
© 2021 Sitao Huang

HIGH-EFFICIENCY AND HIGH-USABILITY HETEROGENEOUS
HARDWARE ACCELERATION WITH FPGAS

BY

SITAO HUANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Wen-mei Hwu, Co-Chair
Professor Deming Chen, Co-Chair
Professor Sanjay Patel
Assistant Professor Jian Huang
Professor Jason Cong, University of California, Los Angeles
Doctor Stephen Neuendorffer, Xilinx Research Labs

ABSTRACT

The exploding complexity and computation efficiency requirements of ap-

plications are stimulating a strong demand for hardware acceleration with

heterogeneous platforms that may contain CPUs, GPUs, FPGAs, ASICs,

and other customized accelerators. Among these processors and hardware

accelerators, field-programmable gate arrays (FPGAs) provide flexible pro-

grammability, low computation latency, as well as fine-grained parallel pro-

cessing capability, and have demonstrated outstanding performance and flex-

ibility in many applications and scenarios. However, a high-quality FPGA

design is very hard to create and optimize as it requires FPGA expertise

and a long design iteration time. In contrast, software applications are typ-

ically developed in a shorter development cycle, with high-level languages

like Python, which is at a much higher level of abstraction than all existing

hardware design languages.

In this dissertation, we will first look into the basics of high-efficiency

and high-usability FPGA accelerators in the heterogeneous hardware accel-

eration systems, including categories of accelerators, system architecture,

design methodology, and so on. Secondly, we will discuss the optimization

of heterogeneous systems that enables CPU-FPGA collaborative computing

and improves system performance. Thirdly, we will look into our proposed

high-level programming languages and optimization flows of FPGA acceler-

ators, including language design, compiler design, optimization techniques,

and so on. Finally, we will discuss how the proposed high-level programming

and optimization flow can be used to program and optimize heterogeneous

systems.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisors Profes-

sor Deming Chen and Professor Wen-mei Hwu for their continuous support of

my study and research, and for their great patience, guidance, trust and en-

couragement. Their immense knowledge, brilliant intuition, and enthusiasm

make them the role model of great researchers. I could not have imagined

having better advisors for my study and research.

I would like to thank all my labmates in the ES-CAD research group and

the IMPACT research group, for their great help and stimulating and exciting

discussions on my research. I learned a lot and had a great time working with

them. I would never have completed this thesis without their generous help.

My special thanks go to Junyao Wang, for all her love and support.

Lastly, I would like to thank my mother Yali Kang and my father Jianyuan

Huang, for allowing me to realize my own potential, for their patience, en-

couragement, and support throughout my life.

iv

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . vii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 EFFICIENT HARDWARE ACCELERATORS 4
2.1 Common Accelerator Types 4
2.2 Heterogeneous Systems . 5
2.3 FPGA Design Methodology 6

CHAPTER 3 CASE STUDY: SPARSE DNN ACCELERATOR . . . 8
3.1 Introduction . 8
3.2 Background . 10
3.3 Design Optimizations . 11
3.4 Sparse DNN Accelerator Architecture 17
3.5 Experiments . 19
3.6 Related Works . 22
3.7 Conclusion . 24

CHAPTER 4 DESIGN AND OPTIMIZATION OF HETEROGE-
NEOUS SYSTEMS . 25
4.1 Introduction . 26
4.2 Collaborative Execution Strategies 28
4.3 Methodology . 32
4.4 Evaluation of Collaborative Execution Strategies 34
4.5 Evaluation of Kernel Duplication 41
4.6 Key Insights . 46
4.7 Related Work . 48
4.8 Conclusion . 51

CHAPTER 5 LANGUAGES AND COMPILERS FOR ACCEL-
ERATOR DESIGN AUTOMATION 53
5.1 Overview . 54
5.2 Related Works . 58
5.3 PyLog Programming Model 59
5.4 Compilation and Synthesis Flow 72

v

5.5 Evaluation . 81
5.6 PyLog Future Works . 84
5.7 Conclusion . 88

CHAPTER 6 DESIGN SPACE SEARCH AND OPTIMIZATION . . 92
6.1 Introduction . 92
6.2 Quantization Scheme . 94
6.3 Mixed Precison Quantization Flow 97
6.4 Methodology . 102
6.5 Evaluation . 104
6.6 Related Work . 105
6.7 Conclusion . 106

CHAPTER 7 CONCLUSION . 107

REFERENCES . 109

vi

LIST OF ABBREVIATIONS

ASIC Application-Specific Integrated Circuit

AST Abstract Syntax Tree

CPU Central Processing Unit

DNN Deep Neural Network

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HLS High-Level Synthesis

JIT Just-In-Time

TPU Tensor Processing Unit

vii

CHAPTER 1

INTRODUCTION

The last decade has witnessed the exploding growth in data, applications, as

well as computation needs from end users in various scenarios. The result-

ing growing complexity poses serious challenges on the design of highly effi-

cient computing systems that can deliver desired computing performance. In

many application scenarios, it is very hard to deliver desired performance by

only using general-purpose processors like central processing units (CPUs).

This limitation of general-purpose processors stimulates a strong demand for

hardware acceleration. People start to introduce various types of accelera-

tors into the computing system, such as graphics processing units (GPUs),

field-programmable gate arrays (FPGAs), application-specific integrated cir-

cuits (ASICs), and other customized accelerators. Each of these accelerators

has specialized capabilities in accelerating certain computation patterns or

applications. The growing complexity of applications and data also drives

the capability and complexity growth of modern computing systems. What

makes an ideal hardware acceleration system, and how to design a great

computing system remain challenging problems to solve.

As we will discuss later in this dissertation, there are three key aspects of

hardware acceleration as follows.

1 Efficiency : For target applications, the hardware system should be able

to deliver as high execution performance as possible with minimum

area, energy consumption, and design cost. This is the basic require-

ment of designing hardware acceleration systems and it has been the

main theme of many prior research works.

2 Usability : Hardware acceleration should be easily available and usable

for any target applications, any target deployment environments, and

any end users. This implies that hardware acceleration systems should

be easy to design, debug, optimize, maintain, and use, in any given

1

deployment environments, without much human manual effort. This

requires programming language and compiler innovations to fundamen-

tally optimize the way of designing hardware systems.

3 Heterogeneity : Computer systems are moving toward heterogeneous

integration of diverse hardware accelerators with different characteris-

tics. Modern computer systems should be extensible, flexible, and have

the capabilities of supporting emerging hardware accelerators. This

requires innovations in low-level hardware architecture, as well as co-

design and co-optimization of the whole system stack.

Computing efficiency has always been among the top design requirements

of hardware accelerators. Researchers have been looking into and optimizing

many different metrics of accelerator efficiency, including processing latency,

throughput, execution time, thermal performance, etc. On the contrary,

the design efficiency and usability of hardware accelerators has not attracted

enough attention from researchers. However, usability also plays a key role in

hardware accelerator design. Highly usable accelerator designs are the ones

that allow people to easily deploy the accelerator in different applications and

scenarios, and the accelerator is supported by a complete set of tool chains

that simplify the programming and maintenance of the accelerator. As we

point out in this dissertation, having proper programming languages and

compilation flows is the key to highly usable accelerator design. Heterogene-

ity is the trend of future hardware acceleration systems. As the complexity of

application requirements grows, it is hard for homogeneous systems to deliver

the performance required. Introducing heterogeneous components into the

computing system and leveraging the unique capabilities of each component

are becoming the trend of hardware acceleration system design. As systems

moving toward heterogeneity, challenges in designing and optimizing these

heterogeneous systems arise. As we will show in this dissertation, collabora-

tive computing and high-level programming and optimization flows are the

keys to solve these challenges.

Among the processors and hardware accelerators used in the comput-

ing system, field-programmable gate arrays (FPGAs) provide flexible pro-

grammability, low computation latency, as well as fine-grained parallel pro-

cessing capability, and have demonstrated outstanding performance and flex-

ibility in many applications and scenarios. However, a high-quality FPGA

2

accelerator design is very hard to create and optimize as it requires FPGA

expertise and a long design iteration time. In contrast, software applica-

tions are typically developed in a short development cycle, with high-level

languages like Python, which is at a much higher level of abstraction than

all existing hardware design languages. How to create and optimize FPGA

designs more efficiently becomes a key challenge to solve.

In this dissertation, we will focus on the techniques that tackle the chal-

lenges in the design and optimization of highly efficient, highly usable het-

erogeneous hardware acceleration systems that are built with FPGAs.

The rest of this dissertation is organized as follows. Chapter 2 provides an

overview on the basics of high-efficiency and high-usability FPGA accelera-

tors in the heterogeneous hardware acceleration systems, including categories

of accelerators, system architecture, design methodology, and so on. Chapter

3 uses sparse DNN inference as an example application for case study and

demonstrates the design and optimization of an application specific accelera-

tor. Chapter 4 discusses the collaboration of computing components (CPU-

FPGA) in a heterogeneous system and demonstrates task-level design and

optimization of heterogeneous systems. Chapter 5 introduces our proposed

Python-based high-level programming language and synthesis flow, PyLog,

which greatly eases the challenges in FPGA accelerator design. Chapter

6 uses quantization in ReRAM-based DNN accelerators as an example to

discuss design space exploration in accelerator design. Finally, Chapter 7

concludes this dissertation.

3

CHAPTER 2

EFFICIENT HARDWARE
ACCELERATORS

In this chapter, we will briefly review the types of hardware accelerators that

are widely used, the latest hardware features provided by recent hardware

platforms, and the design methodology of FPGA accelerators.

2.1 Common Accelerator Types

General-Purpose Graphics Processing Unit (GPGPU). Originally,

GPUs are the specialized processing units in the computing system that ac-

celerate the creation and manipulation of images for display. GPUs can be

found in many different devices from edge devices like mobile phones and

smart watches, to high-performance systems like workstations and servers.

During the recent decades, people use GPUs to do general-purpose com-

puting and realize that GPUs can deliver great computation throughput in

many application domains including deep learning, graph processing, scien-

tific computing, high-performance computing, and so on.

Field-Programmable Gate Array (FPGA). An FPGA is a special in-

tegrated circuit chip that can be configured into digital logic specified by

users. FPGAs contain arrays of programmable gate logic blocks, intercon-

nect blocks, as well as other specialized hardware blocks like memory, DSPs,

specialized IPs and so on. These components in the FPGAs are the basic con-

figurable blocks. Even though the typical operating frequency of FPGAs is

not as high as application-specific integrated circuit (ASIC), FPGAs provide

flexible programmability, low computation latency, as well as fine-grained

parallel processing capability.

Application-Specific Integrated Circuit (ASIC). An ASIC is a spe-

cialized integrated circuit chip that is customized to accelerate a specific type

of application or computation pattern. As it is designed to perform only one

4

type or one set of operations, typically an ASIC is highly optimized and can

deliver very good computation performance. However, as it is customized

circuit, it usually has no or very limited programmability.

Accelerators with Emerging Architectures. In recent years, people

have been exploring the alternative design options of accelerators. Concepts

of analog computing, in-memory computing, near-storage computing, etc.,

have been proposed. Some of these accelerators use emerging analog circuit

techniques to build accelerators, which provide energy efficient acceleration

solutions. In Chapter 6, we will look into the optimization of ReRAM-based

DNN accelerators. Some of them bring computing units into memory or

storage, which reduces data access latency.

2.2 Heterogeneous Systems

One recent trend of computing systems is heterogeneity. Different types

of processors and accelerators provide different computing capabilities, and

introducing heterogeneous components into the system increases system flex-

ibility and efficiency. One example is the System-on-Chip (SoC) platforms

that typically incorporate CPUs, programmable logic (or other specialized

accelerators), and sometimes embedded GPUs. These SoC systems provide

many different system level configuration options, including accelerator con-

figuration options as well as interconnect configuration options. This config-

urability greatly improves the flexibility of these SoC systems.

Recently, more and more systems incorporate various types of accelerators

and processors. For example, Xilinx Versal Adaptive Compute Acceleration

Platform (ACAP) platforms contain embedded ARM cores, adaptable logic

engines, specialized AI engines, DSP engines, and Network-on-Chip (NoC)

components. NVIDIA Jetson AGX Xavier is an SoC platform designed for

autonomous machines. It contains embedded ARM core, Volta GPU, deep

learning accelerator (DLA), and vision acclerator (VA).

The growing heterogeneity also poses severe challenges in designing, pro-

gramming, and optimizing these complicated systems. High usability be-

comes especially important for these systems. More specifically, how to

leverage the compute capability of each component in the system and how

to program and optimize the overall performance of the heterogeneous sys-

5

tems are the critical problems. In Chapter 4, we will discuss how to enable

collaboration between different computing units in these systems and further

improve the overall system performance.

2.3 FPGA Design Methodology

As we discussed above, FPGAs are special chips that can be configured into

specialized digital circuits. In the previous FPGA design methodology, there

are mainly two levels of approaches, RTL-based design flow and HLS-based

design flow.

The most widely adopted FPGA development flow today starts with pro-

gramming FPGA at the register transfer level (RTL) in hardware descrip-

tion languages (HDL) such as Verilog and VHDL. Then designers use FPGA

synthesis tools from FPGA vendors to synthesize RTL designs into FPGA

bitstreams, which are used to configure FPGA. Programming FPGA at this

level requires rich expertise in digital circuit design and the FPGA architec-

ture. Besides, programming at this level is non-intuitive, error-prone, and

hard to reuse code compared with modern programming languages, leading

to long development, optimization, and verification cycles.

High-level synthesis (HLS) aims to simplify FPGA programming. Elevat-

ing the abstraction level of FPGA programming to that of C/C++/OpenCL

[1, 2, 3, 4], HLS tools enable FPGA designers to express their algorithms

in more familiar high-level languages. Developers are expected to use HLS

pragmas or directives to guide the HLS tools to optimize and generate desired

RTL design. Compared with RTL design flow, HLS allows FPGA developers

to develop, optimize, verify, and reuse their design at a higher level, thereby

greatly improving productivity. However, as C/C++/OpenCL are initially

designed for general-purpose processors and start with an inherent sequen-

tial execution model inside each kernel/function definition of these languages,

they are essentially different from the FPGA’s fine-grained parallel process-

ing nature (the OpenCL model can describe parallel work-items but it is

at thread-granularity and not very well supported in current HLS tools).

The existing HLS tools are also designed in a way that accommodates the

sequential execution model of input languages.

As we will discuss later in the dissertation, we propose to move the ab-

6

straction level of FPGA programming to an even higher level, such as Python

level, where there are high-level operations and data objects. Moving up the

abstraction level simplifies FPGA programming, and allows compiler to do

more aggressive optimizations. This will be elaborated in Chapter 5.

7

CHAPTER 3

CASE STUDY: SPARSE DNN
ACCELERATOR

In this chapter, we will use sparse DNN inference accelerator as an example

to demonstrate the design considerations, methodology, and optimizations

when designing FPGA accelerators with HLS tools.

Deep neural networks (DNNs) have been widely adopted in many domains,

including computer vision, natural language processing, and medical care.

Recent research reveals that sparsity in DNN parameters can be exploited

to reduce inference computational complexity and improve network qual-

ity. However, sparsity also introduces irregularity and extra complexity in

data processing, which make the accelerator design challenging. This work

presents the design and implementation of a highly flexible sparse DNN in-

ference accelerator on FPGA. Our proposed inference engine can be easily

configured to be used in both mobile computing and high-performance com-

puting scenarios. Evaluation shows our proposed inference engine effectively

accelerates sparse DNNs and outperforms the CPU baseline solution by up

to 4.7× in terms of energy efficiency.

3.1 Introduction

Recent years have witnessed the success of deep learning in many domains,

including computer vision, natural language processing, medical care, au-

tonomous driving and so on [5], [6]. The extraordinary high accuracy of deep

learning based approaches is made possible by performing inference using pre-

trained DNN models, which have very high computation and memory space

demands. This complexity presents a significant challenge to adopting DNNs

for many real-world applications, especially edge-computing scenarios, which

have stringent power and latency requirements for computation. Researchers

have invested significant effort in making efficient low-computational-cost

8

DNN based systems possible. The research efforts mainly fall into three as-

pects: designing light-weight DNNs, reducing the amount of computation in

DNN without sacrificing accuracy, and accelerating DNNs with customized

hardware.

Recent research reveals that many parameters in deep neural networks are

redundant and can be pruned away. Parameter pruning reduces the number

of parameters and the amount of computation; after parameter pruning, the

parameters in DNN layers become sparse. However, sparsity in DNN layers

also introduces irregularity and extra complexity from sparse data formats

and scheduling computation workload. It is challenging for the processors and

accelerators to handle the irregularity and extra complexity which may lead

to non-negligible overhead in execution time. The overhead diminishes the

benefits from sparsity and may even result in worse performance compared

to non-sparse approaches if not handled properly.

As deep learning conquers more and more complicated cognitive computing

tasks, the size and complexity of DNN architectures explodes. Practition-

ers realize that it is getting harder and harder to achieve performance and

power efficiency targets for deep learning systems with CPUs and GPUs, and

specialized deep learning accelerators are needed. Many deep learning accel-

erators have been proposed and they have all kinds of optimization objectives

[7], [8]. Adoption of specialized deep learning accelerators has made many

challenging application scenarios possible, including intelligent wearable de-

vices, real-time high-definition video processing systems, etc. FPGAs have

been one of the ideal platforms for DNN acceleration as FPGAs provide the

combination of low latency, high energy efficiency, and high reconfigurability,

which make FPGAs adaptable to many application scenarios.

In this work, we design and build a configurable sparse DNN inference

engine on an FPGA that accelerates the inference of sparse DNNs. We target

very deep sparse DNNs that can be used as the backbone network for future

complex cognitive tasks. These DNNs have many layers and there are many

neurons inside a layer. Our proposed inference engine can be reconfigured and

adopted in different FPGA platforms, depending on the available hardware

resources and application requirements.

The contribution of this work can be summarized as follows:

• We design and build a configurable sparse DNN inference engine that is

9

highly flexible and capable of processing different sizes of sparse DNNs.

• We propose several design optimization techniques for sparse DNN in-

ference that are general enough to potentially benefit future works on

sparse DNN acceleration.

• We model and analyze the computation of sparse DNNs, and we show

how the accelerator design can be parameterized and what the accel-

erator design space looks like.

The rest of this chapter is organized as follows. Section 3.2 provides back-

ground information on sparse DNNs and FPGA accelerators. Section 3.3 dis-

cusses our proposed accelerator design optimization techniques. Section 3.4

presents the details of our proposed sparse DNN inference engine. Section 3.5

shows our experiment setups and results. Section 3.6 reviews the recent works

on similar areas. Finally, Section 3.7 concludes the whole chapter.

3.2 Background

3.2.1 Sparse Deep Neural Networks

In this work, we focus on feedforward deep neural networks that consist of

fully connected layers. Note that our formulation for fully connected layers

can also be extended for sparse convolution neural networks (CNNs), since

convolution can be reduced to matrix multiplication operations. Motivated

by the Sparse DNN Graph Challenge [9], we consider a DNN with L layers.

Assume each layer in the DNN has M neurons, i.e. the dimension of the

input and output feature vectors of each layer is M .

Let yl−1 = (yl−1,1, yl−1,2, . . . , yl−1,M) be a single input sample to the l-th

layer, and yl be the corresponding output from the l-th layer. y0 is the

input feature vector to the neural network, e.g. y0 can be one input image.

There can be N input samples, and these N input samples can be stacked

as input matrix Y0 = (y
(1)
0 , y

(2)
0 , . . . , y

(N)
0)>, where y

(i)
0 is a row vector and is

the i-th input sample to the network. Similarly, the input and output of the

l-th layer with multiple samples can be represented as matrices Yl−1 and Yl

respectively. Feature matrices Y’s are N ×M matrices.

10

The computation of the l-th layer can be formulated as

Yl = h(Yl−1Wl + bl), 1 ≤ l ≤ L (3.1)

where h(·) is the ReLU function h(x) = max(0, x). Wl is an M ×M ma-

trix whose element Wl(i, j) at the i-th row and the j-th column represents

the weight of the connection from the i-th input neuron to the j-th output

neuron. bl is the bias vector of dimension M .

Wl and bl (1 ≤ l ≤ L) are the parameters of the DNN which are deter-

mined by DNN training. y0 is the input feature vector to the neural network.

After DNN weight pruning, W’s become sparse matrices. In some applica-

tion, y0 is also sparse. For example, in the handwritten digit recognition task

(MNIST dataset), only a small subset of image pixels are black (“1”) and

the rest are white (“0”). In the problem setting of this work, all W’s and y0

are sparse.

3.2.2 FPGA Accelerators

FPGAs have been used in many application scenarios such as Internet-of-

Things (IoT), wearable devices, autonomous driving, cloud computing, and

scientific computing. Many different applications benefit from FPGA’s low

processing latency and high energy efficiency. Programming FPGAs has been

a big challenge for decades, which prevents FPGA from being rapidly de-

ployed and adopted in more domains. High-level synthesis (HLS) tools have

greatly improved the productivity of FPGA designers. The C/C++/OpenCL

to hardware description language (HDL) design flow enabled by HLS tools

makes FPGA more accessible for designers.

3.3 Design Optimizations

This section presents the optimizations used in our sparse DNN accelerator.

In this work, we use the test sparse networks provided by Graph Challenge [9].

The sparse DNN has 120 layers, each of which contains 1024 neurons. The

optimization techniques presented here can be easily generalized to accelerate

any sparse DNN.

11

3.3.1 Dense Feature Vectors and Sparse Parameters

As mentioned in Section 3.2.1, both input image and DNN parameters are

sparse. The input files of images and parameters are also in sparse format.

The input files contains all the edges between neurons that have weights

larger than 0. Therefore, the multiplication in Equation 3.1 is the multi-

plication of two sparse matrices, and one straightforward design would be

implementing multiplication of two sparse matrices directly. In this way,

the dot product of a sparse row vector and sparse column vector requires

computing the set intersection of their indices. Since these sets are typically

small (less than 1024 elements), and the resource complexity of parallelizing

the intersection is not trivial, the sequential comparison algorithm will be the

most straightforward algorithm. Sequential comparison requires O(m + n)

comparisons, where m and n are the number of non-zero elements in two

vectors respectively.

However, we observe that treating both Y and W matrices as sparse may

not be optimal. In practice, the number of non-zero elements in the column

vectors in the weight matrices are typically constrained. In the test data

used in this work, the number of non-zero elements in each column of weight

matrices W’s is less than or equal to 32 (in 1024 neurons case). However,

the sparsity of feature maps varies a lot. The number of non-zero elements

in the row vectors in feature maps can vary from 0 to 1024 (in 1024 neurons

case).

In this work, we treat the feature maps as dense matrices and the DNN

parameters as sparse ones. In this way, the storage of DNN parameters is

compact while access to parameter and feature maps is more efficient. With

this dense-feature/sparse-parameter scheme, the multiplication of the input

feature vector and a column (weights of incoming edges to a neuron) in the

parameter matrix can be done in a way shown in Listing 3.1. In Listing

3.1, param is the sparse representation of a column in the parameter matrix,

an array of pairs of indices and weights. The code iterates through the

param array, uses indices to retrieve the feature vector fvec element and

multiplies it with the corresponding weight. With this approach, there are

param.size() random accesses into the feature vector array fvec. Note

that the difference from regular dense matrix multiplication is that here the

feature vector is randomly accessed as parameter arrays are sparse. This

12

random access pattern is not friendly to memory access efficiency.

float sum = 0.0;

for(int i = 0; i < param.size (); i++) {

sum += fvec[param[i].idx] * param[i]. weight;

}

Listing 3.1: Feature vector fvec multiplied with a column param of the

parameter matrix

3.3.2 Grid Representation and Data Dependencies

…

…
… … … … … … … … … … … …

…

Timage images

Number of layers: Tlayer

Buffer A

Buffer B

Tile

❶

❷

Figure 3.1: Tiling Scheme

In order to better illustrate the data dependencies in the sparse DNN

computation, we represent the computation of sparse DNN as a 2D grid, as

shown in Figure 3.1. Each row in the grid represents the computation on one

input sample (one image). The i-th row represents the processing of the i-th

input sample. The number of rows equals the number of input test images.

Each column of the 2D grid represents the computation of a specific layer in

the sparse DNN on all input samples’ feature maps. The j-th column in the

2D grid represents the computation of all input samples’ feature maps going

through the j-th layer. The grid point at the i-th row and the j-th column

represents the computation of the i-th input samples’ feature maps and goes

through the j-th layer in the DNN. Each grid point includes sparse vector-

matrix multiplication (Figure 3.2), bias, and non-linear operations. Using

13

the previous notation of M neurons, inside each grid point, the dimensions

of vector and matrix in the sparse vector-matrix multiplication are M and

M ×M respectively.

The computation of rows of the 2D grid is independent from each other,

since there is no data dependency between input samples. The computation

of columns has dependency on the computation of the previous column. This

is because the input to the next layer is the output from the previous layer.

Within each grid point, the computation of inner products of the vector and

M columns of matrix is independent of each other.

3.3.3 Ping-Pong Buffering

In this work, we use very deep DNNs to test the performance of our system.

The number of layers in the test DNNs varies from 120 to 1920. In order to

keep track of the activations in this many layers, we use ping-pong buffers to

store the input and the output feature maps. For example, when computing

layer 2i, buffer buf a is used to store the input feature maps, while buffer

buf b is used to store the output feature maps. When processing layer 2i+1,

the roles of buffers buf a and buf b switch, the output feature map from layer

2i in buffer buf b is read and processed and the output is stored back into

buffer buf a.

Figure 3.1 uses blue and green color to mark the usage of ping-pong buffers.

The feature maps in neighbor layers are stored in two buffers. With this de-

sign, we only need two buffers to store the intermediate feature maps no

matter how many layers there are. Note that we are not sacrificing perfor-

mance here as there are intrinsic data dependencies between layers and layers

need to be processed sequentially.

3.3.4 Multi-Level Tiling

The on-chip memory resource in FPGA is limited. The size of input samples

and DNN parameters are much larger than the capacity of FPGA on-chip

memory. Tiling is necessary to reuse on-chip memory space and improve the

processing efficiency. In this work, we use tiling along multiple dimensions

at multiple levels. The combination of tiling along multiple dimensions at

14

multiple levels enables high flexibility of the design. Given input sizes and

the number of resources on the target FPGA platform, this tiled design can

be easily configured for best performance by changing tile sizes.

In our design, tiling happens along three different dimensions and levels:

1 across input samples (input batch); 2 across layers (inter-layer); 3 within

a layer, across neurons (intra-layer).

The first type of tiling happens across input samples. Figure 3.1 and Figure

3.2 illustrate this type of tiling (see 1 in the figures). Multiple input samples

(Timage samples) are grouped into a tile and processed together. The input

samples within a tile share the same copy of DNN parameters. Each load

of DNN parameters is reused for Timage times. Therefore, the larger tile size

Timage is, the more times DNN parameters are reused. At the same time,

larger Timage requires more on-chip memory to store images and parameters.

The second type of tiling is done across DNN layers. 2 in Figure 3.1

shows this type of tiling. Tlayer layers form a tile. The parameters in a tile

are loaded into on-chip BRAM all at once, and the input samples go through

each layer in the tile. The processing within a tile is fully pipelined. That

means larger Tlayer requires more intermediate buffers. The output of the tile

is the output feature vector from the last layer in the tile. Depending on the

tile execution order, the output of the tile may need to be written back to

the global DRAM on the FPGA board if image tiles are iterated first. Let

L be the number of layers in DNN, then with tile size of Tlayer, there will be

bL/Tlayerc feature vectors being written back to the on-board DRAM in that

case. The larger Tlayer is, the fewer write-backs there are, while more on-chip

memory is required to store parameters.

The third type of tiling happens at a different level than the previous two

types of tiling. This type of tiling happens across neurons within a layer. 3

in Figure 3.2 illustrates this type of tiling. Multiple columns (neurons) in

a DNN layer are grouped into a tile and multiply with the input sample to

get the partial sums of corresponding columns. As discussed before, these

partial sums are independent from each other and can be done in parallel.

