
SHOCKGAS-IR: A HIGH-TEMPERATURE AND HIGH-PRESSURE ABSORPTION CROSS-SECTION DATABASE

CHRISTOPHER L STRAND, YIMING DING, SARAH E JOHNSON, WEY-WEY SU, RONALD K HAN-SON, Mechanical Engineering, Stanford University, Stanford, CA, USA.

An infrared absorption cross-section database for gas-phase molecules at high-temperatures and high-pressures is under construction to address a growing cross-disciplinary need for experimental data at these conditions. Recently developed broad-scan, rapid-tuning external-cavity quantum cascade lasers (QCL) have enabled the application of shock tube facilities, commonly used to study high-temperature chemical kinetics, to the efficient acquisition of absorption spectra under short-duration shock-heated test gas conditions. Available shock tube facilities can produce temperatures from 500 to 10,000 K and pressures from 0.1 to 1000 atm with test time durations ranging from 500 μ s to 50 ms. Uncertainties in the known thermodynamic conditions as low as $\pm 1\%$ can be achieved. Presently available laser systems enable the rapid acquisition (< 10 ms) of approximately 300 cm⁻¹ wide spectral regions at any location within the QCL-accessible wavelength region of $3.6 - 11.7 \ \mu m \ (850 - 2800 \ cm^{-1})$. The resulting spectra are composed of discrete data points at a spectral interval ranging from $0.3 - 0.6 \text{ cm}^{-1}$

and an instrument broadening function defined by the laser linewidth ($\leq 0.0033 \text{ cm}^{-1}$).

Present efforts are focused on studying large polyatomic molecules (4+ atoms) dilute in a bath gas of argon under conditions for which dissociation is negligible and test time durations are favorable (T < 1600K and P < 5atm). The database currently includes ethylene, methanol, and ethanol with over a dozen more species measured and being prepared for inclusion soon. Database permanent URL: https://purl.stanford.edu/cy149sv5686