The electronic spectra of the resonance-stabilized radical C$_9$H$_9$ isomers cis- and trans-meta-vinylbenzyl (MVB), generated in a supersonically cooled discharge of m-vinyltoluene, have been investigated using resonant two-colour two-photon ionization (R2C2PI) and laser-induced fluorescence. The $D_0 - D_1$ band origins of the cis and trans conformers are at 19037 cm$^{-1}$ and 18939 cm$^{-1}$, respectively. Adiabatic ionization energies near 7.17 eV were determined for both conformers from two-colour ion-yield scans. Dispersed fluorescence (DF) was used to conclusively identify the cis conformer: ground-state cis-MVB eigenvalues calculated from a Fourier series fit of a computed (B3LYP/6-311G++(d,p) vinyl torsion potential are in excellent agreement with torsional transitions observed in the 19037 cm$^{-1}$ DF spectrum. Features arising from cis- or trans-MVB in the R2C2PI spectrum were distinguished by optical-optical holeburning spectroscopy and vibronic assignments were made with guidance from DFT and TDDFT calculations. There is a notable absence of mirror symmetry between excitation and emission spectra for several totally symmetric modes, whereby a' fundamentals that are conspicuous in emission are nearly absent in excitation, and vice-versa. This effect is largely ascribed to interference between Franck-Condon and Herzberg-Teller contributions to the electronic transition moment, as the former is carried with a different sign in excitation vs. emission, while the latter is not. Rampant HT activity among a' modes is attributed to the low symmetry (C_s) of the molecule, which permits intensity-borrowing from several relatively bright electronic states of A'' symmetry.