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Abstract 

 

          Extended systems like interacting spin chains, dendrimers and excitonic transfer complexes are 

essential to further our understanding of emergent behavior in complex condensed phase systems. Quantum 

mechanics plays a very important role in investigating such systems. However, exact quantum dynamics 

calculations of such condensed phase systems are extremely challenging owing to the exponential scaling 

of quantum mechanics. The work presented in this thesis utilizes the path integral methods developed in 

the Makri group to perform fully quantum mechanical simulations of such extended systems. The kinds of 

systems studied here can be broadly divided into two classes: spin chains (quantum transverse field Ising 

chain) and extended systems with Frenkel interactions (dendrimers, excitonic ring and chains). 

          For the spin systems, the path integral methods are used to obtain real time dynamics of finite-length 

Ising chains where each spin is coupled to a dissipative bath. The calculations performed emulate a quantum 

quench experiment, where the chain is initially prepared in the ferromagnetic ‘aligned’ phase and is made 

to evolve with parameters corresponding to the paramagnetic phase. The corresponding dynamics depends 

on the system and bath parameters and the temperature. Considerable edge effects are observed too.  

          Another kind of studied in this thesis is the model dendrimer. This is very different from the spin 

chains and adjacent segments in the dendrimer are known to interact through Frenkel excitations. Almost 

all examples of dendrimers used to funnel energy have a decreasing site energy towards the core to create 

an efficient energy funnel. We show here than even in the absence of an explicit energy bias, excitonic 

couplings can form a funnel to drive the excitation energy from the periphery to the core. The dynamics of 

the excitation energy in these systems is highly non-trivial and strongly affected by quantum mechanical 

effects. We show by eigenstate analysis and path integral time dynamics that for certain combinations of 

these excitonic couplings, we get more EET into the dendrimer core. Some combinations also exhibit 

frustration (analogous to spin systems) which causes considerable slowdown of the dynamics.  

          Lastly, we present our investigations for a multistate system coupled to a general bath with terms 

local in the system basis. We show here that the time derivatives of populations are given in terms of 
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imaginary components of coherences, i.e. off-diagonal elements of the reduced density matrix.  When the 

process exhibits rate dynamics, we show that these imaginary components (or flux) exhibit a “plateau” 

region i.e. a region where the slope changes very slowly. All state-to-state rates can be obtained from the 

early “plateau” values of these imaginary components. We generalize the reactive flux method and its non-

equilibrium version to multi-state processes and show that even in the completely incoherent limit of rate 

kinetics, the time evolution of populations is governed by coherences. Further, we also show that 

equilibrium population of the different species is also determined by these imaginary components, more 

precisely the short time evolution up to the plateau time. 

          We take advantage of the newly formed methods in the Makri lab to perform numerically exact 

quantum simulations of these extended systems coupled to dissipative baths to reveal the interesting 

features and the complex interplay between the different time and energy scales in the system which is 

highly non-trivial and requires a fully quantum mechanical treatment to capture fully what goes on in these 

systems. 
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Chapter 1 

 

Introduction 

 

          Extended systems are often encountered in chemistry and form the basis of studying very interesting 

processes; a few of them being magnetization of spin-chains,1 quantum quench and quantum phase 

transitions in interacting many body systems,2-3 and excitonic energy transfer in photosynthetic 

aggregates,4-5 dendrimers.6-8 Quantum mechanics plays a very important role in determining the dynamics 

and behavior of these systems. Classical methods and approximations9-12 don’t always account for the rich 

dynamical behaviors exhibited by these systems. However, the exponential scaling of quantum mechanics 

with system size renders exact simulations of such extended systems an extremely challenging task. There 

have been a lot of methods that have tried to tackle this problem of a larger system, namely density matrix 

renormalization group (DMRG)13-14 using matrix product states (MPS)15-16 and multiscale entanglement 

renormalization ansatz (MERA).17 There have also been methods to study the real time dynamics of such 

extended systems like time dependent density matrix renormalization group (TD-DMRG)18-20 and time 

dependent variational principle.21 These methods primarily deal with these systems in the isolated state. 

However, such systems are never isolated and are always associated with an environment and(or) molecular 

vibrations. So, it is very important to take these into account to correctly describe and study these systems. 

Despite efforts to incorporate the effect of vibrational modes,22 these wave function-based methods scale 

exponentially with respect to the number of modes required. When the system is associated with low 

frequency modes, the convergence becomes even more difficult.  

           To circumvent the issues with the wave function-based methods, methods have been developed that 

use the reduced density matrix or the RDM.  In these methods, we are interested in the RDM or the density 

matrix of the system after integrating out the bath modes. This effectively reduces the dimensionality of the 

problem. While with the wave function-based methods, the dimensionality grew as the number of the 

system and the bath states, now the dimensionality that affects the computational complexity is just the 
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dimension of the system of interest as the bath modes are integrated out. These methods rely on the fact 

that most classically forbidden processes (for example tunneling) occur in a very small subspace of the 

space spanned by all degrees of freedom and allow for system-solvent separation. A few of these methods 

include the Redfield theory,9-10 Forsters theory23. However, these are perturbative approaches where the 

system-bath interaction strength is used as the perturbative factor. In cases where this coupling strength is 

not small, this perturbative approach fails to produce correct results. There are also methods which approach 

the system bath coupling strength non-perturbatively but use other approximations such as  polaron 

transform perturbation theory24-25, and the non-interacting blip approximation (NIBA).26 There are exact 

methods that have been developed too, like hierarchical equations of motions (HEOM)28-30 which is a non-

perturbative approach to solving for the RDM of open quantum systems. There has been enormous amount 

of work that has been done to develop this method further and it has been solved exactly for a Drude bath29 

but this method hasn’t yet been developed for any generic bath with arbitrary number of modes.  

          There have also been methods developed on the generalized quantum master equation31-32 to solve 

for the reduced dynamics in open quantum systems. Here, the effects of the bath are accounted for by the 

memory kernel. The computational bottleneck of these methods is the calculational of this memory kernel 

as it requires knowledge of the evolution of the system with the environment. The exactness of this method 

depends on the exactness of the method used to determine this memory kernel. For example, when the 

kernel is calculated using perturbative and Markovian approximations, it leads to the well-known Redfield-

Bloch equations.10 Thus, if one could calculate the master equation kernel over the entire memory length, 

these methods can give the RDM dynamics up to longer times. However, the calculation of these kernels is 

not always trivial.  

          All these problems can be overcome using the path integral formulation of quantum mechanics33-34 

using the influence functional27,50 to account for the effect of the bath on the system. It is a useful 

formulation to begin with as it speaks the common language of paths with classical mechanics. These are 

paths local in space, but the formulations sums over every possible path which takes care of the nonlocality 

of quantum mechanics. By integrating out the bath modes, we essentially transform a non-Markovian 
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algorithm to a Markovian one. This formulation thus allows us to include an arbitrary number of vibrational 

modes at no extra cost by integrating out the modes giving rise to the influence functional. In case of a 

harmonic bath, these influence functionals have an analytical form. The oldest method to solve a system 

connected to a harmonic bath, the quasi-adiabatic propagator path integral35-66 (QuAPI) was formulated in 

the Makri group in the early 90s. We can thus include the full thermal effects of any arbitrary harmonic 

bath without any approximations. However, modifications to this method are required to deal with larger 

system size, as even though the bath modes could be added at no extra computational cost, the algorithm 

still scales exponentially when the size of the isolated subsystem (or the system of interest as mentioned 

before) increases. More recently, new methods have been developed in the Makri lab to deal with larger 

systems without an intractable increase in the scaling. The current work uses two such methods – the 

modular path integral37-38 (MPI) and the small matrix decomposition of path integral39-41 (SMatPI) to study 

two classes of extended systems: quantum Ising spin chains and dendrimeric systems6-8 with Frenkel 

interactions.  

 

 

1.1 Dynamics of the quantum Ising chain 

 

          The quantum Ising chain describes a spin chain where every spin can occupy the ‘up’ or the ‘down’ 

state and can tunnel between these two states and neighboring spins interact through a ˆ ˆ
z z  interaction. It 

is described by the Hamiltonian 

                                                              
1

1

Ising

1 1

ˆ ˆ ˆ ˆ
n n

x z zH J  

 

  
−

+

= =

= −  −                                                           (1.1) 

where   is the transverse field and J gives the spin-spin coupling strength. The two parameters are 

antagonistic as one tries to orient the spins creating ‘order’ while the transverse field causes the spins to flip 

via quantum tunneling causing ‘disorder’. Also, for positive J , the system has ferromagnetic interactions 

while for negative J , it has anti-ferromagnetic interactions. Such systems are common in magnetic 
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materials, where the spin-spin interactions, coupling of spin to phonons and molecular vibrations lead to 

dissipative interactions. A variety of crystals and metal-organic frameworks with interesting spin topologies 

have been identified, studied and synthesized42-45.  

          There has been a lot of research on this model using various methods. There are analytic methods 

involving transformation into non-interacting spinless Fermions46 (Jorden Wigner transformation) and a 

corresponding Bogoliubov technique47. There have been studies using imaginary time path integral 

methods48, density matrix renormalization group (DMRG)13. However, there are not a lot of results that 

show the real-time dynamics of such systems of any size in presence of dissipation. In this thesis, we have 

reported the exact quantum dynamics for a finite length Ising chain, where every spin is coupled to a 

dissipative bath. The main observable that has been studied here is the average position ( )z t  of the spin 

along the z direction, which is obtained from the population P


 of the “up” state, and this observable is 

examined during the tunneling dynamics that follows the non-equilibrium initial condition (0) 1P


= . This 

observable is proportional to the spin magnetization. These results help to explore the complex behavior 

emerging from the interaction of these extended systems and the dissipative medium.  

 

1.2 Excitation energy transfer in bias-free dendrimers  

 

          Dendrimers are highly branched macromolecules consisting of a core, repeat units and a periphery6-

8. Fig. 1.1 shows one such example of a dendrimer containing of three generations (which means there are 

three branching units).  
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          Fig.1.1 A three generation dendrimer with numbered segments. Segments 1-3 form the innermost core or the first 

                        generation, 4-9 forming the middle core or the second generation, and 10-21 forming the outermost core or the 

                        third generation.  

 

 

 

The core forms the innermost generation and the periphery the outermost with an arbitrary number of 

generations in between. They have been of great interest in the field of energy harvesting as they can act 

like antennae molecules which can absorb energy at the periphery and transfer it to the core with high 

efficiency. We consider dendrimers consisting of building blocks of conjugated molecules whose 

wavefunctions are delocalized over linear segments. Electronic state calculations49 have shown that the 

interactions between these building blocks (or segments) can be mapped on to a Frenkel Hamiltonian with 

nearest neighbor interactions 

                                        ( )
1

e , 1

1 1

ˆ 1 1
n n

H J  
 

      
−

+

= =

= + + + +                                     (1.2) 

where , 1J + gives the excitonic coupling parameter. A plethora of work has been done for dendrimers 

where the energy of a dendrimer generation decreases from the periphery to the core, so as to create an 

efficient ‘funnel’ for the energy to transfer. In this thesis, we explore the possibility of creating an efficient 

funnel not by an energetic bias, but by varying the different electronic couplings between the dendrimer 
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segments. We present eigenstates and real time dynamics results of such systems to understand them better. 

The competition between eigenstate structure and entropic considerations in these structures dictates the 

equilibrium distribution in these dendrimers which tend to change with the temperature, the exciton-bath 

couplings and the relative magnitude and signs of the excitonic couplings. The numerical results presented 

for these dendrimers offers a fully quantum mechanical treatment of the dynamics leading to valuable 

insights. 

 

1.3 Rates of multistate processes from the quantum coherences 

 

          In this work, we turn our attention to discrete multistate Hamiltonians, which can be used to model 

a variety of processes charge or energy transport or condensed-phase reactive processes described by 

continuous potentials discretized along a reaction coordinate. First, we show that the time derivative of the 

population at any time (for any site) is directly related to the imaginary part of the RDM elements (or the 

coherences). Then we show how under certain regimes, we can write the populations in terms of kinetic 

equations and extract rate constants for the same using the coherences. 

           When the reaction time is sufficiently long compared to the timescales of the reactants themselves, 

rate kinetics are observed. In this case, there is a considerable separation of timescales i.e. if the reactant is 

prepared in a particular configuration, there is first a very rapid relaxation to a local equilibrium before any 

product has been formed. We show in this work, that for processes where this rate theory is valid, the flux 

(or the time derivative of the population) shows a plateau time after which it goes into a very slow decay 

that characterizes the reactive processes. Thus, here we can obtain the rate constants for the reaction rates 

from the imaginary part of the RDM elements at the plateau time. The rate kinetics here can be described 

by simple kinetic equations that involve a matrix of state-to-state transition rates  The evolution of the state 

populations is then obtained from the short-time simulation results and the solution of the kinetic equations 
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with the calculated rate matrix. Thus, one needs to calculate exact quantum dynamics only up to a short 

time and get long-time dynamics. This is particularly useful for larger system and/or complex environments.  
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Chapter 2 

 

Path Integral Methods 

 

This chapter describes in brief the path integral methods developed in the Makri group that have been used 

to study the systems and processes discussed in this thesis. 

          Feynman’s path integral formulation of time-dependent quantum mechanics1-2 offers an attractive 

alternative to the Schrödinger equation when wavefunction storage is not practical. In its original form, 

however, evaluation of the path integral hinges on one’s ability to compute highly multidimensional 

integrals with respect to auxiliary variables for each degree of freedom. This integrand being highly 

oscillatory is very hard to converge using Monte-Carlo methods (dynamical sign problem). Also, the 

phenomenon of interest in many cases might be limited to a small subspace. In that case, one might want 

to treat the small dimensional subspace as the system and everything else may be relegated to a different 

level of treatment. This different level can be exact (harmonic bath) or approximate (classical treatment).  

Methods in the Makri lab have led to efficient, fully quantum mechanical propagation algorithms for 

system-bath Hamiltonians3-4 (QuAPI) and also to a rigorous and consistent quantum-classical 

methodology.5 (QCPI) 

          These methods help us to calculate the dynamics of open quantum systems i.e. systems connected to 

an external bath. The RDM of the system is calculated by integrating out the bath co-ordinates using the 

influence functional approach.8,16. This allows for inclusion of any arbitrary number of bath modes at almost 

no extra computational cost.  

