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ABSTRACT 

Identifying genotype by environment (GxE) interactions is vital in realizing different 

plant breeding objectives, such as breeding for responsiveness to new stressors or yield stability 

and uniformity. While GxE is an important contributor to a complex trait’s overall genetic 

architecture, a bottleneck of identifying specific GxE loci for use in plant breeding and 

quantitative genetics is the heavy multiple testing correction involved with testing every genetic 

marker and environment interaction. One quantitative genetics phenomenon that may provide a 

shortcut to identifying GxE loci is through variance quantitative trait loci (vQTLs). While vQTLs 

have been identified in humans, yeast, animal model organisms, and livestock species, this is a 

relatively new idea in plant breeding. To further investigate using vQTLs to identify GxE loci, 

this thesis’s three primary objectives are to 1.) conduct a simulation study using publicly 

available genotypic data from Arabidopsis and maize to assess the potential of two vGWAS 

models to identify GxE loci and other non-additive genetic loci like pure vQTLs and epistatic 

loci, 2.) apply the findings from objective 1.) to real flowering-time data in maize to assess how 

well vGWAS can aid in detecting GxE loci, and 3.) examine the merit of incorporating peak-

associated vGWAS signals for obtaining genomic estimated breeding values that are stable 

across environments. This thesis argues that vGWAS can help identify GxE loci, but more work 

needs to be done to realize this full potential. I discuss this notion by using simulations and 

flowering-time traits in maize as a proof of concept for vGWAS and genomic selection.  
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CHAPTER 1: Assessment of two statistical approaches for variance genome-

wide association studies in plants 1 

1.1 ABSTRACT 

Genomic loci that control the variance of agronomically important traits are increasingly 

important due to the profusion of unpredictable environments arising from climate change. The 

ability to identify such variance-controlling loci in association studies could assist  future 

breeding efforts. Two statistical approaches that have already been used in the variance genome-

wide association study (vGWAS) paradigm are the Brown-Forsythe test (BFT) and the double 

generalized linear model (DGLM). To ensure that these approaches are deployed as effectively 

as possible, it is critical to study the factors that influence their power to identify variance-

controlling loci. We used genome-wide marker data in maize (Zea mays L.) and Arabidopsis 

thaliana to simulate traits controlled by epistasis, genotype by environment (GxE) interactions, 

and variance quantitative trait nucleotides (vQTNs). We then quantified true and false positive 

detection rates of the BFT and DGLM across all simulated traits. We also conducted a vGWAS 

using both the BFT and DGLM on plant height in a maize diversity panel. The observed true 

positive detection rates at the maximum sample size considered (N = 2,815) suggest that both of 

these vGWAS approaches are capable of identifying epistasic and GxE loci using for sufficiently 

large sample sizes. We also noted that the DGLM decisively outperformed the BFT for 

simulated traits controlled by vQTNs at sample sizes of N = 500. Although we conclude that 

there are still certain aspects of vGWAS approaches that need further refinement, this study 

suggests that the BFT and DGLM are capable of identifying variance-controlling loci in current 

state-of-the-art plant or agronomic data sets. 
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1.2 Introduction 

The world's food baskets face an expanding amount of unpredictable growing seasons due to the 

ongoing threat of climate change (Ziervogel and Erickson, 2010). If a 4°C increase in global 

temperature is not prevented by 2100, there could be a potential loss of $23 quadrillion to 

agriculture (Schillaci et al., 2019). Unfortunately, most crops are maladapted to highly variable 

environments, where optimal growing conditions may never be attained (Mulder et al., 2007). 

An idea that may lend itself to accelerating the development of crops better suited for such 

variable environments is canalization. Canalization is the hypothesis that natural selection 

minimizes variation for certain traits in a way that prevents major loci from being influenced 

significantly by the environment or background genetic variance like epistasis (Waddington, 

1942; Rönnegård  and Valdar, 2011). Artificial selection facilitates the decanalization of certain 

loci, which has allowed domesticated crops to grow in novel environments (Kitano, 2004). 

However, these decanalized loci are disadvantageous if the environment it was adapted to 

becomes unpredictable (Waddington, 1942). Collectively, the combination of decanalized loci 

and unpredictable environments has resulted in such loci controlling the variance of a targeted 

trait; that is, as a variance quantitative trait locus (vQTL; (Debat & David, 2001). A classic 

example of such vQTLs are genes that encode heat shock proteins, which are involved with 

various environmental stressors, including heat stress, ultraviolet radiation, cold tolerance, and 

biotic stressors (Park and Seo, 2015). Variance-controlling loci also arise from epistatic gene 

action, where the marginal effects of one of the epistatically interacting genes appear as a vQTL 

(see Forsberg and Carlborg, 2017 for a review). Recent advances in genome-wide association 

study (GWAS) approaches, such as that described in Li et al. (2022) make it possible to 

indirectly quantify the effects of variance-controlling loci through the inclusion of genotype by 
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environment (GxE) and epistatic (GxG) terms in the model. To complement these approaches, 

variance GWAS (vGWAS) has been proposed to directly quantify the effect of these variance-

controlling loci (Shen et al., 2012; Shen et al., 2014; Yadav et al., 2016). 

