ROTATIONAL ANALYSIS OF A NEW [15.05] Ω =0⁺ – X $^3\Sigma(0^+)$ ELECTRONIC TRANSITION OF TUNGSTEN SULFIDE (WS) IN THE 14,900 - 16,100 cm⁻¹ REGION OBSERVED USING ILS-FTS

KRISTIN N BALES, JACK C HARMS, JAMES J O'BRIEN, Chemistry and Biochemistry, University of Missouri, St. Louis, MO, USA; LEAH C O'BRIEN, Department of Chemistry, Southern Illinois University, Edwardsville, IL, USA.

Three bands of tungsten sulfide, WS, in the $14,900 - 16,100 \text{ cm}^{-1}$ region have have been recorded in high resolution using Intracavity Laser Spectroscopy integrated with Fourier Transform detection (ILS-FTS). WS was formed in the plasma discharge resulting from a 0.05 A - 0.15 A DC current applied to a tungsten-lined copper hollow cathode within the resonator cavity of a dye laser using gas flows of Ar, CS₂, and H₂ at a pressure of approximately 1 torr. Based on isotopologue shifts, the observed WS bands are assigned as the (0,0), (1,0), and (2,0) bands of a new $[15.05] \Omega = 0^+ - X^- \Omega = 0^+ \Omega$