           Let us consider the expression for evolution of the RDM for a system with Hamiltonian H 

                                             ( ) ( )
ˆ ˆ/ /

b
ˆ ˆTr 0iHt iHtt e e− =

 
                                                                (2.1) 
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where ( )ˆ 0 is the initial RDM and the above trace is with respect to the bath modes. From this, we can 

calculate the expectation value of any operator ο̂  for this system by  

                                                                           ( ) ( )b
ˆ ˆ ˆTrt t=      .                                                                    (2.2) 

We can obtain the path integral representation of this expression by expressing the time propagators as a 

product of multiple short time propagators and then inserting resolution of identities between each pair of 

these short time propagators. So, we have 

                                                                               ( )ˆ ˆ/ /
N

iHt iH te e−  =
  

                                                                (2.3) 

where t NΔt=  and we have broken up one time propagator into N short time propagators. Eq. 2.1 thus 

becomes 

                                             ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ/ / / / / /

b
ˆ ˆTr ..... 0 .....iH t iH t iH t iH t iH t iH tt e e e e e e−  −  −     =

 
  .                          (2.4) 

 

Inserting resolution of identities, we get 
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 
                  (2.5) 

 

Here,  0 1, ,.... Ni i i  
 gives the forward and backward paths respectively. In the next two sections, we go 

over two different approaches to simulate the exact dynamics of open systems starting from this path 

integral formulation. 
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2.1 Modular Path Integral (MPI) and Small Matrix Decomposition of MPI (SMatMPI) 

 

          The MPI6-7 algorithm is a decomposition of the real-time path integral for extended systems with a 

primarily one-dimensional topology and each unit comprises a small number of quantum (spin or 

electronic) states which are coupled to a large number of harmonic degrees of freedom. This may be the 

normal mode coordinates of molecular vibrations or may represent a generic dissipative bath. Let us 

consider the Ising Hamiltonian described in Eq. 1.1 and the short time propagator for this model as 

mentioned in the earlier section. Performing a symmetric Trotter splitting one gets 

 

                                            

1 1
1 1

1 1 1

ˆ ˆ ˆ ˆ ˆ/2 / /2
ˆ /

n n n

z z x z z
ising

iJ t i t iJ t
iH t

e e e e

− −
+ +

= = =

  
− 

   
 =
 
 
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                                       (2.6) 

 

Combining this with Eq. 2.5 we get the expression 
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     (2.7) 

 

          If we look at Eq. 2.7 closely, we find that there are two types of terms, one body terms which only 

depend on the αth monomer and linking two body terms which link the αth monomer to the α+1 th  

monomer. This can be written as the following matrix vector multiplication  

                                                              
1 1 1    ,

R A T R
+ + +=                                                         (2.8) 
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Here, R


 is the vector containing the amplitudes of all paths of monomer α summed over all the monomers 

occurring previously in the chain. 
1

T
, +

 is the linking matrix which links each path of monomer α to 

every path of monomer α+1. When every unit in the system is connected to a dissipative bath, the path 

amplitudes of every monomer are augmented by the influence functional16-17 of that given path for the 

particular monomer.  
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  (2.10) 

 

          The MPI decomposition leads to linear scaling with respect to the number of units in the system of 

interest by connecting the discretized paths of each unit to those of the adjacent unit prior to discarding 

them. Any number of quadratic degrees of freedom may be treated exactly in the MPI algorithm through 

the influence functional8 approach, which leads to analytical expressions for the relevant coefficients. The 

computational effort to execute this algorithm is further reduced by additional factorization9 leading to 

highly efficient evaluation. In the MPI algorithm, once the αth unit is reached, the path amplitudes contain 

all the dynamical effects from units 1,2,…,α.  Thus, the sequential treatment of units in the MPI algorithm 

can also be viewed as an efficient, fully quantum mechanical construction of the influence functional from 

all preceding units. Thus, the influence functional (with all spin-spin and spin-bath interactions summed 

exactly) from these units up to α augments the path amplitudes of unit α+1 upon linking.  

          Also, motivated by the small decomposition of the path integral for system-bath Hamiltonians10, a 

small matrix decomposition of the modular path integral (SMatMPI) has also been introduced11 based on 

the small matrix decomposition of path amplitudes. This algorithm allows for sequential linking of units 
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when path storage is not practical (due to larger system size) and also leads to an iterative algorithm in time, 

thus allowing us to simulate situations requiring long memory and extending calculations to longer time. 

 

 

2.2 Small Matrix Path Integral (SMatPI) Decomposition 

 

          The small matrix decomposition13-15 (SMatPI) of the quasi-adiabatic propagator path integral3-4 

(QuAPI) is an exact decomposition of the fully quantum mechanical real-time path integral expression. It 

fully accounts for exciton-vibration interactions at any temperature that employs minimal sized, 2 2n n  

matrices, thus enabling the simulation of multistate systems. The QuAPI algorithm uses the decrease of the 

nonlocal influence functional coupling i.e. finite memory length to evaluate the RDM through iterative 

propagation of a tensor which spans the memory length. The SMatPI decomposition does away with the 

need for tensors, obtaining the RDM through a sum of small matrix products  

                                                        
( 0) ( , ) ( ,0)

1

, 1,
L

N N N r N r

r

N L− −

=

=  = +ρ M ρ                              (2.11) 

where L is the memory length in units of the path integral time step and 
( , )N N r−

M  are 2 2n n  matrices 

recursively obtained by the full path integral expression with a discretized influence functional. Eq. 2.11 is 

an analytically derived, numerically exact decomposition of the RDM, which requires minimal storage, 

comparable to that of the RDM of interest. The effect of the bath at a particular temperature is captured by 

the discretized influence functional16 

                                                               
1 0

( )

, , ,
0 0

N N k k

N k
k k

i i i i i
k k

F F    
 −


 

 = =

=                                                          (2.12) 

which contains nonlocal interactions that couple the path integral variables at different times. This requires 

minimal storage and the cost of the total SMatPI algorithm is that of one QuAPI propagation step, thus 

allowing to go to really long times. 
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Chapter 3 

 

Dynamics of Quantum Ising Chains with Dissipative Baths 

 

3.1 Introduction 

 

          The spin-boson model1 i.e the two-level system (TLS) interacting with a dissipative bath is the 

simplest example of quantum dissipative dynamics, where the dissipative bath leads to damping of the 

coherent oscillations in an isolated TLS. This quenching of oscillations depends on a lot of factors namely 

the temperature, the system-bath coupling strength and the characteristics of the bath. The dissipative TLS 

is relevant to a lot of chemical processes like charge transfer or spin dynamics and are ubiquitous in 

molecular systems. 

          The picture gets even more complex when we consider more than one TLS coupled to dissipative 

baths. The order-disorder transition, coherence, relaxation and entanglement properties of such systems are 

intriguing from the point of quantum information transfer. The quantum Ising (or transverse field Ising) 

chain consists of one-dimensional spins coupled only along the z-direction. A variety of crystals and metal-

organic frameworks with interesting spin topologies have been identified, synthesized, and studied and look 

promising.2-6 

          The quantum Ising model was introduced by de Gennes10 to describe hydrogen-bonding in 

ferroelectrics. Experimental realizations in ferromagnetic quasi-one-dimensional cobalt niobate in 

transverse magnetic fields11 and in systems of cold rubidium atoms confined in an optical lattice12 have 

been reported. The infinite quantum Ising chain of identical spins has been solved analytically13-14 by 

transforming the interacting spin operators to non-interacting spinless fermions using the Jordan-Wigner 

 
This chapter is based on the paper, Reshmi Dani and Nancy Makri, “Quantum quench and coherent-incoherent 

dynamics of Ising chains interacting with dissipative baths”, J. Chem. Phys. 155, 234705 (2021) 

  



19 
 

transformation and then diagonalizing the transformed Hamiltonian with the aid of the Bogoliubov 

technique.15 These and many other analytical tools have led to valuable insights and a good understanding  

 

of important aspects surrounding the intriguing physics that characterizes this system in the isolated state16, 

but are not suitable for studying the dynamics of individual spins in quantum Ising chains of finite length 

and cannot account for dissipative interactions.17-18 Numerical studies of isolated finite-length spin chains 

have been carried out19 with methods based on the density matrix renormalization group (DMRG) 

formulation.20-21 Imaginary-time path integral calculations have been employed to investigate instanton 

tunneling paths that connect the two states of aligned spins.22-23 

          The quantum Ising model is characterized by two parameters, the spin-spin coupling strength J and 

the tunneling frequency    of the individual spins, which act against each other (explained in section 3.2) 

and lead to an ordered ferromagnetic phase with two degenerate ground states and a disordered 

paramagnetic phase with a single ground state, which in the infinite chain limit leads to a phase transition 

at zero temperature.24 This behavior is of much interest from the perspective of quantum statistical physics 

and also quantum quench dynamics.25-28 The quantum Ising chain is also of interest in the design of quantum 

computers, which rely on the entanglement properties of qubits. For example, adiabatic passage through 

the quantum phase transition can generate a maximally entangled spin state.29 Dissipative effects are critical 

in that regard, as they can easily destroy the coherence and entanglement of coupled spins.  

          We investigate the dynamics of the spin magnetization in relatively short quantum Ising chains in the 

presence of dissipative harmonic baths attached to the spins. In contrast to previous studies, we simulate 

the real-time evolution of individual spins in various parameter regimes. We use our simulation results to 

characterize the behavior of the quantum Ising chain in comparison to that of the simpler, single TLS 

coupled to a bath. We emphasize on the coherent properties of the spin dynamics and the edge effects during 

a quantum quench, where the system is allowed to evolve under a paramagnetic (disordered) phase 

following preparation in the ferromagnetic (ordered) phase. To maintain the relevance of this model to 

model aggregates, each spin was coupled to its own vibrational bath. The average value of the z projection 
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of a particular spin, which is proportional to the magnetization is calculated using numerically exact, fully 

quantum mechanical path integral methods. We chose a bath model characterized by the commonly used 

Ohmic spectral density.30 

          We find that even in the absence of a dissipative bath, coupling to the spin chain leads to damping of 

population of the tagged TLS26. This is due to the spectral properties of the quantum Ising environment 

which are rather different than that of a harmonic bath. Coupling to harmonic bath leads to decoherence 

through thermal fluctuations as well as zero-point fluctuations leading to smoother dynamics. Generally, 

we observe that the observed spin transitions from a “coherent” (underdamped oscillatory) dynamics at 

weak system-bath coupling strength to “incoherent” (monotonic) decay at higher coupling. This transition 

depends on the spin-spin coupling, temperature, the location of the spin being observed in the chain and 

edge spins show considerable difference in the dynamics than the spins located in the interior of the chain. 

In contrast to the behavior of a single TLS coupled to a harmonic bath, the characteristics of the coherent-

incoherent transition in the Ising chain are considerably more complex. With sufficiently large spin-spin 

coupling, once the damping effects are strong enough to prevent the magnetization of the interior spins to 

oscillate around the equilibrium value ( ) 0z  = , the evolution slows down considerably before 

eventually decaying, while edge spins may exhibit unusual oscillatory dynamics where the population 

oscillates above or below the equilibrium line. 

           The Hilbert space of an Ising chain containing n spins consists of 2n
 states, thus there are over 

310  

states even for a rather short chain of 10n . While direct diagonalization of the Hamiltonian with such 

numbers of states is routinely feasible, the inclusion of harmonic baths to such a large system would result 

in an extremely challenging problem. Our calculations are based on the modular decomposition of the real-

time path integral (MPI),31-32 which links the TLS units sequentially, while allowing the full inclusion of 

bath degrees of freedom that couple to each spin. Throughout this work, we restrict attention to the 

paramagnetic phase. 
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3.2 Quantum Ising chain with spin-bath coupling 

 

 

          The isolated quantum Ising spin chain (with a transverse field) is described by the Hamiltonian: 

 

                                                 
1

1

Ising

1 1

ˆ ˆ ˆ ˆ
n n

x z zH J  

 

  
−

+

= =

= −  −                                                           (3.1) 

where ˆ
x  and ˆ

z  are the Pauli spin operators. This Hamiltonian describes a chain of n  identical, symmetric 

TLSs connected through nearest-neighbor interactions. Each TLS has two localized states   and  , 

which are eigenstates of ˆ
z  with eigenvalues 1 . The Hamiltonian is characterized by two parameters, the 

tunneling parameter (or the transverse field)   (which is equal to half of the tunneling splitting of an 

individual TLS) and the nearest-neighbor spin-spin coupling strength J . In the context of magnetic 

materials,   is proportional to the magnitude of the transverse magnetic field, which flips the sign of the 

spin on which it operates, while J  is the spin-spin magnetic interaction, which favors parallel 

(ferromagnetic, 0J  ) or anti-parallel (anti-ferromagnetic, 0J  ) alignment. The competition between 

the two terms governs the equilibrium structure and the dynamics. The   terms favor eigenstates where 

each spin is in a superposition of the “up” and “down” states, while the spin-spin coupling term J  tries to 

align the spins. As a result, depending on the relation of these two parameters in the Hamiltonian, the infinite 

Ising chain undergoes a quantum phase transition at J =  . Variations are expected in chains of finite 

length, where edge spins which couple to only one neighboring spin are less strongly aligned with those in 

the interior and the phase transition is broadened. 

       In this work we explore the role of model dissipative environments on the spin dynamics of the quantum 

Ising model by adding a harmonic bath to each spin. The total Ising + harmonic bath Hamiltonian is 
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        In the present work, we use identical parameters for all the monomers in order to explore the dynamics 

of the quantum Ising chain, however the MPI methodology offers considerable flexibility and different 

parameter values for different monomers can be used. The parameters of the bath are collectively defined 

by the spectral density function30  

                                                     ( ) ( )
2

1
2

j

j

j j j

c
J

m
    


= −                                                                 (3.3) 

We choose the common Ohmic spectral density model, ( ) c/1
2

J e
    −

= , which has an exponential 

cutoff frequency c  and where the overall strength of TLS-bath coupling is characterized by the 

dimensionless Kondo parameter  . However, it should be emphasized that the MPI methodology may be 

used with any type of spectral density, and discrete normal mode vibrations may also be treated exactly. 

Initially all spins of the chain are placed in the   state, such that the initial density operator is  
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where  
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is the Hamiltonian for the harmonic bath degrees of freedom that couple to spin  . The population of the 

“up” state of a particular spin is given by 

                                                     
ˆ ˆ/ /ˆ( ) Tr (0)iHN t iHN tP t e e  −  =                                                  (3.6) 

where the trace is with respect to all degrees of freedom of the bath and the two spin states for all the spins 

except α and the magnetization of the observed spin is proportional to ( ) 2 ( ) 1z t P t 


= − . Within the 

paramagnetic phase ( J   ), we refer to spin-spin coupling values as weak, intermediate or strong. 
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3.3 Methods 

 

 
      The results presented in the following sections use MPI31-32 and SMatMPI44 depending on the parameter 

regime. Both the methods are mentioned in Chapter 2. For coupling in the small to intermediate spin-spin 

coupling and spin-bath coupling, the original MPI algorithm was able to converge well. The convergence 

for large spin-spin coupling and strong dissipation, specially at low temperature turned out to be more 

challenging. Calculations in that regime were performed with the SMatMPI algorithm. Calculations for the 

isolated system (without bath) were performed using basis set methods. 