The primary purpose of a vGWAS is to detect genetic loci that alter the variance of a 

phenotype between different genotypes (Al Kawan et al., 2018). While vGWASs have been 

conducted in plants and crops, its utilization is still not widespread. To date, vGWASs have been 

conducted for ionomic traits, including molybdenum content in Arabidopsis thaliana and 

cadmium content in bread wheat (Triticum aestivum) (Shen et al., 2012; Forsberg et al., 2015; 

Hussain et al., 2020), as well as for oil-related traits in maize (Zea mays L.) (Li et al., 2020). 

Unlike those used in a standard GWAS (denoted as a mean GWAS or mGWAS), the statistical 

models used for a vGWAS specifically assume unequal phenotypic variance at each genotypic 

state of a given locus, i.e., in the presence of variance heterogeneity (Rönnegård  and Valdar, 

2011). Variance-controlling loci are connected to many different ideas within quantitative 

genetics, including epistatic and GxE interactions (Struchalin et al., 2012; Rönnegård and 

Valdar, 2011). One potentially important advantage of using vGWAS for search for the presence 

of such interactions is it could prioritize genomic regions likely to harbor epistatic interactions, 

thereby reducing the severity of multiple testing correction (Struchalin et al., 2012; Petterson and 

Carlborg, 2015). The markers in these regions could then be directly tested for the presence of 

epistasis or GxE interactions. 

Many statistical analyses have been developed to test for variance heterogeneity. From a 

biological perspective, the choice of test and model can be divided into whether or not one 

accounts for population structure, relatedness, and other covariates (Rönnegård  et al., 2012). Of 
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the statistical tests that do not account for such factors, Levene's test and its median modification, 

the Brown-Forsythe test (BFT), have been the most popular (Brown and Forsythe, 1974; 

Rönnegård and Valdar, 2012). Although they are useful as a quick diagnostic for identifying 

variance-controlling loci, they cannot explicitly correct for population structure, familial 

relatedness, or loci that control the mean of a tested trait (called mean QTLs or mQTLs) (Hong et 

al., 2017). In contrast, models that allow for the inclusion of these factors as covariates 

theoretically offer higher power to detect variance-controlling loci. In particular, the double 

generalized linear model (DGLM) (Lee and Nelder, 1996) adjusts for potential confounding 

between vQTLs, mQTLs, and population structure through the inclusion of fixed-effect 

covariates. Excitingly, more sophisticated versions of the DGLM also include random effects to 

account for confounding due to familial relatedness (Lee and Nelder, 2006; Rönnegård and 

Valdar, 2012).  

Although statistical approaches seeking to estimate the effects of variance-controlling 

loci have opened up many opportunities for discovering new sources of quantitative trait 

variation, detecting variance-controlling loci still poses challenges. For example, the statistical 

power needed to detect a variance-controlling locus often requires five times as many individuals 

compared to the precision needed to detect a mean-controlling locus (Lee and Nelder, 2006; 

Ronnegard and Valdar, 2012). This suggests that there is a critical need to systematically study 

the statistical performance of leading vGWAS approaches. Therefore, the purpose of this study 

was to explore the factors that influence the ability of the BFT and DGLM to detect vQTLs 

underlying plant traits. We used publicly available whole-genome resequencing data from the 

1,001 genomes diversity panel in Arabidopsis thaliana (Alonso-Blanco et al., 2016) and the 

USDA-ARS North Central Region Plant Introduction Station (NCRPIS) Panel in Zea mays L. 
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(Romay et al., 2013) to simulate traits controlled by epistasis, GxE effects, or variance-

controlling loci with various effect sizes. We also explored the ability of these two approaches to 

find variance-controlling loci associated with the plant height data from Peiffer et al. (2014) that 

was measured in the Goodman maize diversity panel (Flint-Garcia et al., 2005). 

1.3 Materials and Methods 

Genotypic data and filtering procedures 

We conducted simulation studies using genotypic data from two plant species with contrasting 

levels of linkage disequilibrium (LD) decay. The first genotypic data set was a subset of 1,087 

accessions from the Arabidopsis thaliana 1,001 genomes diversity panel, available at 

https://1001genomes.org/ (Alonso-Blanco et al., 2016). The 1,001 genomes diversity panel 

consists of germplasm mostly collected from Eurasia, North America, and Northern Africa. 

