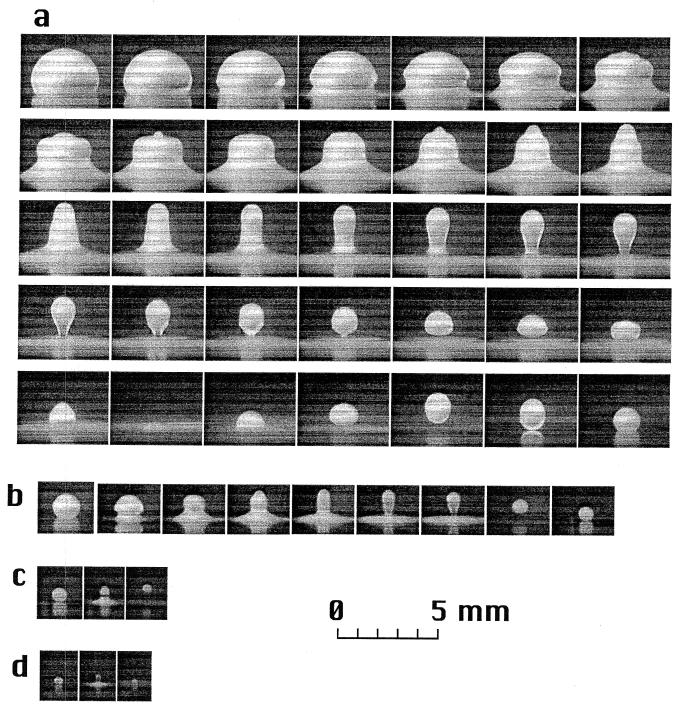


Figure 1: The coalescence cascade for a water drop. The drop contains a minute amount of Fluorescein for clearer imaging. Fluorescein was not used in obtaining the data in Fig. 2. a, The deformation and pinch-off of a daughter drop. The camera is operated at 2250 f/s. In the first four rows every frame is shown, whereas many frames have been left out between subsequent frames. b, The second step in the cascade, which begins about 70 ms after the end of the first sequence above. c, d, frames during the third and fourth steps.

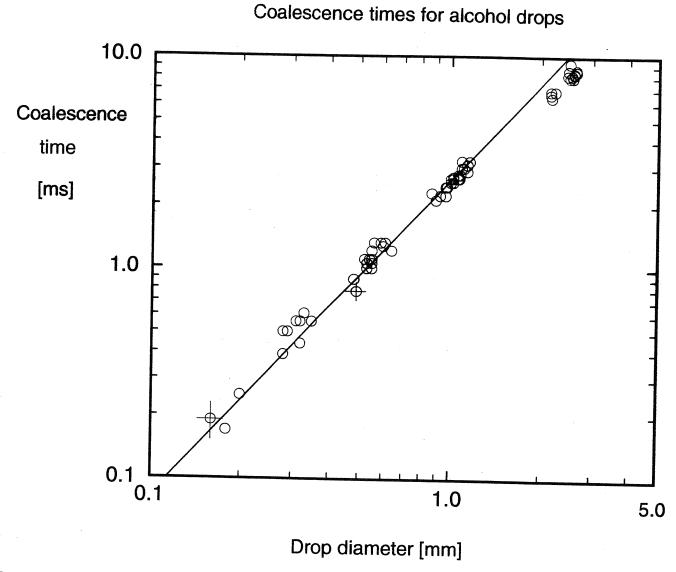


Figure 2: Log-log plot of the coalescence times for each step of the cascade, for different diameter drops of ethyl alcohol. τ_{σ} is estimated from first liquid contact to the pinch-off of the satellite drop. The initial diameters were determined from the video images, correcting for distortions due to gravity. The line has a slope of 3/2 confirming equation (1).