The feature vector is duplicated and stored in Tneuron different BRAMs so

that they can be accessed in parallel. In our design, each of these partial

sums is calculated by a separate sparse vector dot product unit.

15

Number of neurons, M

Feature vector dimension

Tile size Tneuron

Partial sums,
tile size Tneuron

Input Feature Vectors
(dense)

Weights
(sparse)

Output Feature Vectors
(dense)

…
…

…
…

B
at

ch
 s

iz
e
T i

m
ag

e

…
…

…
…

❶

❸

Figure 3.2: Sparse Vector-Matrix Multiplication

3.3.5 Dynamic Workload Balancing

In our sparse DNN inference engine, there are multiple accelerator instances.

Each accelerator can be controlled independently. The host program assigns

packs of images to these accelerators. We use a dynamic workload assignment

algorithm (Algorithm 1) in the host CPU program to balance the workloads

of the accelerators [10]. The input samples are partitioned into small packs

and used as the minimal assignment unit. In Algorithm 1, one pack contains

S input samples, e.g. S = 32. The high-level idea of dynamic workload

balancing is that the host program checks the status of each accelerator and

assigns a pack of input samples to the idle accelerator. There are two cases

where the accelerator can accept new workload assignment. The first case is

that the accelerator has finished the previous assignments, has results ready,

and is ready to accept new ones. Line 7 in Algorithm 1 deals with this

case. In this case, the host program collects the results returned from the

accelerator, and assigns the current pack to this accelerator. The second

case is that the accelerator is idle and does not have results to report (Line

4). In this case, the host program simply assigns a pack of input samples to

this accelerator. In practice, we choose S = 32, and achieve nearly perfect

workload balancing of accelerators.

16

Algorithm 1 Dynamic Workload Assignment

Input: Number of input samples N , pack size S, accelerator pool P =

{P[0], ..., P[m-1]}.
1: curr img ← 0, acc ptr ← 0
2: size ← Min(S,N − curr img)
3: while curr img < N do
4: if P[acc ptr].IsIdle() then
5: Assign(curr img, size, P[acc ptr])
6: curr img ← curr img + size

7: else if P[acc ptr].IsDone() then
8: CollectResults(P[acc ptr])
9: Assign(curr img, size, P[acc ptr])

10: curr img ← curr img+size

11: end if
12: acc ptr ← (acc ptr+1)%m

13: end while

FPGA Chip

… …

… …

buf_b_1

buf_b_2

buf_b_Tneuron

Sparse
dotprod

Sparse
dotprod

Sparse
dotprod

…

buf_a_1

buf_a_2

buf_a_Tneuron

Sparse DNN Accelerator

params …

Acc

Figure 3.3: Sparse DNN Accelerator Architecture

3.4 Sparse DNN Accelerator Architecture

In this section, we present the hardware architecture of our sparse DNN

inference engine, which incorporates all the optimizations discussed in Section

3.3.

Figure 3.3 depicts the high-level view of sparse DNN inference engine in an

17

FPGA chip and the structure of a sparse DNN accelerator. Our sparse DNN

inference engine consists of a pool of accelerators. Each of these accelerators

can be controlled independently by the host CPU and they do not require

synchronization during the processing. Each accelerator can process any

number of input samples and any number of DNN layers.

Our inference engine design can be adopted in both power-constrained edge

computing scenarios as well as high-performance cloud computing scenarios.

The number of accelerators in the engine is determined by the hardware re-

source in the FPGA chip. Each accelerator is lightweight but fully capable of

running sparse DNN inference. In low-power FPGAs, we can instantiate one

single accelerator and achieve low-power high-efficiency processing, while on

high-performance FPGAs, many accelerators can be instantiated to achieve

high processing throughput.

As illustrated in Figure 3.3, inside each accelerator, multiple pairs of ping-

pong buffers (group A buf a i’s and group B buf b i’s in Figure 3.3) and

sparse vector dot product processing elements (PEs) are instantiated.

Each PE processes the vector dot product of the same input feature vector

with one different column in the parameter matrix. These PEs calculate

the partial sums synchronously in a single instruction multiple data (SIMD)

manner. The buffers in the accelerator are instantiated with block RAMs

(BRAMs) in FPGA. Note that each of these BRAMs has two read ports

and can provide two data point per clock cycle. In order to fully utilize

the parallelism between columns in the parameter matrix, one input feature

vector is actually replicated into Tneuron separate buffers, together comprising

buffer group A. In this way, Tneuron buffers can all be accessed and processed

at the same time. The outputs from sparse vector dot product engines are all

stored into the same buffer, buf b 1. After processing of one layer, the values

in buf b 1 are copied into all the other buffers in group B. Then, the weights

of the next layer are loaded into parameter buffers (params in Figure 3.3) and

group B buffers are used as inputs to sparse vector dot product engines. The

outputs are stored into the same buffer buf a 1. Again, before processing

the next layer, the values in buf a 1 are copied to the other buffers in group

A.

18

Table 3.1: Test Platform Information

FPGA Board Xilinx Virtex-7 FPGA VC709 Board
FPGA Chip Xilinx XC7VX690TFFG1761-2 FPGA
On-Board Memory 2×4GB DDR3 (up to 933MHz)
On-Chip Memory (Kb) 52,920
On-Chip DSP Slices 3,600
On-Chip Logic Cells 693,120
Host-FPGA Interconnect PCIe Gen3 up to 8 lanes
Host CPU Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz
Host Memory 24 GB DDR3 (800MHz)
Operating System Ubuntu 14.04 LTS
Host Compiler g++ 4.8.4

3.5 Experiments

3.5.1 Test Platform and Dataset

In this work, we use the Xilinx VC709 board [11] as the target FPGA plat-

form. The basic information about our test system is listed in Table 3.1. We

use the synthetic sparse DNN dataset from Graph Challenge [12] to evaluate

our solution. The information on the synthetic dataset we used in this work

is the sparse DNN with 120 layers. Each layer has 1024 neurons. The input

sample dimension is 1024 as well. The total parameter size is 176MB.

The input data is stored in text files. Each line in the text file follows the

graph edge representation of (node a, node b, weight). Our host code

reads the input text files and stored the DNN parameters in Compressed

Column Storage (CCS) format. The input images are stored in the dense

format.

3.5.2 Design Parameters

In our final design targeting Xilinx VC709 board, we choose the following

design parameters to maximize the performance of the system. Please note

that the choice of these design parameters highly depends on the target

FPGA platform and the design goals.

• Number of accelerators in FPGA P = 15. We put as many accelerators

as possible onto the FPGA chip and P = 15 is the maximum possible

19

number of accelerators to be integrated into the target Virtex-7 FPGA.

Placing more accelerators will lead to severe place and route congestion

and timing problem.

• Tiling across input samples Timage = 1. We choose Timage = 1 and opti-

mize the design for Timage = 1 case so that our design can have optimal

latency processing one single image. Although choosing Timage > 1

can increase the parameter reuse, Timage > 1 also requires larger buffer

sizes to store intermediate results. Choosing Timage = 1 minimizes the

pressure on the local on-chip memory.

• Tiling across layers Tlayer = 2. We load the parameters for two layers

at a time to accommodate the processing with ping-pong buffer. We

choose to iterate through the layers and not reusing the parameters

for images. This way, only the final classification result (one single

integer per input sample) needs to be written back, which minimizes

the number of intermediate results being written back. This reduces

the pressure on DRAM bandwidth and improves the efficiency.

• Tiling across neurons Tneuron = 16. We create a script to automatically

generate synthesizable C code with various Tneuron values and test the

latency of the design. It turns out that Tneuron = 16 is the optimal

setting under the timing constraint of 4 ns per clock cycle (250 MHz).

Smaller Tneuron does not fully exploits the parallelism within a DNN

layer, while larger Tneuron introduces larger overhead in extra buffering

space.

• Workload assignment pack size S = 32. We evaluate the accelerator

performance with different S values, such as 32, 64, and 256. The

differences in performance with these sizes are not significant for the

current setting.

3.5.3 Evaluation

With the design parameters listed in Section 3.5.2, the resource utilization

of the inference engine on VC709 board is listed in Table 3.2. Note that

different design parameters will lead to different FPGA resource utilization

20

Table 3.2: FPGA Resource Utilization

Look-Up Tables 209,814 / 433,200 (48.43%)
Flip-Flop 232,720 / 866,400 (26.86%)
BRAM 815 / 1,470 (55.44%)
DSP 150 / 3,600 (4.17%)

ratios. As we explained in Section 3.5.2, we conservatively use around 50% of

FPGA resources so that the frequency and timing quality of the synthesized

circuit can be guaranteed. The power consumption of this design is around

12 W, which is estimated by the synthesis flow in Xilinx Vivado.

To fully evaluate the benefits of our proposed techniques, we measure the

performance of two FPGA designs, one (“Optimized”) is with all optimiza-

tions described in Section 3.3, the other (“Basic”) is a basic FPGA design

without tiling. Figure 3.4 and Table 3.3 show the performance of two designs

with various numbers of accelerators, as well as the efficiency improvement

from the optimized FPGA solution compared to the CPU solution. As shown

in the figure, the optimized design can achieve more than five times speedup

compared to the basic design. In our evaluation, the best number of ac-

celerators for the optimized design is around 7. For a smaller number of

accelerators, adding more accelerators exploits parallelism in processing im-

ages and therefore improves performance. However, when there are enough

accelerators, FPGA on-board memory bandwidth becomes the bottleneck

of the whole system. Even though adding more accelerators increases com-

putational capabilities, it also increases memory access pressure. At some

point, memory bandwidth saturates and adding more accelerators no longer

improves system performance.

We evaluated the baseline MATLAB code provided by Graph Challenge on

a high-performance server with four AMD Opteron 6272 Processors (4× 16

cores). The execution time of the MATLAB code is 124.07 seconds, and

its power consumption is estimated to be 114 W [13]. Although the multi-

core CPU performance is around two times faster than the FPGA solution,

the power efficiency of our design is up to 4.7× higher than the multi-core

solution. Here are a few notes to help understand the difference in perfor-

mance between our solution and the MATLAB based multiple CPU solution.

First, the MATLAB implementation uses the sparse BLAS libraries in MAT-

LAB, which is highly optimized for sparse matrix operations. Therefore the

21

Table 3.3: Sparse DNN Accelerator Performance

P Basic (s) Optimized (s) Speedup Efficiency over CPU

1 4618.45 906.81 5.09 1.30
2 2313.04 474.29 4.88 2.49
4 1159.95 310.14 3.74 3.80
6 773.26 254.76 3.03 4.63
7 662.16 251.31 2.63 4.69
8 579.26 269.89 2.14 4.37
12 386.85 489.37 0.79 2.41
15 310.53 484.23 0.64 2.43

MATLAB version is not a trivial reference solution. Second, the target plat-

form has many more hardware resources and higher computation capability.

We are comparing our single FPGA solution against a solution based on

64-core server grade high-performance CPUs here. Third, the memory ac-

cess path from host memory to FPGA device memory has lower peak data

transfer bandwidth compared the CPU. In our design, in order to reduce the

complexity of FPGA place and route, and create designs with good timing

properties, we only uses one single PCIe lane (up to eight lanes are allowed in

hardware) and only one host-device channel (up to four channels are allowed

in hardware). Based on our experiment results, using more PCIe lanes or

host-device channels will result in bad circuit timing and the design frequency

will be low. This narrow CPU-FPGA interface becomes a bottleneck. The

performance of our accelerator solution can be further improved with better

optimized CPU-FPGA inference. This will be done as a future work.

Given enough DRAM bandwidth, our solution can be easily scaled to larger

FPGAs with more accelerators or even multiple FPGAs, as our accelerators

can operate independently on different set of input samples. This way the

parallelism in input samples and neurons in the layers can be further ex-

ploited, as we discussed in Section 3.3. With more accelerator instances and

multiple FPGAs, our solution should be able to outperform the multi-core

CPU solution even in terms of execution time.

3.6 Related Works

In this work, we focus on hardware acceleration of sparse deep neural net-

works (DNNs). Converting dense deep neural networks into sparse ones is

22

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 6 7 8 12 15

Ef
fi

ci
e

n
cy

 Im
p

ro
ve

m
e

n
t

o
ve

r
C

P
U

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Number of Accelerators

FPGA Basic

FPGA Optimized

Efficiency over CPU

Figure 3.4: Sparse DNN Accelerator Performance

out of the scope of this work. The computation in sparse DNNs we focus on

is essentially sparse vector-matrix multiplication with non-linear activation

functions. There are several works on acceleration of sparse matrix vec-

tor multiplication. Fowers et al. [14] proposed an FPGA design for sparse

matrix-vector multiplication. The accelerator is designed in RTL code. The

design consumes 25 W and achieve 2.6× and 2.3× higher energy efficiencies

than CPU and GPU. The performance of the design is around two thirds

of CPU performance and one third of GPU performance. This work uses

Compressed Interleaved Sparse Row (CISR) matrix encoding which enables

simultaneous multiply-accumulate operations on multiple rows of the ma-

trix. The problem solved here is similar to our work, the major difference is

that our work focuses on sparse DNNs specifically instead of sparse matrix

vector multiplication. Also, our sparse DNN inference engine is parameter-

ized and is capable of exploiting various types of parallelism and data reuse

opportunities.

Giefers et al. [15] did a thorough comparison of the energy efficiency of

sparse matrix multiplication on CPU, Xeon Phi and FPGAs, in the context

of heterogeneous systems. The FPGA platform in this work is Nallatech

385N FPGA board, which contains an Altera Stratix V FPGA. The design is

done with OpenCL SDK for FPGA. The evaluation results show that FPGA

is remarkably efficient. This work focuses on energy efficiency comparison

across platforms, and the FPGA design uses the general OpenCL code which

23

may not be best optimized for FPGA and the design flow.

Besides, there are several recent works that focus on FPGA acceleration of

sparse convolutional neural networks (CNN) [16], [17] and sparse long short-

term memory (LSTM) [18]. These works accelerate the CNNs and LSTMs

while this work focuses on very deep fully connected networks. The com-

putation inside sparse CNN and LSTM have similar memory random access

patterns as sparse matrix vector multiplication. However, sparse CNNs and

LSTMs have unique data dependency patterns, therefore the high-level data

access and computation patterns in these works are different from this work.

Besides, this work targets very deep and wide networks which are generally

larger than the networks used in current applications.

3.7 Conclusion

In this work, we proposed and built a configurable sparse DNN inference

engine. The proposed inference engine is parameterized and it can be config-

ured to have different sizes and different processing capabilities. The infer-

ence engine can be adopted in both edge computing and high-performance

computing scenarios. We also modeled and analyzed the computation of

sparse DNN inference, parameterized sparse DNN hardware design, and pre-

sented the design space of the sparse DNN accelerators. The proposed design

was evaluated on Xilinx VC709 FPGA board. Evaluation results show that

the proposed design achieve up to 4.7× better energy efficiency compared to

CPU.

24

CHAPTER 4

DESIGN AND OPTIMIZATION OF
HETEROGENEOUS SYSTEMS

Heterogeneous CPU-FPGA systems are evolving toward tighter integration

between CPUs and FPGAs for improved performance and energy efficiency.

At the same time, programmability is also improving with high level syn-

thesis (HLS) tools (e.g., OpenCL Software Development Kits), which allow

programmers to express their designs with high-level programming languages,

and avoid time-consuming and error-prone register-transfer level (RTL) pro-

gramming. In the traditional loosely coupled accelerator mode, FPGAs work

as offload accelerators, where an entire kernel runs on the FPGA while the

CPU thread waits for the result. However, tighter integration of the CPUs

and the FPGAs enables the possibility of fine-grained collaborative execu-

tion, i.e., having both devices working concurrently on the same workload.

Such collaborative execution makes better use of the overall system resources

by employing both CPU threads and FPGA concurrency, thereby achieving

higher performance. In this chapter, we explore the potential of collabora-

tive execution between CPUs and FPGAs using OpenCL HLS tools. First,

we compare various collaborative techniques (namely, data partitioning and

task partitioning), and evaluate the tradeoffs between them. We observe

that choosing the most suitable partitioning strategy can improve perfor-

mance by up to 2×. Second, we study the impact of a common optimization

technique, kernel duplication, in a collaborative CPU-FPGA context. We

show that the general trend is that kernel duplication improves performance

until the memory bandwidth saturates. Third, we provide new insights that

application developers can use when designing CPU-FPGA collaborative ap-

plications to choose between different partitioning strategies. We find that

different partitioning strategies pose different tradeoffs (e.g., task partitioning

enables more kernel duplication, while data partitioning has lower commu-

nication overhead and better load balance), but they generally outperform

execution on conventional CPU-FPGA systems where no collaborative exe-

25

cution strategies are used. Therefore, we advocate even more integration in

future heterogeneous CPU-FPGA systems (e.g., OpenCL 2.0 features, such

as fine-grained shared virtual memory).

4.1 Introduction

The demand for processing larger amounts of data with higher performance

under constrained power and energy budgets makes heterogeneity a funda-

mental feature of computing systems. Therefore, heterogeneous architectures

(e.g., CPU-GPU, CPU-FPGA) are now ubiquitous in modern data centers

and supercomputers [19], [20], [21]. In addition to powerful CPUs, current

computing systems typically employ various types of specialized devices, such

as GPUs, FPGAs, tensor processing units (TPUs), and other ASICs. FPGAs

are particularly interesting because they provide a tradeoff between perfor-

mance and programmability, when programmed with High Level Synthesis

(HLS) frameworks, like Intel FPGA SDK [22] for OpenCL and Xilinx SDAc-

cel [23]. FPGAs are not only suitable for accelerating applications under

stringent energy efficiency requirements [24], [25], [26], but they are also be-

ing increasingly adopted in cloud servers and data centers [27], [28], [29], [30],

[31], [32].

For example, Microsoft has built an Earth-scale FPGA-based network (the

Catapult V2 [28], [29]), which enables network flows to be programmably

transformed at line rate in the cloud, thereby accelerating both network func-

tions and applications. Other major efforts using FPGAs in the cloud include

IBM SuperVesselCloud [30], Amazon EC2 [27], Microsoft Brainwave [33], and

the Intel CPU-FPGA deep learning inference accelerator card (DLIA) [31].

Intel estimates that FPGAs will run in 30% of data center servers in 2020 [32].

Traditionally, accelerators (including FPGAs) have been used as offload

engines, where an entire kernel runs on the accelerator while the CPU remains

idle, waiting for the result [34], [35], [36], [37]. More recently, vendors provide

interconnect technologies such as Intel QuickPath Interconnect (QPI) [38],

Hyper Transport [39], Front Side Bus (FSB) [40], Accelerator Coherency

Port (ACP) [41], AXI Coherency Extension (ACE) [42], ARM CoreLink

Interconnect [43], IBM Coherent Accelerator Processor Interface (CAPI) [44],

and Cache Coherent Interconnect for Accelerators (CCIX) [45]. In terms

26

of functionality, these interconnects operate in a similar manner, but their

details vary across CPU architectures, processor implementations, and silicon

fabrication. These interconnects enable tighter integration between CPUs

and FPGAs in SoC chips [46], [47], [48] and server-grade systems [49], [50].

The trend toward tighter integration of CPUs and FPGAs enables more

collaborative execution between devices. Rather than executing an entire

kernel on the FPGA while the CPU is idle, collaborative execution makes

better use of the overall system resources by involving both CPU threads and

FPGA in the execution. One of the key challenges of collaborative execu-

tion between CPUs and FPGAs is the identification of the best strategy for

partitioning work between the CPU and the FPGA. There are two major

approaches to partitioning of work. The first approach, called data partition-

ing, is to have the CPU and the FPGA perform the same task on different

subsets of the data. The second approach, called task partitioning, is to

have each device perform a different sub-task and communicate intermediate

results between them. Each partitioning strategy entails its own tradeoffs,

and different applications may benefit from different strategies. The factors

that impact the suitability of each partitioning strategy encompass (1) the

latency and bandwidth of inter-device communication, (2) the disparity in

the workload’s performance on the CPU versus the FPGA, (3) the diversity

of computation phases within a task, and (4) the hardware resource con-

straints. Each strategy poses its own challenges, such as how much data to

assign to each device or which sub-tasks to assign to which device. Our goals

in this work are (1) to evaluate different collaborative execution strategies

for CPU-FPGA systems by analyzing their effectiveness and their tradeoffs,

and (2) to provide insights for designing future CPU-FPGA collaborative ap-

plications. Though our work focuses on integrated CPU-FPGA systems, it

could be extended to collaborative execution using other types of accelerators

in heterogeneous systems.

We make the following contributions:

• We carry out the first quantitative evaluation of collaborative execu-

tion strategies with OpenCL HLS on CPU-FPGA systems using bench-

marks from diverse fields (e.g., image processing, graph processing,

producer-consumer computing, computer graphics, etc.).

• We propose new analytical models for different collaborative execution

27

strategies that assist us in estimating their performance of different

strategies.

• We rigorously analyze the tradeoffs of different partitioning strategies

for collaborative execution, and provide insights to help developers

make informed decisions when designing collaborative programs for

CPU-FPGA systems.

4.2 Collaborative Execution Strategies

We first define collaborative execution and two main strategies for it, namely

data partitioning and task partitioning. Then, we propose analytical models

to estimate the performance of data partitioning and task partitioning.

Collaborative execution refers to an application execution structure where

the CPU and the FPGA (or another accelerator) both participate in per-

forming the computations required by the application, as opposed to the

traditional offload accelerator model where the entire kernel is executed on

the FPGA while the CPU thread waits for the result. The strategies for

collaboratively executing a program on different types of devices can be clas-

sified into two main categories: data partitioning and task partitioning. We

discuss these in Sections 4.2.1 and 4.2.2 respectively. Many programs are

amenable to both data partitioning and task partitioning, and thus pro-

grammers need to choose between them. In this chapter, we aim to provide

insights to assist programmers in making the right decisions when writing

collaborative programs for integrated CPU-FPGA systems.

Throughout this section, we illustrate the collaborative execution strategies

using the simple example shown in Figure 4.1(a). In this example, a program

consists of many data-parallel tasks 1 that are applied to different data

elements. Each data-parallel task consists of multiple types of sub-tasks

(two in this case), and the result of the first sub-task 2 is required for the

execution of the second sub-task 3 . In some cases, a program may consist

of multiple phases where there is a global synchronization point 4 across

all data-parallel tasks. In OpenCL, these phases are typically expressed as

separate kernels, since global synchronization across the entire device is not

supported in the programming model.

28

…

…

data-parallel tasks

se
qu

en
tia

l
su

b-
ta

sk
s

gl
ob

al
 s

yn
ch

ro
ni

za
tio

n

(a) Program Structure (b) Data Partitioning

… …

Device 1 Device 2

…

…

(c) Task Partitioning

Device 1 Device 2

…

…

…
… …

1

2
3

4

Figure 4.1: Program with Many Data-Parallel Tasks (a) and Two
Collaborative Execution Strategies: Data Partitioning (b) and Task
Partitioning (c)

4.2.1 Data Partitioning

Data partitioning is a collaborative execution strategy wherein different de-

vices perform the same task on a different subset of the data, i.e., the data-

parallel tasks are distributed across devices. Figure 4.1(b) illustrates this

strategy. The main challenge with data partitioning is determining the op-

timal partitioning, i.e., the distribution of data-parallel tasks across devices

that results in the highest performance. One possibility is static partitioning

where a fixed fraction of the data-parallel tasks is statically assigned to each

device prior to execution. Another possibility is dynamic partitioning where

the data-parallel tasks are dynamically assigned to different devices from a

task pool during execution until all tasks are exhausted.

To better understand and analyze the collaborative execution patterns, we

establish analytical models. We use the abstraction of workers to represent

the processing units on a device. A thread on a CPU is a CPU worker. A

processing element on an FPGA is considered an FPGA worker. We use the

29

following notation to describe the application and system properties:

N – Number of data parallel tasks in the application

ti,C – Execution time of sub-task i by a CPU worker

ti,F – Execution time of sub-task i by an FPGA worker

wC – Number of available CPU workers

wF – Number of available FPGA workers

To define an analytical model for data partitioning, let α be the fraction

of data-parallel tasks executed by the CPU, and let βdata be the factor of

increase in the total execution time (i.e., overhead) due to distributing tasks

and merging partial results. The total execution time of the application is

expressed as:

tdata,total = βdata ·max
(
αN

∑
i ti,C

wC
,
(1− α)N

∑
i ti,F

wF

)
(4.1)

The overall execution time is the maximum of the execution times on the

CPU and the FPGA since the device that finishes first needs to wait for the

other device.

To minimize the total execution time when performing data partitioning,

α must be tuned such that the two terms in max(·, ·) are equal. This ensures

load balance, and thus minimizes device idleness and the overall execution

time.

The optimal α∗ can be obtained as:

α∗ =

∑
i ti,F
wF

/(∑
i ti,C
wC

+

∑
i ti,F
wF

)
(4.2)

The optimal α∗ is therefore determined by ti,C , ti,F , wC , and wF , which are

specific to the application and the system. Statically determining the optimal

α∗ requires profiling the program and a performance model of the system.

Alternatively, to maximize the performance of data partitioning without

the need for program profiling and a system performance model, dynamic

data partitioning can be used. As opposed to static data partitioning where

α is determined and fixed before execution, dynamic data partitioning does

not partition the data using a fixed ratio. Instead, data is partitioned into

30

fine-grained data blocks and those fine-grained data blocks are dynamically

assigned to devices (and workers) from a task pool until all tasks are ex-

hausted. The fraction of total data blocks that each device ends up pro-

cessing is largely dependent on the relative performance difference of the

different devices involved. With dynamic data partitioning, load balance be-

tween devices can be achieved. However, dynamic data partitioning might

have a higher βdata due to the additional overheads caused by contention on

the task queue.

4.2.2 Task Partitioning

Task partitioning is a collaborative execution strategy wherein different de-

vices execute different types of sub-tasks on the entire set of the data, i.e,

within each data-parallel task, different types of devices perform different

types of sub-tasks. Figure 4.1(c) illustrates this strategy. The main chal-

lenge with task partitioning is to determine which type of sub-tasks within

the data-parallel tasks is more suitable for each device. Even if one device

is better at all types of sub-tasks, task partitioning may still be beneficial,

if it makes better utilization of the devices that might be otherwise idle,

thus improving parallelism. Since the sub-tasks within a data-parallel task

are sequential, task partitioning creates a dependency between devices such

that one device must wait for intermediate results from another device be-

fore executing its sub-task. However, with multiple tasks available, signifi-

cant parallelism can still be achieved across devices via pipeline-style (i.e.,

pipeline-parallel) execution, as illustrated in Figure 4.1(c).

To define an analytical model for task partitioning, we use the same nota-

tion defined in Section 4.2.1. In addition, let SC and SF be the sets of indices

of sub-tasks to be executed on the CPU and the FPGA respectively. Note

that SC ∩ SF = ∅ and SC ∪ SF is the set of indices of all sub-tasks. Also

let βtask be the percentage of total execution time increase (i.e., overhead)

due to communication overhead in task partitioning. In task partitioning,

the execution of sub-tasks on the CPU and the FPGA may or may not be

overlapped, depending on the granularity of task partitioning and pipelining.

If the target platform supports fine-grained task partitioning, which allows

the CPU processing and the FPGA processing to perfectly overlap with each

31

other, the total execution time depends on the execution time of the device

that takes longer to finish. The total execution time of the application in

this case can be expressed as:

ttask,total = βtaskN ·max


∑
i∈SC

ti,C

wC
,

∑
i∈SF

ti,F

wF

 (4.3)

If the target platform only supports coarse-grained task partitioning, where

no overlap between CPU processing and accelerator processing is possible,

the total execution time is the sum of the execution time of the CPU and

the FPGA:

ttask,total = βtaskN ·


∑
i∈SC

ti,C

wC
+

∑
i∈SF

ti,F

wF

 (4.4)

More generally, in cases where the CPU and the FPGA processing have

some level of overlap, the total execution time must fall into the range given

by Equations 4.3 and 4.4. Therefore, Equation 4.3 and Equation 4.4 give the

lower bound and upper bound, respectively, of task partitioning execution

time.