 

 

3.4 Dynamics of the quantum Ising chain 

 

 

      The  ( )z t  for a single, symmetric TLS exhibits fully coherent tunneling oscillations between ±1 

which gets damped in the presence of dissipation from a harmonic bath. In the case for more than one TLS, 

by contrast, we observe that the same observable for a tagged spin shows damping even in the absence of 

a dissipative bath as the neighboring spins act as a dissipative environment to the particular spin being 

observed. In the case of a chain with n units, one generally expects to observe recurrences which should be 

pushed to longer time as n increases. Coupling to a harmonic bath leads to quenched oscillations even in 

the case of a single TLS, thus all spins in the quantum Ising chain exhibit dissipative dynamics and reach 

thermal equilibrium regardless of the number of units.  

      We are interested in the dynamical behavior of finite length Ising chains which can describe real 

molecular systems and where edge effects play a crucial role in determining the dynamics of the tagged 

spin. Here we explore the effect of the two Ising parameters,   and J  (whose ratio determines the location 

of the quantum phase transition) on the resulting evolution, and the transition from underdamped to 

overdamped dynamics for edge and interior spins. We also investigate how coupling to a dissipative 

harmonic bath affects this transition as a function of the system-bath coupling strength and the temperature. 
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      In this work we use a chain of 10n =  spins, each of which is coupled to an Ohmic bath characterized 

by the Kondo parameter   and cutoff frequency c 5 =  . The isolated Ising chain has 1024 eigenstates. 

The lowest eigenvalues of the isolated Ising chain are shown in Fig. 3.1. for weak, intermediate and strong 

spin-spin coupling (within the paramagnetic parameter space). For small values of J, the system has a 

ground state which is well separated from the cluster of singly excited states and a cluster of doubly excited 

states can also be identified. These clusters merge and the picture gets complicated as we go on increasing 

J until we reach phase transition at J =  . (Things get clear again as we approach the ferromagnetic 

phase, but we deal with only the paramagnetic phase in this work.) 

 

 

                                       
 
              

Fig. 3.1.  Lowest 120-160 eigenvalues of the quantum Ising chain for 10n =  within the paramagnetic phase, in   

                units of  .  Left: 0.2J =  . Middle: 0.5J =    0.8J =  . 

 

 

 

 

 

We simulate a quantum quench of a 10TLS Ising chain prepared initially in the ferromagnetic phase (

J   ) to a paramagnetic phase ( J   ) and thus characterize 0.2J =  , 0.5J =  , 0.8J =   

as weak, intermediate and strong spin-spin coupling, respectively. 
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A. Weak spin-spin coupling 

 
 
          With J    the spins interact only weakly. The behavior of the magentisation of a tagged spin 

in this case resembles that of a single spin attached to a dissipative bath at zero temperature, however, 

in the case of the Ising chain, we observe significant edge effects. Fig. 3.2. shows the time evolution of 

magnetization for the first five spins of an isolated 10 spin quantum Ising chain with 0.2J =   along 

with the magnetization of a single TLS coupled to a dissipative bath at zero temperature. All the spins 

display underdamped oscillatory dynamics over the time interval shown. The oscillation of the edge 

spin has a slightly larger amplitude than the interior spins as the edge spin only interacts with one 

neighboring monomer while the interior spins does with two. It is interesting to note that the amplitude 

doesn’t vary monotonically with the location of a spin in the chain; the oscillation of the second spin is 

more damped than the third and the more interior spins. 

          Further, the dynamics of the edge spin is considerably more complex. While the first two 

oscillations are synchronized with those of the other spins, a jitter develops around the third peak, after 

which the edge spin oscillates out of phase. The second spin exhibits a somewhat similar but weaker 

effect and its oscillations remain almost synchronized with the edge spin. The interior spins display 

smoother dynamics which remain synchronized with each other and resemble a single underdamped 

oscillator with nearly identical populations. In this regime the effective damping on a spin induced by 

the other spins is reminiscent of that from a harmonic bath, which has been found to synchronize the 

oscillations of different bath degrees of freedom.46 

                   Also shown in Fig. 3.2. is the magnetization dynamics of a TLS coupled to the a harmonic 

bath with 0.1 =  at zero temperature. This value of spin-bath coupling strength was chosen to produce 

dynamics similar to that of interior spins in the isolated Ising chain. It is seen that the damping effect 

of the spin environment on interior spins is overall similar to that of a harmonic dissipative bath with 

these parameters. However, the harmonic bath is more effective at decreasing the oscillation amplitude 

at short times. 
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             Fig. 3.2.  Time evolution of magnetization of the first five spins of a 10 spin Ising chain with 0.2J =   (solid  

              lines). Black dots show the same for one spin coupled to a harmonic bath with 0.1 = , c 5 =   ,  
              at zero temperature. 

           

 

 

 

 

         In Fig. 3.3. we show the magnetization for the Ising chain in the presence of dissipative harmonic 

baths attached to each spin with moderate strength, 0.3 = , at low ( 5 = ), intermediate ( 1 = ) 

and high ( 0.1 = ) temperatures. For comparison, the magnetization of the isolated chain is shown in 

this figure as well, on the same scale. The dissipative bath has a very pronounced effect on the coherence 

and at low and intermediate temperatures, all 
z

  oscillate below zero only once, and evolve to the 

equilibrium value after a very minor recurrence. The dissipative bath synchronizes the dynamics of all the 

spins (except the edge spin which shows a somewhat higher magnitude). The bath also slows down the 

oscillation of all spins; this effect is more prominent in the interior spins. At high temperature, all the spins 

exhibit indistinguishable dynamics. 
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             Fig. 3. 3.  Magnetization in quantum Ising chains with 0.2J =   where each spin is coupled to a harmonic bath. The  

                              top left panel shows results in the absence of spin-bath coupling. The other three panels show results for a 

                              moderate spin-bath coupling value, 0.3 = . Top right: low temperature, 5 = . Bottom left: intermediate 

                              temperature, 1 = . Bottom right: high temperature, 0.1 = . Also shown are results for a single spin 

                              coupled to the same dissipative harmonic bath 
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          For this case of very small spin-spin coupling, the moderate spin-bath interaction dominates the 

behavior of this system. It can be seen in Fig. 3.3. that the dynamics of a single spin coupled to a harmonic 

bath at the same temperature is not drastically different than the dynamics of a spin within the Ising chain, 

which has the spin-spin interactions along with the dissipative bath. However, the oscillations in presence 

of the harmonic bath, the oscillations are strongly damped compared to that of the isolated spin chain. 

 

 

B. Moderate and strong spin-spin coupling 

 

 

          As the strength of the spin-spin coupling increases, the dynamics undergoes several notable changes. 

In the absence of dissipative baths, the major recurrence time of the 10n =  chain shifts to earlier times, and 

with sufficiently large  J  moves within the time window displayed in the figures. Fig. 3.4. Shows the 

magnetization of an isolated n=10 Ising chain with 0.5J =   and 0.8J =  . The coherence-quenching 

effects of the Ising chain on the short-time dynamics are now much more pronounced. The first oscillation 

minimum of the edge spin is deeper than that of interior spins, reflecting again the weaker damping effects 

on the spin coupled to the Ising chain only on one side. For the larger spin-spin coupling value 0.8J = 

, the dynamics for the second spin is different than the interior spins even during the first half oscillation. 

The short time amplitude is now seen to be monotonically dependent on the spin-position in the chain unlike 

that of the weak spin-spin coupling case. The magnetization minima of the second and third spins are also 

shifted to later times, indicating lowered characteristic frequencies. Interestingly, more complex evolution 

is observed at longer times, which is characterized by multiple frequencies that generate unique beating 

patterns.  

                    Again, coupling to dissipative harmonic baths simplifies the dynamics and causes a gradual 

damping of the oscillatory behavior though the effect of a weakly or moderately dissipative bath does not 

dominate the dynamics observed with larger J  values, and strong dissipation is needed to wipe out the 

patterns created by the strongly interacting spins.   
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                 Fig. 3. 4. Magnetization of various spins in an isolated quantum Ising chain with moderately strong spin interactions.     

           

 

 

Fig. 3.5. shows the magnetization for all spins in a chain with the moderate coupling value 0.5J =  , 

which is coupled to a bath with 0.3 =  at three temperatures. Overall, the oscillatory behavior is more 

effectively suppressed here compared to the 0.2J =   case, and interior spins exhibit monotonic dynamics 

at all temperatures.  The harmonic bath does not succeed at synchronizing the dynamics, and the first four 

spins are seen to oscillate with different frequencies and amplitudes.  At the lowest temperature, the 

dissipative bath leads to moderately damped oscillatory dynamics for the edge spin, and a very shallow 

oscillation is observed in the magnetization of the second spin as well, while all interior spins display 

monotonic dynamics. Only the edge spin exhibits a slightly oscillatory behavior at the intermediate 

temperature, while incoherent decay is observed for all spins at the highest temperature. 

                    Moving on to stronger spin-spin coupling, we see more complex patterns emerging in the 

dynamics. Fig. 3.6. shows the magnetization for an Ising chain with 0.8J =   coupled to baths 

characterized by 0.1 = , 0.3 and 0.5, at an intermediate temperature 1 = . 
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             Fig. 3. 5. Magnetization of various spins in quantum Ising chains with 0.5J =   where each spin is coupled to a  

                              harmonic bath. The top left panel shows results for in the absence of spin-bath coupling. The other three panels 

                              show results for a moderate spin-bath coupling value, 0.3 = . Top right: low temperature, 5 = . Bottom 

                              left: intermediate temperature, 1 = . Bottom right: high temperature, 0.1 = .   

 

 

The weakly dissipative bath leads to underdamped or overdamped dynamics depending on the 

position of the tagged spin in the chain, however the strongly dissipative bath alters the spin dynamics 

early on, almost stopping the population evolution for some time although the decay resumes later. 
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This behavior is more pronounced in interior spins and is amplified with increasing dissipative 

strength. In this regime, the population curves can often resemble a rotated sigmoidal function and 

can also exhibit oscillations where the magnetization oscillates about a value greater than zero. 

     

           

 Fig 3. 6.  Magnetization of various spins in quantum Ising chains with 0.8J =   where each spin is connected to a harmonic  

                 bath. The top left panel shows results for in the absence of spin-bath coupling.  The other three panels show results at  

                 intermediate temperature 1 = . Top right: system-bath coupling parameter 0.1 = . Bottom left: 0.3 = . Bottom  

                  right: 0.5 = . 
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3.5 Transition from coherent to incoherent dynamics 

 

 
          We now turn our attention to the nature of dynamics depending on the spin-spin strength, spin-bath 

interaction, the temperature and the position of the spin in the chain. For small values of  J , the 

magnetization dynamics of the edge spin is oscillatory with small ξ  at low temperatures and eventually 

transitions to a monotonic decay as ξ  and/or the temperature increases. However as J increases, the range 

of ξ  values over which ordinary underdamped or monotonic oscillatory behavior is observed shrinks. With 

strong spin-spin and intermediate spin-bath coupling, the magnetization of the edge spin oscillates above 

or below the 0z =  value while decaying, giving rise to biased oscillatory dynamics at short times that 

resemble sigmoidal curves. This pattern is observed over a wider range of ξ values at low temperatures with 

stronger spin-spin coupling. At high spin-spin coupling and spin-bath coupling, the eventual decay of the 

magnetization slows down for all the spins. Here, we present magnetization dynamics in the parameter 

space where we can observe these interesting effects and we can eventually observe the dynamics go from 

“coherent” (common underdamped oscillatory) to “incoherent” (monotonically decreasing) which in some 

cases involves an intermediate “biased oscillatory” regime. Fig. 3.7. shows the magnetization of the edge 

spins near the boundaries of this coherent-incoherent transition with moderate and large spin-spin coupling 

at low, intermediate and high temperature. The biased oscillatory behavior which is mostly above but also 

below the equilibrium magnetization values (zero) is seen distinctly at low and intermediate temperatures. 

The regime of the overdamped oscillatory behavior decreases as temperature increases and at high 

temperatures, we see a direct transition from coherent to incoherent behavior. The sigmoidal curves and the 

very slow decay also disappear at high temperatures giving rise to simpler dynamics. 

           All of these behaviors are summarized in Fig. 3.8., which shows the three regimes on the J, ξ  plane 

for edge and interior spins at low, intermediate and high temperatures. It should be noted that these hand 

drawn plots are primarily suggestive, and the boundaries are not sharp as the crossover from coherent to 

incoherent is a continuous one and the classification is subjective to some extent. The biased oscillatory 
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behavior is seen to occupy a large area of the plots for edge monomer at low temperatures, but this region 

becomes narrower as T is increased and eventually disappears. The interior spins, which are located far 

enough from the edges directly transition from coherent to incoherent behavior. 

          For 0J =  the Ising chain reduces to uncoupled spins, whose coherent-incoherent boundary at zero 

temperature is known1 to be 1
2

 = . The coherent-incoherent boundary seen in Fig. 3.8. is 0.42  at 

0.2J =  , which extrapolates to about 0.5 in the 0J =  limit, in agreement with the expected value.  
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             Fig. 3. 7. Edge spin population for moderate and strong spin-spin coupling at low, intermediate and high temperatures.  

                              Cyan: coherent regime. Purple: overdamped oscillatory regime. Red: incoherent regime. 
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             Fig. 3. 8. Coherent-incoherent diagrams for edge and interior spins at three temperatures. Left: Edge spins. Right: Interior  

                             spins. Cyan: coherent regime. Yellow: overdamped oscillatory regime. Red: incoherent regime. 
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3.6 Conclusions 

 

In this work we have used fully quantum mechanical path integral methods to investigate the 

magnetization dynamics of individual spins in quantum Ising chains where each spin is coupled to a 

harmonic bath. This extends the well-known spin-boson tunneling dissipative dynamics to multiple 

spins in a one-dimensional chain. The spins were initially prepared in the aligned ferromagnetic 

phase and were evolved under a Hamiltonian characterizing a paramagnetic phase. The 

magnetization calculated thus describes the dynamics of a quantum quench experiment. We focused 

on the real time dynamics and the transition of dynamics from coherent to incoherent at different 

temperatures, spin-spin coupling, spin-bath coupling strength with particular emphasis on the 

variation of these properties with spin chains. 

          In the absence of a dissipative bath, the spin environment show damping effects on the 

observed spins and these effects are characteristically different from that of a dissipative bath. The 

spin state populations also don’t die out and major recurrences occur at longer times. These times 

increase with the increase in the system size. 

          We also want to emphasize on the fact that the Ising chain bath differs from a bath of non-

interacting TLS, each coupled to the observed spin. If the coupling parameters are scaled 

appropriately such that observables remain well-behaved in the thermodynamic limit,47 such a spin 

bath displays a Gaussian response48. This can be mapped on to a harmonic bath with a definite 

spectral density.49-51 However, the Ising spin bath doesn’t affect the dynamics of the tagged spin in a 

way that might seem compatible to that of a harmonic bath. 

