INFRARED SPECTRA OF $(CO_2)_n$ - $(RARE\ GAS)_m$ TRIMERS AND TETRAMER, (n, m) = (1, 2), (1, 3), (2, 1)

- A. J. BARCLAY, Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada; A.R.W. McKellar, Steacie Laboratory, National Research Council of Canada, Ottawa, ON, Canada; ANDREA PIETROPOLLI CHARMET, Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Venezia, Italy; NASSER MOAZZEN-AHMADI, Physics and Astronomy/Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada.
- (n,m) = (1,2). CO_2 - Ar_2 has previously been studied in the microwave^a and infrared.^b Its structure has two Ar atoms occupying equivalent positions around the 'equator' of the CO_2 , giving C_{2v} symmetry. Here we report observation of analogous infrared spectra of CO_2 - Ne_2 and CO_2 - Xe_2 . Meanwhile, for CO_2 - Ar_2 we observe a new a-type combination band giving an intermolecular bending frequency of 32.2 cm⁻¹. Unlike the fundamental band, the combination band is free of interference from stronger CO_2 -Ar transitions. Also, we observe CO_2 - Ar_2 in the CO_2 (01¹1) (01¹0) hot band region, as well as weak fundamental band spectra of the mixed trimers CO_2 -Rg-He, with Rg = Ne, Ar, Xe.
- (n,m) = (1,3). An interesting band near 2345.2 cm⁻¹ is assigned to CO₂-Xe₃, whose structure appears to have C_s symmetry containing a xenon trimer (near equilateral triangle) and a CO₂ positioned so that two of the Xe atoms are in equivalent near equatorial positions.
- (n,m) = (2,1). We have assigned spectra of new trimers, $(CO_2)_2$ -Rg. The Xe-containing species was noticed first, and this led us to identify weaker spectra with Ar and (even weaker) Ne. Their structures resemble having a CO_2 dimer (planar slipped parallel) with the Rg atom located 'above' the dimer plane on (or close to) the dimer symmetry axis, analogous to $(CO_2)_2$ -CO.^c In the future, it should be possible to assign the various Kr clusters and to optimize each cluster by varying the expansion gas mixtures.

^aY. Xu, W. Jäger, and M.C.L. Gerry, J. Mol. Spectrosc. 157, 132 (1993).

^bJ.M. Sperhac, M.J. Weida, and D.J. Nesbitt, *J. Chem. Phys.* **104** 2202 (1996).

^cA.J. Barclay, A.R.W. McKellar, and N. Moazzen-Ahmadi, Chem. Phys. Lett. 677, 127 (2017).