CYCLOHEXANE VIBRATIONS: HIGH RESOLUTION SPECTRA AND ANHARMONIC LOCAL MODE CALCULATIONS

<u>PETER F. BERNATH</u>, Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA; EDWIN SIBERT, Department of Chemistry, University of Wisconsin–Madison, Madison, WI, USA.

High resolution infrared absorption spectra of cyclohexane (C_6H_{12}) have been recorded from 1100 to 4000 cm⁻¹ at room temperature and 241 K. Cyclohexane is an oblate symmetric top with D_{3d} symmetry. A rotational analysis was obtained for the ν_{27} (e_u) and ν_{14} (a_{2u}) CH₂ scissor modes at 1452.9 cm⁻¹ and 1456.4 cm⁻¹, respectively. Several combination modes were also assigned and rotationally analyzed. The C-H stretching modes are perturbed by overtone and combination modes of the CH₂ scissor vibrations, and an anharmonic local mode calculation was needed to interpret the spectra. The 4 main strong allowed C-H stretching modes appear as two e_u a_{2u} pairs near at 2862 cm⁻¹ and 2933 cm⁻¹. The Fermi-resonance local mode model coupling terms give physical insight into the effects that organize the cyclohexane vibrational energy levels. The unstrained cyclohexane molecule is a useful paradigm for six-membered rings in larger chemical and biological systems.