These accessions were genotyped using whole-genome resequencing, which produced 

10,707,430 biallelic SNPs (Alonso-Blanco et al., 2016). The second set of genotypic data 

consisted of 2,815 lines from the NCRPIS diversity panel in maize (Romay et al., 2013). This 

diversity panel was genotyped for 681,257 SNPs, as described in Romay et al. (2013). This 

genotypic data set is publicly available 

at cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?filegroupid=6.  

Both genotypic data sets were filtered with VCFtools (Danecek et al., 2011) to remove  

SNPs with more than 10% missing data or minor allele frequency (MAF) below 5%(Danecek et 

al., 2011). These data sets were then further filtered with LD pruning utilizing PLINK (Purcell et 

al., 2007). The LD pruning parameters for Arabidopsis were set to 𝑟2 = 0.10, a window size of 

200 SNPs, and a step size of 20 SNPs. The LD pruning parameters for maize were loosely based 

https://1001genomes.org/
http://cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?filegroupid=6
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on the procedure done in Romay et al. (2013), which were 𝑟2 = 0.2, a window size of 100 SNPs, 

and a step size of 25 SNPs. This filtering process described above was conducted independently 

in both species. The resulting number of SNPs was 41,384 for Arabidopsis and 72,359 for maize. 

To assess how sample size affects the performance of the tested statistical methodologies, 

we considered two different sample size scenarios for each species. The first scenario focused on 

employing all individuals in both panels (i.e., N = 1,087 for Arabidopsis and N = 2,815 for 

maize). In the second scenario, we randomly selected N = 500 individuals from each panel using 

the sample() function in R (R Core Team 2021).  

Simulation of traits controlled by variance- and mean- quantitative trait nucleotides 

We developed the approach described below to simulate traits controlled by variance quantitative 

trait nucleotides (vQTNs) and/or mean QTNs (mQTNs). Each of these simulated traits consisted 

of a unique configuration of vQTNs, mQTNs, their effect sizes, and narrow-sense heritability. 

These parameters were used in the following formula derived from Hill and Mulder (2010) to 

obtain simulated trait values for each individual: 

𝑃𝑖 = 𝐴𝑚,𝑖 + 𝜒𝑖𝑘(𝜎𝐸 + 𝐴𝑣,𝑆𝐷𝑖), (1.1) 

where 𝑃𝑖 is the simulated phenotypic value of the 𝑖𝑡ℎ individual, 𝐴𝑚,𝑖 is the total genetic value 

from all simulated mean QTNs for the 𝑖𝑡ℎ individual, 𝜒𝑖 is a standard normal random variable 

(i.e., 𝑁(𝜇 = 0, 𝜎2= 1)) sampled for the 𝑖𝑡ℎ individual, 𝑘 is a constant described two paragraphs 

below that allows for a certain degree of control over the narrow-sense heritability, 𝜎𝐸  is the 

population standard deviation determined attributed to non-genetic sources, and 𝐴𝑣,𝑆𝐷𝑖 is the 

collective genetic value of all simulated vQTN for the 𝑖𝑡ℎ individual. The values of 𝐴𝑚,𝑖 and 



 

7 

 

𝐴𝑣,𝑆𝐷𝑖 are respectively calculated as the sum of the observed numeric genotype value at each 

mean and variance QTN, multiplied by the (respective) mean and variance QTN effects for the 

𝑖𝑡ℎ individual. These simulations are conducted assuming that the covariance between 𝐴𝑚,𝑖 and 

𝐴𝑣,𝑆𝐷𝑖 is zero. 

One major challenge for simulating traits controlled by vQTNs is the specification of the 

desired heritability. Because the value of (𝜎𝐸 + 𝐴𝑣,𝑆𝐷𝑖) changes for every individual, the value of 

the heritability will also change for every individual. We, therefore, made ad hoc adjustments to 

Equation 1 to ensure at least partial control for a desired narrow-sense heritability (ℎ2). First, the 

value of 𝜎𝐸  was also set to 1, and then 𝐴𝑚,𝑖 was centered and scaled, so its sample mean and 

standard deviation were respectively 0 and 1. These steps were taken to facilitate the estimation 

of the 𝑘 in Equation 1.  

We now describe the derivation of the procedure we used to estimate the value of 𝑘. 