Optimizing the performance of task partitioning increases in difficulty as

the number of sub-tasks increases, since the number of combinations of SC

and SF grows exponentially with respect to the number of sub-tasks. Thus,

minimizing Equations 4.3 and 4.4 is not straightforward. It requires a perfor-

mance model of the underlying hardware or manual effort, which are out of

the scope of this work. This work mainly focuses on how collaborative execu-

tion patterns can be better used, and any automatic or manual optimization

of Equations 4.3 and 4.4 is orthogonal to our work.

4.3 Methodology

We use OpenCL programs from the Chai benchmark suite [51], which is de-

veloped to evaluate collaborative execution. Table 4.1 shows the benchmarks

we evaluate, along with the collaborative execution strategy used by each

one. The benchmarks are compiled with the Intel FPGA SDK for OpenCL

16.0 [22]. For the comparative evaluation of the two collaborative execution

strategies in Section 4.4, we use Canny Edge Detection and Random Sample

32

Consensus, since these two benchmarks support both partitioning schemes.

Table 4.1: Evaluated Chai Benchmarks [51]

Benchmark Description Strategy

CED-D Canny Edge Detection Data Partitioning
CED-T Canny Edge Detection Task Partitioning
RSC-D Random Sample Consensus Data Partitioning
RSC-T Random Sample Consensus Task Partitioning

BS Bézier Surface Data Partitioning
HSTO Image Histogram Data Partitioning
SSSP Single-Source Shortest Path Task Partitioning
TQ Task Queue System (Synthetic) Task Partitioning

TQH Task Queue System (Histogram) Task Partitioning

We perform our evaluation on the two systems shown in Table 4.2. Note

that the Nallatech 510T data center acceleration card hosts two Arria 10

1150 GX FPGAs, but the current OpenCL Board Support Package (BSP)

from the vendor is a beta version that is limited to one FPGA and two DDR4

slots, so only one FPGA and 8GB device memory are used for the evaluation.

The Arria 10 FPGA has more logic and DSP resources than the Stratix V

FPGA does, and also features hard floating-point DSP blocks, which the

Stratix V FPGA does not.

Table 4.2: System Specifications

FPGA Board Terasic DE5-Net [52] Nallatech 510T [53]
FPGA Stratix V GX [54] Arria 10 GX [55]

Device Memory 4GB (DDR3) 8GB (DDR4)
Host CPU Xeon E3-1240 v3 [56] Xeon E5-2650 v3 [57]

Host Memory 8GB (DDR3) 96GB (DDR4)
Interface PCIe gen3.0 ×8 PCIe gen3.0 ×8

In the experiments, we repeat the execution and measurement five times

for each test. The reported execution time is the averaged execution time of

five runs.

In Figures 4.3 and 4.4, we show results for both FPGAs, which summarize

the comparison between data and task partitioning for CED and RSC. For the

remaining results, we only show results for the Stratix V FPGA for brevity,

but the trends are similar on both systems we evaluate. Unless otherwise

specified, we report the results for the best performing CPU thread count

33

(from among one, two, and four threads) and the best performing duplication

factor. Besides, we use the built-in Intel FPGA dynamic profiler for OpenCL

provided by the Intel OpenCL SDK to profile the execution of FPGA kernels

and identify performance bottlenecks.

4.4 Evaluation of Collaborative Execution Strategies

In this section, we evaluate the performance of CPU-FPGA collaborative

execution and analyze the sources of the performance improvements and

bottlenecks.

4.4.1 Canny Edge Detection

Canny Edge Detection (CED) [58] is an edge detection algorithm that is com-

monly used for image processing. It consists of four stages: (1) a Gaussian

filter, (2) a Sobel filter, (3) non-maximum suppression, and (4) hysteresis.

We apply these four stages of the algorithm to a stream of video frames. In

the data partitioning version of the benchmark, each device processes a dif-

ferent set of frames. In the task partitioning version, the first two stages are

executed on the FPGA while the remaining two stages are executed on the

CPU for all frames. We choose this style of task partitioning because Gaus-

sian and Sobel filters are more regular whereas non-maximum suppression

and hysteresis contain more control flow for which CPUs are well-optimized.

Data Partitioning (CED-D). Figure 4.2 shows the execution time of the

CED-D benchmark for different data partitioning distributions. The values

on the horizontal axis indicate the fraction of frames processed by the CPU

in static partitioning swept in increments of 0.1, with the last pair of bars

showing the results for dynamic partitioning. Here, static partitioning stat-

ically assigns a subset of frames to process to each device, while dynamic

partitioning uses one CPU control (proxy) thread for each device (CPU or

FPGA), fetching frames and sending them to the corresponding device, as

soon as the device is available. In this benchmark, the overhead due to the

control threads is negligible, since the granularity of partitioning is coarse

(an entire frame). The execution time is broken down into compute time,

copy time (for the FPGA only), and idle time (the time a device waits for

34

the other device to finish).

0
0.2
0.4
0.6
0.8

1
1.2

CP
U

FP
GA CP

U
FP

GA CP
U

FP
GA CP

U
FP

GA CP
U

FP
GA CP

U
FP

GA CP
U

FP
GA CP

U
FP

GA CP
U

FP
GA CP

U
FP

GA CP
U

FP
GA CP

U
FP

GA

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Dyn.

Ex
ec

ut
io

n
Ti

m
e

(s
)

Data Partitioning Fraction (⍺)

Idle
Copy
Compute

Figure 4.2: Execution Time of Canny Edge Detection (CED) with Different
Data Partitioning Fractions (α) and with Dynamic Data Partitioning. α is
the Fraction of Data-Parallel Tasks Assigned to the CPU

From the results, we make three major observations. First, processing all

frames on the FPGA (shown by the α = 0.0 bars) achieves shorter execution

time than processing all frames on the CPU (shown by the α = 1.0 bars).

Second, the data partitioning strategy outperforms both the CPU and the

FPGA. For this particular workload, the sweet spot for static partitioning

(among the tested distributions) is α = 0.4 where the CPU processes 40%

and the FPGA processes 60% of the video frames. Third, dynamic partition-

ing eliminates the idle time completely, thus outperforming the best static

partitioning, and providing the lowest execution times.

Task Partitioning (CED-T). Figure 4.3 compares the execution time of

collaborative execution with task partitioning to data partitioning and to no

collaboration. The execution time is broken down into compute time, copy

time (for the FPGA only), and idle time (the time the device waits for the

other device to finish).

We make three major observations. First, the overall best performance of

task partitioning is comparable to the overall best performance of data par-

titioning. Second, task partitioning incurs more communication overhead,

with copy time accounting for 11.4% of overall execution time in task par-

titioning and only 4.4% in data partitioning. One reason is that with task

partitioning, data from all data-parallel tasks must be copied to the FPGA,

while with data partitioning, only a subset of the data needs to be copied. It

35

0.0
0.2
0.4
0.6
0.8
1.0
1.2

CP
U

FP
GA CP

U
FP

GA CP
U

FP
GA CP

U
FP

GA CP
U

FP
GA CP

U
FP

GA CP
U

FP
GA CP

U
FP

GA

CPU FPGA Data Task CPU FPGA Data Task

Single device Collaborative Single device Collaborative

Stratix V Arria 10

Ex
ec

ut
io

n
Ti

m
e

(s
) Idle

Copy
Compute

Figure 4.3: Execution Time of Canny Edge Detection (CED) across
CPU-FPGA Systems and Collaborative Execution Strategies

is expected that the availability of coherent memory will make this communi-

cation overhead less of an issue. This is particularly important for workloads

that are less compute-intensive, making copy-time a larger fraction of the

total execution time. Third, in task partitioning, there is still some idle CPU

time, whereas in data partitioning, this idle time is negligible due to dynamic

data partitioning. Despite that, the performance of both strategies is compa-

rable, as pointed out in our first observation. This fact represents a potential

advantage of task partitioning over data partitioning, where different devices

are more suitable or specialized for different workloads. If the sub-tasks as-

signed to the CPU in task partitioning were more time-consuming, the CPU

could still use that fraction of idle time. However, the overall execution time

of data partitioning would increase, since in data partitioning all sub-tasks

run on all devices.

From the comparison of CED-D and CED-T, we derive three major conclu-

sions. First, in data partitioning, finding the best load balance across devices

is possible with static or dynamic partitioning. Second, task partitioning can

greatly benefit from device specialization. Third, communication overhead

in task partitioning is larger than that in data partitioning.

4.4.2 Random Sample Consensus

Random Sample Consensus (RSC) [59] is an algorithm for estimating the pa-

rameters of a model by taking random samples of an input iteratively until

36

a successful model is found. A single iteration of RSC consists of two stages:

(1) model fitting using random samples and (2) evaluating the model accu-

racy by computing outliers and error values. The iterations are independent

and can be done in parallel [60]. In data partitioning, each device processes a

different set of iterations. In task partitioning, the first stage is executed on

the CPU while the second stage is executed on the FPGA. We do so because

the first stage is inherently sequential while the second stage is massively

parallel, and thus better suited for the FPGA.

Data Partitioning (RSC-D). Figure 4.4 shows the execution time of RSC

for different static data partitioning fractions. We make two observations.

First, the static partitioning sweet spot for RSC-D is at 50% for each device,

which is different from CED, highlighting the need to optimize data partition-

ing strategies individually for different applications. Second, the performance

of RSC-D is lower on the Arria 10 than on the Stratix V, mainly because the

clock frequency of the FPGA implementation of this kernel is lower on the

Arria 10. The reason for the lower clock frequency could come from either

the beta BSP of Nallatech 510T (see Section 4.3) or better optimization on

the BSP of Terasic DE5-Net.

0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Data Partitioning Fraction (⍺)

Data Partitioning (Stratix V)
Task Partitioning (Stratix V)
Data Partitioning (Arria 10)
Task Partitioning (Arria 10)

Figure 4.4: Execution Time of Random Sample Consensus (RSC) across
CPU-FPGA Systems and Collaborative Execution Strategies. α is the
Fraction of Data-Parallel Tasks Assigned to the CPU in Data Partitioning

The RSC implementation cannot perform dynamic data partitioning be-

cause the granularity of partitioning is smaller than that in CED. In CED,

each data-parallel task is the processing of an independent frame with four

OpenCL kernels launched by a CPU proxy thread. Thus, the CPU proxy

37

threads perform dynamic partitioning by accessing a pool of data-parallel

tasks via a shared atomic variable. However, in RSC, a single OpenCL ker-

nel is launched to compute all data-parallel tasks. Within this kernel, an

FPGA worker (an OpenCL work-group) computes each data-parallel task.

Since current CPU-FPGA systems do not support OpenCL 2.0 shared virtual

memory and system-wide atomic instructions, it is not possible for FPGA

workers to access the same atomic variable as CPU threads. Thus, dynamic

data partitioning is not possible for RSC. OpenCL 2.0 shared virtual memory

and system-wide atomic instructions are desirable architectural features in

future CPU-FPGA systems for more effective collaborative execution.

Task Partitioning (RSC-T). Figure 4.4 shows that RSC with task par-

titioning noticeably outperforms RSC with the best data partitioning. The

reason is that data partitioning exhausts the DSP blocks in the FPGA, since

the first stage of RSC employs intensive floating-point computations. As

task partitioning assigns the first stage to the CPU, the FPGA can utilize

more resources for the second stage. This enables a higher degree of kernel

duplication, a common optimization technique that duplicates the number

of processing elements, which potentially translates into a significant perfor-

mance improvement. We discuss kernel duplication in detail in Section 4.5.

4.4.3 Other Data Partitioning Benchmarks

Bézier Surface (BS). Bézier surfaces are parametric structures widely used

in computer graphics and finite element modeling. This benchmark uses

non-rational formulation of Bézier surfaces on a regular 2D surface. BS

performs data partitioning on the output data by dividing the output surface

into square tiles, which are assigned to different CPU threads and different

OpenCL work-groups [61].

Figure 4.5 shows the execution time breakdown of BS running on the

Arria 10 FPGA, with the data partitioning fraction α ranging from 0 to

1. We make two major observations. First, the kernel time varies as data

partitioning fraction α changes, with α = 0.7 minimizing the execution time.

Second, for all the α’s, most of the total execution time is spent on the kernel

computation. The other parts of execution (e.g., data copy, allocation, and

deallocation) account for a very small fraction of the total execution time.

38

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Data Partitioning Fraction (⍺)

Deallocation
Copy Back and Merge
Kernel
Copy To Device
Allocation

Figure 4.5: Execution Time of Bézier Surface (BS) with Different Data
Partitioning Fractions (α). α is the Fraction of Data-parallel Tasks
Assigned to the CPU

Image Histogram (HSTO). A histogram describes the frequency of data

falling into each of some predefined bins. Histogram computation is a fre-

quently used routine in many applications [62, 63], for example, image pro-

cessing and pattern recognition. This benchmark implements the histogram

computation of pixels of an image by binning pixels based on their value

ranges. It uses data partitioning on the output bins, i.e., part of the bins

are assigned to the CPU and the other part to the FPGA. Both the CPU

and the FPGA process the entire set of input data, but they increase a bin

counter only if an input data value falls into their assigned set of bins. This

way, the CPU and the FPGA do not update the same bin counters.

Figure 4.6 shows the execution time breakdown of HSTO on the Arria

10 FPGA with various α values. A major observation is that the overall

execution time of HSTO is almost independent of the data partitioning factor

α. The reason is that in HSTO, both the CPU and the FPGA workers need

to traverse through the large input data, the overhead of which overwhelms

the benefit from data partitioning, leading to no performance improvement

from any level of data partitioning.

4.4.4 Other Task Partitioning Benchmarks

Single-Source Shortest Path (SSSP). SSSP is a commonly used graph

algorithm that identifies the path between two vertices in a graph that has

39

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
ec

ut
io

n
tim

e
(m

s)

Data Partitioning Fraction (⍺)

Deallocation
Copy Back and Merge
Kernel
Copy To Device
Allocation

Figure 4.6: Execution Time of Histogram (HSTO) with Different Data
Partitioning Fractions (α); α is the Fraction of Data-Parallel Tasks
Assigned to the CPU

the minimal sum of weights of edges on the path. This benchmark has

irregular memory access patterns and requires atomic instructions. SSSP

performs coarse-grained task partitioning across a series of tasks, each of

which is an iteration of the algorithm which constructs a frontier of vertices

(i.e., the list of vertices to visit in the next iteration) and updates the shortest

distance. The frontier of vertices is a queue data structure for communicating

among tasks. Since graph structures are irregular, the size of vertex frontiers

varies, which causes imbalance in processing times of different tasks. In

SSSP, iterations are assigned to the CPU or the FPGA to process the frontier

according to the frontier size. Small frontiers are assigned to the CPU while

the large ones are assigned to the FPGA. This is based on the observation

that the FPGA performs better for larger frontiers, where more parallelism

can be exploited and the kernel launch overhead is less significant. On the

CPU, CPU threads dequeue vertices from a vertex queue and process them

sequentially. On the FPGA, different OpenCL work-items process different

vertices and aggregate results with atomic instructions.

Task Queue Systems (TQ and TQH). Task queue systems (TQ and

TQH) exemplify a type of the producer-consumer computing pattern, where

the host enqueues tasks into some task queues in the device memory, while

the device dequeues and processes the tasks. TQ works with synthetic data,

while TQH generates the histograms of video frames (i.e., the input of each

task is a video frame, and the output is its histogram). In both benchmarks,

40

the CPU threads generate and enqueue tasks, while the FPGA processes the

tasks. As soon as the FPGA finishes with one task, it dequeues a new task.

This way, the workload across work-groups is balanced.

We evaluate the effect of kernel duplication for SSSP, TQ and TQH in

Section 4.5.

4.5 Evaluation of Kernel Duplication

In this section, we evaluate the effect of a common optimization technique,

kernel duplication [22], on the performance of the benchmarks described in

Section 4.4. With kernel duplication, multiple identical hardware instances

(processing elements) are instantiated on the FPGA from the same OpenCL

kernel. The Intel OpenCL SDK for FPGAs provides a programming at-

tribute to specify the duplication factor of OpenCL kernels, i.e., the number

of identical processing elements on the FPGA. The OpenCL work-items are

executed on these hardware processing elements in a SIMD manner, which

can potentially improve performance. With kernel duplication, the utiliza-

tion of the available configurable logic on the FPGA increases, since there

are more processing elements. However, the higher resource utilization in-

creases the complexity of place and route on the FPGA circuit, and therefore

could potentially lower the operating frequency and increase the execution

time. A higher number of processing elements can also lead to memory access

contention in the memory system [64, 65, 66, 67, 68, 69, 70].

With kernel duplication, the number of FPGA workers wF in the analyt-

ical model presented in Section 4.2 increases, while the execution time of

each individual sub-task ti,F may increase due to changes in frequency and

resources. Therefore, the tuning of the kernel duplication factor is dependent

on the tradeoff between the the ability to exploit more parallelism and the

overhead of having multiple processing elements on the FPGA.

4.5.1 Performance Effect of Kernel Duplication

Figure 4.7 shows the impact of possible kernel duplication factors on the

overall performance of four data-partitioning benchmarks (CED-D, RSC-D,

BS, and HSTO) with various data partitioning factors α. As shown in the

41

figure, in the FPGA-only case (α = 0), RSC-D, BS and HSTO benefit from

duplicating kernels. For CED-D, kernel duplication does not change per-

formance significantly. As discussed in Section 4.4, HSTO has a different

behavior from the other benchmarks in terms of data partitioning – HSTO’s

performance is almost independent of the α value. The reason is that, in

HSTO, partitioning happens only on output bins, and both CPU and FPGA

need to traverse through a large amount of input data, the overhead of which

hides the benefit of partitioning. In HSTO, kernel duplication is still ben-

eficial, since the computation capacity of the FPGA and, thus, the whole

system increases with kernel duplication.

We make three observations from Figure 4.7. First, a higher duplication

factor does not necessarily lead to higher performance because of the tradeoffs

we discuss above. Second, when kernel duplication is actually beneficial,

the best α values tend to be smaller (i.e., more workload assigned to the

FPGA) for higher duplication factors, since the computation capacity of

the FPGA increases. Third, for larger values of α, kernel duplication has

almost no impact on overall execution time, since most of the workload of

the applications is assigned to the CPU.

Figure 4.8 shows the speedups from kernel duplication on three task-

partitioning benchmarks (SSSP, TQH, and TQ). As shown in the figure,

SSSP does not benefit much from kernel duplication because its irregular

memory access pattern quickly saturates the memory bandwidth. On the

other hand, in TQH and TQ, performance scales well with the duplication

factor due to regularity of their memory access patterns and load balancing

across work-groups.

Figures 4.9, 4.10 and 4.11 show the execution time breakdowns for SSSP,

TQ, and TQH, respectively, on the Arria 10 FPGA. As the figures show,

across all three benchmarks, kernel duplication reduces the kernel execution

time without affecting other portions of the total execution time.

4.5.2 Analysis of Resource Utilization

We further analyze how kernel duplication changes FPGA resource utilization

and how it impacts performance. For this analysis, we focus on canny edge

detection (CED) and random sample consensus (RSC).

42

0
50

100
150
200
250
300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Ex
ec

ut
io

n
Ti

m
e

(m
s)

Data Partitioning Fraction (⍺)(d) HSTO

Kernel Duplication Factor = 1 4 8

0
20
40
60
80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Ex
ec

ut
io

n
Ti

m
e

(m
s)

Data Partitioning Fraction (⍺)(c) BS

Kernel Duplication Factor = 1 2

0
10
20
30
40
50
60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Ex
ec

ut
io

n
Ti

m
e

(m
s)

Data Partitioning Fraction (⍺)(b) RSC-D

Kernel Duplication Factor = 1 2 3 4 5

0
200
400
600
800

1000
1200
1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Ex
ec

ut
io

n
Ti

m
e

(m
s)

Data Partitioning Fraction (⍺)(a) CED-D

Kernel Duplication Factor = 1 2 3

Figure 4.7: Execution Time of Data Partitioning Benchmarks (CED-D,
RSC-D, BS, and HSTO) for Different Kernel Duplication Factors and Data
Partitioning Fractions (α); α is the Fraction of Data-parallel Tasks
Assigned to the CPU

Canny Edge Detection (CED-D/CED-T). Figure 4.12 shows the effect

of the kernel duplication factor on performance, as well as other utilization

metrics. Mapping to the axis on the left, the light-blue bar represents per-

formance (higher is better) in terms of the speedup over data partitioning

with a duplication factor of 1, and the black line represents the frequency of

the FPGA processing elements also normalized to data partitioning with a

duplication factor of 1. Mapping to the axis on the right, the different lines

represent the utilization in terms of percentage of the logic, DSP blocks, and

RAM blocks on the FPGA.

We make two major observations. First, the duplication factor has lit-

tle impact on the performance of CED, and too much duplication may

43

0
1
2
3
4
5
6
7

1 2 4 1 4 8 1 4 8

SSSP TQH TQ

Sp
ee

pu
p

Kernel Duplication Factor

Figure 4.8: Speedup (Normalized to Kernel Duplication Factor 1) of Task
Partitioning Benchmarks (SSSP, TQ, and TQH) for Different Kernel
Duplication Factors

0
2000
4000
6000

8000
10000
12000
14000

1 2 4

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Kernel Duplication Factor

Deallocation
Copy Back and Merge
Kernel
Copy To Device
Allocation

Figure 4.9: SSSP: Execution Time Breakdown for Different Duplication
Factors

even slightly hurt its performance. Further profiling using the Intel FPGA

OpenCL Profiler reveals that the main reason behind the performance effect

of the duplication factor on CED is the saturation of the memory bandwidth.

More processing elements on the FPGA exhaust the available bandwidth.

Second, task partitioning tends to lead to less resource pressure and higher

FPGA frequency for the same duplication factor. The reason is that, in task

partitioning, only the sub-tasks that run on the FPGA need to be synthesized

on the FPGA, while in data partitioning all sub-tasks need to be synthesized.

As a result, the maximum duplication factor for task partitioning is higher

than data partitioning.

Random Sample Consensus (RSC-D/RSC-T). Figure 4.13 shows the

impact of the kernel duplication factor on the performance of RSC-D and

44

0
10

20
30

40
50

60
70

1 4 8
Ex

ec
ut

io
n

Ti
m

e
(m

s)
Kernel Duplication Factor

Deallocation
Copy Back and Merge
Kernel
Copy To Device
Allocation

Figure 4.10: TQ: Execution Time Breakdown for Different Duplication
Factors

0

2000

4000

6000

8000

10000

1 4 8

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Kernel Duplication Factor

Deallocation
Copy Back and Merge
Kernel
Copy To Device
Allocation

Figure 4.11: TQH: Execution Time Breakdown for Different Duplication
Factors

RSC-T and FPGA utilization metrics. The bars, lines, and axes are set up

in the same way as in Figure 4.12.

In data partitioning, we observe reasonable performance improvement with

a duplication factor of 2, but there is little improvement beyond that. Un-

like all the other cases where the bounding resources are the RAM blocks,

the bounding resources for RSC-D are the DSP blocks. This is due to the

fact that the first stage of RSC-D performs a large number of floating-point

computations.

In the task partitioning strategy for RSC, because the first stage is of-

floaded to the CPU, the DSP block utilization drops significantly, enabling

the kernel duplication factor to continue to increase, resulting in much better

performance for task partitioning than for data partitioning. The perfor-

mance improvement saturates around a kernel duplication factor value of 8,

which results in a 1.6× speedup for task partitioning over data partitioning.

Similar to CED, the profiler shows that the saturation of the memory band-

width is the major reason why performance saturates at higher values of the

45

0
20
40
60
80
100

0.0
0.2
0.4
0.6
0.8
1.0
1.2

1 2 3 1 2 3 4

Data Partitioning Task Partitioning Lo
gi

c,
 D

SP
 B

lo
ck

s,
an

d
RA

M

Bl
oc

ks
 U

til
iz

at
io

n
(%

)

Sp
ee

du
p

an
d

Fr
eq

ue
nc

y
(n

or
m

al
iz

ed
)

Kernel Duplication Factor
Speedup Frequency Logic Utilization DSP Blocks RAM Blocks

Figure 4.12: Canny Edge Detection: Speedup and Frequency (Normalized
to Data Partitioning with Duplication Factor 1) and Resource Utilization
for Different Duplication Factors.

kernel duplication factor.

4.6 Key Insights

Based on the performance evaluations we present in Sections 4.4 and 4.5, we

extract five key insights for developers who choose to write collaborative pro-

grams for CPU-FPGA architectures. These insights cover generic collabora-

tive computing techniques for heterogeneous systems, as well as CPU-FPGA

specific collaboration schemes.

The first insight is that collaborative execution is actually beneficial. We

observe that with both data and task partitioning strategies, collaborative

execution effectively reduces the execution time of almost all benchmarks we

examine.

Second, data partitioning requires careful choice of partitions to provide

the highest performance. We observe that the different data partitioning

benchmarks (i.e., BS, CED-D, HSTO, and RSC-D) prefer different data par-

titioning fractions α that result in the best performance (Section 4.4). This

observation emphasizes the need for application-specific heuristics or offline

tuning for finding the best static data partitioning, or the use of dynamic

data partitioning. We show that dynamic data partitioning is effective in

minimizing idle time in CED-D (Section 4.4.1). Unfortunately, CED-D is

the only evaluated benchmark that supports dynamic data partitioning. Dy-

46

0
20
40
60
80
100

0.0
0.5
1.0
1.5
2.0
2.5

1 2 3 4 5 1 2 3 4 6 8 10 12 14

Data Partitioning Task Partitioning Lo
gi

c,
 D

SP
 B

lo
ck

s,
an

d
RA

M

Bl
oc

ks
 U

til
iz

at
io

n
(%

)

Sp
ee

du
p

an
d

Fr
eq

ue
nc

y
(n

or
m

al
iz

ed
)

Kernel Duplication Factor
Speedup Frequency Logic Utilization DSP Blocks RAM Blocks

Figure 4.13: Random Sample Consensus: Speedup and Frequency
(Normalized to Data Partitioning with Duplication Factor 1) and Resource
Utilization for Different Duplication Factors.

namic data partitioning requires the use of shared memory variables to im-

plement a task pool. CED-D uses two proxy CPU threads to control the

execution on the CPU and the FPGA (i.e., launch CPU threads and FPGA

OpenCL kernels for every task). The proxy threads can access the same

task pool in the CPU memory and assign tasks to the CPU and the FPGA.

In other data partitioning benchmarks, the CPU threads and the OpenCL

kernel are launched only once at the beginning of the execution. Thus, in

order to implement a shared task pool, CPU and FPGA workers would need

to access the same shared variables, as CPU-GPU systems do [51]. However,

shared virtual memory is not available in current CPU-FPGA systems. Fu-

ture integration of shared coherent memory features and system-wide atomic

instructions in FPGAs [71] will make dynamic partitioning more feasible.

Third, task partitioning generally enables more kernel duplication on the

FPGA than data partitioning does, because task partitioning does not need

to dedicate FPGA resources to all types of sub-tasks in an application, as

it runs some computation stages entirely on the CPU. In RSC, there is a

large difference between different sub-tasks. The first sub-task is sequen-

tial and much more floating-point intensive than the second sub-task. Thus,

task partitioning saves FPGA resources that can be used for a higher kernel

duplication factor than data partitioning. As a result, RSC-T outperforms

RSC-D (Section 4.4.2). However, more kernel duplication does not always

imply better performance. The potential benefit of kernel duplication is

47

benchmark-specific (Section 4.5). In CED, the different sub-tasks are very

similar to each other in terms of computation and resource requirements.

They compete for the memory bandwidth. Hence, the higher kernel dupli-

cation factor of CED-T than CED-D does not provide performance benefits

(Figure 4.12). Even if kernel duplication is effective, there can be diminishing

returns from increasing the kernel duplication factor too much, if the mem-

ory bandwidth saturates, as we show for RSC in Figure 4.13. In summary,

developers must carefully use kernel duplication, in order to make effective

use of the FPGA resources and thus improve application performance.