          Another interesting feature of the Ising chain is the dependence of the dynamics on the location 

of the tagged spin in the chain. Interior spins have two interacting spins on both sides, thus damping 

effects are more prominent for the interior spins. The dynamics of the edge spin which has only one 
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neighboring spin remains oscillatory over a wider range of temperatures and spin-bath coupling 

compared to the interior spins. Spins near the edge exhibit behavior which seem intermediate. 

However, in the case of an isolated spin chain, a nonmonotonic variation of amplitude with spin 

location is observed. 

          Coupling of the spins to dissipative harmonic baths leads to irreversible dynamics where the 

magnetization eventually approaches zero. In contrast, in the isolated spin chains, the magnetization 

of all spins saturates at 10n  over the range of parameters examined, such that the behaviors of the 

central spins presented in the previous two sections are representative of interior spin dynamics in 

long Ising chains. 

          Just as in the case of the spin-boson problem, the spin magnetization in Ising chains exhibits 

coherent (underdamped oscillatory) and incoherent (monotonically decaying) regimes, which depend 

on the system-bath coupling strength and the temperature. Because of the additional damping effects 

from the spin environment, the coherent regime spans a smaller portion of parameter space in 

comparison to the spin-boson case. Edge spins exhibit more complex behaviors than spins located in 

the interior of the chain. 

          With weak spin-spin coupling, and also for any value of J at high temperatures, edge-spin 

magnetization curves have underdamped oscillatory shapes or exhibit monotonic decay. However, 

with intermediate-to-strong spin-spin coupling, a third behavior is identified at intermediate and low 

temperatures, where the magnetization undergoes biased oscillatory evolution above or below the 

equilibrium value of zero. We have presented diagrams that illustrate these behaviors in the J  vs.   

plane at low, intermediate and high temperatures. We emphasize that the coherent-incoherent 

crossover is quite distinct from the ordered-disordered phase transition, which has been the subject 

of many earlier studies. The numerical results presented in this work offer a glimpse of the rich 

behaviors that characterize the dynamics of quantum Ising chains. 
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Chapter 4 
 

Excitation Energy Transfer in Bias-Free Dendrimers 
 

4.1 Introduction 

 

          The search for renewable energy sources has resulted in a plethora of experimental and theoretical 

activity, aiming at designing molecular structures which can efficiently harvest and store solar energy. A 

major part of this effort focuses towards light harvesting apparatus found in photosynthetic plant and 

bacteria, which are known to transfer the absorbed light with high efficiency.1-2 Ever since their discovery 

and characterization, light harvesting complexes have served as a paradigm for understanding the complex 

interplay between electronic states and vibrational motion which is the reason behind this observed energy 

transfer efficiency.3-7 Understanding these systems with their intricate EET mechanisms can help in 

designing molecular structures for artificial light harvesting with diverse shapes and topologies. Dendrimers 

are one such class of molecules which offer a lot of promise as light harvesting systems. 

          Dendrimers are highly defined branched structures consisting of a core, repeat units and peripheral 

groups.8-11 Their large volume compared to their molecular weight allows for encapsulation of guest 

molecules with specific functionality in their void, making them ideal candidates for drug delivery. Control 

of various important properties like density, shape, solubility, chirality and spectral characteristics can be 

obtained by a judicious choice of the building blocks and the peripheral functional groups that comprise the 

dendrimer. Apart from this, dendrimers are of interest as they can serve as an artificial energy antenna, their 

funnel-like structure aiding in funneling energy from the periphery to the core. 

          Theoretical investigations and simulations of these systems offer invaluable insights by providing 

useful structure-function relations and can aid experiments on light harvesting. The study of synthetic and 

natural light harvesting systems and excitation energy transfer has been the topic of study of several 

 
This chapter is based on the paper, Reshmi Dani and Nancy Makri, “Excitation energy transfer in bias-free dendrimers: 

Eigenstate Structure, thermodynamics and quantum evolution”, J. Phys. Chem. C 126, 25, 10309 (2022) 

  



43 
 

theoretical studies.12-15 Most of these studies focus on the model where each chromophore occupies a lattice 

site with nearest neighbor couplings between the sites.16-19 But when the building blocks comprise of 

conjugated molecules, whose wavefunctions are delocalized over linear segments, a better model results by 

considering the nearest neighboring interactions between segments.20 Electronic structure calculations have 

shown20 that the interactions between segments can be mapped on the Frenkel exciton Hamiltonian and 

obtained parameters for the couplings between poly-phenylacetylene units21-22 that comprise the nanostar.8 

There have been studies on the dynamical properties of dendrimer structures which include classical kinetic 

models,23-24 quantum mechanical evolution using electronic Hamiltonian diagonalization or density matrix 

renormalization group25 or tree tensor networks26 and surface hopping approximation.27-30 The multilayer 

multiconfiguration time-dependent Hartree method31-32 and the time-dependent density matrix 

renormalization group approach33 have enabled fully quantum mechanical studies of molecular aggregates 

comprising several chromophores with a few vibrational modes in each monomer at zero (and in some 

cases also at a low) temperature.12,14,34-36 However, the complex interplay of the many energy and time 

scales found in these large molecular structures gives rise to a wide variety of behaviors, which cannot be 

predicted without accurate, fully quantum mechanical calculations. The vast size of thermally accessible 

electronic-vibrational Hilbert space prohibits the use of conventional wavefunction-based approaches when 

many low-frequency modes are present. Feynman’s path integral formulation37-39 offers unique capabilities 

for treating large numbers of vibrational degrees of freedom at any temperature. Real time path integral 

methods developed in the Makri group have been recently used to study EET through all-mode exciton-

vibration calculations in the LH2 complex of purple bacteria,46-47 in J aggregates of perylene bisimide48-50 

(PBI), in cofacial porphyrin dimers.51  the striking finding of such all-state, all-mode path integral studies 

(where the exciton-vibration parameters were treated with their specific molecular values without 

simplification) is the complexity of the ensuing dynamics and the diversity of observed behaviors.15  

          In this work, we use quantum mechanical methods to investigate the eigenstate structure, 

thermodynamics and EET dynamics in model dendrimers composed of segments which interact via nearest 

neighbor Frenkel exciton interactions. The Frenkel model57 has offered an excellent description of 
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dendrimers consisting of conjugated segments.20 Most dendrimer work has focused on building up the 

structure in such a way that the segments decrease in energy as one approaches the center in order to create 

an effective energy funnel and accumulating the absorbed energy at the core. This energy funnel overcomes 

the entropic factor that favors accumulation of the energy on the periphery where there are more segments. 

In this work, we investigate structures which can show significant energy transfer towards the core even in 

the absence of an energetic bias. The entropic factor might totally rule this out, but the underlying argument 

is based on classical thermodynamics which doesn’t consider the quantum mechanical nature of the 

dendrimer exciton states. We show that even in the absence of an energetic bias, the population distribution 

in the different generations of a dendrimer can be manipulated by controlling the electronic coupling 

parameters between the segments. This can be achieved by judicious incorporation of ligands at appropriate 

locations. One of the benefits of such a bias-free funnel architecture is the possibility of quantum coherence 

and interference which can alter EET dynamics and possibly even lead to faster dynamics. 

          We vary the strength and also consider different signs of the two types of couplings we see in these 

dendrimeric structures: intrageneration and intergeneration. We find that particular combinations of these 

parameters in the 3-fold topology of the typical dendrimer gives rise to unusual eigenstate structures 

dictated by frustrated effects like we encounter in spin systems. These characteristics are accompanied by 

a considerable slowing down of the EET dynamics.  

 

 

4.2 Dendrimer Hamiltonian 

 

          Our work focuses on dendrimers with co-ordination number of 3 which gives rise to a three-branched 

structure. If a dendrimer has G generations, each generation possesses 13 2G−  segments with the total 

number of segments being ( )3 2 1Gn = − . Fig. 4. 1. shows two such types of dendrimers: one with two 

generations ( 2G = , 9n = )  and one with three generations ( 3G = , 21n = ).  

 



45 
 

 

                                         

 

             Fig 4.1. Two- and three-generation dendrimers ( 2G = , 9n =  and 3G = , 21n = ). Our numbering of the segments is     

                              shown. Intra-generation couplings are shown in red, while inter-generation couplings are shown in green. 

 

 

 

          Optical excitations in these dendrimers comprising of conjugated segments are localized and involve 

no charge transfer between segments21 and the electronic Hamiltonian has the following Frenkel form:57 

                                        ( )e

1 1

ˆ
n n n

H J 
   

      
= = 

= + +                                       (4.1) 

where   is the state with segment   excited, while all other segments are in the ground state, and J  

are the exciton coupling parameters. Following earlier work, we assume that only connected (nearest 

neighbor) segments are coupled in Eq. 4.1. As mentioned earlier, in this work we explore the energy transfer 

in dendrimers in the absence of an energy bias and set 0 = . There are two types of segment-segment 

interactions as mentioned before: the intrageneration coupling intraJ  between segments belonging to the 

same generation and the intergeneration coupling interJ  between segments belonging to different 

generations. Earlier work22 has found that intra- and inter-generation couplings can change significantly 

with small variations of segment length and composition, and that these parameters may have opposite 

signs within the same dendrimer. 

          Intramolecular vibrations play a very important role in the dynamics of EET. Within the normal 

mode approximation, the ground and excited electronic states of each segment couple to intramolecular 

vibrations through the standard Hamiltonian58 
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 where 
es  is a parameter with units of length, ˆ

iq   and ˆ
ip   are the positions and momenta of the normal 

modes of segment  , and 
i , 

ic   are the respective vibrational frequencies and exciton-vibration coupling 

strengths. The total Hamiltonian is given by 

 

                                                               
e g

e

1

ˆ ˆˆ ˆ
n n

H H h h 
  

 
= 

 
= + + 

 
  .                                        (4.3) 

 The effects of molecular vibrations on exciton dynamics are collectively captured through the spectral 

density function ( )J  . While the path integral methodology can fully account for vibrational modes 

characterized by their individual frequencies and coupling coefficients,15 in the present model study we 

employ an Ohmic bath (discussed in Sec. 3.2.). 

 

 

 

4.3 Methods  

 

 

          The system eigenstates and eigenvalue calculations were performed analytically using matrix 

diagonalization. The real time dynamics of these systems were performed using the small matrix 

decomposition43-45 (SMatPI) of the quasi-adiabatic propagator path integral (QuAPI),59-60 which is 

discussed in Chapter 2.          

 

 

 

4.4 The building block 

 

 

          We begin by examining a three-segment structure (the central structure consisting of 1, 2, and 3 in 

Fig. 4.1). The electronic Hamiltonian for such a structure is given by: 
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                                ( ) ( ) ( )e 12 13 23
ˆ 1 2 2 1 1 3 3 1 2 3 3 2H J J J= + + + + +                        (4.4) 

 

          In case of the bigger dendrimers in Fig. 4.1, all these three couplings are equal in value (
intraJ ). We 

can also consider an inter-generational block where 
12 13J J= and the third coupling 

23J may have a different 

value. We thus set 
12 13J J J=   and examine the eigenstates and the eigenvalues in several characteristic 

cases, illustrated in Fig. 4.2. 

 

 

 

 

                                           

 
     

 

 

 

 

 

 

 

 

 

 

 

 

         Fig. 4.2. Left: schematic illustration of three-segment block. Right: visualization of segment amplitudes in the ground state  

                           for four combinations of the coupling values. The component of the wavefunction on each is visualized by placing  

                           a Gaussian of proportional height on the center of the segment. Green and orange indicate positive and negative  

                           amplitudes. (a) 12 13 230, 0J J J=  = , (b) 12 13 23 120,J J J J=  = − , (c) 12 13 23 0J J J= =  , (d) 12 13 23 0J J J= =   

 

 

 

(i)  12 13J J J= = , 23 0J = . The eigenvalues and corresponding eigenstates are 
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0, 2 3
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E

E J J

= −  = − + +

=  = −

= +  = + + +

                                                (4.5) 
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The eigenstate density does not depend on the sign of J, but the wavefunctions do and the highest and the 

lowest eigenstates swap signs upon changing this sign. For 0J  , the ground state is nodeless while for 

0J  , the amplitudes on the different generations are of different signs (Fig. 4.2.a). 

 

ii) 
12 13J J J= = , 23J J= − . The eigenvalues and eigenstates are  

 

                                          

1 1 1
1 1 3 3 3

1 1
2 2 2 2

2 1 1
3 3 6 6 6

2 , sgn( ) 1 2 3

, 2 3

, sgn( ) 1 2 3

E J J

E J

E J J

= −  = − + +

=  = −

=  = + +

                                             (4.6) 

 

The 0J   case applies to the smallest building block with one segment in one generation and two in the 

next generation. The ground state in this case has opposite amplitudes on the two generations, is doubly 

degenerate and the negative intra-generation coupling stabilizes the system. (Fig. 4.2.b). And for 0J  , we 

get a nodeless ground state (Fig. 4.2.c).               

 

(iii) 12 13 23 0J J J J= = =  . In this case (Fig. 2d) we find 

 

                                            

2 1 1
1 1 6 6 6

1 1
2 2 2 2

1 1 1
3 3 3 3 3

, 1 2 3

, 2 3

2 , 1 2 3

E J

E J

E J

= −  = − + +

= −  = −

=  = + +

                                                     (4.7) 

 

The ground state is now doubly degenerate and is destabilized. The positive intergeneration coupling causes 

the segments 2 and 3 to have opposite signs which is not favorable for the positive intrageneration coupling. 

This causes this trimer to exhibit frustration – an effect analogous from interacting spin systems. 

          When all three couplings have the same magnitude equal to J , the evolution of electronic 

populations following excitation of one segment is given by  

 

                                                       ( )
1

( ) 5 4cos 3 /
9

P t J t =  +                                                            (4.8)                                             

 

regardless of the relative signs.  
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          To summarize this section, eigenstate densities are insensitive to the sign of the intergeneration 

couplings in a trimer, but the spectrum and the ground state structure change drastically when the third 

coupling, the intrageneration coupling reverses sign. A negative intrageneration stabilizes the structure, 

while a positive value destabilizes the system and gives rise to a pair of degenerate ground states. We now 

turn to larger dendrimers and use numerical diagonalization to study the eigenstates of the electronic 

Hamiltonian. 