Consider the following modified formula for estimating narrow-sense heritability ℎ2 for traits 

controlled by vQTNs:  

ℎ̂2 =
𝜎̂𝐴
2

𝜎̂𝐴
2+𝑘2(𝜎̂𝐸+𝑀𝑑𝑛{𝐴𝑣,𝑆𝐷𝑖})

2 , (1.2) 

where 𝜎̂𝐴
2 = 𝑉𝑎𝑟{𝐴𝑚𝑖} = 1 because 𝐴𝑚,𝑖 was scaled, 𝜎̂𝐸  was set equal to 𝜎𝐸  = 1 to facilitate 

calculations, and 𝑀𝑑𝑛{𝐴𝑣,𝑆𝐷𝑖} is the median value of 𝐴𝑣,𝑆𝐷𝑖 across all 𝑛 individuals (i.e., all 

individuals in either the Arabidopsis or maize data sets used for the simulations). Thus, solving 

Equation 2 for 𝑘 yields: 
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𝑘 = √
𝜎̂𝐴
2

ℎ̂2
−𝜎̂𝐴

2

(𝜎̂𝐸+𝑀𝑑𝑛{𝐴𝑣,𝑆𝐷𝑖})
2 , (1.3) 

where all terms are as previously described. Thus, for each simulation setting, the value of 𝑘 

from Equation 3 was used in Equation 1 to obtain simulated trait values for every individual. 

Two R functions were used to simulate these traits. Additive mean QTNs, which 

contribute to 𝐴𝑚,𝑖 in Equation 1, were simulated using the create_phenotypes() function in the 

simplePHENOTYPES R package (Fernandes and Lipka, 2020). We then developed our custom 

R function that was roughly based on the Python code from Dumitrascu et al. (2019) to obtain 

the remaining necessary values in Equations 1, 2, and 3 to simulate the phenotypic values 𝑃𝑖. To 

facilitate the deployment of our simulation pipeline to future studies, we made it available 

through simplePHENOTYPES v1.4 (create_phenotypes(… , model = “V”)) 

(https://github.com/samuelbfernandes/simplePHENOTYPES ).  

Description of all settings considered in simulation study   

We conducted a comprehensive study that simulates traits controlled by either i.) no QTN, ii.) 

epistasis, iii.) GxE, or iv.) a combination of vQTN and mQTN (using the approach described in 

the previous section). Consequently, our simulation studies were subdivided into four respective 

scenarios summarized in Table 1. Across all scenarios, a total of 64 unique settings (i.e., 

combinations of input parameters) of traits were simulated. At each setting, a total of 100 

replicate traits were simulated. 

To enable a rigorous assessment of false positive rates of the tested vGWAS approaches, 

the “Null” scenario (as depicted on Table 1) consisted of traits with broad-sense heritability (𝐻2) 

https://github.com/samuelbfernandes/simplePHENOTYPES
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set to 𝐻2= 0 and zero QTNs. Consistent with the hypothesis that epistasis is responsible for 

vQTLs (Forsberg and Carlborg, 2017), the “Epistasis” scenario simulated traits controlled by 

three epistatically interacting pairs of loci. For each pair, the epistatic effect was defined as the 

effect corresponding to the product of additively-encoded explanatory variables at each locus 

(i.e,. the additive-by-additive effect, 𝑖𝑎𝑎, defined in Cordell, 2002). For each individual, the 

genetic values from each of the epistatically interacting loci were added up, and the resulting 

simulated trait value was the sum of these genetic values plus a normally distributed random 

variable with population mean 0 and population variance determined from the broad-sense 

heritability of the trait. To enable an assessment of the impact of heritability on the results, we 

kept the effect sizes of each of these epistatic QTN constant at 0.75, and the targeted MAF of all 

SNPs selected to be QTNs was 0.10. We then simulated traits at two different broad-sense 

heritabilities, namely 𝐻2 = 0.3 and 𝐻2 = 0.8. 

For the “GxE” scenario we used the "partial pleiotropy" setting in simplePHENOTYPES 

(Fernandes and Lipka, 2020) to simulate one trait in two environments that was controlled by 

two environment-specific mQTNs. The first of these mQTNs was at the same randomly-selected 

marker for each environment, but had contrasting additive effect sizes, specifically 0.2 in the first 

environment (called Environment A) and 0.8 in the second environment (Environment B). The 

second of these mQTNs were at different randomly-selected markers for each environment, and 

was assigned an additive effect size of 0.5. All simulated QTNs had MAFs of approximately 0.3. 

The narrow-sense heritabilities of both traits were set at ℎ2 = 0.7. Upon completion of simulating 

this trait in two environments, each individual had two trait values: one from Environment A 

(𝑌𝐴), and one from Environment B (𝑌𝐵). However, a single phenotypic value was needed for each 
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individual for downstream analyses. Thus, for each individual we used the difference between 

trait values 𝑌𝐴 − 𝑌𝐵 as the response variable in the subsequent statistical analysis. 

