HIGH-RESOLUTION PHOTODISSOCIATION SPECTROSCOPY OF N₂O⁺

<u>ANTHONY ROUCOU</u>, XAVIER URBAIN, CLÉMENT LAUZIN, *Institue of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium.*

The nitrous oxide cation (N_2O^+) is an important intermediate in the upper atmosphere^a. The photodissociation spectra of N_2O^+ have been measured in the UV range using the new STARGATE instrument (Spectroscopy of Transient Anions and Radicals by Gated and Accelerated Time-of-flight Experiment) developed in UCLouvain.

This talk will present the rovibronic analysis of the $\tilde{A}^2\Sigma^+(002)\leftarrow \tilde{X}^2\Pi(000)$, $\tilde{A}^2\Sigma^+(101)\leftarrow \tilde{X}^2\Pi(000)$ and $\tilde{A}^2\Sigma^+(003)\leftarrow \tilde{X}^2\Pi(000)$ bands measured at 550 K in the 30500-32500 cm⁻¹ range. A global vibronic fit has been performed including these bands, Q-branch head of overtones, combination bands and data from other studies^{bc}. The Renner-Teller effect involving the $\tilde{X}^2\Pi$ and $\tilde{A}^2\Sigma^+$ states is taken into account in the global fit procedure. The improvement of the description of the vibronic energy level will be discussed.

^aG. Chambaud, H. Gritli, P. Rosmus, H. J. Werner, and P. J. Knowles, Mol. Phys. 98, 1793 (2000)

^bM. Gharaibeh and D. Clouthier, J. Chem. Phys. 136, 044318 (2012).

^cC. E. Fellows and M. Vervloet, Chem. Phys. 264, 203 (2001).