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Monoterpenes and terpenoids

.SOA

® ... /

Monoterpenes o il " ©

and terpenoids f % +11% of total BVOC
emission

~83Tg Cyr!
» Combination of two or
X + more isoprene units g
- Undergo oxidation and ~ ~
ozonolysis (oxygenated)
products

K. Sindelarova et al., , 2014, pp. 9317-9341
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Micro-solvation of terpernoids

The presence of oxygenated functional group in terpenoids widens the
chemical possibilities

Introduction

o e [t is well known that they can form water complexes

atmosphere

® The literature contains several studies of micro-hydrated BVOCs
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The hydrogen bond

Intermediate range interaction

acceptor

X and Y more electronegative than H
FON,S

Acceptor should be high electron density
region:
o lone pair of electrons
o [1-bonded pair of electrons in a
double or triple bond

- 5+ 5- 5+
- wmm H
0 y
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The hydrogen bond

Intermediate range interaction

Acceptor should be high electron density
region:

donor .
o lone pair of electrons
X—H ---- Y o [1-bonded pair of electrons in a
acceptor double or triple bond
X and Y more electronegative than H H

FO/N,S

H
It is an important interaction that stabilizes ) & y
vital systems! 4 - w4
H

It is the main contributor to the foramtion
of atmospheric relevant species?

'G. R. Desiraju and T. Steiner,2001
?H. Zhao etal., IntJ Mol Sci, 2016, p.4
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Structure

Gas phase molecular structure
¢ Influences the inter and intramolecular interactions
¢ Dictates the physical and chemical properties of the system

® Give an idea about the reaction pathways and complexes

formation

— Important to get information of the gas-phase structure



How to determine the gas phase structure?

Introduction .
The Pure rotational spectroscopy

atmosphere

® Employs state-of-the-art instruments

® High resolution pure rotational spectra are obtained

complexes

SELUCLURS ® Rotational constants that correspond to a unique geometry are extracted
Spectroscopy 2 9 9
Motivation A o h B h C h
= —, = -—, = —_—
Methods 21, 21, 21.
Results

Conclusion
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Micro-solvation of terpernoids

® Only few studies of organic molecules with sulfur containing
species
e Complexes with Sulfur containing species??

e Similar or different to micro-hydration?

ISMS 2022



Systems of interest

¢ endo-fenchol (CoH;30), fenchone (C;oH;50) and their complexes
with water have been studied with Fourier transform microwave

(FTMW) spectroscopy!»?**

Introduction . .
- ¢ They possess same skeleton but different functional groups
ne
atmosphere
BVOGS endo-fenchol Hy fenchone
VDW
complexes
HO,
Struc //," .
Spectroscopy
Motivation
Methods
Mesillis 1,3,3-trimethylblcyclo[2.2. 1]heptan-2-ol l,3,3-trimethylblcyclo[2.2. 1]heptan-2-one
Conclusion 1E. M. Neeman and T. R. Huet, , 2018, pp. 24708-24715

2E. M. Neeman and T. R. Huet, , 2021, pp. 2179-2185

3D. Loru, M. A. Bermudez, and M. E. Sanz, , 2016, p. 074311

4M. Chrayteh et al., , 2021, pp. 20686-20694

24/06/2022 ISMS 2022 8/ 35




e H,S is a trace gas in the atmosphere of natural and anthropogenic
sources

(HsS), and (H50), have similar gas phase structure’

e This gives a solid basis for comparison

Motivation
Methods
Results ()’

Conclusion

a) HyO dimer
(b) H,S dimer

LA. Das et al., , 2018, pp. 15199-15203
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Spectrometers in PhLAM

* Two FTMW spectrometers operating from ~ 1 to 20 GHz

Introduction

Methods - =1iom

FP-FTMW Supersonic ' Gaussian mode | | Spherical
—r— e nome EXpansion TEM ||~ moving mirror
eoretica =1 mm 00q 1 -

Conditions Iniector N\l i~~~ D=70 cm

njector R=1m €

Results e - o

S Carrier gas Flow v S

I

fa)

Conclusion m]ef:tlon !,
Polarization —-ly

Step by step
l motor

P =~ 10¢ mbar

<«— Spherical fixed mirror

2-9 GHz 1124
9-20 GHz §§§§§ A Stainless steel vaccum chamber

L-shaped antennas Pumping group

ISMS 2022
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Quantum chemical calculations

The synergic combination of computational methods and FTMW is a
reliable approach for studying atmospheric molecules
Introduction

Methods
FP-FTMW

Theoretical

Conditions
Results

Conclusion

Geometry
optimization,
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Quantum chemical calculations

The synergic combination of computational methods and FTMW is a
reliable approach for studying atmospheric molecules

Introduction

Me ds
FP-FTMW

Energy Dipole
ordering

Theoretical

Conditions

Rotational
Results constants

Conclusion
Geometry
optimization

[Assignmen
of spectra
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Complexes with HyS

Introducti . . .