Finally, we used the findings from previously published vGWAS and vQTL studies 

conducted in Arabidopsis and maize (Shen et al., 2012; Li et al., 2013; Forsberg et al., 2015; Li 

et al., 2020) as a basis for the “vQTN” scenario. Collectively, the various parameters we 

explored in this scenario (summarized in Table 1) enabled us to study the impact of narrow-sense 

heritability, MAF of vQTNs, and the effect sizes of vQTNs on the performance of the various 

GWAS approaches we explored. Detailed information about the actual SNPs that were randomly 

selected to be QTNs across all settings are presented in the provided GitHub repository. 

Competing GWAS models and tests 

We considered two different statistical approaches used in previous plant publications to conduct 

vGWAS, namely the BFT and the DGLM (Shen et al., 2012; Forsberg et al., 2015; Hussain et 

al., 2020; Li et al., 2020). In general, the BFT is used in vGWAS to test for variance 

homogeneity (Brown and Forsythe, 1974; Shen et al., 2012). For each locus, the BFT evaluates: 

𝐻0: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑎𝑡 𝑎𝑙𝑙 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠  versus 

𝐻𝑎: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡𝑠 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒,  

and uses the corresponding test statistic: 

𝐹 = 
(𝑁−𝑚)Σ𝑗=1

𝑚 𝑛𝑗(𝑦.𝑗
∗−𝑦..

∗)2

(𝑚−1)Σ𝑗=1
𝑚 Σ

𝑖=1

𝑛𝑗
(𝑦𝑖𝑗
∗ −𝑦.𝑗

∗ )2
,  (1.4) 

where 𝑁 is the total number of accessions, 𝑛𝑗  is the number of accessions in the 𝑗𝑡ℎ genotypic 

group, 𝑚 is the number of genotypes at the tested genetic marker, and  
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𝑦𝑖𝑗
∗ = |𝑦𝑖𝑗 − 𝑦̃𝑗|. (1.5) 

In (5), 𝑦𝑖𝑗 is the phenotypic value for the 𝑖𝑡ℎ individual with the 𝑗𝑡ℎ genotype and 𝑦̃𝑗 is the 

median phenotypic value of individuals with genotype 𝑗. Under 𝐻0, the BFT statistic in (4) 

follows an F distribution with degrees of freedom equal to 𝑚− 1,𝑁 −𝑚 (Shen et al., 2012). 

The BFT was performed using the brown.forsythe.test() function from the vGWAS R package 

(Shen et al., 2012). Because the BFT does not allow explicit inclusion of covariates to account 

for false positives arising from population structure and familial relatedness, it often serves as a 

quick diagnostic test to see if the trait of interest has any underlying vQTLs. Furthermore, the 

BFT is robust to phenotypic departures from normality (Dumitrascu et al., 2019; Hussain et al., 

2020).  

The DGLM belongs to a family of generalized linear models, which relaxes the 

assumption of normality of phenotypic residuals for more flexible modeling. Specifically, the 

DGLM consists of two linear predictors that model the relationship between a response variable 

and i) explanatory variables controlling its population mean (Equation 6), and ii) explanatory 

variables controlling its population variance (Equation 7). The component of the DGLM 

controlling the population mean is written as follows: 

𝑌𝒊 = 𝜇𝑚 + 𝛴𝑘=1
𝑞 𝑋𝑖𝑘𝛽𝑘 + 𝑠𝑖𝑗𝑎𝑚𝑗 + 𝜀𝑖 , (1.6) 

where 𝑌𝒊  is the observed phenotypic value of the 𝑖𝑡ℎ individual, 𝜇𝑚 is the intercept; 𝑋𝑖𝑘 the value 

of the 𝑘𝑡ℎ principal component from a principal component analysis (PCA) of the markers (Price 

et al., 2006) observed in the 𝑖𝑡ℎ individual (the first 𝑞 = 4 and 𝑞 = 3 principal components were 

included in the models used in Arabidopsis and maize, respectively);  𝛽𝑘 is the regression 
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coefficient for the 𝑘𝑡ℎ principal component; s𝑖𝑗 is the value of the 𝑗𝑡ℎ SNP encoded as 0,1,2 for 

the 𝑖𝑡ℎ individual; 𝑎𝑚𝑗  is the additive effect size of the 𝑗𝑡ℎ SNP; and 𝜀𝑖~𝑁(0, 𝜎𝜀𝑖
2 ). In the 

“vQTN” scenario presented in Table 1, s𝑗 was set equal to the mQTN and 𝑎𝑚𝑗  was its effect size; 

in all other settings, these two terms were omitted from the model because no mQTNs were 

simulated. The component of the DGLM controlling the population variance of the 𝑖𝑡ℎ individual  

𝜎𝜀𝑖
2  is written as follows: 

log(𝜎𝜀𝑖
2) = 𝜇

𝑣
+ 𝑠𝑖𝑗𝑎𝑣𝑗    (1.7)  

where 𝜎𝜀𝑖
2  is the residual variance for the 𝑖𝑡ℎ individual; 𝜇𝑣 is the intercept; 𝑠𝑖𝑗 is the value of the 

observed SNP value encoded 0,1 and 2 at the 𝑗𝑡ℎ marker for the 𝑖𝑡ℎ individual; and 𝑎𝑣𝑗 is the 

effect size of the 𝑗𝑡ℎ marker.  

