HITRAN2020: ACT (ACCURACY, COMPLETENESS, TRACEABILITY)

IOULI E GORDON, LAURENCE S. ROTHMAN, ROBERT J. HARGREAVES, ROBAB HASHEMI, EKATERINA KARLOVETS, FRANCES M SKINNER, ARTEM FINENKO, EAMON K CONWAY, KYLE NELSON, TIJS KARMAN, Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA; YAN TAN, Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, China; ROMAN KOCHANOV, Laboratory of Quantum Molecular Mechanics and Radiation Processes, Tomsk State University, Tomsk, Russia; CHRISTIAN HILL, Atomic and Molecular Data Unit, International Atomic Energy Agency, Vienna, Austria.

The HITRAN2020 database will be publicly released this year. It is a coordinated effort of experimentalists, theoreticians, atmospheric and planetary scientists who measure, calculate and validate the HITRAN data. The lists for most of the HITRAN molecules in the line-by-line section were updated in comparison with the previous compilation HITRAN2016^a. The extent of the updates ranges from updating a few lines of certain molecules to complete replacements of the lists and introducing additional isotopologues. Six new molecules (SO, CH₃F, GeH₄, CS₂, CH₃I, and NF₃) were also added to HITRAN. In addition, the accuracy of the parameters for major atmospheric absorbers has been increased, often featuring sub-percent uncertainties. The number of parameters was also increased significantly, now incorporating, for instance, non-Voigt line profiles for many gases; broadening by water vapor^b; update of collision-induced absorption sets^c.

The new edition will continue taking advantage of the modern structure and interface available at www.hitran.org and the HITRAN Application Programming Interface^d. Their functionality has been extended for the new edition. This talk will provide a brief overview of HITRAN2020^e and its main improvements with respect to the previous edition.

^aGordon et al., (2017). JQSRT. 203, 3–69.

^bTan et al., (2019) J. Geophys. Res. Atmos. 2019JD030929.

^cKarman et al., (2019) Icarus 328, 160–175.

^dKochanov et al., (2016) JQSRT. 177, 15–30.

^eThis work is supported by NASA.