Fourth, data partitioning inflicts less burden on programmers and has less

communication overhead than task partitioning. In task partitioning, tasks

can only be partitioned into sub-tasks at specific points in the code. Finding

the partitioning points might be painful for the programmer and makes it

more difficult to evenly balance the workload across devices. Moreover, task

partitioning tends to require more communication and synchronization points

between devices, because both devices participate in all tasks. Emerging

shared coherent memory features [71] (e.g., fine-grained memory coherence

and system-wide atomic instructions) are expected to be beneficial in making

such communication and synchronization easier.

Fifth, the current OpenCL stack for FPGAs provides a convenient pro-

gramming model for application programmers, but there is still room for

better programmability and higher performance if new features are provided

inside the OpenCL stack. We believe that incorporating more OpenCL 2.0

features, such as fine-grained shared virtual memory [71] and system-wide

atomic instructions [72], to the OpenCL stack for FPGAs will greatly benefit

programmability and performance.

4.7 Related Work

To our knowledge, this is the first work to perform a thorough analysis of

collaborative execution strategies on CPU-FPGA systems programmed with

High Level Synthesis tools, like OpenCL. In this section, we first review recent

works on collaborative execution on CPU-FPGA systems programmed with

register-transfer level (RTL) code. Second, we review works on OpenCL

programming for FPGAs. Third, we discuss recent efforts on collaborative

48

execution for integrated CPU-GPU architectures.

4.7.1 CPU-FPGA Coherent Memory

CPU-FPGA platforms with shared coherent memory have recently captured

great attention from both academia and industry. Choi et al. [73] conduct

a quantitative study of modern CPU-FPGA platforms, including QPI-based

and PCIe-based ones. This study focuses mainly on micro-benchmarking for

memory systems and evaluates acceleration of entire kernels on FPGAs. Our

work focuses on evaluating collaborative execution strategies on CPU-FPGA

platforms.

Enabled by the tighter integration of the CPU and the FPGA in CPU-

FPGA systems, collaborative execution has been analyzed in various studies

that accelerate applications. Weisz et al. [74] present a task-partitioning

collaborative strategy to accelerate linked-list traversals. Chang et al. [75]

accelerate seeding in DNA sequence alignment through a data-partitioning

collaborative strategy. István et al. [76] adopt task-partitioning collaborative

execution for regular expression operators for databases. Zhang et al. [77]

present a task-partitioning collaborative algorithm to accelerate merge sort.

Qiao et al. [78] accelerate the Deflate lossless compression algorithm on an

FPGA. They apply a task-partitioning-based collaborative execution strat-

egy for an entire compression service on a CPU-FPGA system which takes

advantage of pipeline parallelism. Sidler et al. [79] accelerate pattern match-

ing queries using a task-partitioning collaborative strategy. Schmit et al. [80]

present a use case of a CPU-FPGA system, where the FPGA serves as a

smart network transmitter/receiver and the CPU runs applications, using a

task-partitioning collaborative execution strategy. These studies focus on ac-

celerating specific applications by writing RTL code, while our work focuses

on evaluating multiple collaborative patterns comparatively for each selected

application using OpenCL HLS.

Several studies [81, 82, 83, 84] focus on integration of different types of ac-

celerators in heterogeneous systems with general-purpose CPUs. Our work

mainly focuses on collaborative execution strategies for CPU-FPGA plat-

forms, but could be further extended to other accelerators in heterogeneous

systems.

49

4.7.2 High-Level Synthesis with OpenCL

High-level synthesis (HLS) with OpenCL has been widely adopted to accel-

erate FPGA design due to its programmability. Ndu et al. [85] present and

evaluate a benchmark suite, CHO, for OpenCL FPGA accelerators. Verma

et al. [86] evaluate OpenCL HLS using OpenDwarfs benchmarks and identify

optimization techniques for OpenCL HLS. Ramanathan et al. [87] propose a

work-stealing technique using OpenCL atomics on FPGAs. Wang et al. [88]

present a performance analysis framework to identify bottlenecks of OpenCL

kernels synthesized on FPGAs. Multiple recent studies accelerate applica-

tions using OpenCL HLS, including particle identification [89], relational

queries [90], convolutional neural networks [24], etc. Most of these studies

focus on accelerating or evaluating entire kernels on FPGAs. Our work eval-

uates collaborative execution patterns with OpenCL HLS on CPU-FPGA

platforms.

4.7.3 Integrated CPU-GPU Architectures

Collaborative execution on heterogeneous PCIe-based CPU-GPU systems

with discrete GPUs has been studied from various aspects. Shen et al. [91]

propose a workload partitioning scheme for heterogeneous CPU-GPU sys-

tems. This work proposes modeling, profiling, and prediction techniques to

predict the best workload partitioning. Luk et al. [92] propose adaptive

mapping to automatically map computation to CPU-GPU systems. The

proposed techniques adapt to changes in input problem size and system con-

figuration. These works mainly focus on discrete CPU-GPU systems without

much discussion on how tight integration of the CPU and the GPU on a single

chip further enables acceleration opportunities.

Collaborative execution strategies have been studied for integrated CPU-

GPU systems using benchmark suites such as Hetero-mark [93, 94, 95],

Chai [51, 96], and HeteroSync [97]. We leverage benchmarks from Chai [51]

to evaluate collaborative execution strategies on CPU-FPGA systems. Sun

et al. [98] evaluate the Radeon Open Compute Platform using collaborative

benchmarks. Gómez-Luna et al. [99] present three use cases of collaborative

execution on a CPU-GPU system with the Heterogeneous System Architec-

ture (HSA) [100]. Che et al. [101] study data partitioning between CPUs

50

and GPUs specifically for betweenness centrality. Tang et al. [102] propose

EMRF, a policy for balancing between fairness and efficiency in integrated

CPU-GPU architectures. FinePar [103] and Cho et al. [104] automatically

partition workloads to use both CPUs and GPUs in integrated CPU-GPU

architectures. Airavat [105, 106] is a power management framework that im-

proves the energy efficiency of collaborative CPU-GPU applications. HASh-

Cache [107] adds a stacked DRAM as a shared last-level cache for integrated

CPU-GPU processors to address the problem of disparity between the two

devices in their demands on the memory system. Garcia-Flores et al. [108]

evaluate integrated CPU-GPU systems with a shared last-level cache using

collaborative benchmarks. Staged Memory Scheduling [109] is a multi-level

QoS-aware memory scheduler for integrated CPU-GPU systems. Kayiran et

al. [110] propose a concurrency management mechanism for integrated CPU-

GPU systems to control the usage of memory and network by the CPU and

the GPU. Garcia-Flores et al. [111] analyze the inefficiencies of demand pag-

ing in CPU-GPU systems when running collaborative workloads, and explore

data sharing between the CPU and the GPU at finer granularity than a page

(e.g., a cache line). Spandex [112] is a memory coherence interface specifically

targeting integrated architectures. Vesely et al. [113, 114] enable system calls

from GPUs which benefits for having shared virtual memory across CPUs

and GPUs. These works represent the numerous research efforts on software

and hardware approaches to collaborative execution on integrated CPU-GPU

systems. Our work is the first step toward similar research lines for integrated

CPU-FPGA systems with OpenCL.

4.8 Conclusion

In this chapter, we present strategies for collaborative execution on CPU-

FPGA architectures and evaluate these strategies using existing collaborative

OpenCL applications with high-level synthesis. To our knowledge, this is the

first work to carry out a comprehensive analysis of collaborative execution on

CPU-FPGA systems using the OpenCL programming framework. We show

that collaborative execution outperforms the execution on conventional CPU-

FPGA systems where no collaborative execution strategies are used. We

describe the challenges that each collaborative execution strategy faces, pro-

51

viding insights for developers on how to use them. We find that (1) task

partitioning enables more kernel duplication, a common optimization tech-

nique for FPGAs, than data partitioning, yet (2) data partitioning has lower

communication overhead and achieves better load balance than task parti-

tioning. We provide suggestions for emerging CPU-FPGA systems, where

support for fine-grained shared coherent memory and system-wide atomic

instructions would be beneficial. We believe and hope that our study will

inspire FPGA developers to further explore collaborative execution on CPU-

FPGA architectures to achieve the highest performance and efficiency. Our

study could also be extended to other types of accelerators in heterogeneous

systems.

52

CHAPTER 5

LANGUAGES AND COMPILERS FOR
ACCELERATOR DESIGN AUTOMATION

The exploding complexity and computation efficiency requirements of ap-

plications are stimulating a strong demand for hardware acceleration with

heterogeneous platforms such as FPGAs. However, a high-quality FPGA

design is very hard to create and optimize as it requires FPGA expertise

and a long design iteration time. In contrast, software applications are typi-

cally developed in a short development cycle, with high-level languages like

Python, which is at a much higher level of abstraction than all existing hard-

ware design flows. To close this gap between hardware design flows and

software applications, and simplify FPGA programming, we create PyLog, a

high-level, algorithm-centric Python-based programming and synthesis flow

for FPGA. PyLog is powered by a set of compiler optimization passes and

a type inference system to generate high-quality design. It abstracts away

the implementation details, and allows designers to focus on algorithm spec-

ification. PyLog takes in Python functions, generates PyLog intermediate

representation (PyLog IR), performs several optimization passes, including

pragma insertion, design space exploration, and memory customization, etc.,

and creates the complete FPGA system design. PyLog also has a runtime

that allows users to run the PyLog code directly on the target FPGA platform

without any extra code development. The whole design flow is automated.

The evaluation shows that PyLog significantly improves FPGA design pro-

ductivity and generates highly efficient FPGA designs that outperform highly

optimized CPU implementation and state-of-the-art FPGA implementation

by 3.17× and 1.24× on average.

53

5.1 Overview

The last decade has witnessed an explosive growth of new applications in

terms of quantity, diversity, and demands for computing capability and en-

ergy efficiency. As an example, deep learning algorithms, which have been

shown to be successful in many domains, are driving the revolutionary changes

in computer system design. According to Dean et al. [115], the number of

machine learning papers on arXiv [116] doubles in less than two years, which

has outpaced Moore’s law. The rapid growth of diverse applications poses

immense challenges to many aspects of computing systems, including com-

piler, architecture, storage, etc.

These challenges have motivated new computing systems for the new decade.

The FPGA-based computing platform is an emerging platform that provides

reconfigurability, along with high performance, low latency, and high energy

efficiency. FPGA’s unique computing capability makes it a promising plat-

form to tackle the rising computation challenges. FPGA accelerators have

been deployed in both cloud servers and edge devices at scale. However, as

FPGAs are getting used in increasing number of emerging applications and

scenarios at a rapid pace, programming FPGA and optimizing FPGA design

gradually become the main barriers in FPGA development.

The most widely adopted FPGA development flow today starts with pro-

gramming FPGA at the register transfer level (RTL) in hardware descrip-

tion languages (HDL) such as Verilog and VHDL. Then designers use FPGA

synthesis tools from FPGA vendors to synthesize RTL designs into FPGA

bitstreams, which are used to configure FPGA. Programming FPGA at this

level requires rich expertise in digital circuit design and the FPGA architec-

ture. Besides, programming at this level is non-intuitive, error-prone, and

hard to reuse code compared with modern programming languages, leading

to long development, optimization, and verification cycles.

High-level synthesis (HLS) aims to simplify FPGA programming. Elevat-

ing the abstraction level of FPGA programming to that of C/C++/OpenCL

[1], [2], [3], [4], HLS tools enable FPGA designers to express their algorithms

in more familiar high-level languages. Developers are expected to use HLS

pragmas or directives to guide the HLS tools to optimize and generate desired

RTL design. Compared with RTL design flow, HLS allows FPGA developers

to develop, optimize, verify, and reuse their design at a higher level, thereby

54

HLS C Generation

PyLog Compiler

@pylog
def compute(a, b):

return dot(a, b)

int compute(...) {
#pragma ...
}

High-Level Synthesis

Synthesis &
Implementation

module compute(...);
...

endmodule

PyLog source code

Optimized HLS C Code

FPGA design in
hardware description
language (HDL)

FPGA design

PyLog IR Optimization

PyLog IR Generation

Front-End Analysis

RT
L-

ba
se

d
De

si
gn

 F
lo

w

Py
Lo

g
Au

to
m

at
ed

 D
es

ig
n

Fl
ow

Py
Lo

g
Co

m
pi

la
tio

n
H

ig
h-

Le
ve

l
Sy

nt
he

si
s

Figure 5.1: FPGA Design Flow with PyLog.

greatly improving productivity. However, as C/C++/OpenCL are initially

designed for general-purpose processors and start with an inherent sequen-

tial execution model inside each kernel/function definition of these languages,

they are essentially different from the FPGA’s fine-grained parallel process-

ing nature (the OpenCL model can describe parallel work-items but it is

at thread-granularity and not very well supported in current HLS tools).

The existing HLS tools are also designed in a way that accommodates the

sequential execution model of input languages.

As a compromise between the HLS programming model and the FPGA

execution model, HLS users often manually annotate their code with HLS

pragmas or directives to give HLS compiler hints on parallelism and desir-

able synthesis approaches. These pragmas have a significant impact on the

55

performance and energy efficiency of the synthesis output. Oftentimes code

transformation and rewriting are also needed to improve the outcome. In

the end, the quality of synthesized design from HLS highly depends on how

the code is written and how the HLS pragmas are added to the code. This

requires a considerable amount of engineering time to iteratively adjust the

source code and pragmas used. Complicated applications or thorough opti-

mizations may lead to long source code that is difficult to read and maintain.

For example, the HLS C code for convolution kernel from CHaiDNN [117]

library has nearly 8,000 lines, which is much longer than the well-optimized

convolution code for CPU or GPU.

Apart from the difficulties in creating and optimizing designs with current

FPGA programming flow, the gap in the abstraction level between applica-

tion programming and FPGA programming is another challenge in FPGA

design. Applications are typically developed with languages at a much higher

level of abstraction, where the programming models and styles focus more on

describing the algorithm itself, instead of low-level implementation details.

In the current HLS flow, when there is a need to accelerate the application,

FPGA developers typically need to first lower the abstraction level of the

application, re-implement the application in plain C code, and use it as the

starting point for HLS. This lowering step is time-consuming and error-prone,

and it also makes the FPGA design cycle longer.

These challenges in current FPGA design flows urge us to further ele-

vate the abstraction level of FPGA programming. Among the existing pro-

gramming languages, Python is one of the most popular and widely used

languages. It has been well adopted in various domains such as machine

learning, scientific computing, data analysis, education, etc. Python is also

easy to learn. Compared to programming languages like C/C++ or Java,

Python provides a concise syntax, a set of higher-level operators, as well as

rich library support, which make programming in Python easier and more

efficient.

We propose PyLog, an algorithm-centric Python-based programming and

synthesis flow for FPGA. PyLog uses general Python compatible syntax, and

it provides a set of handy low-level and high-level built-in operators that are

capable of describing most of the common computation patterns in a natural

way. The PyLog compiler takes Python code as input, and compiles the

code into optimized HLS-synthesizable C code with HLS pragmas. Figure

56

5.1 shows the FPGA design flow with PyLog. We design PyLog in a way

that the Python language allows the developers to focus on algorithm and

computation flow description without much implementation details, while

the PyLog compiler takes over the traditional FPGA developers’ burden of

exploring possible implementations and optimizations. The functional nature

of the Python language also preserves some algorithm-level design informa-

tion that is helpful for PyLog analysis and transformation. In the PyLog flow,

algorithm and implementation are separated as much as possible. The goal

of this design is to relieve FPGA programmers from manual design tuning

while giving the PyLog compiler maximum information about computation

patterns and therefore maximum freedom of design optimization. The whole

PyLog flow is developed in Python. PyLog will be open-sourced to enable

future research in this field.

The key contributions of this work are:

• We design and implement PyLog, a high-level Python-based program-

ming and synthesis flow for FPGA, which greatly simplifies FPGA pro-

gramming. The expressiveness of Python allows developers to achieve

high design quality with much fewer lines of code compared with pre-

vious C/C++ based high-level synthesis flows.

• PyLog compiler is an ahead-of-time compiler and it is capable of doing

various types of program analysis and optimizations. It features Py-

Log intermediate representation, type inference engines, and a set of

compiler optimizations, which are all designed to create highly efficient

FPGA systems.

• PyLog provides a set of high-level operators that ease algorithm de-

scription. These operators are general enough to describe computation

patterns across different domains, and their implementation can be con-

figured and optimized by PyLog to meet different design requirements.

• PyLog automatically generates optimized design from high-level algo-

rithm specification, based on hardware resource constraints. Evalua-

tion shows that PyLog generates highly efficient FPGA designs that

outperform highly optimized CPU implementation and state-of-the-art

FPGA implementation by 3.17× and 1.24× on average.

57

5.2 Related Works

Recently there are growing interests in the research community on high-level

programming languages for FPGAs. HeteroCL [118] is one recent work that

builds on the TVM framework [119]. HeteroCL is built as an API library of

the Python Language, and its compiler is a runtime compiler. When Hete-

roCL code runs, it makes API calls to construct computation patterns and

computing schedules from Python-syntax statements and generates synthe-

sizable C code for Merlin HLS compiler [120]. For example, HeteroCL exposes

APIs to perform code transformations such as loop pipelining, loop unrolling,

quantization, etc. Although both HeteroCL and PyLog use Python syntax,

their approaches are very different. HeteroCL is more like a Python library

that is used to describe computation flow, instead of an implementation of a

subset or extension of the Python language.

On the contrary, PyLog directly implements a subset of the Python lan-

guage, PyLog code is compiled by ahead-of-time Python language compiler

and the code that programmers write is what is the input to the compiler.

PyLog’s ahead-of-time compilation setting has several advantages. First of

all, this enables maximum flexibility of the language, and makes it very easy

to be extended. Second, PyLog is designed to be compatible with standard

Python grammar, and Python programmers can immediately start to code

in PyLog. PyLog supports a set of frequently used Python and NumPy op-

erations and data containers. As long as a piece of Python code uses these

supported operations, it can be synthesized into hardware. The Python lan-

guage features that are synthesizable in PyLog is discussed in Section 5.3.7.

Another difference between HeteroCL and PyLog is that, with HeteroCL,

programmers still need to manually apply transformations and optimizations

using HeteroCL APIs, while in PyLog, the compiler is responsible for imple-

mentation and optimization by default. Programmers can use pragmas to

force the compiler to generate a specific implementation of the PyLog code,

if they choose to do so.

Dahlia [121] is another high-level programming language that compiles to

HLS C code. Dahlia uses Scala-like syntax and it uses a type system to

enforce design constraints in the HLS code so that unrolling and memory

partitioning factors match. Similar to HLS flow, Dahlia requires users to

specify design pragmas. PyLog does not require manual annotation of HLS

58

pragmas. On the contrary, PyLog compiler automatically inserts pragma to

optimize the design.

There are also several works that use Python and other high-level languages

like Scala, and Haskell as hardware-description language (HDL) [122, 123,

124, 125]. The biggest difference between PyLog and these works is that

PyLog flow is a high-level synthesis flow, and it does not require hardware

knowledge to program in PyLog. These previous high-level HDLs elevate the

syntax of the input languages, but users still need hardware expertise to use

these HDLs.

5.3 PyLog Programming Model

5.3.1 Overview

PyLog presents a unified programming model for host and accelerator logic

with consistent syntax and semantics. This seamless host-accelerator pro-

gramming model enables agile system design, convenient functional simula-

tion, and flexible design space exploration.

Listing 5.1 shows a high-level example of PyLog program that describes

both host and accelerator. This example contains two functions, preprocess

and compute. Function compute is decorated with a Python decorator @pylog,

therefore it is a PyLog kernel function and will be synthesized into a hard-

ware accelerator on FPGA by PyLog. With @pylog decorator, programmers

can easily specify accelerator function in the existing Python code.

1 def preprocess(data):
2 ... # data pre -processing that runs on the host
3
4 @pylog
5 def compute(inputs): # top FPGA kernel function
6 def do_work(data): # user defined function
7 ...
8 for d in inputs:
9 do_work(d)

10 ...
11
12 inputs = preprocess(data) # data pre -processing
13 result = compute(inputs) # call FPGA (or run synthesis)

Listing 5.1: A High-Level PyLog Example

As shown in the example, both host and accelerator are programmed with

Python at the same abstraction level. The host and accelerator interact with

59

@pylog
def accel(d, w):

...
main
d = np.array(...)
w = np.array(...)
accel(d, w)

accelerator

host

PyLog
Program

PyLog
Compiler

PyLog
Runtime System

Generator
PYNQ

HLS C Code

CPU

Main DDR
Memory

Host

On-Board DDR Memory

FPGA Board

PC
Ie

-A
XI

Br

id
ge Application

Logic
Application

Logic

BRAM

BRAM
BRAM

DSPDDR Ctrl

FPGA Chip

PCIe

FPGA
Bitstream

PyLog Flow

XRT

Figure 5.2: The PyLog Flow and Example System Architecture.

each other seamlessly in a natural way. PyLog closes the gap between the

abstract level of host programming and FPGA accelerator programming, and

enables efficient system-level host-accelerator co-design.

Figure 5.2 illustrates the overall PyLog flow and the target FPGA system

architecture. When PyLog user runs PyLog program with a standard Python

interpreter, the @pylog decorator calls PyLog compiler to compile the deco-

rated PyLog kernel function into HLS C code. Then, the system generator

syntesizes generated HLS C code and integrates all the system components

to create a complete FPGA design. The generated FPGA bitstream is used

to configure the resource and interconnects on FPGA. The rest of the PyLog

program is interpreted by the standard Python interpreter, and this part is

the host code that runs on the host CPU. When the decorated function is

called, PyLog runtime is invoked to program FPGA, allocate and populate

memory and invoke FPGA to accelerate the computation. The lower half of

Figure 5.2 shows an example of PCIe-based FPGA platform. Note that Py-

Log can support both PCIe-based high-performance FPGAs and low-power

SoCs and MPSoCs. CPU and FPGA interact through memory-mapped I/O

ports as well as configuration registers on FPGA side.

PyLog requires the arguments of the PyLog functions to be NumPy arrays

or NumPy scalars. From these NumPy object inputs, PyLog collects type

60

Table 5.1: PyLog’s Built-in Modes

Mode Description

cgen Generates optimized high-level synthesis C code
hwgen cgen then run FPGA synthesis
deploy Program and call FPGA then collect results
pysim Simulate PyLog code with Python interpreter

and shape information of the arguments to the top function, which is the

initial information for the type inference engine in PyLog.

To run FPGA synthesis or run FPGA accelerator, users simply run the

whole program with standard Python interpreter. When the decorated Python

function compute is called (line 9), PyLog compiler is invoked to look for the

synthesized design for the decorated function. If the function has not been

synthesized before, PyLog will compile the decorated compute function, gen-

erate compute FPGA IP, integrate IPs into a complete FPGA design, and

finally synthesize FPGA hardware design and get FPGA bitstream and con-

figuration files. If there exists a synthesized design for the decorated function

for the target FPGA platform but the design has not been deployed in the

target FPGA, then PyLog will program the FPGA, allocate memory, pop-

ulate memory space with input arguments, and call the FPGA accelerator

and collect results. To run FPGA accelerated programs, users do not need to

write any extra FPGA-specific code, and they will not notice any difference

in the way of running the code on CPU or on FPGA. All the underlying

CPU-FPGA interactions are taken care of by PyLog runtime. PyLog syn-

thesis and execution share the same piece of code, which is also very similar

to a regular Python code, except the decorator @pylog. Both synthesis flow

and execution flow are fully automated.

PyLog users can also pass a “mode” string to @pylog decorator to configure

PyLog mode. For example, @pylog(mode=‘cgen’) runs only HLS C code

generation flow. The list of possible PyLog modes is shown in Table 5.1.

PyLog uses Python syntax and it is friendly to both software and hard-

ware developers. PyLog has a built-in type inference engine that can infer

the types of objects in the program. PyLog supports basic Python opera-

tions and expressions as well as several high-level operators, which makes de-

cription of computation flow intuitive, efficient, and natural (Section 5.3.2).

61

Besides, PyLog allows programmers to nest operators to express compli-

cated computation patterns. Nested operators significantly simplify code

and greatly increase the expressiveness of PyLog (Section 5.3.3). In addi-

tion to the expressive high-level PyLog operators, PyLog also supports data

type customization and computation customization (Section 5.3.5). Besides,

PyLog naturally allows users to simulate accelerator behavior in Python (Sec-

tion 5.3.6). These capabilities make PyLog expressive and flexible enough

to describe many different computation patterns across application domains.

The rest of this section will describe all the features in detail.

y = map(lambda a0, a1,…: op(a0[-1, 0], a1[0, 2],…), x0, x1,...)

L1: for(int i1 = 0; i1 < x0.dim(0); i1++) {
L2: for(int i2 = 0; i2 < x0.dim(1); i2++) {

y[i1][i2] = op(x0[i1-1][i2], x1[i1][i2+2],...); }}

y = map(lambda a: w0*a[-1] + w1*a[0] + w2*a[1], x[1:-1])

L1: for(int i1 = 1; i1 < x.dim(0)-1; i1++) {
y[i1] = w0*x[i1-1] + w1*x[i1] + w2*x[i1+1]; } a[0]a[-1] a[1]

PyLog

HLS C

PyLog

HLS C

y = map(lambda a: dot(a[-1:2,-1:2], w), img[1:-1,1:-1])PyLog

3x3 element-wise multiplication
and reduction

Image without outermost pixels

a[0,0]

a[-1:2,1:2]

a[0, 0]

a[0, 2]

a[-1, 0]

(HLS C code omitted for simplicity)

(a) 2D map

(b) 1D conv

(c) 2D conv
img

x

Figure 5.3: PyLog map Operator Examples. (a) 2D Stencil, (b) 1D
Convolution, (c) 2D Convolution

5.3.2 High-Level Operators

In addition to the frequently used standard Python keywords and built-in

functions, PyLog provides a set of high-level operators that describe common

computation patterns. These high-level operators allow user to express com-

putation at high-level without specifying implementation details. Each high-

level operation can have multiple valid implementations. Figure 5.4 shows

an example of generating multiple valid implementations from a PyLog map

operation. PyLog can generate multiple versions of HLS C implementations

in different styles, which corresponds to different hardware structures, e.g.

shift registers, systolic arrays, etc.

Array operators. PyLog supports a set of commonly used NumPy-style

binary array operators. Listing 5.2 shows two examples of array operators.

The first example (line 2) assumes that a and b are multidimensional arrays

with the same shape. PyLog can infer the types and shapes of operands

(a and b) as well as target (c), and further infer the binary operations “+”

62

for (i...) {
for (j...) {

for (k...) {
...

} } }

y = map(lambda a, b: dot(a[0,:], b[:,0]), mat_a, mat_b)

for (k...) {
#pragma HLS unroll

for (i...) {
for (j...) {

} } }

...
for (i...) {

for (ii...) {
...

} }

...

...

...

PE
PE PE PE

PE PE PE

PE PE PE

PE PE PE PE

PyLog high-level operations

HLS C Implementations

Hardware Implementations

Figure 5.4: Different Implementations Generated from Same PyLog Code

and “=” (assignment) to be array operators. PyLog generates the optimized

parallel for loops to implement this array operation. PyLog also supports

indexing and slicing that adds flexibility to expressions as in NumPy and

native Python.

PyLog slicing style is the same as that in Python. Slice expression “start:

end:step” means a sequence of indices with “start” as the first index,

“start+step” as the second index, etc. The index continues until it reaches

end (but not including end). Note that this is consistent with Python slice’s

left-inclusive and right-exclusive definitions. Any of start, end or step can

be left out. If step is left out, its value is understood to be 1. If start is

left out, it means that the slice starts with 0. If end is missing, it means

that the end value is the dimension. Using -1 for end means that the end is

dimension-1. The PyLog compiler can infer the actual range of dimensions

and indices according to the shape of the array under consideration. For

example, a[::2] means a sub-array consisting of every other element in a.

1 # Array operation based on operators "+" and "="
2 c = a + b
3
4 # Array operation with slicing
5 z[2:66:2 ,:] = x * y[:,6,:-1]

Listing 5.2: Array Operation Examples.