 

 

4.5 Eigenvectors and equilibrium distributions 

 

 
          In this section we investigate the eigenstate structure and equilibrium populations of dendrimer of 

varying size. We set inter 0J J=  , but consider different magnitudes and signs of intraJ . We examine the 

ground state(s) and some select excited states for a 21 segment three generation dendrimer. In addition, we 

also show the population distribution of the electronic Hamiltonian in each generation of dendrimers 

comprising of two to four generations at zero temperature and also at B 0.2 ,k T J=  J,  and 10J . The first 

of the finite temperatures is very low for typical values of the inter-generation coupling (50-500 1cm− ). Yet, 

we find that with particular choices of intraJ , the populations are drastically different from those obtained at 

zero temperature. The electronic Hamiltonian of the dendrimer is in the high temperature regime at 

B 10k T J= for all the coupling values considered in this work. We find that at this temperature, the 

population distribution is statistical, and all segments have equal populations, thus each generation has 

twice the population as the previous one (as every segment branches to two in the next generation). Classical 

hopping approximation23-24 have produced such high-temperature results. As will be seen in the figures 

presented in this section, the quantized electronic Hamiltonian gives rise to entirely different population 

distributions at low and intermediate temperature. It is thus natural to expect quantum effects will be very 

prominent in the population distribution and also in the EET dynamics. 
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             Fig. 4.3. Visualization of segment amplitudes and population distribution for 
intra

0J = . Left: eigenstates amplitudes on   

                            the various segments of a three-generation dendrimer. All eigenstates are three-fold degenerate. The larger image  

                            shows the ground state 
1

 , while the smaller four images show eigenstates 
7 12 16
, , ,   and 

19
 . Orange/green  

                            and blue/orange correspond to positive and negative amplitudes. Right: total population in each generation for a  

                            two (top), three (middle) and four generation (bottom) dendrimer at various temperatures. Dark blue: T=0. Cyan:  

           
B

0.2k T J= . Green: 
B

k T J= . Yellow: 
B

10k T J= .  

 

 

(i)  All intra 0J = . Since none of the core segments have any coupling between them, this is the case of three 

unconnected dendrimer branches. The eigenstates in this case are all three-fold degenerate. With proper 

linear combinations, the wavefunctions are delocalized over the entire dendrimer. The ground state 
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wavefunctions have circular nodes between generations, while the highest lying excited states are nodeless 

(Fig. 4.3.). 

 

 

 

               

              Fig. 4.4. Visualization of segment amplitudes and population distribution for (a)
intra

J J= −  and (b) 
intra

3J J= − . Left:  

                             eigenstate amplitudes on the various segments for a three-generation dendrimer. The larger images show the  

                             ground state 
1

 , while the smaller images show the eigenstates (a) 
7 11 18 20
, , ,     and (b)

4 9 16 20
, , ,    .  

                             Orange/green and blue/green indicate positive and negative amplitudes. Right: total population in each generation 

                             for a two (top), three (middle) and four generation (bottom) dendrimer at various temperatures. Dark blue: T=0. 

                             Cyan:
B

0.2k T J= . Green: 
B

k T J= . Yellow: 
B

10k T J= . 

 

 

 

(ii) intra 0J  . In this case the eigenstates maintain the spreading and alternating sign features observed with 

intra 0J = , but the threefold degeneracy is lifted. Fig.4.4. shows the eigenfunctions and equilibrium 

population distributions for intraJ J= −  and 3J− . As expected from the discussion in the previous section, 

increasing the intra-generation coupling stabilizes the dendrimer, lowering the ground state energy and 

increasing the population in the core segments. With these values of intraJ , the two-generation dendrimer 



52 
 

has most of its population in the inner core generation at zero temperature. The populations change non-

monotonically with generation number as the temperature is increased, eventually approaching the 

statistical limit. In large dendrimers, we see population moving away from the inner generation (entropic 

effect), though this effect is countered by increasing the value of intraJ , which pushes more population 

towards the inner generations. With intra 3J J= −  the core population is maintained above or slightly below 

0.8 for the 2,3,4G =  dendrimers examined. With intra 0J  , we see that at B 0.2k T J= , the core population 

in every dendrimer is close to that at T=0. 

 

 

(iii) intra 0J  . There is a drastic change in the behavior when the intrageneration coupling is positive, which 

can be seen in Fig. 4.5. Similar to the three-segment dendrimer with a positive intrageneration coupling, 

here we see a doubly degenerate ground state that don’t show the three-fold symmetry of the dendrimer 

structure. This results from frustration within the generations. As seen in Fig. 4.5., one of the two ground 

states is now distributed on only two of the three branches. These dendrimers show a competition between 

delocalization and frustration leading to the outcome of pushing the ground state population towards the 

core generation, attempting to minimize the population on the periphery which has the highest number of 

interacting segments. As a result, at zero temperature, there is an accumulation of population in the 

dendrimer core. The core population here at T = 0 is higher than that of equivalent cases of intra 0J  , and 

increases with increasing intraJ . Further, the shift of population away from the core with increasing 

dendrimer size is weaker in this case, especially when intra 3J J= . 

          However, there are now eigenstates with large densities in the second generation which are 

very close in energy to the ground states. These eigenstates are rapidly populated upon increasing the 

temperature, decreasing the core population. We can see that even at the very low temperature B 0.2k T J=  

the core population with intra 3J J=  drops to about 0.15, compared to 0.95 at 0T = , and the maximum 

population is found in the third generation. Thus, the population of the core segments is overall larger with 
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intra 0J   in comparison to identical dendrimers with negative intra-generation couplings, the trend reverses 

rapidly when finite temperature is introduced, and the excitation energy approaches the statistical limit 

faster in this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
           

 

             Fig. 4.5. Visualization of segment amplitudes and population distribution for (a)
intra

J J= +  and (b) 
intra

3J J= + . Left: 

                            eigenstate amplitudes on the various segments for a three-generation dendrimer. The larger images show the  

                            degenerate ground states 
1

 and 
2

 , while the two smaller images show the excited eigenstates (a)
15 21

,    

                            and (b) 
12 21

,  . Green/orange and blue/green show the positive and negative amplitudes. Right: Total  

                            population in each generation for a two (top), three (middle) and four generation (bottom) dendrimer at various  

                            temperatures. Dark blue: T=0. Cyan:
B

0.2k T J= . Green: 
B

k T J= . Yellow: 
B

10k T J= . 

 

 

4.6. Dynamics of exciton energy transfer 

 

 
          We now shift our attention to the real time dynamics of excitation energy following the excitation of 

a peripheral segment. The population evolution as we found doesn’t depend on the sign of the 

intergeneration coupling and we set it to 1

inter 300 cmJ J −= = (a value in the range expected for such 
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systems). We consider both positive and negative intrageneration coupling, 1

intra 300 cmJ −=  . We also 

assume that that vibrational energy peaks at 1

c 1500 cm −= and consider two values of reorganization 

energy: a moderate value 300J = = cm-1 and 900 1cm− . We examine the three-segment dendrimer at 

100K and then move on to examining the dynamics of a 9 monomer G=2 dendrimer at 100K (corresponding 

to B/ 4.31J k T = ), 300K ( B/ 1.44J k T = ) and 1000K ( B/ 0.431J k T = ).  

 

           

 

 

 

 

 

 

 

 

 

 

 
 

  

       
 

           

 

 

 

 

             

 

 

        
   
        Fig. 4.6. Excited segment populations as a function of time following excitation of segment 2 for a trimer with the parameters  

                       given in the text at 100K.     
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          Fig. 4.6. shows the dynamics for the two kinds of three-segment dendrimer (Fig. 4.2.b and 4.2.d) 

where two pair of segments interact through interJ  while the third pair couples through 1

intra 300 cmJ −=  at 

100K. In all the cases, the excitation energy is initially localized on the 2nd segment and we can see that  

they equilibrate fairly rapidly (within 0.5ps) to 1/3 on all the segments. However, the dynamics they follow 

to reach this equilibrium is very different for all the four cases. With the weaker exciton-vibration coupling 

at 300 cm-1, the dynamics is underdamped and oscillatory more so for 
intra 0J  , but this oscillatory feature 

is lost upon increasing this coupling to 900 cm-1. It is interesting to note that even though we just present 

results for 100K, there is only a mild reduction in the oscillations at 300K. This is so because while this 

temperature is moderate with respect to the exciton coupling parameters, it is still low with respect to the 

vibrational coupling, thus providing inadequate damping. 

            The most striking difference seen in Fig. 4.6. is the lengthening of the EET relaxation time 

when intra 0J  , compared to the dynamics with intra 0J   (of the same magnitude) and all other 

parameters fixed. Two distinct time scales are very clearly evident for intra 0J  , especially with 

1900 cm −= . Regardless of the sign of intraJ , we observe a fast population transfer out of the initially 

excited state in the initial 15fs. For intra 0J  , the subsequent transfer is rapid and uneventful, and the 

population equilibrates within 50fs. However, when intra 0J  , the population transfers to a slow 

decay, reaching equilibrium at approximately 300fs, a six-fold slowdown. The relaxation is even 

slower when the reorganization energy is lower, the energy transfer lasting 500fs. 
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             Fig. 4.7. Energy transfer dynamics in 2G =  dendrimers with the parameters given in the text at 100 KT = . For   

                            convenience we show the dendrimer structure with segment numbers in one of the panels. The inset shows the      

                            convergence of 
5

P  for various values of the SMatPI entanglement length 
max

r  and memory length L. 

 

 

 

 

 

 

          It is interesting to note that, as discussed in Sec. 4.4, the EET dynamics resulting with opposite signs 

of intraJ are identical in the absence of exciton-bath coupling. The peculiar behavior observed with intra 0J   

is an aftermath of frustration which reveals itself when interaction with the vibration modes allows the 
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excitation energy to equilibrate, a process involving redistribution of energy between degenerate ground 

states. Such a process enabled by vibrational modes tends to be very slow. 

          We now focus our attention to G=2 dendrimers with 9 segments and the same set of parameters used 

for the three-segment dendrimer at three different temperatures. Fig. 4.7. through Fig. 4.9 show the 

dynamics for these structures and several trends observed before hold here too. However, the coherence 

pattern here is more complex since there are a lot of segments and multiple energy scales associated with 

the n=9 electronic eigenstates. The dynamics here also lasts longer. The initial excitation is totally localized 

on segment 4 in the outer generation and rapidly spreads to segments 1 and 5. At early times, a preferential 

accumulation of population takes place on segment 5 as the population on segment 1 is rapidly transferred 

to the other two inner core segments 2 and 3. The populations of distant peripheral segments 6-9 increase 

gradually after a short decay. 

          The dynamics with 1

intra 300 cmJ −= −  is fast here too, but the amplitude of the oscillations in the 

population evolution at 100 K is now smaller than in the three-segment dendrimer, in line with similar 

observations in large molecular aggregates.15,47-49 With lower reorganization energy 1300 cm −= , these 

low amplitude oscillations survive till much longer (up to 500fs) in this larger dendrimer. For the higher 

reorganization energy, these oscillations die out faster (~200fs). In these larger dendrimers, the positive 

intrageneration coupling lead to even slower dynamics, though we don’t see the very striking difference 

between the dynamical patterns for the opposite signs of the intrageneration coupling. here. With 

1

intra 300 cmJ −=  the populations reach their equilibrium values around 1.5 ps (although, for consistency, 

we only show the initial 500 fs in the figure). 
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             Fig. 4.8. Energy transfer dynamics in 2G =  dendrimers with the parameters given in the text at 300 KT = . 

 

 

          At higher temperatures, the evolution of the excitation energy is faster, and we get diminished transfer 

of population from the outer to the inner core. Fig. 4.9. shows the EET evolution at T=1000K. At such a 

high temperature, the long-time population of the inner core remains almost equal to the classical value. 

However, it is remarkable to note that even at this high temperature, the quantum mechanical nature of the 

electronic Hamiltonian is clearly visible. The eigenstate structure and specially the frustration effects with 
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positive intrageneration coupling is clearly evident in the considerably slower dynamics and the core 

population taking twice the time to reach its equilibrium as compared to negative intrageneration coupling. 

 

 

 

             Fig. 4.9. Energy transfer dynamics in 2G =  dendrimers with the parameters given in the text at 1000 KT = . 

 

 

          The role of nuclear motion on EET is also very intriguing. Intramolecular vibrations seem to not only 

damp the coherence, but also perturb the equilibrium segment populations. At 100K and 300K, the 

equilibrium populations of the core and periphery are closer to the statistical limit for the larger 
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reorganization energy 1900 cm −=  than for the smaller value 1300 cm −= . A stronger coupling between 

the electronic levels and the vibrational modes thus not only affect the dynamics but also but also the 

population distribution at thermal equilibrium. 

 

 

4.7. Conclusions 

 

          In this work we have investigated the quantum mechanical structure, equilibrium properties and real-

time dynamics of dendrimers described by a simple Frenkel exciton model with interaction between bias-

free nearest-neighbor segments coupled to model vibrational baths. Removing the energy bias allows us to 

focus on the rich interplay among quantum coherence, topology, entropic factors, exciton-vibration 

interactions and temperature, identifying intriguing behaviors. 

           Even for the present single-parameter electronic Hamiltonian, several of these findings point to the 

remarkable physics of dendrimeric structures and the endless possibilities for targeted function through 

nanoscale design. Perhaps the first notable result is that even in the absence of an energetic funnel built into 

the electronic Hamiltonian, these structures are able to transfer excitation energy from the periphery to the 

core. This is a consequence of quantum effects, which give rise to eigenstate structures and equilibrium 

distributions that can favor the core at low temperatures. When the electronic coupling parameters are fixed, 

we find that small dendrimers have largest populations in the core, and that the peak of the distribution 

gradually shifts outward with increasing size. However, for a given dendrimer size, the core population can 

be increased by increasing the intra-generation coupling (or, equivalently, decreasing the inter-generation 

coupling strength). It is thus evident that electronic coupling can counter the periphery-favoring entropic 

factor, achieving outcomes that are vastly different from those based on classical statistical models. 
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          We also find that the eigenstate structure of these dendrimers is dominated by the sign of the intra-

generation coupling parameter. Analyzing a basic trimeric building block revealed that a positive value of 

this parameter gives rise to a destabilized structure with a doubly degenerate ground state whose 

wavefunction does not exhibit the threefold symmetry of the dendrimer. We attributed this behavior to 

electronic frustration, in analogy to the analogous effect known from spin systems. The unfavorable 

interaction generated by an odd number of positive couplings within a three-state unit effectively shifts 

electronic density toward the core, further countering the entropic effect at zero temperature. At the same 

time, the close proximity of multiple low-lying states leads to a sharp drop of core population upon 

increasing the temperature even slightly. The dynamical manifestations of electronic frustration are 

surprising and remarkable. We found that EET slows down very significantly when the intra-generation 

coupling is positive, in comparison with situations where this parameter has the same magnitude but a 

negative sign. 

          We also report real time dynamics for excitation energy transport in these dendrimers. Exciton-

vibration interactions play a major role in EET and are required for equilibration and the trapping of energy. 

