#### Lorenzo Paoloni

Electron propagate methods

Computationa simulation of vibrationally resolved ultraviolet photoelectron

## On the usefulness of electron propagator methods for a reliable computation of experimental observables

#### Lorenzo Paoloni<sup>1</sup>

<sup>1</sup>Dipartimento di Fisica e Astronomia, Università degli Studi di Padova (Italy)



#### Lorenzo Paoloni

Electron propagato methods

Computationa simulation of vibrationally resolved ultraviolet photoelectron spectra

### Overview of this presentation

- ► Electron propagator methods
- ► Computational simulation of vibrationally resolved ultraviolet photoelectron spectra (UPS)
  - Description of the computational protocol
  - Application to 6 organic molecules\*
- From gas phase to solutions: missing part
- ► Acknowledgements

<sup>\*</sup>Published in:

L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226.

Lorenzo Paoloni

Electron propagator methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

# Electron propagator theory: the spectral representation

- ▶ A unified treatment of ionization processes
  - Electron detachment:  $A \longrightarrow A^+ + e^-$
  - Electron attachment:  $A + e^- \longrightarrow A^-$
- A feasible computational approach to systematically improve estimates based on Koopmans' theorem

-

J. Linderberg, Y. Öhrn, Propagators in Quantum Chemistry, 2004;
 J. V. Ortiz, WIREs Computational Molecular Science, 2013, 3, 123 - 142.

Lorenzo Paoloni

#### Electron propagator methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

# Electron propagator theory: the spectral representation

- ► A unified treatment of ionization processes
  - Electron detachment:  $A \longrightarrow A^+ + e^-$
  - Electron attachment:  $A + e^- \longrightarrow A^-$
- A feasible computational approach to systematically improve estimates based on Koopmans' theorem

Propagators (or double time green's functions) are often studied in terms of their spectral representation

$$\begin{split} &G_{pq}(E) = \left<\left< a_p^l; a_q \right>\right>_E = \\ &\lim_{n \to +0} \bigg[ \sum_n \frac{\left< \phi_0^{Nel} \mid a_p^l \mid \phi_n^{Nel-1} \right> \left< \phi_n^{Nel-1} \mid a_q \mid \phi_0^{Nel} \right>}{E + E_n^{Nel-1} - E_0^{Nel} - i\eta} \\ &+ \sum_m \frac{\left< \phi_0^{Nel} \mid a_q \mid \phi_m^{Nel+1} \right> \left< \phi_m^{Nel+1} \mid a_p^l \mid \phi_0^{Nel} \right>}{E - E_m^{Nel+1} + E_0^{Nel} + i\eta} \bigg]. \end{split}$$

▶ Gpq(E) is an element of the matrix G(E)

 $p, q \equiv$  spin-orbital indices  $a_{p}^{\dagger} \equiv$  destruction operator

 $a_q \equiv \text{creation operator}$ 

 $\phi_0^{N_{el}} \equiv \text{electronic ground state}$  of the  $N_{el}$ -electron system

 $\begin{array}{l} \phi_{n}^{N}el^{\,-1} \equiv \text{electronic state n of} \\ \text{the } (N_{el}-1)\text{-electron system} \end{array}$ 

 $\phi_m^{N_{el}+1} \equiv \text{electronic state m of} \\ \text{the } (N_{el}+1)\text{-electron system}$ 

<sup>---</sup>

J. Linderberg, Y. Öhrn, Propagators in Quantum Chemistry, 2004;
J. V. Ortiz, WIREs Computational Molecular Science, 2013, 3, 123 - 142.

Lorenzo Paoloni

#### Electron propagator methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

# Electron propagator theory: the spectral representation

- ► A unified treatment of ionization processes
  - Electron detachment:  $A \longrightarrow A^+ + e^-$
  - Electron attachment:  $A + e^- \longrightarrow A^-$
- ▶ A feasible computational approach to systematically improve estimates based on Koopmans' theorem

Propagators (or double time green's functions) are often studied in terms of their spectral representation

$$\begin{split} &G_{pq}(E) = \left<\left\right>_E = \\ &\lim_{n \to +0} \bigg[\sum_n \frac{\left<\phi_0^{Nel} \mid a_p^l \mid \phi_n^{Nel-1}\right> \left<\phi_n^{Nel-1} \mid a_q \mid \phi_0^{Nel}\right>}{E + E_n^{Nel-1} - E_0^{Nel-i\eta}} \\ &+ \sum_m \frac{\left<\phi_0^{Nel} \mid a_q \mid \phi_m^{Nel+1}\right> \left<\phi_m^{Nel+1} \mid a_p^\dagger \mid \phi_0^{Nel}\right>}{E - E_m^{Nel+1} + E_0^{Nel+i\eta}} \bigg]. \end{split}$$