List of Recent TAM Reports

No.	Authors	Title	Date
838	Balachandar, S., R. Mittal, and F. M. Najjar	Properties of the mean wake recirculation region in two-dimensional bluff body wakes— <i>Journal of Fluid Mechanics</i> 351 , 167–1999 (1997)	Dec. 1996
839	Ti, B. W., W. D. O'Brien, Jr., and J. G. Harris	Measurements of coupled Rayleigh wave propagation in an elastic plate— <i>Journal of the Acoustical Society of America</i> 102 , 1528–1531	Dec. 1996
840	Phillips, W. R. C.	On finite-amplitude rotational waves in viscous shear flows— Studies in Applied Mathematics 100, in press (1998)	Jan. 1997
841	Riahi, D. N.	Direct resonance analysis and modeling for a turbulent boundary layer over a corrugated surface— <i>Acta Mechanica</i> 131 , 225–233 (1998)	Jan. 1997
842	Liu, ZC., R. J. Adrian, C. D. Meinhart, and W. Lai	Structure of a turbulent boundary layer using a stereoscopic, large format video-PIV— <i>Developments in Laser Techniques and Fluid Mechanics</i> , 259–273 (1997)	Jan. 1997
843	Fang, B., F. L. Carranza, and R. B. Haber	An adaptive discontinuous Galerkin method for viscoplastic analysis— <i>Computer Methods in Applied Mechanics and Engineering</i> 150 , 191–198 (1997)	Jan. 1997
844	Xu, S., T. D. Aslam, and D. S. Stewart	High-resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries—Combustion Theory and Modeling 1, 113–142 (1997)	Jan. 1997
845	Zhou, J., C. D. Meinhart, S. Balachandar, and R. J. Adrian	Formation of coherent hairpin packets in wall turbulence—In <i>Self-Sustaining Mechanisms in Wall Turbulence</i> , R. L. Panton, ed. Southampton, UK: Computational Mechanics Publications, 109–134 (1997)	Feb. 1997
846	Lufrano, J. M., P. Sofronis, and H. K. Birnbaum	Elastoplastically accommodated hydride formation and embrittlement— <i>Journal of Mechanics and Physics of Solids</i> , 46 , 1497–1520 (1998)	Feb. 1997
847	Keane, R. D., N. Fujisawa, and R. J. Adrian	Unsteady non-penetrative thermal convection from non-uniform surfaces—In <i>Geophysical and Astrophysical Convection</i> , R. Kerr, ed. (1997)	Feb. 1997
848	Aref, H., and M. Brøns	On stagnation points and streamline topology in vortex flows— Journal of Fluid Mechanics 370, 1–27 (1998)	Mar. 1997
849	Asghar, S., T. Hayat, and J. G. Harris	Diffraction by a slit in an infinite porous barrier— <i>Wave Motion</i> , 30 , 96–104 (1998)	Mar. 1997
850	Shawki, T. G., H. Aref, and J. W. Phillips	Mechanics on the Web—Proceedings of the International Conference on Engineering Education (Aug. 1997, Chicago)	Apr. 1997
851	Stewart, D. S., and J. Yao	The normal detonation shock velocity–curvature relationship for materials with non-ideal equation of state and multiple turning points— <i>Combustion</i> 113 , 224–235 (1998)	Apr. 1997
852	Fried, E., A. Q. Shen, and S. T. Thoroddsen	Wave patterns in a thin layer of sand within a rotating horizontal cylinder— <i>Physics of Fluids</i> 10 , 10–12 (1998)	Apr. 1997
853	Boyland, P. L., H. Aref, and M. A. Stremler	Topological fluid mechanics of stirring—Bulletin of the American Physical Society 41 , 1683 (1996)	Apr. 1997
854	Parker, S. J., and S. Balachandar	Viscous and inviscid instabilities of flow along a streamwise corner— <i>Bulletin of the American Physical Society</i> 42 , 2155 (1997)	May 1997
855	Soloff, S. M., R. J. Adrian, and ZC. Liu	Distortion compensation for generalized stereoscopic particle image velocimetry— <i>Measurement Science and Technology</i> 8 , 1–14 (1997)	May 1997
856	Zhou, Z., R. J. Adrian, S. Balachandar, and T. M. Kendall	Mechanisms for generating coherent packets of hairpin vortices in near-wall turbulence— <i>Bulletin of the American Physical Society</i> 42 , 2243 (1997)	June 1997
857	Neishtadt, A. I., D. L. Vainshtein, and A. A. Vasiliev	Chaotic advection in a cubic stokes flow— <i>Physica D</i> 111, 227 (1997).	June 1997
858	Weaver, R. L.	Ultrasonics in an aluminum foam— <i>Ultrasonics</i> 36 , 435–442 (1998)	July 1997