= All calculations were performed using Gaussian 16

Methods

e Method Basis set Type
Theoretical

Conditions ab initio MP2 6-311++G(d,p) opt, freq, NBO, wix
Results DFT B3LYP def2TZVP iy
Conclusion wBI97X-D 6-311++G(d,p) opt,ireq

24/06/2022 ISMS 2022



Experimental conditions

Introduction

Methods A premixture was required to == + +

FP-FTMW handle HQS Injector

Theoretical

Conditions

Results .
Carrier gas Neon Sampling

cylinder

Prys ~ 1.5 % (50 mbar) 500 mL

Conclusion

M
w il

24/06 /2022 ISMS 2022 13 / 35



Experimental conditions

Introduction

Methods
FP-FTMW P (bar) T (K) State

Theoretical

peR— Fenchol 3.5 348 solid
Fenchone 3 348 liquid

Results

Conclusion Carrier gas premixture
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Endo-fenchol- - - HoS

Four stable conformers are predicted with MP2, very close in energy

Introduction 0 =141° e, ©=170.5
Method £y < ~ 29
Methods “ i -
N ~ 2154 16147 /‘)
Results =N ,ﬁf
fenchol-HyS IEF IIEF
fenchone-HyS AE = 0.0 kJ/mOl AE = 0.03 k_]/mol
EF vs. FEN
Conclusion 0 =94.7° 0 =-143.7°
-~ _3_2;\ - X :slﬂ/
o A_) e 254
‘/\ 167.7°
2.;)\\
01, v,
AE = 0.11 kJ/mol AE = 0.28 kJ/mol

Bond distance in A; £(OHS) in °; ©: D(OHSH) in °
24/06/2022
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Experimental transitions

e Correction factors were applied to the rotational constants to

facilitate the search

® 56 lines were recorded at high resolution

_|606 < 505
S
)
2
(%)
c
3
=
5409.271 5409.368 5409.465
Frequency (MHz)
ISMS

_|101 10 < 919
S
s
2
w
c
[
E
8804.162 8804.259 8804.356
Frequency (MHz)
16 / 35



Semi rigid Hamiltonian

et Transitions were fitted to Watson Hamiltonian in the A-reduction
nirodauction

ethods ~ 1 N 1 ~
MEod e, =§(B(A) + O 4 [A<A> _ §(B(A) 4 C(A))} J?
Results
fenchol-H,S 1 (4) (A, 72 5 4 9 29 4
fenchone-HyS + E(B - C )(JIE - Jy) - AJJ - AJKJ JZ - AK‘]z
EF vs. FEN

Conclusion - 25Jj2(j$2 - jy2) + 5[{ |:jz2(j:v2 — jy?) + (ij — j;)jf]
+ ...

24/06 /2022




Exp. Mgr  gr
MP2  MP2
Introduction A (MHz)  1161.23470(480) 1182.5 1187.5
B (MHz)  494.214373(162) 5058  510.2
Methods C (MHz)  430.006742(129) 439.6 4453
Results E (-‘FZPE) (kJ 1'1'101_1) 0.11 0.03
fenchol-HyS .
fenchone-HyS Two conformers can be assigned to these constants
EF vs. FEN
Conclusion
J S
1l I,

24/06 /2022




Introduction
Methods

Results
fenchol-HyS

fenchone-HyS

EF vs. FEN

Conclusion

Exp. Mgr Hgr
MP2  MP2
A (MHz) 1161.23470(480) 11825 1187.5
B (MHz) 494.214373(162) 5058  510.2
C (MHz) 430.006742(129) 439.6  445.3
ta (D) observed 2.7 1.6
s (D) not observed 0.02 0.8
pe (D) not observed 0.1 0.2
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Fit

Only a-type transitions were observed

Exp. Mgr Hgr
Introduction MP2  MP2
Methods A (MHz) 1161.23470(480) 1182.5 1187.5
B (MHz) 494.214373(162) 505.8 510.2
Results C (MHz) 430.006742(129) 439.6  445.3
S ta (D) observed 2.7 1.6
B e FEI\ZI w (D) not observed 0.02 08

pe (D) not observed 0.1 0.2

Conclusion

24/06 /2022



Experiment vs. Theory

Introduction Good agreement between calculations (I1lgr) and fitted constants
Methods Constants ~ Experimental MP2  wB97X-D B3LYP
Results A (MHz)  1161.23470(480) 11825 1187.5  1192.7
fenchol-HoS B (MHz)  494.214373(162) 505.8 498.4 497.4
fonchone-H,S C (MHz)  430.006742(129) 439.6  434.8 434.9
EF vs. FEN N 56
Conclusion RMS (kHz) 1.46
Jmaz 13
K 4