63

Line 5 in the Listing 5.2 shows an example of using slicing and indexing to

apply array operations to sub-arrays of the original arrays. In this example,

elements in every other row from row 2 to row 64 of z (a total of 32 rows)

receive the product of variable x and all elements in y that have index 6

in the second dimension and all the indices except the last one in the third

dimension. The compatibility between the input and output arrays of this

operation is checked by PyLog’s type system. Also, the alignment between

the input and output elements is automatically set by PyLog. For example,

assume that x is a scalar variable. If z is a 64 × 8 array and y is a 32 ×
16 × 9 array, there will be 32 × 8 = 256 z elements and the same number

of y elements involved. z[2,0] will receive x * y[0,6,0], and z[4,4] will

receive x * y[1,6,4]. In general, for all the 256 elements involved, z[i,j]

will receive x * y[m,6,n] if ((i/2− 1) · 8) + j = m · 8 + n).

Note also that x can be a scalar or a vector, which will make the meaning

of * different (vector linear scaling and vector element-wise multiplication,

respectively). Again, PyLog will be able to infer the types and shapes of

all the arrays with indexing and slicing, and it will also check whether the

operations are valid by comparing the shapes of sub-arrays. Array operators

plus the slicing expressions support succinct and clear specification of linear

algebra algorithms such as convolution and matrix multiplication.

1 # Vector add
2 out = map(lambda x, y: x + y, vec_a , vec_b)
3
4 # 1D convolution
5 out = map(lambda x:w0*x[-1]+w1*x[0]+w2*x[1], vec)
6
7 # Inner product
8 out_vec[i] = dot(matrix[i,:], in_vec)
9

10 # Square matrix multiplication
11 out = map(lambda x,y: dot(x[0,:],y[:,0]), ma , mb)

Listing 5.3: PyLog map and dot Examples.

The map operator. PyLog supports a built-in map operator, which is an

extended version of the Python map function. Similar to the map function

in Python, map operator in PyLog can be used as map(f,o1,...,on) to

repeatedly apply a function f to the n iterable objects o1, o2, ..., on where

all objects must have the same shape. By default, the PyLog map operator

behaves the same way as the Python map operator. In this case, f is defined

with n formal parameters p1, p2, ... pn, each of which refers to an element

of the corresponding object that f is to be applied to in the map operator.

64

For example, in Line 2 of Listing 5.3, x (p1) refers to an element of vec a

(o1) and y (p2) refers to an element vec b (o2). In the ith iteration of the

map implementation, f takes the ith element of vec a and the ith element of

vec b, adds them together, and assigns to sum to the ith element of out.

Typically, function f is a lambda function (anonymous function), as shown

in Listing 5.3. For example, in Line 2 of Listing 5.3, the lambda function is

an addition function whose output is produced by adding the values of two

formal parameters together.

Beyond the basic features, PyLog map further supports an extension to

allow function f to access any number of elements in the iterable objects

by specifying an offset or a offset slice expression that specifies a collection

of offsets with each reference in the function body. The offsets are defined

based on the iteration index. For example, in Line 5 of Listing 5.3, in the ith

iteration of map, the lambda function accesses vec[i-1] (specified as (x[-1]),

vec[i] (x[0]), and vec[i+1] (x[1]) in the function body. Thus the lambda

in this example is a 1D convolution function with a three-element filter of

w0, w1, and w2. Figure 5.3 visualizes a few map examples. Note that this

offset extension can naturally describe stencil operations. PyLog compiles

stencil code described with the map operator and connects to SODA [126] to

generate highly efficient stencil accelerators.

The dot operator. In PyLog, dot is defined as element-wise multiplica-

tion followed by a sum reduction. In other words, dot(a, b) is equivalent to

sum(a*b), where a*b is element-wise multiplication and the sum operator cal-

culates the sum of all elements in the iterable object. For example, Line 8 of

Listing 5.3 performs a dot product between row i of matrix and in vec and

assign the output value to the ith element of out vect. The dot operator is

introduced in PyLog to simplify programming and expose more optimization

opportunities to the compiler. This operation is frequently used in many

different applications, e.g., image filtering, matrix multiplication, stencils,

etc.

Custom operators. PyLog allows users to define custom operators as

PyLog functions, inside a PyLog decorated top function. Similar to other

operators, PyLog can infer the types and shapes of operands and output

of custom functions by propagating type information from input to output

through the whole function. These user-defined functions can be reused and

simplify programming. These custom functions will be synthesized into HLS

65

C functions.

5.3.3 Offset-Slicing and Operator Chaining

The PyLog map offsets and offset slice expressions can be used for accessing

higher dimensional formal parameter arrays. For each dimension, the offset

can be a single number (e.g., 1, which means an input element in that dimen-

sion with offset 1 is accessed in an iteration), a slice (e.g., -1:2, which means

three elements in that dimension with offsets -1, 0, and 1 are accessed in an

iteration, or the entire dimension (:, which means all elements in that dimen-

sion are accessed in an iteration). For example, in Line 11 of Listing 5.3, the

map operator will apply the lambda function to all positions of the 2D arrays

involved. In iteration (i, j) of map, the offset expression x[0,:] means that

the function accesses all elements of the ith row of mat a and y[:,0] means

that the function accesses all elements of the jth column of mat b. That is,

the map and lambda functions, chained together in Line 11, perform a dot

product between the ith row of mat a (x[0,:]) and the jth column of mat b

(y[:, 0]) and assigned the dot product value to out[i,j], i.e., a matrix

multiplication.

Note that the map offset slices for accessing formal parameter arrays should

not be confused with the slicing of PyLog arrays. Assume that x is a formal

parameter of a lambda and vec is a PyLog array, offset slice x[-1:2] specifies

three accesses to the formal parameter with offsets -1, 0, 1 whereas vec[1:-1]

produces a slice that consists of all elements of vec except the first and the

last elements (i.e., all internal elements of vec).

The PyLog offset extension and operator chaining enables Python devel-

opers to intuitively and succinctly express common computation patterns

in various application domains. For example, in Figure 5.3(c), img is the

input to a 2D convolution, and w is a 3 × 3 convolution filter. The slicing

[1:-1,1:-1] applied to img extracts out the sub-array excluding the outer-

most elements at the edges. The lambda function is applied to each element

in the extracted array, img[1:-1,1:-1]. The parameter to the lambda func-

tion is a, which corresponds to each element in the array. The offset-slicing

expression applied to a, a[-1:2,-1:2], expresses a sub-array consisting of

neighbor elements around the current element a as well as a.

66

The dot operator multiplies this square with convolution weight w (which

is also a 3×3 square) element-wisely, and does a summation reduction to get

the single convolution output at the current element a. This dot operation

is repeatedly applied to each element position in img[1:-1,1:-1], and this

completes the whole 2D convolution. Note that PyLog can infer the shape

of each object involved in the computation and users do not need to give any

hints about object shapes. Details of PyLog type inference will be presented

in Section 5.4.

1 # Dilated convolution where dilation = 2
2 map(lambda x:dot(x[-2:3:2 , -2:3:2] ,w),img[2:-1,2:-1])
3
4 # Strided convolution where stride = 2
5 map(lambda x:dot(x[-1:2,-1:2],w),img [1: -1:2 ,1: -1:2])

Listing 5.4: Variants of 2D in PyLog.

In addition to basic 2D convolution, variants of more general convolution

can also be expressed easily in PyLog, as shown in Listing 5.4. Dilated

convolution with dilation equals to 2 can be described (line 2) by simply re-

placing a[-1:2,-1:2] with a[-2:3:2,-2:3:2] in the basic example above.

Index “-2:3:2” means the sequence of indices of “{-2, 0, 2}”, therefore

a[-2:3:2,-2:3:2] represents a dilated convolution filter. Similarly, convo-

lution with non-unit stride can also be described by specifying step in the

index slices of img (line 5).

Note that these high-level operators only describe the arithmetic relation-

ships between array objects without specifying any actual implementation

details. For example, the map operator describes the repeated application

of an operator to all the elements in an array, but it does not prescribe any

ordering when iterating through these elements. In traditional HLS, the sim-

ilar computation would be expressed with nested for loops, which actually

implies an iteration order. The HLS quality heavily depends on how the com-

putation is expressed, a key reason why it is hard to create optimal hardware

design with HLS flow. In the PyLog flow, the actual order of iterating in

the map operation is left for the PyLog compiler to decide. This approach

not only simplifies programming, but also enables better design optimiza-

tion and code generation. Given the high-level operators, PyLog compiler

gets full information about the computation pattern. It knows exactly where

data dependencies are in the code, which allows it to perform aggressive loop

transformation and other code optimization. How PyLog performs code op-

67

Table 5.2: Examples of NumPy Operators in HLS C

Operator Tunable Performance Parameters

argmax, argmin pi: number of parallel inputs of comparison tree

max, min pi: number of parallel inputs of comparison tree

matmul po: number of output processed in parallel

convolve

po: number of output processed in parallel
pm: parallel multiplications for each output

sort qo: partition factor of the output buffer

timization will be discussed in Section 5.4.

5.3.4 HLS C Library Integration

In addition to the high-level operators and Python modules described above,

PyLog also supports integration of external HLS C library functions. This

allows users to leverage the existing highly optimized HLS libraries. We

develop an extensible library of HLS C operators that implement widely

used NumPy functions. The interface of these operators is compatible with

NumPy functions. PyLog users can call these HLS C operators in the same

way as NumPy function calls. A few examples are shown in Table 5.2.

In spite of the similar interface, the specific implementation of our oper-

ator library is very different from NumPy. These PyLog external operators

are developed in HLS C language and highly optimized for hardware. These

operators are implemented as HLS C code templates and are highly parame-

terized and configurable, and can be configured by PyLog according to data

types and shapes, as well as design goals. Similar to other PyLog opera-

tors and function calls, the PyLog type inference engine will also do type

inference and type checking for these external operators, to figure out the

configurations of these operators and ensure the arguments and return of

these operators to be valid. Type inference and checking is done based on

the inference rules customized for each of these operators. Taking operator

matmul(A,B,C) that performs matrix multiplication C=A*B as an example,

the PyLog type engine checks if the shapes of A, B, and C has a pattern of

(m, k), (k, n) and (m,n) or not. If yes, PyLog will configure the operator

68

based on the inferred type and shape and instantiate the operator template

and generate HLS C implementation. Otherwise, PyLog will stop and output

error messages accordingly.

Besides functionality parameters, these external operators also have con-

figurable performance parameters, which configure the implementation of

the operator. PyLog tunes these parameters to balance the performance

and resource utilization of the entire design based on the design goals. The

performance parameters are listed in the second column of Table 5.2. Each

operator can also be configured as pipelined or non-pipelined according to

design needs.

5.3.5 Bitwidth and Compute Customization

In FPGA designs, integers and fixed-point data types are widely used to

improve computation efficiency. PyLog allows users to specify integer and

fixed-point data types with arbitrary precision. Listing 5.5 shows a few ex-

amples. The PyLog type system supports the propagation and compatibility

checking of user-defined data types.

1 a = pl_int8 (0) # 8-bit integer
2 b = pl_uint512 (0) # 512-bit unsigned integer
3 c = pl_fixed (8 ,3)(0.0) # 8-bit fixed -point number ,
4 # 3 bits above decimal point

Listing 5.5: PyLog Arbitrary Precision Type Examples.

Aside from the internal optimization passes, PyLog also allows users who

want to have more control to customize computation and memory in the

code. Table 5.3 summarizes the computation customization types in PyLog.

For loops can be customized with unroll or pipeline. Operator map can be

customized with reorder or tiling, which will be applied to the for loops

generated from map operation. Loop reordering and tiling are safe in map

operation since there is no loop-carried dependence in map operation.

5.3.6 Functional Simulation Support

With the unified and seamless host-accelerator programming model provided

by PyLog, programmers are not only able to program both host and acceler-

ator efficiently, but also simulate the functionality of both host and acceler-

ator easily. PyLog provides a pysim mode that allows the PyLog code to be

69

Table 5.3: Computation Customization in PyLog

Operator Customization Description

for
unroll Unroll for loop
pipeline Pipeline for loop

map
reorder Interchange for loops
tiling Tile for loops

generic pragma Insert HLS pragma

interpreted by the standard Python interpreter, and all the PyLog-specific

operations and customizations will be removed or simulated. pysim can be

used to simplify debugging and improve development efficiency.

5.3.7 Python Feature Support and Limitations

Inside the PyLog kernel (PyLog top function, to be synthesized), PyLog

compiler supports commonly used Python features as well as PyLog-specific

high-level operators. The host part in the PyLog code is interpreted by

standard Python interpreter and it can contain any Python features and

library calls.

Table 5.4 summmarizes the list of Python features that are supported

in PyLog kernel. Please note that the Python features supported by Py-

Log compiler is a subset of complete Python features. This is because some

Python features do not have well-defined and clear meaning for hardware syn-

thesis, due to the language constraints in the backend HLS-C-based hardware

design flow. For example, object-oriented programming, functions with vari-

able length of input arguments, loops with variable bounds, dynamic array

allocations, etc., are not synthesizable. For a piece of the existing Python

function, as long as it uses the supported Python features, it can be synthe-

sized into a hardware module by PyLog. If there are unsupported language

features used in the PyLog kernel function, PyLog compiler will raise errors

and warnings. We have some future plans in mind regarding Python feature

support. First, we are working to support a wider set of Python features by

defining their hardware behaviors. For example, dynamic array allocation,

object-oriented programming, etc. There are several previous works that

proposed the solutions to enable dynamic memory allocation in HLS [127],

[128], [129], [130]. These works either provided libraries of dynamic data

70

Table 5.4: Supported Language Features

Category Operators

PyLog high-level operators map, dot, user-defined ops

NumPy operators
argmax, argmin, max, min, matmul,
convolve, sort

Python features
list, functions, calls, lambda,
for, while, if...else..., slice,
subscript, attribute, bin op,
unary op, return

Table 5.5: High-Level FPGA Design Flow Comparison

Features Dahlia[121] HeteroCL[118] PyLog

Hardware customization 3 3 3

Data type customization 7 3 3

Ahead-of-Time compilation 3 7 3

Host programming 7 7 3

System generation 7 7 3

HLS C library integration 7 7 3

structures or dynamic memory allocation APIs for HLS users to use, or they

provide a source-to-source compiler pass that translates code with dynamic

memory allocation to static allocation code that can be synthesized by cur-

rent HLS tool. Both approaches rely on some heuristic or learning-based

models. Working with Python-based high-level operators, PyLog should be

able to achieve similar dynamic allocation support at Python level. Second,

PyLog compilation and synthesis are currently done at kernel level, therefore

the unsupported operators will prevent the whole kernel from synthesis. Syn-

thesis of individual operators is left as a part of future works. Operator-level

synthesis can potentially enable JIT compilation for FPGA. We will discuss

this future opportunity further in Section 5.6.2.

To summarize, Table 5.5 compares the features of existing high-level FPGA

design languages and flows with PyLog.

71

5.4 Compilation and Synthesis Flow

PyLog flow is a fully automated FPGA programming and synthesis flow. It

consists of three parts, PyLog compiler, PyLog system generator, and PyLog

runtime.

PyLog compiler is a source-to-source compiler that translates PyLog source

code to optimized HLS C code which can be synthesized by high-level syn-

thesis (HLS) tools. The current supported HLS tool is Xilinx Vivado HLS

[1] and Merlin compiler [120]. However, the analysis and optimization used

in PyLog are not restricted to these HLS tools. The code generator of PyLog

can be extended to support other HLS tools without much difficulty. The

compilation steps of PyLog compiler can be categorized into four stages: (1)

front-end analysis and PyLog intermediate representation (PLIR) generation,

(2) type inference, (3) optimization, and (4) HLS C code generation.

PyLog system generator calls FPGA vendor’s tools to synthesize gener-

ated HLS C code, integrates the FPGA application kernel with other system

components, and generates FPGA configuration bitstream. PyLog runtime

configures and invokes FPGA to accelerate computation in user’s application.

5.4.1 Front-End Analysis and PLIR Generation

When a @pylog decorated function is called with NumPy arrays and scalars

as parameters, PyLog compilation begins. In the first step, PyLog collects

information about the data types and shapes of input arguments to the top

function. This information is passed to PyLog sub-modules. The source

code of the top function is parsed by Python built-in abstract syntax tree

(AST) module ast, outputting the AST of PyLog code. AST is a low-

level representation of the input code, which only represents the code syntax

structure without semantics information. AST is the starting point for the

following PyLog compilation steps. ast is the only module from standard

Python interpreter that PyLog depends on. The following compilation steps

do not depend on the existing Python interpreter.

In the first stage, the PyLog front-end traverses the PyLog AST, analyzes

code structure, collects code information, and generates PyLog intermediate

representation (PLIR). PLIR is a high-level tree-based data structure that

describes the PyLog code structure, including high-level operations, low-level

72

Table 5.6: PLIR Node Categories

Category Example Node Types

Low-Level Ops PLUnaryOp, PLBinOp, PLAssign, etc.
PyLog High-Level Ops PLMap, PLDot, PLPragma, etc.
Code Objects PLConst, PLVariable, PLArray, etc.
Code Structures PLFuncDef, PLCall, PLFor, etc.

controls, functions, external IP and configuration, etc. PLIR works as the

hardware-agnostic IR for lowering high-level operations down to low-level

controls, which is the implementation of high-level operations.

PLIR nodes include nodes representing high-level computation patterns

and code structures, e.g., PLMap, PLDot, etc., as well as nodes represent-

ing lower-level generic statements and operations, e.g., PLFor, PLBinOp, etc.

Compared with the nodes in the PyLog AST, each node in PLIR is coarser in

granularity, and the attributes of PLIR nodes carry more information. Each

PLIR node has multiple attributes that either point to the other PLIR nodes

or store the related information about this node. Essentially, the PLIR gen-

eration can be considered as a process where the PyLog front-end analyzer

aggregates the sub-trees and structure information in the AST to form PLIR

nodes.

Table 5.6 lists the representative categories of PLIR nodes and examples.

Low-level operations and expressions are the nodes that represent basic arith-

metic operations, indices, basic expressions, etc. PLIR high-level operations

are the nodes that represent high-level primitive operations in PyLog, e.g.

map, dot, etc. These are PyLog-specific nodes. Code structures are the nodes

that represent control flow and structure of the code, e.g., loops, branches,

function definition, function calls, etc. The data fields of a PLIR node can

point to another PLIR node; therefore, the whole PLIR is a tree that repre-

sents the code at high-level.

5.4.2 Type Inference and Type Checking

One of the biggest challenges in compiling Python code is that Python is a

dynamically typed language and there is no explicit type declaration in the

Python code, which makes it hard for the compiler to understand the actual

73

Table 5.7: Type Inference Rules Examples

Operations Types

out = UnaryOp(a) a : T nt , out : T nt
out = BinOp(a, b) a : T nt1 , b : T nt2 , out : T nt1
out = dot(a, b) a : T nt1 , b : T nt2 , out : T 0

t1

out = map(f, a) a : T nt1 , f : T 0
t1
→ Tmt2 , out : Tm+n

t2

y = map(lambda a: dot(a[-1:2,-1:2], w), img)

type: (float, 2)
shape: (27, 27)

type: (float, 2)
shape: (3, 3)

type: (float, 0)
shape: (0,)

type: (float, 2)
shape: (3, 3)

type: (float, 0)
shape: (0,)

type: (float, 2)
shape: (27, 27)

(input, known)(input, known)

❶

❷ ❸

❹❺

Figure 5.5: An Example of Type Inference on Chained High-Level
Operators.

semantics of some operations. For example, consider a simple expression “a

+ b”. Since a and b can be scalars or can be multidimensional arrays, this

expression can mean scalar addition, or vector element-wise addition. The

corresponding C code for this expression will be very different in these two

cases. Without a context of types and shapes of a and b, it is not possible

to know the actual meaning of this expression.

To solve this problem, we implement a type inference engine in PyLog that

infers the types and shapes of each object in the PyLog code. With PyLog

type inference support, PyLog users do not need to provide explicit type hints

in PyLog code. The type checking engine will raise errors and warnings when

it finds inconsistencies in the input and output types and shapes, according

to the type checking rules. Since the backend of PyLog flow is C/C++-

based HLS flows, which supports only a subset of C/C++ languages features

and has several constraints in terms of code synthesizability, there are also

constraints and assumptions on the PyLog kernel code. These constraints

and assumptions simplify the type inference and type checking engine in

the PyLog. Currently, we only support the inference and checking of the

supported synthesizable operations in PyLog kernel code. Also, currently the

type inference and checking in PyLog is done for data objects and expressions.

Function types are not currently supported and are left as future work.

74

Algorithm 2 Type Inference and Checking

Input: Set of all variables S; set of input variables Sin ⊂ S; set of output
variables Sout ⊂ S; Type mappings T defined on Sin ∪ Sout, PLIR with
root Nroot.

Output: Type mappings T defined on S, or TypeError.
1: Styped ← Sin ∪ Sout

2: for each node n ∈ PostOrderTraversal(Nroot) do
3: if n ∈ Styped then
4: np ← Parent(n)
5: if np /∈ Styped then
6: T (np)← TypeRule(n→ np, T (n))
7: Styped ← Styped ∪ {np}
8: else if T (np) 6= TypeRule(n→ np, T (n)) then
9: return TypeError

10: end if
11: for each nc ∈ Children(n) do
12: if nc /∈ Styped then
13: T (nc)← TypeRule(n→ nc, T (n))
14: Styped ← Styped ∪ {nc}
15: else if T (nc) 6= TypeRule(n→ nc, T (n)) then
16: return TypeError
17: end if
18: end for
19: end if
20: end for
21: if S ⊂ Styped then return T
22: else return TypeError
23: end if

In the PyLog compiler, the type information of an object includes the

type of data elements in the object as well as the number of dimensions of

the object. PyLog compiler uses PLType(ty, dim) to denote types, where

ty is the type of data elements and dim is the number of dimensions. For

simplicity, we use notation T dt to represent PLType(t, d). For example,

the type of a three-dimensional array consisting of floating-point numbers

can be represented as PLType(float, 3), or T 3
float. Algorithm 2 shows the

pseudo-code of the type inference algorithm in PyLog. Type inference starts

with type and shape information of function arguments in the PyLog top

function (which is carried by the input NumPy objects), and type information

propagates across the whole PyLog code. Type inference is performed on

PLIR and the resulting type and shape information is annotated to PLIR

75

nodes. Type information propagation happens by performing type inference

at each PLIR nodes, which is done according to the type inference rules.

Table 5.7 lists a few examples of type inference rules.

As an example, when inferring types of objects in a map operation, the type

inference engine first retrieves the type of operands T nt1 from current context,

which stores the types and shapes of visible variables at current point in the

code. Then, the type engine is able to tell that the type of the argument

to function f is T 0
t1

, because map operator iterates through each element in

the operand and f takes one element as input. Next, the type engine infers

types of objects inside f and gets the return type of f, Tmt2 . Finally, as a map

operator, its return value is the aggregated results of f’s return values, so

the type is Tm+n
t2 .

The shapes of objects are also inferred in the similar way, and happens at

the same time as type inference. After type inference, the semantic of opera-

tions and expressions in the PyLog code is determined. When inconsistency

is detected by the type system, a compilation error message is generated for

the user. This makes debugging more user friendly than pure interpreter-

based Python implementations. PLIR with type information is then ready

for optimization and code generation.

5.4.3 Compiler Optimization

PLIR characterizes the high-level computation patterns in the input PyLog

code, making it easier for the PyLog optimizer to optimize the computation

flow. Before the optimization stage, all the compiler analysis and trans-

formation are independent of actual implementation. In this optimization

stage, the compiler starts to consider and optimize the implementation for

better performance. PyLog optimization consists of three steps, high-level

operators lowering, loop transformation, and HLS pragma insertion.

High-level operator lowering. In this first step, PyLog optimizer tra-

verses through PLIR, and replaces high-level operators in PLIR with func-

tional equivalent groups of generic low-level operators. For example, vector

operators and map operators will be replaced with a group of for loop nodes

that represent nested for loops. The information about the type of origi-

nal high-level operators (e.g. map, dot, etc.) are kept and annotated to the

76

code: {
loop_i: {},
loop_map_1_tile_1: {
loop_map_0: {
loop_map_1_tile_0 : {}

}
},
loop_dot_0: {
loop_dot_1: {
}

}
}

code

i dot0

dot1

map1
tile1

map0

map1
tile0

Figure 5.6: An Example of for Loop Structures and Its Tree
Representation; The for Loops of Different Types are in Different Colors

generated for nodes. This information is useful in the following optimization.

Loop transformation. For each high-level operator, PyLog is capable

of generating multiple styles of nested for loops, including plain sequential

version, loop reordering version, loop tiling version, and mixed optimization

version where loop reordering and tiling are combined. The type of loop

transformation used depends on the operator type and the available hardware

resources. For example, loop reordering and loop tiling are safe and possible

in map operation since there is no loop-carried dependence in map operation.

Note that each of these versions also has one or more tunable parameters.

HLS pragma insertion. After the PyLog optimizer replaces the high-

level operators with nested for loops, the PyLog optimizer traverses the whole

PLIR tree again and identifies the for loops in the code, then, it generates

a loop structure tree that represents all the for loops in the code and their

structure information. Each node in the tree is a PLOptLoop object that rep-

resents a for loop and its information. Each PLOptLoop object has actions of

unroll(n) and pipeline(). Figure 5.6 shows an example of for loop struc-

ture and its tree representation. With this representation, the loop structure

in the code becomes very clear. Then, PyLog optimizer starts to insert HLS

pragmas according to the optimization algorithm. Algorithm 3 shows the

pseudo-code for one of the optimization heuristics. In this algorithm, the al-

gorithm traverses the loop structure in the post-order. That is, the optimizer

starts with the leaf nodes in the loop structure, which corresponds to the in-

77

Algorithm 3 HLS Pragma Insertion Algorithm

Input: Original loop structure L, improvement threshold T , total available
area Atotal.

Output: Loop structure L with HLS pragmas configured.
1: latency, area← Evaluate(L)
2: for each loop L ∈ PostOrderTraversal(L) do
3: if L has attribute unroll or pipeline then
4: continue
5: else
6: if L is from map then
7: A← {unroll, pipeline, unroll.pipeline}
8: else A← {pipeline}
9: end if

10: for each action ∈ A do
11: L.action()
12: latency′, area′ ←Evaluate(L.action())
13: if latency−latency′

area′−area < T or area′ > Atotal then
14: Undo L.action()
15: continue
16: else break
17: end if
18: end for
19: end if
20: end for

nermost for loops in the code. Then it moves to the parents of the traversed

nodes. For each node, determined by the type of for loop (whether it belongs

to map nodes or dot nodes or regular for loops), the optimizer tries a set of

candidate HLS pragmas (or actions). In each trial, it evaluates the area and

latency changes after applying that pragma by running the area and latency

estimators in PyLog. If the benefits are higher than a threshold, it accepts

the change, otherwise it discards the change. Then it continues and moves on

to next action or next node. Note that right now we are using a basic heuris-

tic to guide the optimization. Other more sophisticated optimization/search

algorithms can be used and plugged into the PyLog optimizer and guide the

optimization. We leave this as a part of future work.

Performance and resource models. We use the performance and

resource models proposed in [131] to estimate the latency and resource uti-

lization of the design points of each source code version. Based on these

estimates, the compiler identifies the optimal design points. These optimal

78

design points become the candidates of global design optimization. Note that

here we are modeling the different implementation versions of high-level oper-

ations, which are much more structured and predictable compared to general

loop nests. Besides, the current models are built based on C/C++ models,

and there are other alternative ways of building these models. For example,

since these high-level operators are regular and have well-defined computa-

tion patterns, we might be able to model the performance and resource of

these operations at Python AST level, which will make the estimation even

more efficient. We use an example in Section 5.5.3 to further demonstrate

the optimization mechanism.

5.4.4 Global Design Optimization

The optimizations presented in Section 5.4.3 focus on fine-grained operation-

level and loop-level optimization, while in this section, we discuss system-

level optimization in PyLog flow. Operation-level and loop-level optimiza-

tions identify the top implementation candidates for each of the high-level

operators in PyLog. At the system-level optimization stage, PyLog opti-

mizer finalizes the low-level design choices based on the global constraints

and optimization targets. We formulate this global optimization problem as

an integer linear programming (ILP) problem, solve the problem with an ILP

solver, and finally get the optimal design choices.

