THE INFRARED SPECTRUM OF CO_2 -Kr, INCLUDING THE INTERMOLECULAR BENDING MODE AND SYMMETRY BREAKING OF THE CO_2 BEND

SYE GHEBRETNSAE, Physics and Astronomy, University of Calgary, Calgary, AB, Canada; A. J. BAR-CLAY, Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada; NASSER MOAZZEN-AHMADI, Physics and Astronomy/Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada.

The infrared spectrum of CO_2 -Kr in the region of the carbon dioxide ν_3 fundamental vibration (near 2350 cm⁻¹) was first studied by Randall *et al.*^a Here we reexamine this spectrum, using a tunable OPO laser source to probe a pulsed supersonic slit jet expansion of a dilute mixture of CO_2 and Kr in helium. The bending combination band, which is observed near 2378 cm⁻¹, yields an intermolecular bending frequency of 29.43 cm⁻¹, in fairly good agreement with a theoretical prediction of 30.02 cm⁻¹ by Chen *et al.*^b

The spectrum of CO_2 -Kr in the region of the CO_2 (01¹1) - (01¹0) hot band is also observed, following on our recent study of this transition in CO_2 -Ar.^c This gives a measurement of the symmetry breaking of the CO_2 ν_2 bending mode caused by the Kr atom. The out-of-plane mode turns out to be about 1.42 cm⁻¹ higher than the in-plane mode for CO_2 -Kr, as compared to splittings of 0.06 cm⁻¹ for CO_2 -Ne, 0.88 cm⁻¹ for CO_2 -Ar, and 2.14 cm⁻¹ for CO_2 -Xe.

^aR.W. Randall. M.A. Walsh, and B.J. Howard, Faraday Discuss. Chem. Soc. 85, 13 (1988).

^bR. Chen, H. Zhu, and D. Xie, *Chem. Phys. Lett.* **511**, 229 (2011).

^cT.A. Gartner, A.J. Barclay, A.R.W. McKellar, and N. Moazzen-Ahmadi, Phys. Chem. Chem. Phys. 22, 21488 (2020).