With small-to-moderate values of the vibrational reorganization energy ( J ), the population evolution 

is underdamped. More efficient quenching of oscillatory features is observed in dendrimers with positive 

intra-generation coupling. Increasing exciton-vibration coupling causes a shift of equilibrium populations 

away from the core, approaching a more classical behavior. The phase relations and effects related to 

quantized level structure are washed away by thermal effects. The population distribution becomes more 

classical-like with increasing temperature, with each segment having a population equal to 1/ n  in the 

infinite temperature limit. Interestingly, dynamical features such as those related to the sign of intra-

generation couplings persist to sufficiently high temperatures, even though the equilibrium populations are 

close to their classical values. With typical Frenkel couplings of the order of 
1200 300 cm−− , the 

temperatures required for classical-like behavior are extremely high, thus quantum effects are expected to 

be prominent in dendrimers at or below physiological temperatures. 
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          To summarize, using a simple model with a single electronic parameter of fixed magnitude (

1300 cmJ −= ) and two possible values of vibrational reorganization energy ( J =  or 3 J = ), our 

calculations identified a vast range of time scales in the EET dynamics of 2G =  dendrimers at a fixed 

temperature, ranging from a 15fs ultrafast transfer out of the initially excited peripheral segment to a slow 

1.5ps equilibration, which span two orders of magnitude. These very rich behaviors will undoubtedly 

become even more complex when additional parameters are allowed to vary, inviting additional work on 

these fascinating systems. 

 

4.8 References 

 

1) Pullerits, T.; Sundstrom, V., Photosynthetic light-harvesting pigment-protein complexes: Toward 

understanding how and why. Acc. Chem. Res. 1996, 29, 381-389. 

2) Blankenship, R. E., Molecular mechanisms of photosynthesis. World Scientific: London, 2002. 

3) van Grondelle, R.; Dekker, J. P.; Gillbro, T.; Sundstrom, V., Energy transfer and trapping in 

photosynthesis. Biochim. Biophys. Acta 1994, 1187, 1-65. 

4) McDermott, G.; Prince, S.; Freer, A.; Hawthornthwaite-Lawless, A.; Papiz, M.; Cogdell, R.; Isaacs, 

N., Crystal structure of an integral membrane light-harvesting complex from photosynthetic 

bacteria. Nat. 1995, 374, 517. 

5) Hu, X.; Xu, D.; Hamer, K.; Schulten, K.; Koepke, J.; Michel, H., Predicting the structure of the 

light harvesting complex II of rhodospirillum molischianum. Prot. Sci. 1995, 4, 1670-1682. 

6) Koepke, J.; Hu, X.; Muenke, C.; Schulten, K.; Michel, H., The crystal structure of the light 

harvesting complex II (B800-B850) from Rhodospirillum molischianum. Struc. 1996, 4, 581-597. 

7) Cogdell, R. J.; Isaacs, N. W.; Freer, A. A.; Arrelano, J.; Howard, T. D.; Papiz, M. Z.; 

Hawthornthwaite-Lawless, A. M.; Prince, S., The structure and function of the LH2 (B800–850) 

complex from the purple photosynthetic bacterium Rhodopseudomonas acidophila strain 10050. 

Prog. Biophys. and Mol. Bio. 1997, 68 (1), 1-27. 

8) Moore, J. S., Shape-Persistent Molecular Architectures of Nanoscale Dimension. Acc. Chem. Res. 

1997, 30 (10), 402-413. 

9) Ballauff, M.; Likos, C. N., Dendrimers in Solution: Insight from Theory and Simulation. Angew. 

Chem. Intl. Ed. 2004, 43 (23), 2998-3020. 



63 
 

10) Astruc, D.; Boisselier, E.; Ornelas, C., Dendrimers Designed for Functions: From Physical, 

Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular 

Electronics, Photonics, and Nanomedicine. Chem. Rev. 2010, 110 (4), 1857-1959. 

11) Abbasi, E.; Aval, S. F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H. T.; Joo, S. W.; Hanifehpour, 

Y.; Nejati-Koshki, K.; Pashaei-Asl, R., Dendrimers: synthesis, applications, and properties. 

Nanoscale Res. Lett. 2014, 9 (1), 247. 

12) Schröter, M.; Ivanov, S. D.; Schulze, J.; Polyutov, S. P.; Yan, Y.; Pullerits, T.; Kühn, O., Exciton–

vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates. 

Phys. Rep. 2015, 567, 1-78. 

13) Hestand, N. J.; Spano, F. C., Expanded Theory of H- and J-Molecular Aggregates: The Effects of 

Vibronic Coupling and Intermolecular Charge Transfer. Chem. Rev. 2018, 118 (15), 7069-7163. 

14) Popp, W.; Brey, D.; Binder, R.; Burghardt, I., Quantum Dynamics of Exciton Transport and 

Dissociation in Multichromophoric Systems. Ann. Rev. Phys. Chem. 2021, 72 (1), 591-616. 

15) Kundu, S.; Makri, N., Intramolecular Vibrations in Excitation Energy Transfer: Insights from Real-

Time Path Integral Calculations. Ann. Rev. Phys. Chem. 2022, 73 (1), 349-375. 

16) Harigaya, K., Coupled exciton model with off-diagonal disorder for optical excitations in extended 

dendrimers. Phys. Chem. Chem. Phys. 1999, 1 (7), 1687-1689. 

17) Mülken, O.; Blumen, A., Slow transport by continuous time quantum walks. Phys.  Rev. E 2005, 

71 (1), 016101. 

18) Mülken, O.; Bierbaum, V.; Blumen, A., Coherent exciton transport in dendrimers and continuous-

time quantum walks.  J. Chem. Phys. 2006, 124 (12), 124905. 

19) Pouthier, V., Exciton localization-delocalization transition in an extended dendrimer. J.  Chem. 

Phys. 2013, 139 (23), 234111. 

20) Poliakov, E. Y.; Chernyak, V.; Tretiak, S.; Mukamel, S., Exciton-scaling and optical excitations of 

self-similar phenylacetylene dendrimers. J. Chem. Phys. 1999, 110 (16), 8161-8175. 

21) Tretiak, S.; Chernyak, V.; Mukamel, S., Localized Electronic Excitations in Phenylacetylene 

Dendrimers. J. Phys. Chem. B 1998, 102 (18), 3310-3315. 

22) Minami, T.; Tretiak, S.; Chernyak, V.; Mukamel, S., Frenkel-exciton Hamiltonian for dendrimeric 

nanostar. J. Lumin. 2000, 87-89, 115-118. 

23) Bar-Haim, A.; Klafter, J.; Kopelman, R., Dendrimers as Controlled Artificial Energy Antennae. J.  

Am. Chem. Soc. 1997, 119 (26), 6197-6198. 

24) Bar-Haim, A.; Klafter, J., Geometric versus Energetic Competition in Light Harvesting by 

Dendrimers. J. Phys. Chem. B 1998, 102 (10), 1662-1664. 



64 
 

25) Martín-Delgado, M. A.; Rodriguez-Laguna, J.; Sierra, G., Density-matrix renormalization-group 

study of excitons in dendrimers. Phys. Rev. B 2002, 65 (15), 155116. 

26) Nagy, Á., Simulating quantum systems on the Bethe lattice by translationally invariant infinite-tree 

tensor network. Ann. Phys. 2012, 327 (2), 542-552. 

27) Fernandez-Alberti, S.; Kleiman, V. D.; Tretiak, S.; Roitberg, A. E., Nonadiabatic Molecular 

Dynamics Simulations of the Energy Transfer between Building Blocks in a Phenylene Ethynylene 

Dendrimer. J. Phys. Chem. A 2009, 113 (26), 7535-7542. 

28) Soler, M. A.; Roitberg, A. E.; Nelson, T.; Tretiak, S.; Fernandez-Alberti, S., Analysis of State-

Specific Vibrations Coupled to the Unidirectional Energy Transfer in Conjugated Dendrimers. J. 

Phys. Chem. A 2012, 116 (40), 9802-9810. 

29) Galindo, J. F.; Atas, E.; Altan, A.; Kuroda, D. G.; Fernandez-Alberti, S.; Tretiak, S.; Roitberg, A. 

E.; Kleiman, V. D., Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast 

Localization of Excitations. J. Am. Chem. Soc. 2015, 137 (36), 11637-11644. 

30) Ondarse-Alvarez, D.; Oldani, N.; Roitberg, A. E.; Kleiman, V.; Tretiak, S.; Fernandez-Alberti, S., 

Energy transfer and spatial scrambling of an exciton in a conjugated dendrimer. Phys. Chem. Chem. 

Phys. 2018, 20 (47), 29648-29660. 

31) Beck, M. H.; Jäckle, A.; Worth, G. A.; Meyer, H.-D., The multiconfiguration time-dependent 

Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 

2000, 324, 1-105. 

32) Wang, H.; Thoss, M., Multilayer formulation of the multiconfiguration time-dependent Hartree 

theory. J. Chem. Phys. 2003, 119 (3), 1289-1299. 

33) Schollwöck, U., The density-matrix renormalization group in the age of matrix product states. Ann. 

Phys. 2011, 326, 96-192. 

34) Ambrosek, D.; Marciniak, H.; Lochbrunner, S.; Tatchen, J.; Li, X.-Q.; Würthner, F.; Kühn, O., 

Photophysical and quantum chemical study on a J-aggregate forming perylene bisimide monomer. 

Phys. Chem. Chem. Phys. 2011, 13 (39), 17649-17657. 

35) Popp, W.; Polkehn, M.; Hughes, K. H.; Martinazzo, R.; Burghardt, I., Vibronic coupling models 

for donor-acceptor aggregates using an effective-mode scheme: Application to mixed Frenkel and 

charge-transfer excitons in oligothiophene aggregates. J. Chem. Phys. 2019, 150 (24), 244114. 

36) Ren, J.; Shuai, Z.; Kin-Lic Chan, G., Time-Dependent Density Matrix Renormalization Group 

Algorithms for Nearly Exact Absorption and Fluorescence Spectra of Molecular Aggregates at 

Both Zero and Finite Temperature. J. Chem. Theory Comput. 2018, 14 (10), 5027-5039. 

37) Feynman, R. P., Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 

1948, 20, 367-387. 



65 
 

38) Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals. McGraw-Hill: New York, 

1965. 

39) Feynman, R. P.; Vernon, F. L., The theory of a general quantum system interacting with a linear 

dissipative system. Ann. Phys. 1963, 24, 118-173. 

40) Makri, N., Modular path integral: Quantum dynamics via sequential necklace linking. J. Chem. 

Phys. 2018, 148, 101101. 

41) Makri, N., Modular path integral methodology for real-time quantum dynamics. J. Chem. Phys. 

2018, 149, 214108. 

42) Kundu, S.; Makri, N., Modular path integral for finite-temperature dynamics of extended systems 

with intramolecular vibrations. J. Chem. Phys. 2020, 153, 044124. 

43) Makri, N., Small matrix disentanglement of the path integral: overcoming the exponential tensor 

scaling with memory length. J. Chem. Phys. 2020, 152, 041104. 

44) Makri, N., Small matrix path integral for system-bath dynamics. J.  Chem. Theory Comput. 2020, 

16, 4038–4049. 

45) Makri, N., Small matrix path integral with extended memory. J. Chem. Theory Comput. 2021, 17, 

1-6. 

46) Bose, A.; Makri, N., All-mode quantum-classical path integral simulation of bacteriochlorophyll 

dimer exciton-vibration dynamics J. Phys. Chem. 2020, 124, 5028-5038. 

47) Kundu, S.; Makri, N., Real-time path integral simulation of exciton-vibration dynamics in light-

harvesting bacteriochlorophyll aggregates. J. Phys. Chem. Lett. 2020, 11, 8783-8789. 

48) Kundu, S.; Makri, N., Exciton-vibration dynamics in J-aggregates of a perylene bisimide from real-

time path integral calculations. J. Phys. Chem. C 2021, 125, 201-210. 

49) Kundu, S.; Makri, N., Origin of vibrational features in the excitation energy transfer dynamics of 

perylene bisimide J-aggregates. J. Chem. Phys. 2021,  (154), 114301. 

50) Kundu, S.; Makri, N., Electronic-vibrational density evolution in a perylene bisimide dimer: 

mechanistic insights into excitation energy transfer. Phys. Chem. Chem. Phys. 2021, 23, 15503-

15514. 

51) Roy, P. P.; Kundu, S.; Valdiviezo, J.; Bullard, G.; Fletcher, J. T.; Liu, R.; Yang, S., Jr.; Zhang, P.; 

Beratan, D. N.; Therien, et. al., Synthetic Control of Exciton Dynamics in Bioinspired Cofacial 

Porphyrin Dimers. J. Am. Chem. Soc. 2022, 144, 6298–6310. 

52) Dani, R.; Makri, N., Quantum quench and coherent-incoherent dynamics of Ising chains interacting 

with dissipative baths. J. Chem. Phys. 2021, 155, 234705. 

53) May, V.; Kühn, O., Charge and energy transfer dynamics in molecular systems. 3rd ed.; Wiley: 

2011. 



66 
 

54) Kundu, S.; Makri, N., Time evolution of bath properties in spin-boson dynamics. J. Phys. Chem. B 

2021, 125, 8137–8151  

55) Caldeira, A. O.; Leggett, A. J., Path integral approach to quantum Brownian motion. Physica A 

1983, 121, 587-616. 

56) Leggett, A. J.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P. A.; Garg, A.; Zwerger, M., Dynamics 

of the dissipative two-state system. Rev. Mod. Phys. 1987, 59, 1-85. 

57) Frenkel, J., On the transfomation of light into heat in solids. Phys. Rev. 1931, 37, 17. 

58) May, V.; Kuhn, O., Theory of charge and energy transfer in molecular systems. Wiley: 1999. 

59) Makri, N., Improved Feynman propagators on a grid and non-adiabatic corrections within the path 

integral framework. Chem. Phys. Lett. 1992, 193, 435-444. 

60) Makri, N., Numerical path integral techniques for long-time quantum dynamics of dissipative 

systems. J. Math. Phys. 1995, 36, 2430-2456. 

61) Kundu, S.; Dani, R.; Makri, N., B800-to-B850 relaxation of excitation energy in bacterial light 

harvesting: All-state, all-mode path integral simulations. J. Chem. Phys. 2022, 157, 015101  

  



67 
 

Chapter 5  

Quantum Rates for Multistate Processes from Coherences 

5.1 Introduction 

          The determination of reaction rates from first principles has gathered much interest since the early 

days of quantum and statistical mechanics. Obtaining potential energy surfaces requires electronic structure 

calculations which involves difficulties needed to be circumvent. The theoretical description of finite-

temperature rate also poses a challenging problem. Most efforts have focused either on barrier crossing1 in 

the multidimensional potential energy surface that separates reactants from products, or on the rate of 

nonadiabatic transitions such as those relevant to electron transfer. Semiclassical theory has given rise to 

an insightful picture of tunneling, which involves classical periodic orbits on the inverted barrier potential.2  

There have been a lot of numerical and analytic methods used to characterize dependence of the reaction 

rate for condensed phase processes on parameters. These include the Kramers turnover3 along with the 

Grote-Hynes generalization4-5 and its quantum mechanical extension,6-7 the Marcus inverted regime,8-9 as 

well as tunneling, curve crossing and quantum interference phenomena.10-15 

         In condensed phase system, when reactive processes are sufficiently slow in comparison to time scales 

associated with the reactants, reaction rates are associated with exponential kinetics. If a particular state of 

a reactant is produced, the density first relaxes very rapidly to a local equilibrium, before there is any 

significant transformation to the product. Here, the flux through a surface that divides reactants from 

products settles rapidly to a “plateau” value, from which a slow exponential decay is observed with the 

same time constant that characterizes the reactive process.16  

          In this work we generalize these ideas to processes involving transformations among multiple 

species. The rate kinetics in this case can be described by simple kinetic equations that involve a matrix of 

 
This chapter is based on the paper, Reshmi Dani and Nancy Makri, “Quantum state-to-state rates for multistate 

processes from coherences”, J. Phys. Chem. Lett. 13, 34, 8141–8149 (2022)  
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state-to-state transition rates. The resulting population evolution is then given by the exponential of this 

matrix, i.e. combinations of exponential functions characterized by rate constants. We show, most 

generally, that the time derivatives of populations are (at any time) simply related to the imaginary parts of 

off-diagonal reduced density matrix (RDM) elements (the “coherences”). The rates can then be obtained 

from these imaginary components, which exhibit a plateau regime. Thus, even though the populations may 

obey classical-like kinetic equations, the underlying dynamics is always and entirely driven by the time 

evolution of coherences. 