At the operation-level optimization stage, for each high-level operator pi,

the optimizer identifies the set of top m design candidates for this operator

{p(1)
i , p

(2)
i , . . . , p

(m)
i }, as well as the latency and resource estimates of these

candidates. We denote the latency and resource estimates with mappings

L : p
(j)
i → Z+ and A : p

(j)
i → Z+ respectively. Note that for each type

of FPGA resource, there will be one estimate function. To simplify the

notations, here we only write down the formula for one type of resource.

The same formula applies to the other types of FPGA resources. The goal

of this global optimization stage is to identify the optimal choice of design

candidates for each of the high-level operators so that the overall latency

of the whole design can be minimized, while the resource usage meets the

FPGA resource constraints. This optimization problem can be formulated

as an ILP problem as follows.

79

We define a binary indicator variable x
(j)
i ∈ {0, 1} to denote whether or

not we choose the jth candidate of the ith operator, i.e. p
(j)
i . Since only

one candidate will be chosen for a specific operator, we have the constraint∑
j x

(j)
i = 1 for each operator pi. Given available resource Amax on FPGA,

the optimization problem is:

min
x
(j)
i ∈{0,1}

∑
i,j

x
(j)
i L(p

(j)
i) (5.1)

subject to
∑
j

x
(j)
i = 1,∀i, (5.2)∑

i,j

x
(j)
i A(p

(j)
i) ≤ Amax (5.3)

Please note that the summation here takes the control flows in the program

into account. For example, if a high-level operator is called inside a sequential

for loop, all the dynamic instances of this operator will be summed up. This

formulated ILP problem is then solved by an external ILP solver, and the

solution corresponds to the optimal choices of high-level operators design

candidates.

5.4.5 C Code Generation and System Generation

After optimization, all the nodes in PLIR are low-level operators since the

high-level operators have been replaced. The PyLog code generator traverses

through the optimized PLIR and generates C AST, which is then translated

into actual C code.

The PyLog system generator calls FPGA synthesis tools to synthesize gen-

erated HLS C code into FPGA IP block (Vivado HLS or Merlin compiler),

and integrate the IP with all the other system components to create the com-

plete FPGA design (Vitis or Merlin compiler). The whole system generation

flow is fully automated.

5.4.6 PyLog Runtime

When the PyLog kernel function is called, PyLog automatically invokes

FPGA to accelerate the program. First, it programs FPGA, then it allo-

cates and populates arrays in CPU-FPGA shared memory space. Second,

80

0 20 40 60 80 100
Resource Utilization (%)

102

103

104

105

106

107

La
te

nc
y

plain
ic12
ic12+tile2
ic12+tile2+tile1
ic12+tile2+tile1+ic23
Pareto Curve

Figure 5.7: Design Space of Various Code Versions of 2D Array Addition
(“ic12”: interchange loop 1 and loop 2; “tile2”: tile loop 2)

it invokes FPGA accelerator, and waits for FPGA to finish. Finally, PyLog

collects computing results from FPGA and returns the results to the ker-

nel function caller in the host program. This runtime is built on top of the

Xilinx PYNQ library [132], which supports both low-power platforms and

high-performance platforms.

5.5 Evaluation

This section evaluates PyLog flow in several different aspects, namely porta-

bility, language expressiveness, and performance.

5.5.1 Portability

PyLog flow is designed to be generic enough to be portable across differ-

ent FPGA platforms. The whole PyLog flow, including code generation,

81

0

0.2

0.4

0.6

0.8

1

GEMM KNN K-means Jacobi2D Seidel Gaussian SpMV

L
in

es
 o

f
C

od
e

(n
or

m
al

iz
ed

 to
 H

L
S

C
)

HLS C PyLog

Figure 5.8: Length of HLS C Code and PyLog Code

hardware generation, and PyLog runtime, can be used with a wide range

of FPGA platforms. Table 5.9 lists the FPGA platforms that are currently

supported by PyLog flow. When targeting a specific FPGA platform, one

simply passes the platform name to the @pylog decorator, and no other code

change is needed. For example, @pylog(mode=‘deploy’, board=‘aws f1’)

will execute the PyLog code using Amazon AWS F1 instance FPGAs. Ex-

actly the same PyLog code with @pylog(mode=‘deploy’, board=‘pynq’)

applied instead will run the program with PYNQ FPGA, assuming FPGA

bitstreams have been generated with mode=‘hwgen’.

5.5.2 Expressiveness

To evaluate the expressiveness of PyLog, we compare the number of lines of

code between HLS C code and PyLog code. To make comparison fair, for

PyLog versions, we only use PyLog built-in high-level operators to express

the benchmarks but not using other pre-built functions or libraries. The

HLS C versions are HLS C code generated by PyLog from the corresponding

PyLog version. This guarantees the FPGA designs of two versions are equal.

Figure 5.8 shows the results. With PyLog, on average only 30% length of

code is needed to express computation, compared to the Vivado HLS flow.

5.5.3 Design Space Exploration and Search

We evaluate the effectiveness of our compiler optimizations by profiling the

latency and resource utilization of real-world workloads. Figure 5.7 shows

82

all the valid design points of a 2D array addition example, as well as the

optimal design points. These design points are identified by PyLog com-

piler automatically. First of all, PyLog identifies the four valid versions

of implementation, that is, “ic12”, “ic12+tile2”, “ic12+tile2+tile1”, and

“ic12+tile2+tile1+ic23”. Here “ic12” corresponds to the version that in-

terchanges loop1 and loop2, while “tile2” is the version that tiles loop 2.

Second, PyLog explores all the valid design points for each of these valid

code versions. These design points correspond to different ways of inserting

HLS pragmas. Figure 5.7 uses circles with different colors to mark the de-

sign points from different code versions. The optimal design points on the

pareto curve are also marked in the figure. As we can see from Figure 5.7,

the optimal design points come from different code versions. Our compiler is

able to identify the optimal design points from all the code versions. These

optimal design points become the design candidates for the global design

optimization, which is then solved by the ILP solver.

5.5.4 Accelerator Performance

We evaluate PyLog performance with real-world benchmarks on Amazon

EC2 F1 f1.2xlarge instance [138]. Amazon EC2 F1 f1.2xlarge instance is

a cloud computing platform with 8-core Intel Xeon E5-2686 v4 CPU and a

Xilinx Virtex UltraScale+ XCVU9P FPGA. The benchmarks are from differ-

ent domains and have varied computation patterns, including linear algebra,

data analytics, stencil, sparse operations, etc. Table 5.8 shows the eval-

uation results. The table lists FPGA resource utilization (look-up tables,

registers, BRAMs and DSPs), design frequency (f (MHz)), design power

(P (W)), and kernel execution time (T (ms)) of PyLog generated designs.

Resource utilization, frequency, and power are collected from Vivado post-

implementation reports. TCPU is the execution time on AWS F1 CPU. The

CPU baselines are optimized CPU implementations from [118] and other

sources. We enable multi-threading whenever possible, as long as a NumPy

operation has multi-thread implementation. THCL is the execution time on

HeteroCL [118] generated accelerators. The HeteroCL accelerators are gen-

erated from optimized HeteroCL implementations that are available online.

TPyLog is the execution time on PyLog generated accelerators. SpMV and

83

histogram benchmarks do not have HeteroCL implementations available yet

so we do not compare them with HeteroCL versions for these two bench-

marks. The stencil benchmarks (Jacobi-2D, Seidel, and Gaussian Filter) are

compiled to generate Vivado HLS C code with IPs from external HLS library

SODA [126] as SODA generates IPs in Vivado HLS C code. Since HeteroCL

uses the Merlin compiler as its general backend in the evaluation [118], we

also compile the benchmarks to Merlin C code to allow further optimizations

from Merlin so that we can fairly compare performance results from PyLog

and HeteroCL. In terms of compilation time, PyLog HLS C code genera-

tion only takes seconds and therefore PyLog compilation time is negligible

compared to Vitis synthesis that takes hours.

The last two columns in Table 5.8 show the speedup achieved by PyLog

accelerators over CPU implementation and HeteroCL implementation re-

spectively. On average, PyLog accelerators achieve around 3.17× and 1.24×
speedup over CPU baseline and HeteroCL accelerators. PyLog can generate

accelerators with better or similar performance compared with HeteroCL in

most of the benchmarks. Note that we use PyLog generic backend to com-

pile GEMM benchmark while HeteroCL uses special systolic array backend

for GEMM. This is the main reason for the performance gap in the GEMM

benchmark. After we add support for systolic array backends this gap will

be filled. This is left as future work. The main sources of speedup achieved

by PyLog are as follows. First, the high-level operators expose parallel pro-

cessing opportunities and the compiler is able to insert HLS pragma with

better insight. Second, PyLog compiles Python code directly and has native

support for imperative programming. This enables users to have fine-grained

control in hardware generation. Third, PyLog incorporates external highly

optimized HLS libraries and it tunes the design parameters of these libraries

to achieve good balance of performance and resource utilization.

5.6 PyLog Future Works

While we presented several features that PyLog currently supports, there

remains several promising directions or features that we are exploring or will

explore in the future. This section discusses the future features or directions

that might be promising for the PyLog project.

84

5.6.1 Supporting Other Accelerators

Currently, PyLog generates FPGA designs from PyLog code. However, the

PyLog frontend and intermediate representation are general enough to ex-

press computation patterns on other accelerators. For example, the high-level

operators like NumPy operators can also be mapped to the parallel computa-

tion on GPUs or multi-core CPUs. Recently there are several Python-based

libraries and frameworks that focus on parallel computing targeting GPUs

or multi-core CPUs, e.g. Numba, CuPy, RAPIDS, Dask, etc. These frame-

works either provide a set of APIs that connects to high-performance parallel

code for target device, or compile Python code with optimized backend for

the target platform.

In PyLog, the high-level operators aim to provide an abstraction of par-

allel and distributed computing patterns. For example, the map operator

expresses the parallel applications of functions to individual elements in data

container. This pattern is common in GPU computing and multi-core com-

puting. Beside GPUs and multi-core CPUs, there are other customized ac-

celerators that can potentially become the target devices for PyLog in the

future. For example, the AI engine in the latest Xilinx Versal device is an 2D

array of accelerators that accept instructions, and it is suitable at perform-

ing certain computation patterns like matrix multiplications and processing

pipelines. Being able to compile PyLog high-level operators to these array of

accelerators will simplify the programming of these customized accelerators.

5.6.2 Working with Existing Python Frameworks

Python has become very popular in many application domains, and many

programming frameworks are built with Python. For example, several deep

learning frameworks are very successful and with their help, development and

deployment of deep learning algorithms to accelerators like GPU clusters are

greatly simplified.

FPGAs are being deployed in more and more use scenarios, in both cloud

computing and edge computing environments. The complexity in deploy-

ment environment motivates agile and efficient FPGA programming flows.

With the Python interface and environment provided by PyLog flow, it be-

comes possible to plug PyLog synthesis flow into the existing Python-based

85

frameworks, like PyTorch and TensorFlow. The existing Python frameworks

have several level of interfaces, which provide opportunities at different lev-

els for PyLog. One possibility is that PyLog compiles users’ Python kernel

code and generates FPGA accelerators as well as Python/C++ glue logic

that connect to the Python framework. Besides, the interaction between

PyLog and surrounding Python environment might happen at a more fine-

grained manner. For example, if PyLog can synthesize fine-grained operators

instead of Python functions or kernels, and, with the lower-level hardware

interface and driver supports from FPGA, we might be able to achieve JIT

(Just-In-Time) compilation from Python code to FPGA accelerators, which

will make application development for FPGAs much more flexible. Recently,

researchers start to look into the JIT compilation for FPGA. [140] is a re-

cent work that proposed a JIT compiler of Verilog. It reduces the time

between compilation and running code to less than a second, and it enables

printf-based debugging from hardware, which is an interesting step toward

interactive debugging from FPGAs. In the future, if PyLog can support JIT

compilation at the Python level, which is much higher level than Verilog

level, it will greatly improve the hardware debugging efficiency.

5.6.3 Memory Access Optimizations

Memory access bandwidth and latency limitation remain one of the main

challenges in creating high-performance FPGA designs. Although PyLog

has some level of optimization on compute and data burst accesses, there

is still significant room for improvement in memory access efficiency. There

are several potential directions. First, a better model that captures memory

latency and bandwidth constraint details will be beneficial for the compiler

optimizer. In terms of memory bandwidth modeling and optimization, there

are several recent FPGA-based DNN accelerator works that proposed mem-

ory bandwidth models and optimize for the optimal utilization of the memory

access bandwidth. For example, Caffeine [141] proposed a hardware/software

co-designed library that accelerates the entire CNNs on FPGAs. This work

used a roofline model to predict and optimize the computing and memory ac-

cess bandwidth of the generated FPGA designs. Besides, [142] is recent work

that co-optimizes the DNN architecture and FPGA accelerator architecture.

86

(a) Within same accelerator

(b) Between host and accelerator

(c) Across accelerators

(d) Across nodes

PyLog
kernel 1

PyLog
kernel 2

FPGA

PyLog
kernel 1

Host

PyLog
kernel 2

Programmable Logic

PyLog
kernel 1

FPGA 1

PyLog
kernel 2

FPGA 2

PCIe/AXI

PCIe/Ethernet

PyLog
kernel 1

Node 1

PyLog
kernel 2

Node 2

Ethernet

Figure 5.9: Multiple Kernels Mapped to Different Architectural Levels

In this work, a memory access bandwidth model is also proposed and used

to predict hardware performance. Both of these two works, as well as most

of the existing computing and memory bandwidth modeling works, work at

C/C++ source code level. Since PyLog compiles and optimizes at Python

level, there are several alternative ways to achieve this type of modeling and

prediction. For example, using the input and output of high-level opera-

tions to predict memory access patterns, and, leveraging Python runtime to

dynamically profile data access patterns, are both interesting options to ex-

plore. Second, depending on the data access patterns to the memory, PyLog

may be able to choose the best buffer sizes and buffer layout, as well as the

configuration of memory interfaces. Third, choosing the best memory or reg-

ister type as well as data alignment and layout are also design considerations

that may also become a part of future compiler optimizations.

5.6.4 Heterogeneous Computing Support

Besides the features presented in the sections above, PyLog also supports

multiple kernels for synthesis. Currently, PyLog supports the mapping of

87

multiple kernels to logic in the same FPGA. However, the benefits of sup-

porting multiple kernels are not limited to expressing multiple modules on

the same FPGA. The major benefit of supporting multiple kernels is that it

allows users to describe their system design in a more modular and flexible

way. Also, it provides a high-level way of expressing interactions, parallelism,

and pipelining between modules. The abstract kernels can be mapped and

interpreted to different physical meanings when considered at different archi-

tectural levels. Figure 5.9 illustrates the physical implementations of multiple

kernels when they are mapped to different architecture levels. This type of

multiple kernel support at high abstraction level enables the possibilities to

program heterogeneous computing systems with multiple accelerators from

high level.

This multiple kernel support opens up many new opportunities for system-

level optimization and automation. First of all, the mapping and schedul-

ing of multiple kernels to physical devices are interesting problems to solve.

Depending on the granularity of kernels and the data access patterns, the

compiler may be able to help designers to choose the optimal mapping and

scheduling of kernels. Second, the interfaces between multiple kernels and

between architecture levels may have many choices, and depending on the

application and data access patterns, compiler may be able to do some auto-

matic tuning and choose the best configuration of the interface. Third, these

are new dimensions of the overall design space exploration problem, and they

may be optimized together with other dimensions using the unified compiler

optimizer. This will help designers to identify the globally optimal design

point.

5.7 Conclusion

In order to improve FPGA development efficiency and simplify FPGA pro-

gramming, we built PyLog, an algorithm-centric Python-based FPGA pro-

gramming and synthesis flow. PyLog flow compiles Python functions into

optimized HLS C code, and generates a complete system including FPGA

accelerator as well as host-side runtime environment. The built-in PyLog

high-level operators and PyLog optimizer automate design implementation

and optimization, which reduces the burden of FPGA developers. Evalu-

88

ation results show that PyLog is expressive to describe different types of

applications with few lines of code and it can accelerates high-level software

applications effectively and achieve significant speedup.

89

T
ab

le
5.

8:
A

cc
el

er
at

or
P

er
fo

rm
an

ce
E

va
lu

at
io

n
on

A
W

S
F

1
In

st
an

ce

B
e
n
ch

m
a
rk

L
U
T

R
e
g
is
te
rs

B
R
A
M

D
S
P

f
(M

H
z)

P
(W

)
T

C
P

U
T

H
C

L
[1

18
]

T
P

y
L

o
g

T
C
P
U

T
P
y
L
o
g

T
H
C
L

T
P
y
L
o
g

K
N

N
1
09

27
6

74
88

9
42

5
0

25
6.

40
37

.2
22

0.
48

0.
45

0.
26

1.
85

1.
73

K
-m

ea
n

s
10

82
9

17
60

4
3

7
27

3.
97

37
.4

29
38

.1
6

4.
24

4.
45

8.
58

0.
95

J
a
co

b
i-

2D
[1

3
3]

93
92

5
11

11
44

96
70

4
26

9.
03

37
.3

27
11

.3
1

8.
25

5.
19

2.
18

1.
59

S
ei

d
el

[1
33

]
47

30
4

57
85

4
30

30
4

26
9.

03
37

.3
41

21
.3

7
8.

22
5.

16
4.

14
1.

59
G

a
u

ss
ia

n
F

il
te

r
[1

33
]

56
58

0
75

84
6

48
68

8
14

7.
15

37
.7

83
23

.6
3

7.
34

5.
19

4.
55

1.
41

G
E

M
M

12
86

8
63

75
9

65
5

10
24

25
0.

00
39

.6
57

60
.3

4
8.

13
13

.0
5

4.
62

0.
62

S
p

M
V

8
29

4
12

78
7

25
21

27
3.

97
37

.2
25

0.
29

-
0.

24
1.

21
-

H
is

to
g
ra

m
[1

34
]

4
09

6
7
64

7
13

0
27

3.
97

37
.3

27
5.

85
-

2.
07

2.
83

-

G
eo

m
et

ri
c

M
ea

n
3
.1
7

1
.2
4

T
C
P
U

:
E

x
ec

u
ti

on
ti

m
e

on
C

P
U

;
T
H
C
L
:

E
x
ec

u
ti

o
n

ti
m

e
o
n

H
et

er
o
C

L
[1

1
8
]

g
en

er
a
te

d
a
cc

el
er

a
to

r;
T
P
y
L
o
g
:

E
x
ec

u
ti

o
n

ti
m

e
o
n

P
y
L

o
g

g
en

er
a
te

d
ac

ce
le

ra
to

r;
A

ll
ti

m
e

va
lu

es
ar

e
in

m
il

li
se

co
n

d
s

(m
s)

;
‘-

’
m

ea
n

s
th

e
im

p
le

m
en

ta
ti

o
n

is
n

o
t

p
u

b
li

cl
y

av
a
il

a
b

le
.

90

Table 5.9: Current Supported FPGA Platforms in PyLog

Platform Type FPGA Platforms

Low Power ZedBoard [135], PYNQ [136], Ultra96 [137]

High Performance
Amazon EC2 F1 instance [138],
Alveo series (U200, U250, U280) [139]

91

CHAPTER 6

DESIGN SPACE SEARCH AND
OPTIMIZATION

In this chapter, we will use the problem of quantization for ReRAM-based

DNN inference accelerator as an example to show a typical design space

exploration (DSE) problem and one reinforcement-learning-based solution

to this DSE problem.

ReRAM-based accelerators have shown great potential for accelerating

DNN inference because ReRAM crossbars can perform analog matrix-vector

multiplication operations with low latency and energy consumption. How-

ever, these crossbars require the use of ADCs which constitute a significant

fraction of the cost of MVM operations. The overhead of ADCs can be mit-

igated via partial sum quantization. However, prior quantization flows for

DNN inference accelerators do not consider partial sum quantization which

is not highly relevant to traditional digital architectures. To address this

issue, we propose a mixed precision quantization scheme for ReRAM-based

DNN inference accelerators where weight quantization, input quantization,

and partial sum quantization are jointly applied for each DNN layer. We

also propose an automated quantization flow powered by deep reinforcement

learning to search for the best quantization configuration in the large design

space. Our evaluation shows that the proposed mixed precision quantization

scheme and quantization flow reduce inference latency and energy consump-

tion by up to 3.89× and 4.84×, respectively, while only losing 1.18% in DNN

inference accuracy.

6.1 Introduction

Quantization is an important optimization for reducing DNN inference la-

tency and energy consumption [143], [144], [145], [146], [147], [148], [149],

[142], [150], [151]. Workflows that apply quantization to DNNs commonly

92

target the weights and inputs of the DNN layers. Reducing the number

of bits used to represent weights and inputs saves memory space, reduces

data movement overhead, and shortens the latency of arithmetic operations.

When different quantization configurations are chosen for different layers, the

quantization is considered to be mixed precision.

ReRAM-based accelerators have shown great potential for accelerating

DNN inference because ReRAM crossbars can perform analog matrix-vector

multiplication (MVM) operations with low latency and energy consump-

tion [152, 153, 154, 155, 156]. However, ReRAM crossbars require ADCs

to convert the partial sum computed by each crossbar from an analog to a

digital value before it is combined with partial sums from other crossbars.

These ADCs consume a large fraction of the total chip area and energy.

Since the cost of ADCs scales exponentially with their precision, reducing

the precision of ADCs is an important optimization. Hence, ReRAM-based

accelerators provide the opportunity for a third important quantization tar-

get, the partial sums at the ADC output, which are not usually a concern

for traditional digital architectures.

To take advantage of this opportunity, we propose an automated mixed

precision quantization flow that jointly targets weights, inputs, and partial

sums. Since the design space is large and prohibitive to search exhaustively,

we use deep reinforcement learning (DRL) to search for the best configu-

ration. Our evaluation shows that the proposed quantization flow reduces

inference latency and energy consumption by up to 3.89× and 4.84×, respec-

tively, while only losing 1.18% in accuracy.

We make the following contributions:

• A quantization scheme for ReRAM-based DNN inference accelerators

that jointly targets weights, inputs, and partial sums, with a functional

simulator that models the quantization scheme

• An automated mixed precision quantization flow powered by deep rein-

forcement learning that searches for the best quantization configuration

for DNN inference on ReRAM-based accelerators

• An evaluation of the joint impact of weight, input, and partial sum

quantization on the energy and latency of ReRAM-based DNN infer-

ence accelerators

93

Partial Sum
Quantization

Weight Quantization

In
p

u
t

Q
u

an
ti

za
ti

o
n

DAC

DAC

DAC

DAC

INT INT INT INT

Multiplexer

ADC

Shift-&-Add

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44
I1 I2 I3 I4

V1

V2

V3

V4

𝐼𝑗 =෍

𝑖=1

𝑛

𝑉𝑖 ∙ 𝑔𝑖𝑗

Figure 6.1: ReRAM Crossbar Architecture and Quantization

6.2 Quantization Scheme

6.2.1 Background

ReRAM crossbars are circuits capable of performing MVM operations with

low latency and energy consumption by leveraging analog computing. Fig-

ure 6.1 shows a high-level diagram of a typical crossbar architecture. The

weights of a matrix are stored in the resistive memory cells of the crossbar.

In Figure 6.1, gij is the conductance of a memory cell. The input vector is

applied as a voltage at the rows of the crossbar (Vi). The output vector is

read as the current at the columns of the crossbar (Ij). The current is then

converted to a digital value using an ADC.

Since practical crossbars are only capable of performing low precision MVM

operations, higher precision MVM operations are realized by bit-slicing the

weights and inputs. Weight slices are distributed across multiple crossbars,

and the partial sums of each crossbar are then shifted and added together.

Input slices are streamed sequentially into each crossbar, and the partial

sums of each input slice are also shifted and added together. If the weight

matrix dimensions are larger than the crossbar dimensions, the matrix is

94

divided into tiles and the partial sums of each tile are then added to produce

the final MVM result.

6.2.2 Weight and Input Quantization

Recent research has revealed that weights (synapses) and inputs (activa-

tions) in a DNN typically do not need full precision to guarantee the DNN

prediction accuracy [145, 147]. In general, using a low bit-width format to

represent weights and inputs saves memory space, reduces data movement

overhead, and shortens the computation latency. Weight and input quantiza-

tion have been thoroughly studied for traditional architectures. In this work,

we propose weight and input quantization schemes for ReRAM crossbars.

Weight quantization in the crossbar architecture can be achieved by either

changing the number of crossbars or the number of bits per crossbar cell.

However, the impact of device-circuit non-idealities in the crossbar (both

linear and non-linear) increases with increasing bits per crossbar cell leading

to significant losses in network accuracy [157]. Hence, this work assumes a

fixed two bits of weights are stored in each crossbar cell [154] and implements

weight quantization by varying the number of crossbars used to store the

weights.

Input quantization in the crossbar architecture can be obtained by either

changing the number of input slices streamed or the number of bits per slice.

However, increasing the bits per input slice requires increasing the ADC

precision which increases the overhead of the ADC non-linearly. Hence, this

work assumes a fixed one bit per input slice [154] and implements input

quantization by varying the number of input slices streamed.

6.2.3 Partial Sum Quantization

While weight and input quantization have received significant attention by

quantization flows because of their relevance to digital architectures, partial

sum quantization has not been thoroughly studied. Partial sum quantiza-

tion in the crossbar architecture can be achieved by reducing the precision of

ADCs at crossbar outputs. We model the impact of partial sum quantization

combined with weight and input quantization by implementing a functional

95

0.1%

81%

2%

17%

DAC ADC Crossbar Digital

14%

58%

9%

19%
(b) (a)

Figure 6.2: Distribution of MVM Cost: (a) Energy Distribution (b) Area
Distribution

simulator described in Section 6.4.2. We show that partial sum quantiza-

tion can substantially reduce the energy consumption and latency of DNN

inference accelerators.

Energy. Figure 6.2(a) shows the distribution of energy consumption

across four components (DAC, ADC, crossbar, and digital peripherals) for

a 16-bit MVM operation [154]. It is clear that ADCs are the dominating

component of the total energy consumption. Consequently, quantizing par-

tial sums by operating ADCs at lower resolutions can yield significant energy

reductions in the MVM operation. Table 6.1 shows how reducing ADC res-

olution translates to reductions on the total inference energy consumption.

These results assume that ADC power decreases linearly with the ADC res-

olution, which is a conservative assumption.

Latency. The latency of MVM operations is limited by ADCs, but to

understand why, it is important to first look at ADC area. Figure 6.2(b)

shows that ADCs consume a substantial amount of the area in the crossbar

architecture. For this reason, ADCs are time-multiplexed such that one ADC

is reused across all the columns of the crossbar [154]. The typical size of a

crossbar is 128 × 128. Consequently, even with an ADC working at very

high sampling frequency such as 1 GHz, a crossbar read operation requires

128 ns, while typical crossbar reads without ADC require 5-20 ns [158]. Area

consumption and sampling time for an ADC decrease with reducing ADC

resolution. Consequently, partial sum quantization can achieve significant

reductions in MVM latency.

96

Table 6.1: Energy Savings of Reduced ADC Resolution

ADC Res.
LSTM (24 tiles) MLP (9 tiles)

Energy (µJ) Diff. Energy (µJ) Diff.

8 (baseline) 59.0 - 16.6 -
4 46.3 -21.4% 13.2 -20.6%
2 41.0 -30.5% 11.6 -30.3%
1 38.3 -35.0% 10.8 -35.1%

6.3 Mixed Precison Quantization Flow

We model the mixed precision quantization problem as a reinforcement learn-

ing (RL) problem. In an RL problem, an agent (search engine) interacts with

the environment and learns the best policy to take actions in certain states

of the environment. The environment in an RL problem can be modeled

with a Markov Decision Process (MDP)M = (S,A,P ,R, γ), where S is the

state space, A is the action space, P is the transition function that describle

the dynamics of the MDP system, R is the reward function that maps state

and action pair to a real-valued reward number, and γ is the discount factor

that describes the degradation of future rewards.