Amazx

24/06 /2022




Fenchone- - - H,S

Six stable conformers were predicted with MP2

226

0 =-121.7° 0 =743°

0 = 128.6° 4
Introduction A o 1517
Methods P \,,.,, 4 y
Results J <3
FEN IIIFEN
fenchone-H,S AE = 0.1 kJ/mol AE = 0.39 kJ/mol
Conclusion 2184 Wk 27A
® sl <
\ s01h N
\
2k g 0= -139.6°
0 =-133.3°
Veen VL,
AE = 0.46 kJ/mol AE = 3.98 kJ/mol AE = 4.0 kJ/mol

Bond distance in ; A (OHS) in °; ©: D(OHSH) in °
24/06/2022 ISMS 20



Fenchone- - - H,S

Six stable conformers were predicted with MP2

0 =-121.7° 0 =74.3°

| 17

0 =128.6°
Introduction

Methods

Results

FEN

fenchone-HoS AE = 0.0 k3/mol AE = 0.1 kJ/mol AE = 0.39 k3/mol
2254
Conclusion \J/ 1512° <l 28R e ‘mnm&
> . BN
2958 N\ N
0 =-120° S > 1 LN 0 =-139.6
0=-133.3°
IVFEN VFEN VIFEN
AE = 0.46 kJ/mol AE = 3.98 kJ/mol AE = 4.0 kJ/mol

Bond distance in ; A (OHS) in °; ©: D(OHSH) in °
24/06/2022 ISMS 20
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Rotational spectrum

Intensity (a.u.)

® Rotational constants were corrected before predictions

® The first two assigned transitions were 616 <— 515 and 6pg <— Do5

fenchone

Fenchone-H,S

/

fenchone-Iw

Fenchone-H,S

6250

6300
Frequency (MHz)

6350



Rotational spectrum

e At high resolution, the experimental lines showed splittings
e few up to 200 kHz

Introduction e Intensities of the lines were 3:1

Methods
808 < 707| |927 < 826

Results

5 - —
fenchol-HoS =] =)
fenchone-HoS L )
EF vs. FEN = =

@ @
N : < c
Conclusion 9 9

= [=

—_ —

8369.741 8369.895 8370.024 8370.179  10115.259 10115.334 10115.372 10115.447
Frequency (MHz) Frequency (MHz)

— Characteristic of large amplitude motion

24/06 /2022 ISMS 2022 23 / 35



Fit

® 169 lines were fitted into two separate states
Introduction ° Strong state 0~ and weak state O+

Methods

Experimental Hlppy  IVepy

0+ (e MP2 MP2
Results

A (MHz) 983.41497(21)  983.40341(13) 9842 9853
B (MHz) 582.232474(64) 582.241521(34) 597.2  599.0

fenchone-HyS C (MHz) 511.016389(44) 511.007220(30) 525.1 526.9
EF vs. FEN

fenchol-HoS

Conclusion

24/06 /2022




F'it
® 169 lines were fitted into two separate states
e Strong state 0~ and weak state 0T

Experimental Hlppy  IVepy

0~ MP2  MP2
A (MHz) 983.41497(21)  983.40341(13) 9842 9853
B (MHz) 582.232474(64) 582.241521(34) 597.2  599.0
C (MHz) 511.016389(44) 511.007220(30) 525.1  526.9

. +
Introduction 0

Methods

Results

fenchol-HoS

fenchone-HyS

EF vs. FEN Two conformers can be assigned to the observed lines

v, >4
III v

FEN FEN

Conclusion

24/06 /2022
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fenchol-HoS
fenchone-HyS
EF vs. FEN

Conclusion

Fit

® a, b and c transitions are observed
® Both have observable components

Experimental Ulppny  IVrpx

0t 0~ MP2 MP2

A (MIz) 983.41497(21)  983.40341(13) 984.2  985.3
B (MHz) 582.232474(64) 582.241521(34) 5972  599.0
C (MHz) 511.016389(44) 511.007220(30) 525.1  526.9
1ta (D) observed intense 2.7 2.5
1y (D) observed weak 1.1 0.4
1t (D) observed medium 1.3 1.5

e /2 <y
IIT v

FEN FEN




F'it
e [f we compare polarizing power used with dipole components
e Conformer IVpgy is the one observed

Experimental Hlppy  IVeey
Introduction 0" 0~ MP2  MP2

A (MHz) 083.41497(21)  083.40341(13) 984.2  985.3
Methods B (MHz) 582.232474(64) 582.241521(34) 597.2  599.0