To test for a significant association between the 𝑗𝑡ℎ marker and the variance of the tested 

trait, we used the Wald test (Agresti, 2003) to test 𝐻0: 𝑎𝑣𝑗 = 0 versus 𝐻𝑎: 𝑎𝑣𝑗 ≠ 0, which follows 

an asymptotic 𝜒1
2 distribution under 𝐻0. Thus, under 𝐻0, the mean component of the DGLM 

remains as presented in Equation 6, while the component presented in Equation 7 is reduced to: 

log(𝜎𝜀𝑖
2) =  𝜇

𝑣
  (1.8) 

where all terms are as previously described.  

As described in Corty and Valdar (2018), the DGLM framework is flexible in that it 

allows one to test for either the presence of a vQTN (i.e., test for 𝐻0: 𝑎𝑣𝑗 = 0, where 𝑎𝑣𝑗 is 

described in Equation 7), presence of an mQTN (i.e., test for 𝐻0: 𝑎𝑚𝑗 = 0, where 𝑎𝑚𝑗  is 

described in Equation 6), or for the presence of both (i.e., test for 𝐻0: 𝑎𝑣𝑗 = 0 𝑎𝑛𝑑 𝑎𝑚𝑗 = 0) at 

the 𝑗𝑡ℎ marker. For the sake of a direct comparison between the ability of the DGLM and the 

BFT to identify vQTNs, we assume that the user has already ran an a priori GWAS scan and that 
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any peak-associated mQTNs were fitted into the mean component of the DGLM, as presented in 

Equation (6). Thus, the multiple testing correction, described in detail in the next section, was 

applied equally to both the BFT and the DGLM. Because our analysis of DGLM is only testing 

for the presence vQTNs, the stringency of multiple testing will not be as severe as prior 

applications of the DGLM (e.g., Corty and Valdar, 2018) that tested for the presence of either, 

vQTNs, mQTNs, or both. To perform DGLM, we used the R code from Hussain et al. (2020), 

which came from the dglm R package (Dunn and Symth, 2020). The PCAs for population 

structure were obtained using GAPIT version 4.0 (Lipka et al., 2012). 

As a counterpoint to both the BFT and DGLM, we also conducted a GWAS at each 

replicate using a standard GWAS model. Specifically, we used GAPIT version 4.0 (Lipka et al., 

2012) to fit the unified mixed linear model (MLM; Yu et al., 2006) at each SNP and at each 

replicate trait considered in this study. Within each species, the same PCs that have been 

previously described were included in the model to account for subpopulation structure, and the 

method of VanRaden (2008) was used in the filtered marker sets in each species to obtain 

additive genetic relatedness (i.e., kinship) matrices to account for familial relatedness. 

The ensuing analyses using both of these statistical approaches were conducted on a Dell 

Precision Tower 3240 with 64.0 GB RAM. While the BFT was ran on a single core, DGLM was 

ran on four cores using the foreach R package.  

QTN detection rates for competing models 

To assess whether or not the vGWAS methodologies can correctly identify markers as associated 

with our simulated traits, we evaluated the true and false positive QTN detection rates using the 

Benjamini and Hochberg (1995) procedure to control the false-discovery rate (FDR) at 5%. A 
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statistically significant SNP was labelled as a true positive if it was within a 250 kb window of a 

simulated vQTN for maize and within 100kb window of a simulated vQTN in Arabidopsis. 

Likewise, a statistically significant SNP was labelled as a false positive if it was outside of these 

windows. We defined the true positive rate as the proportion of times we detected at least one 

true positive per replication out of 100 replications. Similarly, the false positive rate is defined as 

the proportion of times we detected at least one false positive per replication out of 100 

replications. True and false positive detection rates were further scrutinized by calculating 95% 

confidence intervals using the method of the Clopper and Pearson (1934) in the PropCIs R 

package (Scherer and Scherer, 2018). For each setting, all SNPs selected to be vQTNs were 

removed prior to calculating the true and false positive detection rates. 