List of Recent TAM Reports (cont'd)

No.	Authors	Title	Date
859		High gravity convection in a mushy layer during alloy solidification—In <i>Nonlinear Instability, Chaos and Turbulence,</i> D. N. Riahi and L. Debnath, eds., 1, 301–336 (1998)	July 1997
860		Low-frequency unsteadiness in the wake of a normal plate, <i>Bulletin</i> of the American Physical Society 42 , 2212 (1997)	Aug. 1997
861	Short, M.	A parabolic linear evolution equation for cellular detonation instability— <i>Combustion Theory and Modeling</i> 1 , 313–346 (1997)	Aug. 1997
862	Short, M., and D. S. Stewart	Cellular detonation stability, I: A normal-mode linear analysis— Journal of Fluid Mechanics 368, 229–262 (1998)	Sept. 1997
863	Carranza, F. L., and R. B. Haber	A numerical study of intergranular fracture and oxygen embrittlement in an elastic–viscoplastic solid— <i>Journal of the Mechanics and Physics of Solids</i> , 47 , 27–58 (1997)	Oct. 1997
864	Sakakibara, J., and R. J. Adrian	Whole-field measurement of temperature in water using two-color laser-induced fluorescence— <i>Experiments in Fluids</i> 26 , 7–15 (1999)	Oct. 1997
865	Riahi, D. N.	Effect of surface corrugation on convection in a three-dimensional finite box of fluid-saturated porous material— <i>Theoretical and Computational Fluid Dynamics</i> , 13, 189-208 (1999)	Oct. 1997
866	Baker, C. F., and D. N. Riahi	Three-dimensional flow instabilities during alloy solidification— Bulletin of the American Physical Society 41 , 1699 (1998)	Oct. 1997
867	Fried, E.	Introduction (only) to <i>The Physical and Mathematical Foundations of the Continuum Theory of Evolving Phase Interfaces</i> (book containing 14 seminal papers dedicated to Morton E. Gurtin), Berlin: Springer-Verlag, in press (1998)	Oct. 1997
868	Folguera, A., and J. G. Harris	Coupled Rayleigh surface waves in a slowly varying elastic waveguide— <i>Proceedings of the Royal Society of London A</i> 455 , 917–931 (1998)	Oct. 1997
869	Stewart, D. S.	Detonation shock dynamics: Application for precision cutting of metal with detonation waves	Oct. 1997
870	Shrotriya, P., and N. R. Sottos	Creep and relaxation behavior of woven glass/epoxy substrates for multilayer circuit board applications— <i>Polymer Composites</i> 19 , 567–578 (1998)	Nov. 1997
871	Riahi, D. N.	Boundary wave–vortex interaction in channel flow at high Reynolds numbers, <i>Fluid Dynamics Research</i> 25 , 129–145 (1999)	Nov. 1997
872	George, W. K., L. Castillo, and M. Wosnik	A theory for turbulent pipe and channel flows—paper presented at Disquisitiones Mechanicae (Urbana, Ill., October 1996)	Nov. 1997
873	Aslam, T. D., and D. S. Stewart	Detonation shock dynamics and comparisons with direct numerical simulation— <i>Combustion Theory and Modeling</i> 3, 77–101 (1999)	Dec. 1997
874	Short, M., and A. K. Kapila	Blow-up in semilinear parabolic equations with weak diffusion <i>Combustion Theory and Modeling</i> 2 , 283-291 (1998)	Dec. 1997
875	Riahi, D. N.	Analysis and modeling for a turbulent convective plume— Mathematical and Computer Modeling 28, 57–63 (1998)	Jan. 1998
876	Stremler, M. A., and H. Aref	Motion of three point vortices in a periodic parallelogram— <i>Journal</i> of Fluid Mechanics 392 , 101-128 (1999)	Feb. 1998
877	Dey, N., K. J. Hsia, and D. F. Socie	On the stress dependence of high-temperature static fatigue life of ceramics	Feb. 1998
878	Brown, E. N., and N. R. Sottos	Thermoelastic properties of plain weave composites for multilayer circuit board applications	Feb. 1998
879	Riahi, D. N.	On the effect of a corrugated boundary on convective motion— <i>Journal of Theoretical and Applied Mechanics</i> , in press (1999)	Feb. 1998
880	Riahi, D. N.	On a turbulent boundary layer flow over a moving wavy wall	Mar. 1998
881	Riahi, D. N.	Vortex formation and stability analysis for shear flows over combined spatially and temporally structured walls— <i>Mathematical Problems in Engineering</i> 5 , 317–328 (1999)	June 1998