C (MHz) 511.016389(44) 511.007220(30) 525.1  526.9
Results 1q (D) observed intense 2.7 2.5
fenchol-H,S 1 (D) observed weak 1.1 0.4
fenchone-HaS 1t (D) observed medium 1.3 1.5
EF vs. FEN
Conclusion

v, -

24/06 /2022



Experiment vs. Theory

‘ Good agreement between calculations (IVggy) and fitted constants
Introduction
Methods Constants Experimental MP2 wB97X-D B3LYP
0+ 0"

Results
ehoL A (MHz)  983.41497(21)  983.40341(13) 985.3 987.8 978.0
PR —— B (MHz)  582.232474(64) 582.241521(34) 599.0 592.7 595.5
e C (MHz)  511.016380(44) 511.007220(30) 526.9 520.0 522.8
ool N 70 99
~onclusion RMS (kHZ) 172

Jmax 12

Koo 4

24/06 /2022
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Large amplitude motion

¢ The only movement that can give iso-energetic structures is the
proton exchange

e [t can be achieved by the rotation around the Cy axis of H,S

H28 H29

) 941 cm! *
K 11.4 kJ/mol \

K MP2/6-311++G(d,p) '

ISMS 2022 26 / 35



fenchol- - - HyS vs. fenchone- - - HyS

Introduction

In order to better understand the differences between the two
complexes, different analyses were performed:

¢ Natural Bonding Orbitals (NBO)
fenchol-HoS

enchone S m Provides an intuitive framework to rationalize the transfer of
encnone- P .
EF vs. FEN electronic charge

Conclusion e Non Covalent Interactions (NCI) plot

m Analyzes the electron density and its derivatives

Methods

Results

24/06 /2022
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NBO and NCI analyses

Hydrogen bonding

3 kJ/mol

Introduction o, . . U\“) .
Methods '

€ 10dsS \
Results
fenchol-HoS . e ¢
fenchone-HyS FenCh0|-st Fenchone-HZS
erve rex - fenchol - HoS fenchone. - - H,S |
. . LP(1), LP(2) and LP(2) and BD* Strong _ Weak Strong
Conclusion BD* (SH) (SH) attractive interactions repulsive

¢ Hydrogen bond is stronger in fenchol- - - H,S complex

e This might explain observing the splitting in fenchone- - - H,S

24/06/2022 ISMS 2022



Introduction
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Results
fenchol-HoS

fenchone-HyS

Conclusion

EF-H,O vs. EF-H,S

© ¢

1L,
Strong Weak Strong
attractive interactions repulsive

¢ H,0 form stronger hydrogen bond, which can be further validated
from natural bonding analysis, by comparing stabilizing energy of
the charge transfer (~15kJmol™! vs. ~40kJ mol~'")

e Difference is the orientation of H atom in HyS

lE. M. Neeman and T. R. Huet, , 2021, pp. 2179-2185
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Introduction
Methods

Results
fenchol-HoS

fenchone-HyS

Conclusion IVFEN 1W'2

Strong Weak Strong
attractive interactions repulsive

e Different structure from the mono-hydrates
¢ H,O form stronger H-bond

24/06 /2022



Symmetry Adapted Perturbation Theory

A tool for energy decomposition analysis; It decomposes the total
intermolecular interaction energy into:

Introduction e FElectrostatic:

Metiadk m Repulsive or attractive
m Hydrogen bonding

Results

fenchol-H,S ¢ Exchange:

fenchone-HyS

m Repulsive
EF vs. FEN . .
m Pauli exclusion

Conclusion

¢ Induction:

m Polarization of molecular orbitals
¢ Dispersion:

m Attractive

m London dispersive forces

24/06 /2022
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SAPT analysis

® H-bond in fenchol- - - H,S
stronger

® Dispersive forces in

fenchone- - - H,S are stronger

Electrostatics

EF-H,S 1
FEN-H,S 1

45 -
Induction
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SAPT analysis

® H,S form weaker H-bond

® Dispersive forces with HyS

are stronger

Q\

ISMS 2022

R

o
&°
Q}%

Electrostatics

Induction

EF-HS [
FEN-H,S
EF-H,0O [
FEN-1w-1 [ |
FEN-1w-2




Conclusion

Introduction Summal‘y

Methods ¢ Hydrogen-bonded complexes of two monoterpenoids (alcohol and
Results ketone) with H,S were observed using FP-FTMW spectrometers

Conclusion ® The complex of fenchone- - - HyS showed splitting of its
experimental lines due to proton exchange arising from H,S
internal rotation

* Non-covalent analyses were carried out to compare between the
complexes and their water analogs

22 33 / 35



Future work

Introduction

Methods

Results ¢ Investigate more complexes with HyS

Conclusion m Similar functional groups
m Aldehydes and carboxylic acids

¢ [s it possible to form complexes with two or three HyS molecule?

24/06 /2022
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Conclusion

Thank You

Questions?
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