 $p,q \equiv$  spin-orbital indices  $a_p^{\dagger} \equiv$  destruction operator

 $a_q \equiv \text{creation operator}$ 

 $\phi_0^{Nel} \equiv {
m electronic} \ {
m ground \ state}$  of the  $N_{el}$ -electron system

 $\begin{array}{l} \phi_{n}^{N}el^{-1} \equiv \text{electronic state n of} \\ \text{the } (N_{el}-1)\text{-electron system} \\ \phi_{m}^{N}el^{+1} \equiv \text{electronic state m of} \end{array}$ 

 $\phi_m^{Nel+1} \equiv \text{electronic state m o}$ the  $(N_{el}+1)$ -electron system

•  $G_{pq}(E)$  is an element of the matrix  $\mathbf{G}(E)$ 

Poles correspond to  $E=E_n^{N_{el}+1}-E_0^{N_{el}}$  (electron affinities) and  $E=E_0^{N_{el}}-E_n^{N_{el}-1}$  (ionization potentials)

See

J. Linderberg, Y. Öhrn, Propagators in Quantum Chemistry, 2004;
J. V. Ortiz, WIREs Computational Molecular Science, 2013, 3, 123 - 142.

Lorenzo Paoloni

Electron propagator methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

## Electron propagator methods: the self-energy

- ▶ the inverse of the matrix  $\mathbf{G}(E)$  can be written as follows:  $\mathbf{G}^{-1}(E) = E\mathbf{I} \mathbf{F}^{gen} \boldsymbol{\sigma}(E)$ 
  - $\mathbf{F}^{gen}$  is a generalized Fock matrix  $(\mathbf{F}^{gen} = \mathbf{F} + \mathbf{\Sigma}(\infty))$
  - $\sigma(E)$  is the (energy-dependent) self-energy term
- ▶  $det \mathbf{G}(E)$  diverges when  $det \mathbf{G}^{-1}(E) = 0$

outer valence Green's function (OVGF), partial third-order (P3) or diagonal second-order (D2) approximations

<sup>\*</sup>For example:

Lorenzo Paoloni

#### Electron propagator methods

Computationa simulation of vibrationally resolved ultraviolet photoelectron spectra

## Electron propagator methods: the self-energy

• the inverse of the matrix G(E) can be written as follows:

$$\mathbf{G}^{-1}(E) = E\mathbf{I} - \mathbf{F}^{gen} - \boldsymbol{\sigma}(E)$$

- $\mathbf{F}^{gen}$  is a generalized Fock matrix  $(\mathbf{F}^{gen} = \mathbf{F} + \mathbf{\Sigma}(\infty))$
- $\sigma(E)$  is the (energy-dependent) self-energy term
- ▶  $det \mathbf{G}(E)$  diverges when  $det \mathbf{G}^{-1}(E) = 0$

i.e. when the energy E is equal to a pole  $(E_{pole})$ :

$$[\mathbf{F}^{gen} + \boldsymbol{\sigma}(E_{pole})]\mathbf{C}(E_{pole}) = E_{pole}\mathbf{C}(E_{pole})$$

outer valence Green's function (OVGF), partial third-order (P3) or diagonal second-order (D2) approximations

<sup>\*</sup>For example:

Lorenzo Paoloni

#### Electron propagator methods

Computationa simulation of vibrationally resolved ultraviolet photoelectron spectra

## Electron propagator methods: the self-energy

- ▶ the inverse of the matrix  $\mathbf{G}(E)$  can be written as follows:  $\mathbf{G}^{-1}(E) = E\mathbf{I} \mathbf{F}^{gen} \boldsymbol{\sigma}(E)$ 
  - $\mathbf{F}^{gen}$  is a generalized Fock matrix  $(\mathbf{F}^{gen} = \mathbf{F} + \mathbf{\Sigma}(\infty))$
  - $\sigma(E)$  is the (energy-dependent) self-energy term
- ▶  $det \mathbf{G}(E)$  diverges when  $det \mathbf{G}^{-1}(E) = 0$

i.e. when the energy E is equal to a pole  $(E_{pole})$ :

$$[\mathbf{F}^{gen} + \boldsymbol{\sigma}(E_{pole})]\mathbf{C}(E_{pole}) = E_{pole}\mathbf{C}(E_{pole})$$

The method depends on the choice of  $\Sigma(E) = \Sigma(\infty) + \sigma(E)$ 

- $\Sigma(E) = 0$ : Hartee-Fock approximation
- $ightharpoonup \Sigma_{pq}(E) = 0 \text{ if } p \neq q \text{: diagonal approximations}^*$
- ▶ Otherwise: non diagonal approximations

Diagonal approximations are often a good compromise between accuracy and computational cost

outer valence Green's function (OVGF), partial third-order (P3) or diagonal second-order (D2) approximations

