HIGH RESOLUTION INFRARED SPECTROSCOPY OF CYANO-OXIRANE (c-C₂H₃OCN)

SIEGHARD ALBERT, Physical Chemistry, ETH Zurich, Zurich, Switzerland; ZIQIU CHEN, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China; KAREN KEPPLER, Physical Chemistry, ETH Zurich, Zurich, Switzerland; PHILIPPE LERCH, Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland; CARINE MANCA TANNER, MARTIN QUACK, Physical Chemistry, ETH Zurich, Zurich, Switzerland; JÜRGEN STOHNER, ICBT Institute for Chemistry and Biotechnology, ZHAW Zurich University for Applied Sciences, Wädenswil, Switzerland.

Oxiranecarbonitrile (cyano-oxirane, c-C₂H₃OCN) is of interest as a possible chiral precursor molecule of evolution^a. We have calculated parity violation in this molecule in view of possible experiments and biomolecular homochirality^b. Its spectrum has been investigated in the millimeter, submillimeter^c and terahertz^d regions. We have recorded its infrared spectrum at 295K with resolution 0.0011 cm⁻¹ using the Zurich Prototype ZP 2001 FTIR spectrometer ^e. We report here the results of the rovibrational analysis transitions associated with the ν_{12} (915.3 cm⁻¹) and ν_{13} (848.2 cm⁻¹) fundamentals using a Watson Hamiltonian and the WANG program^f, including molecular parameters and ground state energies from our work in the THz region^d. Simulations performed using the parameters reproduce the observed spectrum well. The results are discussed in relation to astrophysical spectroscopic searches and the evolution of biomolecular homochirality^g.

^aM. Bolli, R. Micura, A. Eschenmoser, *Chem. Biol.*, 1997, 4, 309 (and refs. cited therein).

^bR. Berger, M. Quack, G. Tschumper, *Helv. Chim. Acta.*, **2000**, 83, 1919; M. Quack, *Chem. Phys. Lett.* **1986**, 132, 147; M. Quack, *Angew. Chem. Intl. Ed.*, **2002**, 41, 4618.

^cM. Behnke, I. Medvedev, M. Winnewisser, F. C. De Lucia, and E. Herbst, *ApJ. Supplement Series*, **2004**, 152, 97.

^dS. Albert, Ph. Lerch, K. Keppler and M. Quack, *Proceedings of the XX. Symposium on Atomic, Cluster and Surface Physics 2016*, (SASP 2016), Innsbruck University Press (2016), pp. 165-168 (and refs. cited therein).

^eS. Albert, K. Albert and M. Quack, Trends in Optics and Photonics, 2003, 84, 177; "Handbook," Vol. 2, pp. 965-1019 (see also f).

^fD. Luckhaus and M. Quack, *Mol. Phys.*, **1989**, 68, 745; S. Albert, K. Keppler Albert, H. Hollenstein, C. Manca Tanner, M. Quack in "Handbook of High-Resolution Spectroscopy," M. Quack and F. Merkt, Eds., 2011, Vol. 1, Chapter 3, pp. 117-173, Wiley, Chichester.

^gM. Quack, *Adv. Chem. Phys.*, **2014**, 157, 249 (and refs. cited therein); M. Quack and G. Seyfang, in "Molecular Spectroscopy and Quantum Dynamics," R. Marquardt and M. Quack, Eds., 2020, Ch. 7, pp. 231-282, Elsevier, Amsterdam, see also www.ir.ETHz.CH