List of Recent TAM Reports (cont'd)

No.	Authors	Title	Date
882	Short, M., and D. S. Stewart	The multi-dimensional stability of weak heat release detonations— Journal of Fluid Mechanics 382, 109–135 (1999)	June 1998
883	Fried, E., and M. E. Gurtin	Coherent solid-state phase transitions with atomic diffusion: A thermomechanical treatment— <i>Journal of Statistical Physics</i> 95 , 1361–1427 (1999)	June 1998
884	Langford, J. A., and R. D. Moser	Optimal large-eddy simulation formulations for isotropic turbulence— <i>Journal of Fluid Mechanics</i> 398 , 321–346 (1999)	July 1998
885	Riahi, D. N.	Boundary-layer theory of magnetohydrodynamic turbulent convection— <i>Proceedings of the Indian National Academy (Physical Science)</i> 65A , 109–116 (1999)	Aug. 1998
886	Riahi, D. N.	Nonlinear thermal instability in spherical shells—in <i>Nonlinear Instability</i> , <i>Chaos and Turbulence</i> 2 , in press (1999)	Aug. 1998
887	Riahi, D. N.	Effects of rotation on fully non-axisymmetric chimney convection during alloy solidification— <i>Journal of Crystal Growth</i> 204 , 382–394 (1999)	Sept. 1998
888	Fried, E., and S. Sellers	The Debye theory of rotary diffusion	Sept. 1998
889	Short, M., A. K. Kapila, and J. J. Quirk	The hydrodynamic mechanisms of pulsating detonation wave instability— <i>Proceedings of the Royal Society of London, A</i> 357 , 3621–3638 (1999)	Sept. 1998
890	Stewart, D. S.	The shock dynamics of multidimensional condensed and gas phase detonations—Proceedings of the 27th International Symposium on Combustion (Boulder, Colo.)	Sept. 1998
891	Kim, K. C., and R. J. Adrian	Very large-scale motion in the outer layer— <i>Physics of Fluids</i> 2 , 417 – 422 (1999)	Oct. 1998
892	Fujisawa, N., and R. J. Adrian	Three-dimensional temperature measurement in turbulent thermal convection by extended range scanning liquid crystal thermometry— <i>Journal of Visualization</i> 1 , 355-364 (1999)	Oct. 1998
893	Shen, A. Q., E. Fried, and S. T. Thoroddsen	Is segregation-by-particle-type a generic mechanism underlying finger formation at fronts of flowing granular media?— <i>Particulate Science and Technology</i> 17 , 141–148 (1999)	Oct. 1998
894	Shen, A. Q.	Mathematical and analog modeling of lava dome growth	Oct. 1998
895	Buckmaster, J. D., and M. Short	Cellular instabilities, sub-limit structures, and edge-flames in premixed counterflows— <i>Combustible theory Modeling</i> 3 , 199–214 (1999)	Oct. 1998
896	Harris, J. G.	Elastic waves—Part of a book to be published by Cambridge University Press	Dec. 1998
897	Paris, A. J., and G. A. Costello	Cord composite cylindrical shells	Dec. 1998
898	Students in TAM 293–294	Thirty-fourth student symposium on engineering mechanics (May 1997), J. W. Phillips, coordinator: Selected senior projects by M. R. Bracki, A. K. Davis, J. A. (Myers) Hommema, and P. D. Pattillo	Dec. 1998
899	Taha, A., and P. Sofronis	A micromechanics approach to the study of hydrogen transport and embrittlement	Jan. 1999
900	Ferney, B. D., and K. J. Hsia	The influence of multiple slip systems on the brittle–ductile transition in silicon— <i>Material Science Engineering A</i> 272 , 422–430 (1999)	Feb. 1999
901	Fried, E., and A. Q. Shen	Supplemental relations at a phase interface across which the velocity and temperature jump	Mar. 1999
902	Paris, A. J., and G. A. Costello	Cord composite cylindrical shells: Multiple layers of cords at various angles to the shell axis	Apr. 1999
903	Ferney, B. D., M. R. DeVary, K. J. Hsia, and A. Needleman	Oscillatory crack growth in glass—Scripta Materialia 41, 275–281 (1999)	Apr. 1999