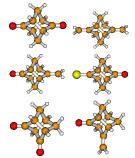
<sup>\*</sup>For example:

Lorenzo Paoloni

Electron propagate methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

# Computational simulation of vibrationally resolved ultraviolet photoelectron spectra



## Structural features

- ightharpoonup Rigid  $\sigma$ -scaffold
- two π-bonds (separated by the central σ-scaffold)

- ➤ Electronic and nuclear pieces of information are intertwined in the experimental data
- ▶ Validation of a computational approach based on a composite scheme:

electron propagator theory

Franck-Condon and vertical gradient approximations

- ► The composite scheme is expected to be effective for:
  - Semi-rigid molecular systems
  - Systems where the effects of LAMs on the experimental ultraviolet photoelectron spectrum is negligible

Lorenzo Paoloni

Electron propagato methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

### Computational strategy

#### Vertical gradient approximation

Duschinsky transformation:  $\overline{\mathbf{Q}} = \mathbf{J}\overline{\overline{\overline{\mathbf{Q}}}} + \mathbf{K}$ 

- Assumptions:
  - J = I  $K = f(\overline{\overline{g}})$

#### Franck-Condon approximation

$$\left\langle \overline{\mathbf{x}_{i}} \, \middle| \, \pmb{\mathcal{T}}^{e}_{IF} \, \middle| \, \overline{\overline{\mathbf{x}_{f}}} \right\rangle \approx \pmb{\mathcal{T}}^{e}_{IF} \left( \overline{\mathbf{Q}}_{eq} \right) \left\langle \overline{\mathbf{x}_{i}} \, \middle| \, \overline{\overline{\mathbf{x}_{f}}} \right\rangle$$

## Approximation of the electron propagator matrix

- diagonal approaches:
  - Outer Valence Green's Functions (OVGF) method
  - non-diagonal approaches:
    - Non-diagonal renormalized second-order (NR2) approximation
- basis set: maug-cc-pVTZ

#### Computational protocol

- ▶ 1. geometry optimization and calculation of harmonic frequencies at B3LYP/maug-cc-pVTZ level of theory
- ▶ 2. Calculation of vertical ionization energies (VIEs) at NR2/maug-cc-pVTZ level of theory
  - ▶ 3. Calculation of  $\overline{\overline{g}}_x$  through numerical differentiation  ${}^{\dagger}$  of VIEs calculated at OVGF/maug-cc-pVTZ level of theory
- ▶ 4. Calculation of relative intensities through a time-independent (TI) approach

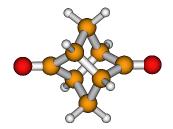
 $<sup>^{\</sup>dagger}$ Mathematical formulations suitable for the analytical differentiation are available in literature; see:

#### Lorenzo Paoloni

Electron propagate methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

### The case of stella-2,6-dione



Experimental data reported in:

R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 - 4895.

Computational results published in:

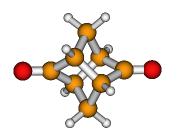
L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226.

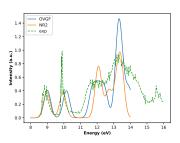
#### Lorenzo Paoloni

Electron propagato methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

### The case of stella-2,6-dione





Comparison between calculated and experimental spectra

Experimental data reported in:

R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 - 4895.

Computational results published in:

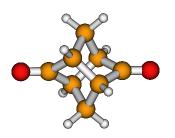
L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226,

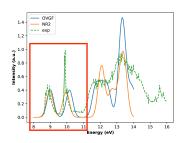
Lorenzo Paoloni

Electron propagate methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

### The case of stella-2,6-dione





## Comparison between calculated and experimental spectra

➤ Similar results with diagonal and non-diagonal approximations in the outer valence region

Experimental data reported in:

R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 - 4895.

Computational results published in:

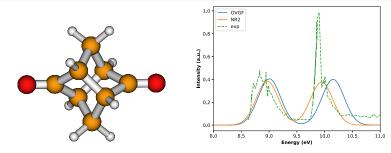
L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226, 7/11

Lorenzo Paoloni

Electron propagate methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

### The case of stella-2,6-dione



## Comparison between calculated and experimental spectra

➤ Similar results with diagonal and non-diagonal approximations in the outer valence region

Experimental data reported in:

R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 - 4895.

Computational results published in:

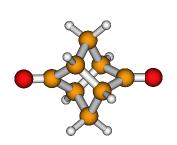
L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226.

