THE MILLIMETER WAVE SPECTRUM OF RARE IRON MONOXIDE ISOTOPOLOGUES: A MASS INDEPENDENT ANALYSIS

BJÖRN WAßMUTH, ALEXANDER A. BREIER, GUIDO W FUCHS, THOMAS GIESEN, *Institute of Physics, University Kassel, Kassel, Germany*.

The role of iron containing molecular species in the interstellar medium is not fully understood. Iron monoxide was tentatively detected toward Sagittarius B2.^a In the laboratory the isotopologues 56 FeO and 54 FeO were rotationally measured in all five spin states in their $X^5\Delta_i$ ground state by Allen et al.^b We present laboratory measurements of rotational lines of the rare isotopologues 57 FeO, 58 FeO, and 56 Fe 18 O, including the hyperfine structure splitting due to the nuclear spin I=1/2 of 57 Fe.^c

We performed a mass independent analysis^d with the new isotopic data and data from the literature. This enables us to predict molecular parameters and line transitions of the radioactive isotopologue 60 FeO. Kamiński *et al.* detected the radioactive molecule 26 AlF in the merger CK Vulpeculae by means of rotational spectroscopy e . This is a powerful novel approach to use molecular transition to search for iron and its isotopes. Iron monoxide is a well suited candidate for a astronomical search for 60 Fe.

^aC.M. Walmsley et al., Astrophys. J., **566**:L109-L112, (2002).

^bM.D. Allen et al., Chem. Phys. Lett., **257**, 130-136, (1996).

^cB. Waßmuth et al., Mol. Phys., 118, 19-20, (2020).

^dA.A. Breier et al., J. Mol. Spectrosc., 355, 46-58, (2019).

^eT. Kamiński et al., Nature Astronomy, 2, 778-783, (2018).