6.3.1 MDP Modeling

In this quantization problem, we define the MDP as follows. State space S is

defined as all possible configurations of the DNN. We can see this is a huge

state space. O(|S|) is exponential to the number of layers in the DNN. Action

space A is defined as all possible quantization configurations for a layer in

the DNN. Transition function P is defined in a way such that we quantize

the DNN layer by layer from the first layer. After an action is applied on

the current layer, the environment moves to the next layer. Reward R is

defined so that accuracy, power, and latency of the quantized DNN are all

captured. Note that reward is a function of both current state and current

action. We will discuss more about the reward definition in the following

paragraphs. Discount factor γ is set to 1. This is based on the finite-horizon

problem setting, reward setting, and the fact that we only care about the

final accuracy of the fully quantized DNN. In the RL setting, a policy π is a

97

Table 6.2: Tunable Parameters

Parameters Values

Weight bits 4, 8, 16, 32

Weight bits (fractional) 1, 2, ..., Weight bits - 1

Input bits 4, 8, 16, 32

Input bits (fractional) 1, 2, ..., Input bits - 1

ADC precision 1,2,3,4,5,6,7,8

function that maps state space to action space. In other words, a policy tells

the agent the action a to take given the current state s: a = π(s).

6.3.2 Action Definition

The actions are defined as quantization configurations for a layer in the DNN,

which includes weight quantization, input quantization, and ADC precision.

All the tunable parameters are listed in Table 6.2. There are two parameters

to describe quantizaiton of each of weights and inputs, one is the total bit

width, the other is the bit width for the fractional part. The possible values

of total bits are powers of 2. This is a constraint that comes from bit slicing

in the functional simulator. The bit width of the fractional parts can be

any number less than the total bit width. ADC precision can be any integer

between 1 and 8. Each action represents a configuration of these parameters

for one DNN layer.

6.3.3 Reward Assignment

We define reward R(s, a) at state s, action a as a function of accuracy cost

and hardware cost (energy and latency) of the quantized DNN when running

on ReRAM accelerators.

To capture the inference error of quantized DNNs, instead of using predic-

tion accuracy of quantized DNN as in previous works [145, 147, 148], we use

the following definition of the error of quantized model:

Costaccuracy = Lossquantization − Lossoriginal (6.1)

98

where lossquantization and lossoriginal are the cross-entropy losses of the quan-

tized DNN model and the original model respectively. The intuition is to

use the original model as the reference and any differences in the output are

counted as errors introduced by quantization. The major reason of using loss

instead of accuracy is to reduce the number of inferences during the evalua-

tion of a quantization scheme and speed up the search progress. To model

the hardware cost (energy and latency) of quantization schemes, we use the

fractions of bitwidth over original bitwidth in each layer, weighted by the

number of weights and inputs in DNN layers as well as ADC bitwidth. That

is, the hardware cost of a quantization scheme can be approximated as

Costhardware =
∑
i

αB
i
ADC

(
f iinput

Bi
input

Bfull

+ f iweight

Bi
weight

Bfull

)
(6.2)

where Bi
ADC, Bi

input, and Bi
weight are the ADC bitwidth, input bitwidth, and

weight bitwidth of the ith layer respectively. Bfull is the full bitwidth without

quantization for inputs and weights. f iinput and f iweight are the fractions of

number of inputs and number of weights over total inputs and total weights

respectively.

Reward is calculated based on both costs as follows:

Reward = −T (Costaccuracy)− Costhardware (6.3)

where T is a threshold function: Tt(x) = ∞ · 1x>t + x. Here 1x>t is the

indicator function which equals to 1 when x > t and 0 otherwise; and t is

the threshold.

6.3.4 Learning Algorithm

With the definition of MDP, our goal is to find an optimal policy that gives us

the largest expected reward for the starting state (the whole DNN for quan-

tization). In order to find out the optimal policy, we need some estimation

on the potential of each state and each action, with current policy π, i.e., the

expected value of state s or state-action pair (s, a). The expected value of

state is typically called state-value funciton V π(s), while the expected value

of state-action pair is called Q-value function Qπ(s, a).

99

One thing to notice is that both state space and action space are very

large, and it is almost impossible to search for optimal policy with brute-

force. We parameterize the policy as πθ where θ is the parameter. With the

parameterized policy, we are able to apply policy gradient algorithms to the

problem, which is a family of RL algorithms widely used in practice.

The basic policy gradient theorem states that the gradient of the value

function can be expressed as

∇vπ =
1

1− γ
Es∼ηπ ,a∼π(s) [Qπ(s, a)∇ log π(a|s)]] (6.4)

where Qπ(s, a) is the expected value of state s and action a, which can be

estimated with value-based methods in RL. Value-based methods learn the

value function, rather than the optimal policy itself. ηπ is the estimated

normalized state occupancy under policy π. This formula essentially states

the weighted average of values over potential trajectories of the agent, and

the weights are the function of policy gradient. The policy gradient algo-

rithms work as follows. First of all, we start with some policy with random

parameters θ. We use value-based algorithms to evaluate the expected val-

ues of state-action pairs (s, a). Then we calculate the gradient of θ using

the formula, and we can update θ and get a new policy π′. With the new

policy, we can again evaluate the expected value of each state-action pair

(s, a) again. This completes one iteration of the algorithm. We can see the

iteration consists of two parts: (1) “Actor”: update θ with gradients of θ,

and propose a new policy π′; (2) “Critic”: evaluate the current policy π with

value-based methods. Therefore, this type of combination of policy gradient

and value-based method is often called “actor-critic” methods. In this work,

the actor and critic are both implemented with fully connected DNNs.

6.3.5 Putting It All Together

With definition of all the details of MDP, we can put together everything to

form a complete optimization flow. The complete flow is illustrated in Figure

6.3.

The optimization flow is a combination of reinforcement learining compo-

nents and quantized model evaluation components.

RL components. The RL components consist of three parts: actor,

100

Quantized
DNN Model

Full Precision
DNN Model

Random
Samples

Outquant

Actor
Policy

Generation

Actor
Policy

Generation

Critic
Value

Estimation

Critic
Value

Estimation

Value
Function
Estimate

Policy

DNN/
ReRAM
Config.

DNN/
ReRAM
Config.

Action ADC Precision
Input Bitwidth

Weight Bitwidth

DistanceDistance

Latency
& Energy
Estimator

Latency
& Energy
Estimator

Reward
Intermediate

Feedback

Reward
Intermediate

Feedback

Reward

Reward

HW/Perf Cost

Acc.

Outref

Test Set

Figure 6.3: Reinforcement Learning based Mixed-Precision Quantization
Flow

critic, and reward. The actor part generates new policies based on the value

function estimates by calculating gradients of parameters. The generated

policy is parsed by a DNN/ReRAM configurator which generates ADC pre-

cision and all the bitwidths for each layer in the DNN. The critic part reads

reward from the environment and calcuates Q-value function of this MDP.

The reward part takes in the loss measure collected from the quantized model

and original model, as well as the DNN configuration, and calculates the re-

ward for current state s and action a.

Quantized model evaluation components. The evaluation compo-

nents consist of test dataset, quantized DNN model, full precision DNN model,

and loss measure. Test dataset generates batches of random test samples.

The batch size is configurable. Quantized DNN model and full precision DNN

model take in the sample batch from the test dataset, and run model infer-

ence. Most likely the full precision DNN model will generate a smaller loss

lossRef than that of the quantized model lossQuant. The flow calculates the

differences d = lossQuant − lossRef, and uses 4d as the cost for the accuracy

drop.

101

6.4 Methodology

6.4.1 Performance Simulation

To evaluate the impact of different quantization schemes on DNN infer-

ence energy consumption and latency, we use the PUMA [156] simulator,

PUMAsim, which is a cycle-level architecture simulator for ReRAM-based

accelerators. PUMAsim runs applications compiled with the PUMA com-

piler and provides detailed traces of execution. The simulator incorporates

timing and power models of all system components. The simulator provides

options for configuring various architectural parameters, including input and

weight bit-width. We extend the simulator to also configure ADC resolu-

tion for evaluating partial sum quantization. We consider 2-bits per device

for weight slicing and 1-bit per slice for input slicing, which are the typical

parameters used in past crossbar-based accelerators [154, 156].

6.4.2 Functional Simulation

To evaluate the impact of different quantization schemes on DNN inference

accuracy, we develop a functional simulator to simulate the arithmetic be-

havior of ReRAM-based accelerators which PUMAsim does not capture. Al-

though several libraries, e.g., Distiller [159], Model Optimization Toolkit [160],

etc., have been developed using TensorFlow and PyTorch to enable software

and hardware co-design studies for quantization, such frameworks cannot

emulate the precise implication of quantization on ReRAM-based accelera-

tors because of the intrinsic differences between digital and ReRAM-based

hardware. Digital accelerators typically express layer operations as general

matrix-matrix multiplication, which use floating or fixed point computation

units. On the other hand, ReRAM-based accelerators typically express layer

operations as a tiled MVM which use bit-serial computation units operat-

ing in the analog domain (discussed in Section 6.2). For this reason, we

develop our own functional simulator using PyTorch to analyze the impact

of quantization of different aspects of crossbar hardware: weights, inputs,

and partial sums. The functional simulator models the key phases of MVM

computation in typical crossbar accelerators, namely iterative MVM, tiling,

and bit-slicing, and ignores the memory and communication aspects which

102

0
0.00005

0.0001
0.00015

0.0002
0.00025

0.0003
0.00035

0.0004

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

0

0.00002

0.00004

0.00006

0.00008

0.0001

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

0

5E-08

0.0000001

1.5E-07

0.0000002

2.5E-07

0.0000003

1 6 1014 2 8 1216 1 6 1014 1 7 1115 4 3 7 1115

1 2 3 4 5 6 7 8

0
0.0000005

0.000001
0.0000015

0.000002
0.0000025

0.000003
0.0000035

0.000004

1 7 12 1 8 13 2 5 10 15 4 10 15 8 5 10 15

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

0
0.00002
0.00004
0.00006
0.00008

0.0001
0.00012
0.00014

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

0

0.0002

0.0004

0.0006

0.0008

0.001

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

0

0.001

0.002

0.003

0.004

0.005

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

1

2

3

4

5

6

7

8

9

10

11

(a) LeNet conv3 energy (b) LeNet conv3 latency (c) LeNet FC energy (d) LeNet FC latency

(e) VGG16 conv1 energy (f) VGG16 conv1 latency (h) VGG16 conv5 latency (g) VGG16 conv5 energy

input bits

ADC bits

input bits

ADC bits

input bits

ADC bits

input bits

ADC bits

input bits

ADC bits

input bits

ADC bits

input bits

ADC bits

input bits

ADC bits

Energy (J) Energy (J)

Energy (J) Energy (J)

Latency (sec) Latency (sec)

Latency (sec) Latency (sec)

weight bits

weight bits

Figure 6.4: Energy and Latency under Quantization

(a) best
reward

(b) last
reward

(c)
accuracy

(d)
accuracy
diff

(e) policy
loss

(f) value
loss

(g) best
reward

(h) last
reward

(i) quant
error

(j) quant
error diff

(k) policy
loss

(l) value
loss

Figure 6.5: Intermediate Values in Search (top: LeNet; buttom: VGG16)

are captured by PUMAsim.

6.4.3 Search Flow

We use the functional simulator to guide our search flow, and the performance

simulator to calibrate our hardware cost model and evaluate the search result.

We use prediction error instead of model accuracy as a metric to evaluate

quantization accuracy. Prediction error requires fewer samples to estimate

compared to model accuracy. We extract a small batch of random samples

from the whole dataset, run the quantized DNN model with the functional

simulator, and compare its outputs with outputs from the full-precision DNN

model to get the predicion error.

103

6.5 Evaluation

6.5.1 Benefits of Mixed Precision Quantization

We use the performance simulator to evaluate the benefits of mixed precision

quantization in ReRAM-based accelerators. We simulate all the combina-

tions of quantization configurations of each layer in LeNet and VGG16, and

collect energy and latency results of the simulated layer. Figures 6.4(a)-(d)

show the energy and latency numbers of the third convolution layer and the

fully connected layer in LeNet. Figures 6.4(e)-(h) show the energy and la-

tency numbers of the first convolution layer and the fifth convolution layer

in VGG16. As we can see from these figures, energy and latency numbers

follow similar trends as bit-widths change. With the same ADC precision,

energy and latency change linearly as input bitwidth and weight bitwidth

change. With higher ADC precision, the energy and latency are more sensi-

tive to changes in input bitwidth and weight bitwidth. Although Figure 6.4

shows regular patterns with a fixed ADC precision, the design space of weight

bitwidth and input bitwidth combined with ADC precision is non-linear.

6.5.2 Quantization Search Flow

We use our proposed mixed precision quantization search flow to search for

the optimal quantization schemes for LeNet and VGG16 that have the lowest

energy and latency while not losing much accuracy. The intermediate reward

and loss during the searches are shown in Figure 6.5. Figures 6.5(a)-(f) show

the results for LeNet search, while Figures 6.5(g)-(l) show the results for

VGG search. In our experiments, we ran LeNet search for 3,000 episodes,

and VGG16 search for 600 episodes. However, note that LeNet search also

converges within 600 episodes. As shown in the figure, search converges in

both cases. At the beginning of the search, the RL agent takes random ac-

tions to explore the design space (environment). The agent learns about the

environment at the same time. After warming up, the agent starts to apply

the knowledge it learned into the search, and optimizes policy to improve

the expected future rewards. At the end, the agent reports the best policy

it discovered in the search, which translates to the best quantization con-

figuration discovered. Table 6.3 lists the energy, latency, and accuracy of a

104

Table 6.3: LeNet Quantization Schemes

Quantization E (µJ) T (ms) Accuracy

Qbase 850.99 (1.00×) 2.95 (1.00×) 97.27% (-0.00%)

QA 175.61 (4.84×) 0.76 (3.89×) 96.09% (-1.18%)

QB 229.82 (3.70×) 0.85 (3.48×) 96.29% (-0.98%)

QC 468.48 (1.82×) 1.69 (1.74×) 97.07% (-0.20%)

NOTE: Values in parentheses are savings compared to Qbase.
QA: (4, 16, 7), (4, 8, 8), (4, 8, 7), (4, 16, 8); QB : (16, 8, 8), (4, 8, 8), (8, 8, 8), (4, 8, 8);
QC : (16,16,6), (16,8,8), (4,8,7), (4,16,7); Qbase: (16,16,8),(16,16,8),(16,16,8),(16,16,8).

few quantization schemes for LeNet discovered by the search flow. Qbase is

the baseline with full bit-widths. Each (i, w, a) tuple describes the bitwidths

for inputs (i), weights (w), and ADC (a) for a layer. The four tuples corre-

spond to quantization schemes for conv1, conv2, conv3, and fully connected

layers in LeNet respectively. As the table shows, the discovered quantization

scheme achieves up to 4.84× savings in energy and 3.89× savings in latency

while only losing 1.18% accuracy, compared to Qbase. Schemes with even

higher accuracy but less latency and energy savings are also discovered, e.g.

Qc. These design points reflect the tradeoffs between accuracy and perfor-

mance (or resource), and provide different design options for different design

requirements.

6.6 Related Work

Various works apply quantization to DNNs to improve the efficiency of their

execution [143], [144], [145], [146], [147], [148], [149], [142], [150], [151].

ADMM-NN [161] is a framework that performs quantization and pruning

jointly. Ares [162] is a framework for quantifying the resilience of DNNs

to faults, and considers the impact of different quantization schemes on re-

silience. Choi et al. [163] reduce the mismatch between forward and backward

passes when training networks that use quantization. Sakr et al. [164] pro-

pose quantization for back-propagation, not just inference. All these works

focus on quantization of DNNs in general without architecture-specific con-

siderations.

Bit fusion [165] and UNPU [166] provide architecture support for dynam-

105

ically reconfiguring bit width in DNN accelerators to support different levels

of quantization. OLAccel [167] is an accelerator that enables better quality

quantization by handling outliers separately. Various works that focus on

quantization have also targeted FPGAs, such as REQ-YOLO [168] which

focuses on FPGA resource awareness, and FINN [169] which specializes in

binarized neural networks. All these works focus on digital accelerators,

whereas our work focuses on ReRAM-based accelerators and the unique op-

portunities they provide.

Zhu et al. [170] provide a framework for quantizing CNNs on single-bit

ReRAM crossbars. Zhang et al. [171] provide design guidelines for ReRAM-

based DNN accelerators and include the impact of ADC quantization as part

of their study. Our framework performs joint quantization of both weights

and partial sums on two-bit crossbars based on deep reinforcement learning.

Various works propose ReRAM-based accelerators for DNN inference [152,

153, 154, 155, 156] and training [172, 173, 174, 175, 176]. Our work proposes

a framework for quantization of DNNs to configure such accelerators. Other

frameworks have also been proposed for transforming [177, 178] and prun-

ing [179] DNNs for such accelerators.

6.7 Conclusion

We presented a mixed precision quantization scheme and an automated quan-

tization flow for optimizing DNN inference on ReRAM-based accelerators.

The flow uses deep reinforcement learning to find the best configuration of

weight quantization, input quantization, and partial sum quantization across

DNN layers. The evaluation shows that the quantization scheme enables

more optimization opportunity and the automated quantization flow can ef-

fectively search for the best quantization configuration. The quantization

configuration discovered by the search flow achieves up to 3.89× and 4.84×
improvement over baseline without quantization in terms of inference latency

and energy respectively, while only losing 1.18% in DNN inference accuracy.

106

CHAPTER 7

CONCLUSION

Modern computing faces new challenges arising from data complexity, ap-

plication complexity, and hardware complexity. The overall compound com-

plexity makes it harder and harder for traditional general-purpose processors

to deliver desired computation performance and efficiency. These new chal-

lenges motivate people to create customized hardware acceleration systems

that can deliver higher computation efficiency over traditional computing

systems. However, computation efficiency is not the only metric to consider

when designing hardware acceleration systems. To catch up with the fast

growing complexity in applications and hardware platforms, people realize

that agile hardware design and synthesis flows that can design and program

hardware acceleration systems efficiently is in great need. Besides, depending

on the computation needs of applications, these customized hardware accel-

eration systems might be highly heterogeneous platforms that contain CPUs,

GPUs, FPGAs, ASICs, and other customized accelerators. How to program

these highly heterogeneous platforms is another challenging problem to solve.

In this dissertation, we first looked into the key aspects of hardware ac-

celerators, that is, efficiency, usability, and heterogeneity. The efficiency of

hardware accelerator requires careful design and optimization. We show that

the key to create high usability and programmability of accelerators is to

use high-level programming abstractions and optimization flows. Then, we

proposed a programming language and compiler based design flow, PyLog,

that solves the agile hardware synthesis challenge mentioned above. This

approach elevates the abstraction level of hardware programming and syn-

thesis by providing a Python-based programming and synthesis environment

for hardware acceleration systems. The high-level programming abstraction

provided by PyLog not only simplifies users’ hardware programming, but

also creates additional opportunities for the compiler to perform code anal-

ysis and optimization. With PyLog high-level operators, users can express

107

computation pattern at a higher level and focus on algorithm specification.

At the same time, these high-level operators open up more optimization op-

portunities for the compiler. Our evaluation showed that PyLog significantly

improves FPGA design productivity with fewer lines of input source code,

and it generates highly efficient FPGA designs that outperform highly opti-

mized CPU implementation and state-of-the-art FPGA implementation by

3.17× and 1.24× on average. We also demonstrated how PyLog can be used

to describe the collaborative computation patterns on heterogeneous comput-

ing platforms. Besides the current features supported by PyLog, there remain

several promising directions for PyLog, including additional accelerator sup-

port, integration with current Python environment, memory optimizations,

heterogeneous computing support, etc. We leave these as future works for

PyLog.

108

REFERENCES

[1] Xilinx, “Vivado High-Level Synthesis,” https://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html.

[2] Intel, “Intel High-Level Synthesis Compiler,” https://www.intel.
com/content/www/us/en/software/programmable/quartus-
prime/hls-compiler.html.

[3] Xilinx, “Xilinx SDAccel Development Environment,” https://www.
xilinx.com/products/design-tools/software-zone/sdaccel.htm.

[4] Intel, “Intel FPGA SDK for OpenCL Software Technology,” https://
www.intel.com/content/www/us/en/software/programmable/ sdk-
for-opencl/overview.html.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online].
Available: http://arxiv.org/abs/1512.03385

[7] X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang, P. Ouyang,
Z. Cheng, K. Rupnow, and D. Chen, “High-performance video con-
tent recognition with long-term recurrent convolutional network for
FPGA,” in 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), Sep. 2017, pp. 1–4.

[8] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow,
W.-m. Hwu, and D. Chen, “FPGA/DNN Co-Design: An efficient
design methodology for IoT intelligence on the edge,” in Proceedings
of the 56th Annual Design Automation Conference 2019, ser.
DAC ’19. New York, NY, USA: ACM, 2019. [Online]. Available:
http://doi.acm.org/10.1145/3316781.3317829 pp. 206:1–206:6.

109

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1512.03385
http://doi.acm.org/10.1145/3316781.3317829

[9] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin,
R. Robinett, and S. Samsi, “Sparse deep neural network graph
challenge,” Graph Challenge, 2019. [Online]. Available: https:
//graphchallenge.mit.edu/challenges

[10] S. Huang, L.-W. Chang, I. El Hajj, S. Garcia de Gonzalo, J. Gómez-
Luna, S. R. Chalamalasetti, M. El-Hadedy, D. Milojicic, O. Mutlu,
D. Chen, and W.-m. Hwu, “Analysis and modeling of collaborative
execution strategies for heterogeneous CPU-FPGA architectures,” in
Proceedings of the 2019 ACM/SPEC International Conference on Per-
formance Engineering, ser. ICPE ’19. New York, NY, USA: ACM,
2019, pp. 79–90.

[11] “Xilinx Virtex-7 FPGA VC709 Connectivity Kit,” https://www.xilinx.
com/products/boards-and-kits/dk-v7-vc709-g.html.

[12] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. Robinett,
and S. Samsi, “Sparse deep neural network graph challenge,” in Graph
Challenge, 2019.

[13] “Bulldozer for servers: Testing AMD’s “interlagos” opteron
6200 series,” https://www.anandtech.com/show/5058/
amds-opteron-interlagos-6200/8.

[14] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A
high memory bandwidth FPGA accelerator for sparse matrix-vector
multiplication,” in 2014 IEEE 22nd Annual International Symposium
on Field-Programmable Custom Computing Machines, May 2014, pp.
36–43.

[15] H. Giefers, P. Staar, C. Bekas, and C. Hagleitner, “Analyzing the
energy-efficiency of sparse matrix multiplication on heterogeneous sys-
tems: A comparative study of GPU, Xeon Phi and FPGA,” in 2016
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), April 2016, pp. 46–56.

[16] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An efficient
hardware accelerator for sparse convolutional neural networks on FP-
GAs,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2019, pp.
17–25.

[17] J. Chang, K. Kang, and S. Kang, “SDCNN: An efficient sparse decon-
volutional neural network accelerator on FPGA,” in 2019 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), March 2019,
pp. 968–971.

110

https://graphchallenge.mit.edu/challenges
https://graphchallenge.mit.edu/challenges
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://www.anandtech.com/show/5058/amds-opteron-interlagos-6200/8
https://www.anandtech.com/show/5058/amds-opteron-interlagos-6200/8

[18] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu,
and L. Zhang, “Efficient and effective sparse LSTM on FPGA with
bank-balanced sparsity,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’19. New York, NY, USA: ACM, 2019. [Online]. Available:
http://doi.acm.org/10.1145/3289602.3293898 pp. 63–72.

[19] E. Strohmaier, J. Dongarra, S. Horst, and M. Meuer, “Top500 List June
2018.” [Online]. Available: https://www.top500.org/lists/2018/06/

[20] F. Wu and T. Scogland, “Green500 List June 2018.” [Online].
Available: https://www.top500.org/green500/lists/2018/06/

[21] RightScale, “Rightscale 2018 state of the cloud report.”
[Online]. Available: https://assets.rightscale.com/uploads/pdfs/
RightScale-2018-State-of-the-Cloud-Report.pdf

[22] Intel, “Intel FPGA SDK for OpenCL. Programming Guide,” October
2016.

[23] Xilinx, “SDAccel Development Environment,” https://www.xilinx.
com/products/design-tools/software-zone/sdaccel.html.

[24] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula,
J.-s. Seo, and Y. Cao, “Throughput-optimized OpenCL-based FPGA
accelerator for large-scale convolutional neural networks,” in FPGA,
2016.

[25] S. R. Chalamalasetti, M. Margala, W. Vanderbauwhede, M. Wright,
and P. Ranganathan, “Evaluating FPGA-acceleration for real-time un-
structured search,” in ISPASS, 2012.

[26] D. Chen, J. Cong, Y. Fan, and L. Wan, “LOPASS: A low-power ar-
chitectural synthesis system for FPGAs with interconnect estimation
and optimization,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2010.

[27] “Amazon EC2 F1 instances,” https://aws.amazon.com/ec2/
instance-types/f1/, 2018.

[28] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in
MICRO, 2016.

111

http://doi.acm.org/10.1145/3289602.3293898
https://www.top500.org/lists/2018/06/
https://www.top500.org/green500/lists/2018/06/
https://assets.rightscale.com/uploads/pdfs/RightScale-2018-State-of-the-Cloud-Report.pdf
https://assets.rightscale.com/uploads/pdfs/RightScale-2018-State-of-the-Cloud-Report.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/

[29] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and
D. Burger, “A reconfigurable fabric for accelerating large-scale data-
center services,” in ISCA, 2014.

[30] “New OpenPOWER cloud boosts ecosystem for innovation and
development,” http://www-03.ibm.com/press/us/en/pressrelease/
47082.wss, 2015.

[31] Intel, “Intel Deep Learning Inference Accelerator Product Spec-
ification and User’s Guide,” https://www.intel.com/content/
dam/support/us/en/documents/server-products/server-accessories/
Intel DLIA UserGuide 1.0.pdf, July 2017.

[32] “The first chip from Intel’s Altera buy will be out in 2016,” http:
//fortune.com/2015/11/18/intel-xeon-fpga-chips/, 2015.

[33] D. Burger, “Microsoft unveils Project Brainwave for real-time AI,”
Microsoft Research, 2017.

[34] K. Rupnow, Y. Liang, Y. Li, D. Min, M. Do, and D. Chen, “High level
synthesis of stereo matching: Productivity, performance, and software
constraints,” in FPT, 2011.

[35] S. Liu, A. Papakonstantinou, H. Wang, and D. Chen, “Real-time object
tracking system on FPGAs,” in SAAHPC, 2011.

[36] S. Huang, G. J. Manikandan, A. Ramachandran, K. Rupnow,
W.-m. W. Hwu, and D. Chen, “Hardware acceleration of the
Pair-HMM algorithm for dna variant calling,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’17. New York, NY, USA: ACM, 2017.
[Online]. Available: http://doi.acm.org/10.1145/3020078.3021749 pp.
275–284.

[37] X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang, P. Ouyang,
Z. Cheng, K. Rupnow, and D. Chen, “High-performance video con-
tent recognition with long-term recurrent convolutional network for
FPGA,” in FPL, 2017.

[38] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel® quick-
path interconnect architectural features supporting scalable system ar-
chitectures,” in HOTI, 2010.

[39] H. T. Consortium et al., “Hypertransport i/o link specification,” Revi-
sion, vol. 1, pp. 111–118, 2008.

112

http://www-03.ibm.com/press/us/en/pressrelease/47082.wss
http://www-03.ibm.com/press/us/en/pressrelease/47082.wss
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-accessories/Intel_DLIA_UserGuide_1.0.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-accessories/Intel_DLIA_UserGuide_1.0.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-accessories/Intel_DLIA_UserGuide_1.0.pdf
http://fortune.com/2015/11/18/intel-xeon-fpga-chips/
http://fortune.com/2015/11/18/intel-xeon-fpga-chips/
http://doi.acm.org/10.1145/3020078.3021749

[40] Altera, “Accelerating High-Performance Computing With FP-
GAs,” https://www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/wp/wp-01029.pdf.