 

5.2 System Hamiltonian 

          In this work, we consider the dynamics of discrete multistate Hamiltonians, which may represent a 

variety of processes, such as charge or energy transport, or reactive processes described by discretized 

continuous potentials. For systems described in terms of a continuous coordinate, we use the n lowest 

eigenstates of the system Hamiltonian to perform a unitary transformation to a discrete variable 

representation23-24 (DVR), in which the coordinate operator is diagonal. The system operator in the DVR 

basis can be expressed as 

                                                                         
1

ˆ
n

i

i

s s i i
=

=                                                                    (5.1) 

where i  represent the n localized DVR states (or sites) and the DVR eigenvalues is  serve as grid points.  

The Hamiltonian in the discrete form is thus given by 

                                                                                0

1 1

ˆ
n n

ij

i j

H H i j
= =

=                                                       (5.2) 

where ij jiH H= . Eq.5.2 can be used to describe electron transfer reactions or charge transport systems ( 

i  being electronic states in a diabatic representation), excitation energy transfer in molecular aggregates 



69 
 

( i  being excited states of monomers), coupled spin systems in addition to reactant-product processes. In 

general, the system interacts with a large environment (the “bath”) at a particular temperature through terms 

that are diagonal in the site basis. We do not impose any restrictions on the form of the bath Hamiltonian 

or the initial density matrix.  

          In the numerical results presented in this work, we couple the system to separate harmonic baths 

(which might correspond to intramolecular normal mode coordinates of molecular aggregates28) 

characterized by the spectral density function29 

                                                                    c/1
2

( )J e
   −

=                                                              (5.3) 

which peaks at the frequency c  and where   is the dimensionless Kondo parameter that quantifies the 

system-bath coupling strength. In all cases the bath is initially equilibrated with respect to a common ground 

state, as in the case of energy transfer following a Franck-Condon initial excitation.  

 

5.3 RDM, population rates and coherences 

The RDM in the site representation is given by 

                                                       ( ) ( )
ˆ ˆ/ /

b
ˆTr 0iHt iHt

km t k e e m −=                                                 (5.4) 

where ˆ(0)  is the initial density matrix operator and the trace is with respect to the bath modes. The 

diagonal elements of the RDM give the populations 

                                             ( ) ( ) ( )( )ˆ ˆ/ /ˆTr 0iHt iHt

k kkP t t e e k k − = .                                  (5.5)  

Taking the time derivative of Eq. 5.5 we get  

                                          ( ) ( )( )ˆ ˆ/ / ˆˆTr 0 ,iHt iHt

k

d i
P t e e H k k

dt
−  =

                                    (5.6) 
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The system-bath coupling is diagonal in the site basis, so only the system Hamiltonian contributes to the 

commutator. Eq. 5.5 thus becomes  

                                                                ( ) ( )
1

( ) ( )
n

k jk kj kj jk

j

d i
P t H t H t

dt
 

=

= −                                     (5.7) 

Using the Hermitian property of the Hamiltonian and the RDM, we get  

                                                                          ( )
1

2
Im ( )

n

k jk jk

j

d
P t H t

dt


=

=  .                                             (5.8) 

Here, the coherences and the populations are calculated from the same initial conditions. 

          Eq. 5.8 is completely general and exact, regardless of the form of the bath Hamiltonian, as long as 

the system-bath coupling is diagonal in the system basis. It generalizes the expression obtained earlier25 for 

a symmetric two-level system (TLS) and shows that in the absence of imaginary components in the 

coherences, populations remain stationary. This is always the situation at long times, when the process has 

reached equilibrium and the RDM elements are given by purely real valued Boltzmann matrix elements. 

This is also what we observe in multistate systems which start from a real valued initial RDM. Conversely, 

if there is still any population evolution going on, there must be some complex valued RDM element(s). 

Fig. 5.1 illustrates Eq. 5.8. 

         The imaginary parts of the coherences in the column containing a site population may at particular 

instants add to zero. These situations correspond to inflection points of the site population, at which its time 

derivative vanishes. Also, as long as the initial RDM is real valued, at the start of the evolution, Eq. 5.8 

assures that the time derivatives of all site populations are equal to zero, implying that populations evolve 

at least quadratically in time as 0t → . 
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     Fig.5.1.  Illustration of Eq.5.8. Magenta and green areas show density contours of positive and negative 
imaginary parts of the RDM in the case of a 4-state system coupled to a harmonic bath. The 

diagonal elements (blue squares) are purely real-valued. The time derivative of the population 

of the second site, indicated by a filled blue square, is proportional to the sum of Hamiltonian 

matrix elements multiplied by imaginary components inside the column indicated with a 

yellow box.  

  

 

5.4 Rate constants from coherences 

         Next, we turn our attention to obtaining rate constants from Eq. 5.8 in situations where there is an 

adequate separation of timescales in strongly incoherent regimes in condensed phases. Let us consider a 

two-state process  

                                                                                    
1

1

1 2
k

k−
.                                                                       (5.9) 

The site populations rapidly settle into forms that satisfy kinetic equations at sufficiently high temperatures 

and strong system-bath coupling. The population evolution rate for the two states can be described in terms 

of a forward and a backward rate constant through the following differential equations 

                                                                          
1 1 1 1 2

2 1 1 1 2

( ) ( ) ( )

( ) ( ) ( )

P t k P t k P t

P t k P t k P t

−

−

= − +

= −
                                                      (5.10) 

whose solution gives the following population evolution 
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 

 

1 1

1 1

( )

1 1 1 1

( )

2 2 2 2

( ) ( ) (0) ( )

( ) ( ) (0) ( )

k k t

k k t

P t P P P e

P t P P P e

−

−

− +

− +

−  = − 

−  = − 
                                          (5.11) 

Here, the knowledge of the forward and the backward rate constants is enough to fully characterize the 

dynamics and even the equilibrium constant 2 1 1 1( ) / ( ) /K P P k k−=   =  or the ratio of the populations of 

the two species at equilibrium. 

         As mentioned earlier, exponential population dynamics requires a separation of time scales, implying 

that the time required for the system populations to reach equilibrium is much longer than the time of local 

equilibration with the environment, allowing the populations to enter a regime of exponential decay early 

on. This is long before any appreciable deviations from the initial values have occurred and Eq. 5.11 is 

valid except for a very short time of nonexponential transients.16 This realization has led to the development 

of classical and quantum mechanical flux correlation function formulations,20-22  which deduce the rate from 

the behavior of the flux in the “plateau” regime. The standard formulation is based on the equilibrium flux 

correlation function, but recent work has shown27 that the flux obtained with non-equilibrium initial 

conditions contains precisely the same information and may be used to obtain the rate without the need for 

numerical evaluation of the full equilibrium density. If we start with 1(0) 1P = , Eq. 5.11 gives us  

                                     ( )  ( ) ( )1 1 1 1

1 1 1 1 1 p( ) 1 ( ) ,
k k t k k t

P t k k P e k e t t− −− + − +

−= − + −  = −  .                      (5.12) 

Here, 1P  is the non-equilibrium flux, which (for a real-valued initial RDM) vanishes at the start of the 

evolution. This function can be obtained from the imaginary part of the off-diagonal RDM elements (ot the 

coherences) using Eq. 5.8. Since 1 p 1 pexp( ) 1k t k t−− − , the non-equilibrium flux quickly grows from zero 

to the value given by the right-hand side of Eq. 5.11 at the onset pt  of the plateau regime, after which it 

decays exponentially over a time that is very long compared to pt  (plateau time). Assuming, as usual, that 

the exponential factor is very close to unity at this time, we recover the result25 
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                                                                     1 12 12 p

2
Im ( )k H t=                                                    (5.13) 

The next section expands these ideas to a more generic n state system. 

 

 

5.5 Kinetic equations and rate constants for a generic n state system 

          We now turn to processes involving multiple states. Let us consider a system of n states interacting 

through the Hamiltonian mentioned in Eq. 5.2 whose populations satisfy the following rate equations 

                                                                      ( ) ( )
d

t t
dt

= P M P                                                                   (5.14) 

where ( )tP  is the vector that contains the populations kP  of the states at time t and M is a matrix of 

transition rates. Using Eq. 5.8, we obtain 

                                                     
1 1

2
( ) ( ) Im ( )

n n

k kj j jk jk

j j

P t M P t H t
= =

= =                                         (5.15) 

This equation holds for any initial condition of the RDM. We now evaluate Eq. 5.15 with all initial 

conditions, ˆ(0) i i = , at the plateau time. We indicate the initial condition in the RDM elements through 

a superscript, ii

jk . Using again 1, 0i j iP P   at the early plateau time, we obtain 

                                                                           p( )ii

kk ki

d
t M

dt
 =                                                           (5.16) 

leading to the result 

                                                                 p

1

2
Im ( )

n
ii

ki jk jk

j

M H t
=

=                                                   (5.17) 

Eq. 5.17 gives the state-to-state rates in terms of the (imaginary parts of) coherences at the plateau time. 

          It should be noted here that while the matrix M has 2n  elements, there are only ( 1)n n−  forward and 

reverse rate constants. Thus, this means there is a linear dependence in the matrix i.e. det( ) 0=M . 
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Differentiating the sum of populations, one can express a diagonal element kkM  in terms of all other 

elements jkM , allowing the kinetic equations to be written in a form that does not involve diagonal 

elements, 

                                                       ( ) ( ) ( )
n n

k kj j jk k

j k j k

P t M P t M P t
 

 
= −  

 
                                              (5.18) 

implying that only 2n n−  elements of the matrix are required to fully characterize the kinetics. With j k  

the elements of M are the forward and reverse rate constants between sites.  

        Further, we note that in cases of imperfect separation of timescales, the populations may have deviated 

significantly from their initial values during the short time of transient evolution that precedes the plateau 

regime. The kinetic equations are valid for pt t  and should be integrated with adjusted initial conditions 

given by the actual value of population of the states at the plateau time, p( )kP t . The population values 

obtained from the full propagation of the RDM should be used for pt t . 

          Lastly, from the detailed balance principle we get  

                                                                    ( ) ( )ki i ik kM P M P =                                                       (5.19) 

which means that the imaginary parts of the coherences at the plateau time fully specify the equilibrium 

populations through the relation 

                                                  p p

1 1

Im ( ) ( ) Im ( ) ( )
n n

ii kk

jk jk i ji ji k

j j

H t P H t P 
= =

 =                               (5.20) 

This is a subtle and rather remarkable property. 

 

5.6 Detailed derivation of kinetic equations and rate constants for a three-state system 

          Let us consider the following three-state system where all states are coupled in the system, describing 

a physical situation where the transformation from 1  to 3  can occur through two pathways, i.e. through 
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direct population transfer as well as through an intermediate state 2 . The rate constants are labelled 

symmetrically, 

 

                                                                                                                                                                (5.21) 

               

 

The kinetic equations for such a system are given by  

                                               

1 1 1 1 2 3 3 3 1

2 1 1 1 2 2 2 2 3

3 2 2 2 3 3 3 3 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

P t k P t k P t k P t k P t

P t k P t k P t k P t k P t

P t k P t k P t k P t k P t

− −

− −

− −

= − + + −

= − − +

= − − +

                                         (5.22) 

These rate equations can be casted in the matrix form of Eq. 5.14 with 12 1 13 3,M k M k−= = , 

21 1 23 2,M k M k−= = , 31 3 32 2,M k M k−= = . Evaluating  kP  from the above equations for all initial conditions 

ˆ(0) ,i i i k =  , we get 

            

11 11 22 22

1 12 12 p 32 32 p 1 21 21 p 31 31 p

22 22 33 33

2 23 23 p 13 13 p 2 12 12 p 32 32 p

33 33

3 21 21 p 31 31 p 3

2 2 2 2
Im ( ) Im ( ), Im ( ) Im ( )

2 2 2 2
Im ( ) Im ( ), Im ( ) Im ( )

2 2 2
Im ( ) Im ( ),

k H t H t k H t H t

k H t H t k H t H t

k H t H t k

   

   

 

−

−

−

= + = +

= + = +

= + = 11 11

23 23 p 13 13 p

2
Im ( ) Im ( )H t H t +

        (5.23) 

The expressions in Eq. 5.23 agree with the general form given by Eq. 5.17. The diagonal components in 

Eq. 5.22 are 11 1 3M k k−= − − , 22 1 2M k k−= − −  and 33 2 3M k k−= − − , i.e. are given in terms of sums of off-

diagonal elements of the rate matrix, thus are not independent, in agreement with the remark made earlier. 

If all coupling elements have the same value, the three-site system is completely symmetric, and all rate 

constants are identical. In this case the eigenvector corresponding to the vanishing eigenvalue of  M, which 

describes the equilibrium populations, has equal components on the three sites. Symmetry breaking 

(through nondegenerate site energies or unequal coupling matrix elements) leads to unequal site 



76 
 

populations. A non-cyclic tight binding Hamiltonian with identical nearest neighbor couplings has different 

forward and reverse rates, which become equal only at infinite temperature, thus in general the equilibrium 

populations of each site depend on the location of the site. To illustrate these ideas, we present a few 

numerical results of a few model system in the next section. 

 

5.7 Numerical results and methods 

          In this section, we present numerical results on several models of discrete systems coupled to separate 

harmonic baths (which might correspond to intramolecular normal mode coordinates of molecular 

aggregates28). We describe the models in terms of a characteristic coupling value   between system sites. 

For the bath, we go to the spectral density function of a bath given in Eq. 5.3. and to generate a proper 

separation of timescales, set c 100 =  . We use two values of the Kondo parameter, 0.1 =  and 0.5, 

which correspond to reorganization energies equal to 20   and 100  , respectively. Putting these values 

in context of chemical reactions, it is useful to consider the value 2 10 1cm−  as a tunneling splitting 

value typical of many proton transfer or isomerization processes. With this value of  , the characteristic 

bath frequency corresponds to 500 1cm−  and the reorganization energy is 100 1cm−  with 0.1 =  and 500

1cm−  if 0.5 = . In the calculations shown in this section, we obtain an adequate plateau at or above the 

intermediate temperature c 2  = , which is slightly higher than room temperature. We note that the 

temperature is very high with respect to the characteristic frequency of the system, i.e. 0.02 = . As a 

result, all equilibrium site populations attain equal values of 1/ n . 