We also developed an approach similar to one presented in Gage et al. (2018) that used 

receiver operating characteristic (ROC) curves (Metz, 1978) to evaluate the ability of the three 

GWAS approaches to differentiate between true and false positives. For all settings except for 

those under the “Null” scenario, we randomly selected ten replicate traits. For each replicate 

trait, we used the genome-wide P-values from each of the three GWAS approaches to obtain 

corresponding ROC curves, where cases were considered to be all SNPs within the 

aforementioned physical windows of each QTN, and the remaining SNPs outside of these 

windows were considered to be controls. Thus, for a given replicate trait, a separate ROC curve 

was obtained for each of the three GWAS approaches. For each resulting ROC curve, we 

calculated the area under the ROC-curve (AUC); values of AUC greater than 0.5 suggest that the 

corresponding statistical model is capable of discriminating between cases and controls. Finally, 

for each GWAS approach used in each setting, we reported the median AUC value across the ten 

replicates. 
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Analysis of plant height data in a maize diversity panel 

We performed a vGWAS using both the BFT and DGLM on plant height best linear unbiased 

predictors (BLUPs) from Peiffer et al. (2014). Briefly, this trait was measured on 279 individuals 

from the Goodman maize diversity panel (Flint-Garcia et al., 2005) grown in ten different 

locations. To implicitly control for population structure and familial relatedness, we performed a 

two-step approach as described in previous vGWAS publications (Shen et al., 2012; Forsberg et 

al., 2015; Li et al., 2020; Zhang and Qi, 2021). This approach first runs the unified MLM (Yu et 

al., 2006) with PCs (for this analysis, we used the first five PCs) and the VanRaden (2008) 

kinship matrix in TASSEL 5.0 (Bradbury et al., 2007) for the first step. The resulting residuals 

from this step were used as the response variable in our ensuing analyses. The genotypic data for 

this analysis consisted of a subset of 48,880 SNPs from the Illumina SNP50 chip (Cook et al., 

2012). For both the BFT and DGLM, we used the Benjamini and Hochberg (1995) to control for 

the genome-wide false discovery rate at 5%. To visualize the loci identified for the BFT, DGLM, 

and MLM, circular Manhattan plot was created using the Cmplots R package (Yin, 2018). 

1.4 Results 

False positive detection rates in the “Null” setting suggest BFT and DGLM adequately 

control for false positives 

We ran the “Null” scenario to verify that the observed false positive rates for the BFT and 

DGLM were similar to what we would expect based on statistical theory (Figure 1.1). We also 

calculated 95% confidence intervals for these false positive rates using the method described by 

Clopper and Pearson (1934). All of these CIs contained the targeted FDR of 0.05.  
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High true positive detection rates were obtained for highly heritable epistatic QTNs, 

especially at larger sample sizes 

When the heritability of the simulated epistatic QTNs were high (𝐻2 = 0.80), both the BFT and 

DGLM tended to detect SNP pairs contributing to epistatic QTNs for all combinations of species 

and sample sizes, although these true positive detection rates notably lower for maize at N = 500 

(Figure 1.2). In contrast, both vGWAS approaches yielded extremely low detection rates of the 

pairs of SNPs contributing to the epistatic QTNs when the broad-sense heritability of the 

epistatic QTNs was low (𝐻2= 0.30). In general, both vGWAS approaches tended to detect the 

epistatic QTNs at similar rates in Arabidopsis, while the DGLM tended to yield either similar (at 

N = 2,815) or higher (at N = 500) true positive detection rates than the BFT in maize. The 

epistatic QTNs were identified by the MLM at relatively consistent high rates only when they 

were simulated in maize with sample size N = 2,815 and heritability of 𝐻2 = 0.8. The results 

from the analysis of the ROC curves and corresponding median AUC values (Table 12.) support 

the findings presented in Figure 1.2. Thus, these results suggest that the two tested vGWAS 

approaches are capable of detecting pairwise epistasis, but these epistatic signals need to be 

highly heritable. 

vGWAS approaches yielded high true positive detection rates of GxE signals only at the 

largest evaluated sample size   

The BFT and DGLM could detect true positive signals from simulated GxE effects at non-

negligible rates at only the largest sample size we evaluated, namely at N = 2,815 in maize 

(Figure 1.3). At this sample size, both of these approaches yielded similar true detection rates at 

the QTN that was simulated at the same genomic position, but with different effect sizes, in both 
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environments. However, at the two environment-specific QTNs, the BFT yielded higher true 

positive detection rates than the DGLM (Figure 1.3 D). At this sample size in maize, we also 

observed that the BFT detected the QTNs at rates either greater than or similar to those from the 

MLM. The results from the ROC curves and corresponding median AUC values were consistent 

with the true positive rates presented in Figure 1.3, especially with respect to noticeably higher 

median AUC values in maize at N =2,815 (Table 1.2.). Collectively, these results suggest that the 

BFT and DGLM are capable of identifying a GxE signal at reasonably high detection rates, but a 

large sample size (at least N = 2,815) is needed.  