[41] “Accelerator Coherency Port,” http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.ddi0434a/BABGHDHD.html.

[42] “AXI Coherency Extensions,” http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.ddi0438i/BABIAFAJ.html.

[43] “Arm CoreLink Interconnect,” https://developer.arm.com/products/
system-ip/corelink-interconnect.

[44] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel,
“CAPI: A coherent accelerator processor interface,” IBM J. Res.
Dev., vol. 59, no. 1, p. 7:1–7:7, Jan. 2015. [Online]. Available:
https://doi.org/10.1147/JRD.2014.2380198

[45] “Cache Coherent Interconnect for Accelerators (CCIX),” http://www.
ccixconsortium.com, 2016.

[46] Xilinx, “Zynq UltraScale+ MPSoCs. White Paper,” June 2016.

[47] Altera, “Altera’s User-Customizable ARM-Based SoC,” 2015.

[48] M. Hummel, M. Krause, and D. O’Flaherty, “AMD and HP: Protocol
enhancements for tightly coupled accelerators,” AMD-HP whitepaper,
2007.

[49] W. Augustin, V. Heuveline, and J.-P. Weiss, “Convey HC-1 – the po-
tential of FPGAs in numerical simulation,” Preprint Series of the En-
gineering Mathematics and Computing Lab, no. 07, 2010.

[50] Convey Computer, “The Convey HC-2 computer. Architectural
overview,” 2012.

[51] J. Gómez-Luna, I. El Hajj, L.-W. Chang, V. Garcia-Flores, S. Garcia de
Gonzalo, T. Jablin, A. J. Pena, and W.-m. Hwu, “Chai: Collaborative
heterogeneous applications for integrated-architectures,” in ISPASS,
2017.

[52] Terasic, DE5-Net User Manual, 2018.

[53] Nallatech, “510T FPGA Accelerator Card Datasheet.”

[54] Intel, “Intel Stratix V FPGAs,” https://www.intel.com/content/www/
us/en/products/programmable/fpga/stratix-v.html.

[55] Intel, “Intel Arria 10 FPGAs,” https://www.intel.com/content/www/
us/en/products/programmable/fpga/arria-10.html.

113

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01029.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01029.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0434a/BABGHDHD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0434a/BABGHDHD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/BABIAFAJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/BABIAFAJ.html
https://developer.arm.com/products/system-ip/corelink-interconnect
https://developer.arm.com/products/system-ip/corelink-interconnect
https://doi.org/10.1147/JRD.2014.2380198
http://www.ccixconsortium.com
http://www.ccixconsortium.com
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-v.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-v.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html

[56] Intel, “Intel Xeon Processor E3-1240
v3,” https://ark.intel.com/products/75055/
Intel-Xeon-Processor-E3-1240-v3-8M-Cache-3-40-GHz-.

[57] Intel, “Intel Xeon Processor E5-2650
v3,” https://ark.intel.com/products/81705/
Intel-Xeon-Processor-E5-2650-v3-25M-Cache-2-30-GHz-.

[58] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 1986.

[59] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, 1981.

[60] J. Gómez-Luna, H. Endt, W. Stechele, J. M. González-Linares, J. I.
Benavides, and N. Guil, “Egomotion compensation and moving objects
detection algorithm on GPU,” in PARCO, 2011.

[61] R. Palomar, J. Gómez-Luna, F. A. Cheikh, J. Olivares-Bueno, and
O. J. Elle, “High-performance computation of Bézier surfaces on par-
allel and heterogeneous platforms,” International Journal of Parallel
Programming, 2018.

[62] J. Gómez-Luna, J. González-Linares, J. Benavides, and N. Guil, “An
optimized approach to histogram computation on GPU,” Machine Vi-
sion and Applications, 2013.

[63] J. Gómez-Luna, J. Gónzalez-Linares, J. Benavides, and N. Guil, “Per-
formance modeling of atomic additions on GPU scratchpad memory,”
IEEE Transactions on Parallel and Distributed Systems, 2013.

[64] T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of
memory service in multi-core systems,” in USENIX SECURITY, 2007.

[65] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory access schedul-
ing for chip multiprocessors,” in MICRO, 2007.

[66] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu,
“MISE: Providing performance predictability and improving fairness
in shared main memory systems,” in HPCA, 2013.

[67] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The
Application Slowdown Model: Quantifying and controlling the impact
of inter-application interference at shared caches and main memory,”
in MICRO, 2015.

114

https://ark.intel.com/products/75055/Intel-Xeon-Processor-E3-1240-v3-8M-Cache-3-40-GHz-
https://ark.intel.com/products/75055/Intel-Xeon-Processor-E3-1240-v3-8M-Cache-3-40-GHz-
https://ark.intel.com/products/81705/Intel-Xeon-Processor-E5-2650-v3-25M-Cache-2-30-GHz-
https://ark.intel.com/products/81705/Intel-Xeon-Processor-E5-2650-v3-25M-Cache-2-30-GHz-

[68] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
Cluster Memory scheduling: Exploiting differences in memory access
behavior,” in MICRO, 2010.

[69] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scal-
able and high-performance scheduling algorithm for multiple memory
controllers,” in HPCA, 2010.

[70] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing both performance and fairness of shared DRAM systems,”
in ISCA, 2008.

[71] Khronos group, “The OpenCL specification,” Version 2.0, 2015.

[72] M. Gupta, D. Das, P. Raghavendra, T. Tye, L. Lobachev, A. Agarwal,
and R. Hegde, “Implementing cross-device atomics in heterogeneous
processors,” in IPDPS Workshops, 2015.

[73] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei,
“A quantitative analysis on microarchitectures of modern CPU-FPGA
platforms,” in DAC, 2016.

[74] G. Weisz, J. Melber, Y. Wang, K. Fleming, E. Nurvitadhi, and
J. C. Hoe, “A study of pointer-chasing performance on shared-memory
processor-FPGA systems,” in FPGA, 2016.

[75] M.-C. F. Chang, Y.-T. Chen, J. Cong, P.-T. Huang, C.-L. Kuo, and
C. H. Yu, “The SMEM seeding acceleration for DNA sequence align-
ment,” in FCCM, 2016.

[76] Z. István, D. Sidler, and G. Alonso, “Runtime parameterizable regular
expression operators for databases,” in FCCM, 2016.

[77] C. Zhang, R. Chen, and V. Prasanna, “High throughput large scale
sorting on a CPU-FPGA heterogeneous platform,” in IPDPS, 2016.

[78] W. Qiao, J. Du, Z. Fang, M. Lo, M.-C. F. Chang, and J. Cong, “High-
throughput lossless compression on tightly coupled CPU-FPGA plat-
forms,” in FPGA, 2018.

[79] D. Sidler, Z. István, M. Owaida, and G. Alonso, “Accelerating pattern
matching queries in hybrid CPU-FPGA architectures,” in SIGMOD,
2017.

[80] H. Schmit and R. Huang, “Dissecting Xeon+FPGA: Why the integra-
tion of CPUs and FPGAs makes a power difference for the datacenter,”
in ISLPED, 2016.

115

[81] N. Chandramoorthy, G. Tagliavini, K. Irick, A. Pullini, S. Advani,
S. A. Habsi, M. Cotter, J. Sampson, V. Narayanan, and L. Benini,
“Exploring architectural heterogeneity in intelligent vision systems,”
in HPCA, 2015.

[82] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, H. Huang, and G. Rein-
man, “Composable accelerator-rich microprocessor enhanced for adap-
tivity and longevity,” in ISLPED, 2013.

[83] E. G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “An
analysis of accelerator coupling in heterogeneous architectures,” in
DAC, 2015.

[84] H. Usui, L. Subramanian, K. Chang, and O. Mutlu, “DASH: Deadline-
aware high-performance memory scheduler for heterogeneous systems
with hardware accelerators,” ACM TACO, 2016.

[85] G. Ndu, J. Navaridas, and M. Luján, “CHO: Towards a benchmark
suite for OpenCL FPGA accelerators,” in IWOCL, 2015.

[86] V. Anshuman, A. E. Helal, K. Krommydas, and W.-c. Feng, “Accel-
erating workloads on FPGAs via OpenCL: A case study with OpenD-
warfs,” Virginia Tech CS Tech. Rep., 2016.

[87] N. Ramanathan, J. Wickerson, F. Winterstein, and G. A. Constan-
tinides, “A case for work-stealing on FPGAs with OpenCL atomics,”
in FPGA, 2016.

[88] Z. Wang, B. He, W. Zhang, and S. Jiang, “A performance analysis
framework for optimizing OpenCL applications on FPGAs,” in HPCA,
2016.

[89] S. Sridharan, P. Durante, C. Faerber, and N. Neufeld, “Accelerating
particle identification for high-speed data-filtering using OpenCL on
FPGAs and other architectures,” in FPL, 2016.

[90] Z. Wang, J. Paul, H. Y. Cheah, B. He, and W. Zhang, “Relational
query processing on OpenCL-based FPGAs,” in FPL, 2016.

[91] J. Shen, A. L. Varbanescu, Y. Lu, P. Zou, and H. Sips, “Workload
partitioning for accelerating applications on heterogeneous platforms,”
IEEE Transactions on Parallel and Distributed Systems, 2016.

[92] C. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on het-
erogeneous multiprocessors with adaptive mapping,” in MICRO, 2009.

[93] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mc-
Cardwell, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite
for CPU-GPU collaborative computing,” in IISWC, 2016.

116

[94] S. Mukherjee, Y. Sun, P. Blinzer, A. K. Ziabari, and D. Kaeli, “A com-
prehensive performance analysis of HSA and OpenCL 2.0,” in ISPASS,
2016.

[95] S. Mukherjee, X. Gong, L. Yu, C. McCardwell, Y. Ukidave, T. Dao,
F. N. Paravecino, and D. Kaeli, “Exploring the features of OpenCL
2.0,” in IWOCL, 2015.

[96] L.-W. Chang, J. Gómez-Luna, I. El Hajj, S. Huang, D. Chen, and
W.-m. Hwu, “Collaborative computing for heterogeneous integrated
systems,” in ICPE, 2017.

[97] M. D. Sinclair, J. Alsop, and S. V. Adve, “HeteroSync: A benchmark
suite for fine-grained synchronization on tightly coupled GPUs,” in
IISWC, 2017.

[98] Y. Sun, S. Mukherjee, T. Baruah, S. Dong, J. Gutierrez, P. Mohan,
and D. Kaeli, “Evaluating performance tradeoffs on the radeon open
compute platform,” in ISPASS, 2018.

[99] J. Gómez-Luna, I.-J. Sung, A. Lázaro-Muñoz, W.-H. Chung,
J. González-Linares, and N. Guil, “Chapter 8 - Application use cases:
Platform atomics,” in Heterogeneous System Architecture, 2016.

[100] W.-m. W. Hwu, Heterogeneous System Architecture: A New Compute
Platform Infrastructure. Morgan Kaufman, 2015.

[101] S. Che, M. Orr, and J. Gallmeier, “Work stealing in a shared virtual-
memory heterogeneous environment: A case study with betweenness
centrality,” in CF, 2017.

[102] S. Tang, B. He, S. Zhang, and Z. Niu, “Elastic multi-resource fairness:
balancing fairness and efficiency in coupled CPU-GPU architectures,”
in SC, 2016.

[103] F. Zhang, B. Wu, J. Zhai, B. He, and W. Chen, “Finepar: Irregularity-
aware fine-grained workload partitioning on integrated architectures,”
in CGO, 2017.

[104] Y. Cho, F. Negele, S. Park, B. Egger, and T. R. Gross, “On-the-
fly workload partitioning for integrated CPU/GPU architectures,” in
PACT, 2018.

[105] T. Baruah, Y. Sun, S. Dong, D. Kaeli, and N. Rubin, “Airavat: Improv-
ing energy efficiency of heterogeneous applications,” in DATE, 2018.

[106] T. Baruah, “Energy efficient execution of heterogeneous applications.
Master thesis. Northeastern University,” 2017.

117

[107] A. Patil and R. Govindarajan, “HAShCache: Heterogeneity-aware
shared DRAMCache for integrated heterogeneous systems,” ACM
TACO, 2017.

[108] V. Garcia-Flores, J. Gómez-Luna, T. Grass, A. Rico, E. Ayguade,
and A. J. Peña, “Evaluating the effect of last-level cache sharing on
integrated GPU-CPU systems with heterogeneous applications,” in
IISWC, 2016.

[109] R. Ausavarungnirun, K. Chang, L. Subramanian, G. Loh, and
O. Mutlu, “Staged Memory Scheduling: Achieving high performance
and scalability in heterogeneous systems,” in ISCA, 2012.

[110] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T.
Kandemir, G. H. Loh, O. Mutlu, and C. R. Das, “Managing GPU
concurrency in heterogeneous architectures,” in MICRO, 2014.

[111] V. Garcia-Flores, E. Ayguade, and A. J. Peña, “Efficient data sharing
on heterogeneous systems,” in ICPP, 2017.

[112] J. Alsop, M. D. Sinclair, and S. V. Adve, “Spandex: a flexible interface
for efficient heterogeneous coherence,” in ISCA, 2018.

[113] J. Veselỳ, A. Basu, A. Bhattacharjee, G. H. Loh, M. Oskin, and S. K.
Reinhardt, “Generic system calls for GPUs,” in ISCA, 2018.

[114] A. Basu, J. L. Greathouse, G. Venkataramani, and J. Veselỳ, “Inter-
ference from GPU system service requests,” in IISWC, 2018.

[115] J. Dean, D. Patterson, and C. Young, “A new golden age in computer
architecture: Empowering the machine-learning revolution,” IEEE Mi-
cro, vol. 38, no. 2, pp. 21–29, Mar 2018.

[116] arXiv, “arXiv.org e-Print archive,” https://arxiv.org/.

[117] Xilinx, “CHaiDNN: HLS based deep neural network accelerator li-
brary for Xilinx UltraScale+ MPSoCs,” https://github.com/Xilinx/
CHaiDNN.

[118] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou,
J. Cong, and Z. Zhang, “HeteroCL: A multi-paradigm programming
infrastructure for software-defined reconfigurable computing,” in
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3289602.3293910 pp. 242–251.

[119] TVM, “TVM stack,” https://tvm.apache.org/.

118

https://doi.org/10.1145/3289602.3293910

[120] F. Computing, “Merlin compiler,” https://www. falconcomputing.
com/ merlin-fpga-compiler/.

[121] R. Nigam, S. Atapattu, S. Thomas, Z. Li, T. Bauer, Y. Ye, A. Koti,
A. Sampson, and Z. Zhang, “Predictable accelerator design with time-
sensitive affine types,” 2020.

[122] Chisel, “Chisel/FIRRTL hardware compiler framework,” https://
www.chisel-lang.org/.

[123] Clash, “Clash: A modern, functional, hardware description language,”
https://clash-lang.org/.

[124] PyMTL3, “PyMTL3 (Mamba), an open-source python-based hard-
ware generation, simulation, and verification framework,” https://
github.com/pymtl/pymtl3.

[125] PyRTL, “PyRTL,” https://ucsbarchlab.github.io/PyRTL/.

[126] Y. Chi, J. Cong, P. Wei, and P. Zhou, “Soda: Stencil with optimized
dataflow architecture,” in 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2018, pp. 1–8.

[127] J. Lau, A. Sivaraman, Q. Zhang, M. A. Gulzar, J. Cong, and
M. Kim, “Heterorefactor: Refactoring for heterogeneous computing
with fpga,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3377811.3380340 p. 493–505.

[128] F. Winterstein, S. Bayliss, and G. A. Constantinides, “High-level syn-
thesis of dynamic data structures: A case study using vivado hls,”
in 2013 International Conference on Field-Programmable Technology
(FPT), 2013, pp. 362–365.

[129] Z. Xue and D. B. Thomas, “Synadt: Dynamic data structures in high
level synthesis,” in 2016 IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2016,
pp. 64–71.

[130] D. Diamantopoulos, S. Xydis, K. Siozios, and D. Soudris, “Dynamic
memory management in vivado-hls for scalable many-accelerator archi-
tectures,” in Applied Reconfigurable Computing, K. Sano, D. Soudris,
M. Hübner, and P. C. Diniz, Eds. Cham: Springer International
Publishing, 2015, pp. 117–128.

119

https://doi.org/10.1145/3377811.3380340

[131] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “Per-
formance modeling and directives optimization for high level synthesis
on fpga,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2019.

[132] “Pynq,” http://www.pynq.io/.

[133] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to GPU codes,” in 2012
Innovative Parallel Computing (InPar), 2012, pp. 1–10.

[134] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel programming for
FPGAs,” 2018.

[135] “Zedboard,” http://zedboard.org/product/zedboard.

[136] “PYNQ-Z1: Python productivity for Zynq-7000 ARM/FPGA
SoC,” https://store.digilentinc.com/pynq-z1-python-productivity-for-
zynq-7000-arm-fpga-soc/.

[137] “Ultra96 board,” https://www.96boards.org/product/ultra96/.

[138] “Amazon EC2 F1 instances,” https://aws.amazon.com/ec2/instance-
types/f1/.

[139] “Xilinx Alveo boards,” https://www.xilinx.com/products/boards-and-
kits/alveo.html.

[140] E. Schkufza, M. Wei, and C. J. Rossbach, “Just-in-time compilation
for verilog: A new technique for improving the fpga programming
experience,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3297858.3304010 p. 271–286.

[141] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolu-
tional neural networks,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072–2085,
2019.

[142] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu,
and D. Chen, “FPGA/DNN co-design: An efficient design methodology
for iot intelligence on the edge,” in DAC, New York, NY, USA, 2019.
[Online]. Available: https://doi.org/10.1145/3316781.3317829

120

https://doi.org/10.1145/3297858.3304010
https://doi.org/10.1145/3316781.3317829

[143] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N. E. Jerger, R. Ur-
tasun, and A. Moshovos, “Reduced-precision strategies for bounded
memory in deep neural nets,” arXiv preprint arXiv:1511.05236, 2015.

[144] B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, “Energy-
efficient convnets through approximate computing,” in 2016 IEEE
Winter Conference on Applications of Computer Vision (WACV).
IEEE, 2016, pp. 1–8.

[145] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in International Conference on Machine
Learning, 2016, pp. 2849–2858.

[146] C. Sakr, Y. Kim, and N. Shanbhag, “Analytical guarantees on nu-
merical precision of deep neural networks,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 3007–3016.

[147] L. Hou and J. T. Kwok, “Loss-aware weight quantization of deep net-
works,” arXiv preprint arXiv:1802.08635, 2018.

[148] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 8612–8620.

[149] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen,
“Design flow of accelerating hybrid extremely low bit-width neural
network in embedded FPGA,” in FPL, 2018. [Online]. Available:
https://doi.org/10.1109/FPL.2018.00035 pp. 163–169.

[150] Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu, and
D. Chen, “EDD: Efficient differentiable DNN architecture and imple-
mentation co-search for embedded ai solutions,” in DAC. IEEE Press,
2020.

[151] C. Gong, Y. Chen, Y. Lu, T. Li, C. Hao, and D. Chen, “VecQ: Minimal
loss DNN model compression with vectorized weight quantization,”
IEEE Transactions on Computers, vol. 70, no. 05, pp. 696–710, May
2021.

[152] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang,
M. Barnell, Q. Wu et al., “RENO: A high-efficient reconfigurable neu-
romorphic computing accelerator design,” in Design Automation Con-
ference (DAC), 2015 52nd ACM/EDAC/IEEE. IEEE, 2015, pp. 1–6.

121

https://doi.org/10.1109/FPL.2018.00035

[153] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang,
and Y. Xie, “PRIME: A novel processing-in-memory architecture
for neural network computation in ReRAM-based main memory,”
in Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA’16. Piscataway, NJ, USA: IEEE Press, 2016.
[Online]. Available: https://doi.org/10.1109/ISCA.2016.13 pp. 27–39.

[154] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A con-
volutional neural network accelerator with in-situ analog arithmetic
in crossbars,” in Proceedings of the 43rd International Symposium on
Computer Architecture, ser. ISCA’16. IEEE Press, 2016, pp. 14–26.

[155] B. Feinberg, S. Wang, and E. Ipek, “Making memristive neural network
accelerators reliable,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018, pp. 52–65.

[156] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy et al.,
“Puma: A programmable ultra-efficient memristor-based accelerator
for machine learning inference,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2019, pp. 715–731.

[157] I. C. et al, “GENIEx: A Generalized Approach to Emulating Non-
Idealities in Memristive X-bars Using Neural Networks,” in DAC, 2020.

[158] M. J. Marinella, S. Agarwal, A. Hsia, I. Richter, R. Jacobs-Gedrim,
J. Niroula, S. J. Plimpton, E. Ipek, and C. D. James, “Multiscale co-
design analysis of energy, latency, area, and accuracy of a ReRAM
analog neural training accelerator,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 86–101, 2018.

[159] N. Zmora et al., “Neural network distiller,” June 2018. [Online].
Available: https://doi.org/10.5281/zenodo.1297430

[160] TensorFlow, “Model optimization toolkit.” [Online]. Available:
https://www.tensorflow.org/model optimization

[161] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and Y. Wang,
“Admm-nn: An algorithm-hardware co-design framework of dnns us-
ing alternating direction methods of multipliers,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 925–938.

122

https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.5281/zenodo.1297430
https://www.tensorflow.org/model_optimization

[162] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-
holland, D. Brooks, and G.-Y. Wei, “Ares: A framework for quanti-
fying the resilience of deep neural networks,” in 2018 55th ACM/ES-
DA/IEEE Design Automation Conference (DAC). IEEE, 2018, pp.
1–6.

[163] Y. Choi, M. El-Khamy, and J. Lee, “Learning low precision deep neu-
ral networks through regularization,” arXiv preprint arXiv:1809.00095,
2018.

[164] C. Sakr and N. R. Shanbhag, “Per-tensor fixed-point quantization of
the back-propagation algorithm,” in 7th International Conference on
Learning Representations, ICLR 2019, 2019.

[165] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2018, pp. 764–775.

[166] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “Unpu:
A 50.6 tops/w unified deep neural network accelerator with 1b-to-16b
fully-variable weight bit-precision,” in 2018 IEEE International Solid-
State Circuits Conference-(ISSCC). IEEE, 2018, pp. 218–220.

[167] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network ac-
celerator based on outlier-aware low-precision computation,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Ar-
chitecture (ISCA). IEEE, 2018, pp. 688–698.

[168] C. Ding, S. Wang, N. Liu, K. Xu, Y. Wang, and Y. Liang, “REQ-
YOLO: A resource-aware, efficient quantization framework for object
detection on fpgas,” in Proceedings of the 2019 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, 2019, pp.
33–42.

[169] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “Finn: A framework for fast, scal-
able binarized neural network inference,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2017, pp. 65–74.

[170] Z. Zhu, H. Sun, Y. Lin, G. Dai, L. Xia, S. Han, Y. Wang, and H. Yang,
“A configurable multi-precision cnn computing framework based on
single bit rram,” in 2019 56th ACM/IEEE Design Automation Confer-
ence (DAC). IEEE, 2019, pp. 1–6.

123

[171] W. Zhang, X. Peng, H. Wu, B. Gao, H. He, Y. Zhang, S. Yu, and
H. Qian, “Design guidelines of rram based neural-processing-unit: A
joint device-circuit-algorithm analysis,” in 2019 56th ACM/IEEE De-
sign Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[172] M. N. Bojnordi and E. Ipek, “Memristive Boltzmann machine: A hard-
ware accelerator for combinatorial optimization and deep learning,” in
High Performance Computer Architecture (HPCA), 2016 IEEE Inter-
national Symposium on. IEEE, 2016, pp. 1–13.

[173] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang,
“Time: A training-in-memory architecture for memristor-based deep
neural networks,” in Proceedings of the 54th Annual Design Automation
Conference 2017. ACM, 2017, p. 26.

[174] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined ReRAM-
based accelerator for deep learning,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on. IEEE,
2017, pp. 541–552.

[175] F. Chen, L. Song, and Y. Chen, “ReGAN: A pipelined ReRAM-based
accelerator for generative adversarial networks,” in Design Automation
Conference (ASP-DAC), 2018 23rd Asia and South Pacific. IEEE,
2018, pp. 178–183.

[176] A. Ankit, I. El Hajj, S. Chalamalasetti, S. Agarwal, M. Marinella,
M. Foltin, J. P. Strachan, D. Milojicic, W.-m. Hwu, and K. Roy, “Pan-
ther: A programmable architecture for neural network training harness-
ing energy-efficient reram,” IEEE Transactions on Computers, 2020.

[177] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
“Neutrams: Neural network transformation and co-design under neu-
romorphic hardware constraints,” in The 49th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture. IEEE Press, 2016, p. 21.

[178] Y. Ji, Y. Zhang, W. Chen, and Y. Xie, “Bridge the gap between neural
networks and neuromorphic hardware with a neural network compiler,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM, 2018, pp. 448–460.

[179] Y. Wang, W. Wen, B. Liu, D. Chiarulli, and H. H. Li, “Group scissor:
Scaling neuromorphic computing design to large neural networks,” in
Proceedings of the 54th Annual Design Automation Conference 2017.
ACM, 2017, p. 85.

124

	LIST OF ABBREVIATIONS
	CHAPTER 1 Introduction
	CHAPTER 2 Efficient Hardware Accelerators
	Common Accelerator Types
	Heterogeneous Systems
	FPGA Design Methodology

	CHAPTER 3 Case Study: Sparse DNN Accelerator
	Introduction
	Background
	Sparse Deep Neural Networks
	FPGA Accelerators

	Design Optimizations
	Dense Feature Vectors and Sparse Parameters
	Grid Representation and Data Dependencies
	Ping-Pong Buffering
	Multi-Level Tiling
	Dynamic Workload Balancing

	Sparse DNN Accelerator Architecture
	Experiments
	Test Platform and Dataset
	Design Parameters
	Evaluation

	Related Works
	Conclusion

	CHAPTER 4 Design and Optimization of Heterogeneous Systems
	Introduction
	Collaborative Execution Strategies
	Data Partitioning
	Task Partitioning

	Methodology
	Evaluation of Collaborative Execution Strategies
	Canny Edge Detection
	Random Sample Consensus
	Other Data Partitioning Benchmarks
	Other Task Partitioning Benchmarks

	Evaluation of Kernel Duplication
	Performance Effect of Kernel Duplication
	Analysis of Resource Utilization

	Key Insights
	Related Work
	CPU-FPGA Coherent Memory
	High-Level Synthesis with OpenCL
	Integrated CPU-GPU Architectures

	Conclusion

	CHAPTER 5 Languages and Compilers for Accelerator Design Automation
	Overview
	Related Works
	PyLog Programming Model
	Overview
	High-Level Operators
	Offset-Slicing and Operator Chaining
	HLS C Library Integration
	Bitwidth and Compute Customization
	Functional Simulation Support
	Python Feature Support and Limitations

	Compilation and Synthesis Flow
	Front-End Analysis and PLIR Generation
	Type Inference and Type Checking
	Compiler Optimization
	Global Design Optimization
	C Code Generation and System Generation
	PyLog Runtime

	Evaluation
	Portability
	Expressiveness
	Design Space Exploration and Search
	Accelerator Performance

	PyLog Future Works
	Supporting Other Accelerators
	Working with Existing Python Frameworks
	Memory Access Optimizations
	Heterogeneous Computing Support

	Conclusion

	CHAPTER 6 Design Space Search and Optimization
	Introduction
	Quantization Scheme
	Background
	Weight and Input Quantization
	Partial Sum Quantization

	Mixed Precison Quantization Flow
	MDP Modeling
	Action Definition
	Reward Assignment
	Learning Algorithm
	Putting It All Together

	Methodology
	Performance Simulation
	Functional Simulation
	Search Flow

	Evaluation
	Benefits of Mixed Precision Quantization
	Quantization Search Flow

	Related Work
	Conclusion

	CHAPTER 7 Conclusion
	REFERENCES