          We also consider a slower bath with c 10 =  . This relatively low-frequency bath does not produce 

a good separation of time scales and the flux does not exhibit a flat plateau. For the same system energy 

scale 2 10 1cm− , the characteristic frequency of the bath is now only 50 1cm− , typical of solvent 

modes. Nevertheless, we show that at the same temperature (for which now c 0.2  = ), the population 

evolution is still quantitatively described by kinetic equations and the rates obtained from the sloped flux 
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function are highly accurate. On the other hand, if the system energy scale is characteristic of Frenkel 

exciton30 couplings, 50 1cm− , a bath frequency c 10 =   corresponds to 500 1cm− . Realistic 

temperatures in this case correspond to c 2  =  or higher. As the temperature is decreased, time scales 

become truly mixed, eventually causing a breakdown of the kinetic equations. 

          The real time dynamics of the system was performed using the small matrix decomposition of the 

path integral31-33 (SMatPI) which has been discussed in Chapter 2. The coupled kinetic equations were 

solved using the numerical differential equation solver of Mathematica.41  

The figures in this section show the time evolution of the site populations that develop from the 

initial condition (0) 1 1 = , as well as their time derivatives, as obtained from the SMatPI calculations 

and also from solving the kinetic equations with the rates obtained from the imaginary parts of the 

coherences, for several multistate model systems. In all cases it is seen that the time derivatives obtained 

from Eq. 5.8 always agree exactly with those obtained through numerical differentiation of the SMatPI 

population results. Also, the solution of the kinetic equations with rates obtained from the imaginary parts 

of the coherences are in excellent agreement with the SMatPI results. 

         Fig. 5.2 gives the results for a three-state system with identical site energies and nearest-neighbor 

couplings, described by the Hamiltonian 

                                                                ( )0
ˆ 1 2 2 1 2 3 3 2H = −  + + +                                          (5.24) 

which describes a sequential process. The bath is at the intermediate temperature c 2  = . We consider 

two values of the bath frequency, c 100 =   and 10  , along with two values of the Kondo parameter. In 

all cases the populations of the first two sites start changing immediately, while the third site follows later, 

with a zero derivative at the initial time. On the time scale that corresponds to completion of the process, 

the populations, as well as the imaginary parts of the coherences (as time derivatives of populations), exhibit 

(multi-)exponential evolution. However, the imaginary components of the coherences are seen to rise very 

steeply at first and then settle into a slow evolution and eventually decay.  
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Fig.5 2.  Site populations and their derivatives for the three-state model with the Hamiltonian given by Eq.5.24. Solid lines  

                show SMatPI results for the site populations and their numerical derivatives computed by finite difference. In the 

                 right panels, markers show the population derivatives obtained from the imaginary parts of the coherences, while 

                 in the left panels, markers show populations obtained from the solution of the kinetic equations with rates computed 

                 from the coherences at the plateau time. The insets show enlargements of the early dynamics. In (b) the right panel 

                 shows the convergence of the imaginary component of a coherence as a function of the SMatPI entanglement 

                 parameter maxr  and the memory length L. Red, green and blue correspond to sites 1, 2 and 3, respectively. (a) 

                 c 100 =  , 0.1 = , 
c 2  = . (b) c 100 =  , 0.5 = , 

c 2  = . (c) c 10 =  , 0.1 = , 
c 0.2  = . 
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          At early times p 0.1 0.2t − , upon magnification of the plot, we see a near plateau i.e. a linear 

region with a very small slope. We note that an even larger value of c  would result in a more pronounced 

separation of timescales and a truly flat (on the time scale of these graphs) plateau region in the population 

derivatives. The dynamics is faster with smaller values of the reorganization energy ( 0.1 =  and c 10 = 

), causing a more conspicuous slope of the time derivatives. Even when there isn’t a perfect plateau, the 

population dynamics reproduced by the rates obtained from the imaginary parts of the coherences match 

the path integral results perfectly. With the smaller value of system-bath coupling ( 0.1 = ), the evolution 

of population derivatives is nearly monotonic up to the plateau value. In contrast, the population derivatives 

undergo strongly nonmonotonic evolution prior to reaching the plateau when the reorganization energy is 

large ( 0.5 = ). The slower population dynamics observed in this case leads to a flatter plateau regime. In 

all cases shown in Fig. 5.2, the RDM needs to be propagated for a relatively short time. This time should 

be longer than pt  ( 1t  in the present example) to verify the existence of a rate plateau.  

          Next, in Fig. 5.3 we show results for a different three-state process, where state 1 is transformed to 3 

through the direct pathway and also through an intermediate (state 2) according to the Hamiltonian  

                         ( ) ( ) ( )31
0 2 2

ˆ 1 2 2 1 2 3 3 2 1 3 3 1H = −  + −  + −  +                    (5.25) 

In this case, population is transferred to states 2 and 3 simultaneously but with different rates, as expected 

based on the different coupling strengths in the Hamiltonian. The temperature and the bath parameters for 

Fig. 5.3.a are the same as that in Fig 5.2.a, however the dynamics for the former is much faster due to the 

larger values of one of the couplings and the existence of two pathways. The separation of timescales in 

this case is weaker and we get a somewhat large slope of the flux in the plateau region. Nevertheless, the 

computed rates again give rise to highly accurate populations, which are practically identical to those from 

the SMatPI results.  
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Fig. 5.3.   Site populations and their derivatives for the three-state model with the Hamiltonian given by Eq.5.25. Solid lines  

                show SMatPI results for the site populations and their numerical derivatives computed by finite difference. In the 

                right panels, markers show the population derivatives obtained from the imaginary parts of the coherences, while 

                in the left panels, they show populations obtained from the solution of the kinetic equations with rates computed 

                from the coherences at the plateau time. In (b), triangles show results obtained by integrating the kinetic equation 

                from 0t = , while circles show solutions obtained after the 
pt , while early time populations are obtained from 

                SMatPI results. The insets show enlargements of the early dynamics. Red, green and blue correspond to sites 1, 2  

                and 3, respectively. (a) c 100 =  , 0.1 = ,
c 2  = . (b) c 10 =  , 0.1 = , 

c 5  = .  

 

 

          For a two-state system with weak coupling to a harmonic bath, a decrease of temperature leads to 

larger rate.10,14 We see this trend in the three-site dynamics as well. As the temperature is lowered, early-

time transients survive much longer and merging time scales lead to deviations from uniform exponential 

behavior, affecting the accuracy of kinetic equation models. Fig. 5.3.b shows results for a three state system 

at c 5  = , which is lower than any of the temperatures we have used in this work, although it is still 
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relatively high with respect to the system energy scale ( 0.5 = ). Even though the time for the 

completion of this process is comparable to that in Fig. 5.2.c, the flux rises much more slower and settles 

into a not very well-defined plateau much later at p 0.6t . Here, the populations obtained from the kinetic 

equations with rates extracted from the coherence don’t reproduce the correct dynamics. However, 

initializing the kinetic equations with the population values from the path integral results at pt  leads to 

improved results which are almost quantitative (Fig. 5.3.b). Further decreasing the temperature leads to 

oscillatory dynamics through inadequate damping of quantum coherence, where the kinetic equations are 

invalid. 

 

 

 

      

 

 

 

 

 

 

Fig.5.4.  Same as Fig. 3, but for the four-state system given in Eq.5.26.  The parameters are c 100 =  , 0.1 = ,
c 2  = .  

              Red, green, blue and orange correspond to sites 1, 2, 3 and 4, respectively. 

 

 

 

          Next, we present results for a four-state downhill process i.e. where the Hamiltonian has nearest-

neighbor couplings, but the site energies decrease gradually according to the Hamiltonian 
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                  ( )
3

0

1

ˆ 1 1 50 2 2 100 3 3 150 4 4
i

H i i i i
=

= −  + + + −  −  −             (5.26) 

Fig. 5.4 shows the results for such a process. The site populations rise sequentially here, and we can see 

states 3 and 4 have a zero slope at early times as they are not directly connected to state 1. The population 

of state 2 shows a pronounced peak while that of state 4 rises monotonically. Also, the equilibrium 

populations decrease monotonically from 1 to 4 because the temperature is moderate to low with respect to 

differences in site energies, (150 ) 3 = . 

 

 

                                  

     Fig. 5.5.     Site populations for the ten-state model with the Hamiltonian given by Eq.5.27. with c 100 =  , 0.1 = ,  

                        
c 2  = . Solid lines show SMatPI results for the site populations, while markers show populations 

                         obtained from the solution of the kinetic equations with rates computed from the coherences at the plateau  

                         time. The populations of sites 2-10 rise in sequence.  

 

 

 

 

 

          Last, we present results for a 10-site system with nearest-neighbor couplings described by  

 

                                                     ( )
9

0

1

ˆ 1 1
i

H i i i i
=

= −  + + +                                                    (5.27) 
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where c 2  = , c 100 =   and 0.1 = . Fig. 5.5. shows the site populations, which rise in sequence. 

Again, the rates computed from the imaginary parts of the coherences lead to excellent agreement between 

kinetic equations and path integral results.  

 

5.8 Conclusion 

          It is interesting to note that the simple master equation describes Markovian dynamics. However, that 

doesn’t mean that we should calculate the rate constants from Markovian algorithms as at early times, prior 

to the onset of the plateau time, the dynamics is highly non-Markovian. Thus, these rate constants need to 

be calculated using powerful quantum dynamical results.  

          The validity of a set of simple kinetic equations with available rate parameters is important 

conceptually and, in the case of processes in complex, anharmonic environments, quite useful from a 

practical perspective. For very slow (>ns time scale) processes, knowledge of the rate matrix usually is 

sufficient. Obtaining the full-time evolution of site populations can be useful in multistate processes, in 

particular when competing pathways are available. Also, the cost of long-time propagation generally is 

much higher when the system is coupled to a complex anharmonic environment. The kinetic equations are 

much more efficient for these multistate ( 10n  ) and/or slow processes. In this case, calculating the 

relatively short-time dynamics of the RDM that encodes the rate information via a reliable method and 

obtaining long-time populations by solving the coupled kinetic equations would be the most efficient 

approach, as long as the kinetic equation description is applicable.  

          When the interaction between a system and its environment is local in the system basis, imaginary 

components of coherences are directly related to time derivatives of populations. Each such time derivative 

can be thought of as a state-to-state flux, which (under conditions associated with rate dynamics) settles 

early on to a slow exponential decay with the usual plateau appearance familiar from reaction rate theory. 

The imaginary component of the multistate RDM (with all possible initial conditions) at the relatively short 
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plateau time determines the state-to-state rate matrix, which may be used to obtain the population dynamics 

by solving a system of simple kinetic equations. We found the procedure to be robust and accurate even 

when the plateau is visibly sloped and the onset of the plateau regime occurs later, as long as the kinetic 

equations are used only for the remainder of the time evolution. Even when systems exhibit rate kinetics 

associated with classical hopping models, our analysis reveals that quantum coherences are present during 

the entire course of time evolution. Coherences are associated with quantum superpositions, which survive 

the massive damping that gives rise to exponential evolution. More severe damping of superpositions leads 

to slower dynamics. When thermal fluctuations and noisy environments drastically quench coherent 

superpositions of states, quantum transitions become very slow, leading to small rates. Thus, 

phenomenological kinetic equations emerge when noise extensively dampens quantum superpositions, 

creating slow processes and a separation of time scales that lead to exponential evolution, and not because 

of the absence of quantum effects. Also, since state-to-state rates determine equilibrium populations by 

virtue of the detailed balance property, we concluded that (for processes that exhibit rate kinetics) the early 

time evolution of coherences also encodes all information necessary for obtaining the populations at 

equilibrium. This striking observation applies to general multistate systems in contact with complex 

environments. 
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Chapter 6 

Conclusion 

 

          In this work, we used the path integral based methods developed in the Makri group recently for 

simulating exact quantum dynamics of spin systems (characterized by Ising interactions) and dendrimers 

(characterized by Frenkel interactions) where every unit of the system is coupled to a dissipative bath. Path 

integral methods along with the influence functional treatment of the bath provides for the perfect 

framework to study these extended systems coupled to a bath fully quantum mechanically. For both kinds 

of systems, we find interesting features from the real time dynamics of the system.  

          The two methods used in this thesis are MPI and SMatPI. The computational cost of MPI grows 

linearly (as opposed to exponentially) with the system size, thus letting us perform numerically exact 

quantum simulations of extended spin systems. SMatPI is the small matrix decomposition of the previously 

formulated QuAPI which does away with storage of high dimensionality tensors allowing to extend QuAPI 

to larger systems. 

          For Ising spin chains with a transverse field, the dynamics of a given spin in the chain was found to 

be dependent on the spin-spin coupling strength, spin-bath coupling strength and the location of the tagged 

spin in the chain. The dynamics transitions from a oscillatory coherent to incoherent monotonic decay (with 

some parameters displaying an intermittent underdamped oscillatory behavior) with increase in the spin-

spin, spin-bath coupling strength and temperature. Considerable edge effects are observed inviting further 

explorations in this direction. 

          We also investigated dendrimeric systems with number of generations n=1-4, their ground states and 

eigenstate structure. Real time dynamics of dendrimers with n = 1-2 are also presented. These exact 
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numerical results provide valuable insights as to how the magnitude and sign of the intrageneration coupling 

value affects the ground state and finite temperature population in these dendrimers. We see that even in 

the absence of an energy bias in between the dendrimer generations, we can get enough accumulation of 

energy in the dendrimer core. Also, for some parameters we get oscillatory behavior while for some these 

oscillations are quenched. These very rich behaviors will undoubtedly become even more complex when 

additional parameters are allowed to vary, inviting additional work on these fascinating systems. 

          Lastly, we turned our attention to rate theory and  showed that for a multistate system connected to a 

generic environment through terms diagonal in the system basis, the derivative of rates of populations are 

given directly by the imaginary part of the coherences (the off-diagonal elements of the RDM). For regimes 

where there is a considerable separation of timescales and the population derivative of the states has a well-

defined plateau before settling into a slow decay which characterizes the reactive process, we show that 

after the “plateau time”, rate kinetics are able to produce very accurate results. Thus, for these processes, 

we need powerful quantum dynamics methods only to simulate the dynamics only up to the short “plateau 

time” and the remaining long-time population can be calculated integrating the rate equations. In this work 

we show the regimes where the kinetic equations can correctly reproduce the dynamics after the plateau 

time and regimes where this breaks down but by simply initializing the differential rate equations with 

population values at the plateau time gives accurate results. 

 