List of Recent TAM Reports (cont'd)

No.	Authors	Title	Date
904	Fried, E., and S. Sellers	Microforces and the theory of solute transport	Apr. 1999
905	Balachandar, S., J. D. Buckmaster, and M. Short	The generation of axial vorticity in solid-propellant rocket-motor flows	May 1999
906	Aref, H., and D. L. Vainchtein	The equation of state of a foam	May 1999
907	Subramanian, S. J., and P. Sofronis	Modeling of the interaction between densification mechanisms in powder compaction	May 1999
908	Aref, H., and M. A. Stremler	Four-vortex motion with zero total circulation and impulse— <i>Physics</i> of Fluids 11, 3704-3715	May 1999
909	Adrian, R. J., K. T. Christensen, and ZC. Liu	On the analysis and interpretation of turbulent velocity fields— Experiments in Fluids, in press (1999)	May 1999
910	Fried, E., and S. Sellers	Theory for atomic diffusion on fixed and deformable crystal lattices	June 1999
911	Sofronis, P., and N. Aravas	Hydrogen induced shear localization of the plastic flow in metals and alloys	June 1999
912	Anderson, D. R., D. E. Carlson, and E. Fried	A continuum-mechanical theory for nematic elastomers	June 1999
913	Riahi, D. N.	High Rayleigh number convection in a rotating melt during alloy solidification	July 1999
914	Riahi, D. N.	Buoyancy driven flow in a rotating low Prandtl number melt during alloy solidification	July 1999
915	Adrian, R. J.	On the physical space equation for large-eddy simulation of inhomogeneous turbulence	July 1999
916	Riahi, D. N.	Wave and vortex generation and interaction in turbulent channel flow between wavy boundaries	July 1999
917	Boyland, P. L., M. A. Stremler, and H. Aref	Topological fluid mechanics of point vortex motions	July 1999
918	Riahi, D. N.	Effects of a vertical magnetic field on chimney convection in a mushy layer	Aug. 1999
919	Riahi, D. N.	Boundary mode–vortex interaction in turbulent channel flow over a non-wavy rough wall	Sept. 1999
920	Block, G. I., J. G. Harris, and T. Hayat	Measurement models for ultrasonic nondestructive evaluation	Sept. 1999
921	Zhang, S., and K. J. Hsia	Modeling the fracture of a sandwich structure due to cavitation in a ductile adhesive layer	Sept. 1999
922	Nimmagadda, P. B. R., and P. Sofronis	Leading order asymptotics at sharp fiber corners in creeping-matrix composite materials	Oct. 1999
923	Yoo, S., and D. N. Riahi	Effects of a moving wavy boundary on channel flow instabilities	Nov. 1999
924	Adrian, R. J., C. D. Meinhart, and C. D. Tomkins	Vortex organization in the outer region of the turbulent boundary layer	Nov. 1999
925	Riahi, D. N., and A. T. Hsui	Finite amplitude thermal convection with variable gravity	Dec. 1999
926	Kwok, W. Y., R. D. Moser, and J. Jiménez	A critical evaluation of the resolution properties of <i>B</i> -spline and compact finite difference methods	Feb. 2000
927	Ferry, J. P., and S. Balachandar	A fast Eulerian method for two-phase flow	Feb. 2000
928	Thoroddsen, S. T., and K. Takehara	The coalescence–cascade of a drop	Feb. 2000