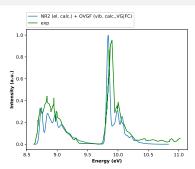
Lorenzo Paoloni

Electron propagate methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

#### The case of stella-2,6-dione





## Comparison between calculated and experimental spectra

- Similar results with diagonal and non-diagonal approximations in the outer valence region
- ► Computation → The inclusion of vibronic of band shapes signatures is pivotal

Experimental data reported in:

Computational results published in:

R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 - 4895.

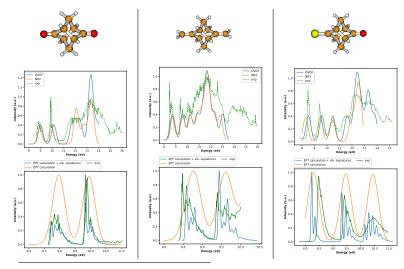
L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226

Lorenzo Paoloni

Electron propagato methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

## Calculated and experimental spectra (1)



Experimental data reported in:

- R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 4895;
- R. Gleiter, B. Gaa, C. Sigwart et al., Eur. J. Chem., 1998, 171-176.

Computational results published in:

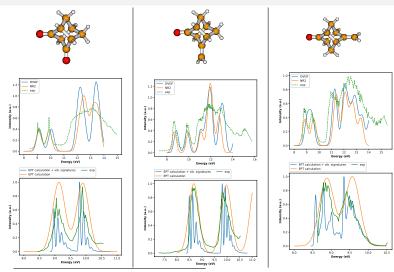
L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226.

#### Lorenzo Paoloni

Electron propagate methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

### Calculated and experimental spectra (2)



Experimental data reported in:

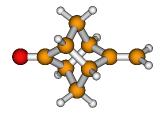
- R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 4895;
- R. Gleiter, B. Gaa, C. Sigwart et al., Eur. J. Chem., 1998, 171-176.
- Computational results published in:
- L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226.

#### Lorenzo Paoloni

Electron propagato methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

#### The case of stella-6-en-2-one



Experimental data reported in:

R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 - 4895.

Computational results published in:

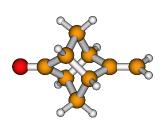
L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226.

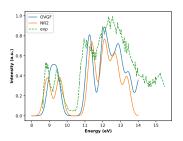
Lorenzo Paoloni

Electron propagate methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

#### The case of stella-6-en-2-one





Comparison between calculated and experimental spectra

Experimental data reported in:

R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 - 4895.

Computational results published in:

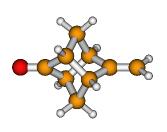
L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226,

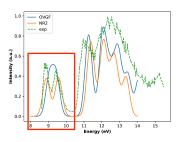
Lorenzo Paoloni

Electron propagate methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

#### The case of stella-6-en-2-one





## Comparison between calculated and experimental spectra

► Calculated VIEs at NR2 level are closer to experimental results in the outer valence region

Experimental data reported in:

R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 - 4895.

Computational results published in:

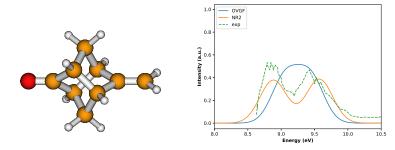
L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226, 10/11

Lorenzo Paoloni

Electron propagate methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

#### The case of stella-6-en-2-one



## Comparison between calculated and experimental spectra

► Calculated VIEs at NR2 level are closer to experimental results in the outer valence region

Experimental data reported in:

R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 - 4895.

Computational results published in:

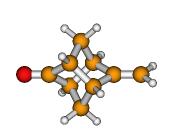
L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226.

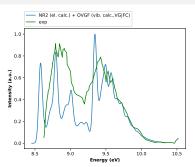
Lorenzo Paoloni

Electron propagate methods

Computational simulation of vibrationally resolved ultraviolet photoelectron spectra

#### The case of stella-6-en-2-one





## Comparison between calculated and experimental spectra

- ► Calculated VIEs at NR2 level are closer to experimental results in the outer valence region
- ▶ Disagreement between experimental and calculated bandshapes. Why?

Experimental data reported in:

R. Gleiter, H. Lange, O. Borzyk, J. Am. Chem. Soc., 1996, 118, 4889 - 4895.

Computational results published in:

L. Paoloni, M. Fusé, A. Baiardi, V. Barone, J. Chem. Theory Comput., 2020, 16, 5218-5226.

#### Lorenzo Paoloni

Electron propagat methods

Computationa simulation of vibrationally resolved ultraviolet photoelectron spectra

### Acknowledgements

- ▶ Marco Fusé (University of Brescia, Italy)
- ▶ Alberto Baiardi (ETH Zürich, Switzerland)
- ▶ Vincenzo Barone (Scuola Normale Superiore, Pisa, Italy)
- ▶ Paolo Umari (University of Padova, Italy)
- ► Andrea Sartorel (University of Padova, Italy)

...and thanks for your kind attention