THE (1,0) BAND OF THE [13.10] Ω =1 – X $^3\Sigma^-(0^+)$ TRANSITION OF TUNGSTEN SULFIDE, WS, OBSERVED BY ILS-FTS

JACK C HARMS, Chemistry and Biochemistry, University of Missouri, St. Louis, MO, USA; BRENDAN M. RATAY, Chemistry and Biochemistry, University of Missouri - St. Louis, St. Louis, MO, USA; KRISTIN N BALES, JAMES J O'BRIEN, Chemistry and Biochemistry, University of Missouri, St. Louis, MO, USA; LEAH C O'BRIEN, Department of Chemistry, Southern Illinois University, Edwardsville, IL, USA.

The (1,0) vibrational band of the [13.10] Ω =1 – X $^3\Sigma^-(0^+)$ transition of tungsten sulfide (WS) has been measured in absorption using Intracavity Laser Spectroscopy with Fourier transform detection (ILS-FTS). WS was synthesized in a 0.05-0.15 A DC current plasma discharge within a tungsten lined hollow cathode at 625 mTorr with 65% Ar, 17.5% He, 17.5% H₂, and a trace amount of CS₂. The spectrum was calibrated using literature values for argon lines and PGOPHER's calibration feature [C.M. Western, J. Quant. Spectrosc. Radiat. Transfer 2016 (186), 221-242]. Three rotational branches (P , Q-, and R-branch) with four WS isotopologues (182 WS, 183 WS, 184 WS, and 186 WS) were observed in the spectrum. Molecular constants for these isotopologues were determined for both electronic states. The line positions of the (0,0) band of this transition [L.F. Tsang et al., J. Mol. Spectrosc. 2019 (359), 31-36] were included in the fit. The results of the analysis will be presented, and compared with calculations [L.F. Tsang et al., 2019].