DGLM was capable of identifying vQTNs at smaller sample sizes of N = 500  

Across both of the evaluated species and narrow-sense heritabilities, we observed that the true 

positive detection rates of the DGLM tended to monotonically increase with the effect sizes of 

vQTNs, particularly for those with MAFs of approximately 0.4 (Figure 1.4). This trend was 

observed for such vQTNs across all of the evaluated sample sizes. In contrast, the BFT 

consistently yielded low true positive QTN detection rates at N = 500. Although not as 

pronounced as the DGLM, we also observed that the true positive detection rates of the BFT 

tended to monotonically increase with vQTN effect sizes at certain settings. While 

approximately similar trends in true positive detection rates were observed in maize across the 

two vQTN MAF settings, notably lower true positive detection rates were observed for both 

vGWAS approaches in Arabidopsis for vQTNs with MAFs of approximately 0.1. We also 

observed that the DGLM results were more consistent across the two evaluated narrow-sense 

heritabilities than the BFT. As expected, the simulated vQTLs were not detected by the MLM, 

which makes sense considering the MLM assumes that the variances between genotypic groups 
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are equal. Similar trends were noted in the analysis of the ROC curves (Table 1.2) in particular 

with median AUCs for the BFT and DGLM tending to monotonically increase with sample size, 

MAF, and vQTN effect size. Overall, these results suggest that the DGLM is capable of 

outperforming the BFT at sample sizes of N = 500.  

BFT and DGLM identified significantly associated markers for plant height 

The BFT and DGLM both identified statistically significant associations for plant height in the 

Goodman diversity panel at a genome-wide FDR of 5% (Figure 1.5a), while no statistically 

significant associations were found using the unified MLM. Interestingly, three statistically 

significant associations located on chromosomes 1, 2, and 8 were identified by both the BFT and 

DGLM (Figure 1.5a). The quantile-quantile plots presented Figure 1.5b suggest that the –log(P-

values) from the DGLM are more inflated than those from the BFT and MLM. 

1.5 Discussion 

We used both simulated and real traits to evaluate the ability of two vGWAS approaches, namely 

the BFT and the DGLM, to identify epistasis, GxE, and variance-controlling loci. At the 

maximum sample size evaluated (N = 2,815), both vGWAS approaches frequently identified 

highly heritable epistatic and GxE signals. For simulated traits that were controlled by vQTNs, 

we observed that the DGLM yielded substantially higher true positive detection rates than the 

BFT at sample sizes of N = 500. Collectively, these results provide a potential benchmark for 

how the BFT and DGLM are expected to perform when deployed to vGWAS in plants. Such an 

assessment is essential because the more widespread use of vGWAS in plants could  facilitate 

selection for uniformity of trait values across various environmental conditions. 
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Prospects on the ability of BFT and DGLM to assist in identifying epistasis and GxE  

Because of strong evidence in the literature that both epistasis and GxE could underlie the 

statistical associations identified in vGWAS (Struchalin et al., 2012; Rönnegård and Valdar 

2011), two of our simulation scenarios explicitly simulated these two sources of  variability. The 

results from these two scenarios suggest that the DGLM and BFT are capable of finding highly 

heritable epistatic and GxE signals at the largest evaluated sample size (N = 2,815 in maize). An 

even more exciting result was that for the highly heritable epistatic QTNs at sample sizes of N = 

500, both the vGWAS approaches yielded high detection rates in Arabidopsis, while the DGLM 

yielded modest to high true positive detection rates in maize.  

The fact that we were able to identify these epistatic and GxE loci suggest that vGWAS 

approaches could assist in the detection of epistasis or GxE effects underlying agronomically 

important traits. As described in Struchalin et al. (2012), the large number of possible interacting 

loci to be tested when searching for epistasis or GxE results in a heavy multiple testing 

correction burden. To overcome this, a preliminary vGWAS scan could be conducted to 

highlight specific genomic markers likely to harbor these sources of genomic variability. Given 

our results, we expect vGWAS approaches to be successful in identifying highly heritable 

epistatic and GxE effects for sample sizes of at least N = 2,815. If such loci were to be detected 

using vGWAS studies, they can then be directly tested for epistasis and/or GxE effects in a 

follow-up analysis, where the multiple testing correction would be substantially reduced because 

only the markers identified using vGWAS are analyzed. 

Prospects on the ability of the BFT and DGLM to identify vQTN  

One consistent result we observed in both species was that the DGLM yielded higher true 

positive detection rates than the BFT at sample sizes of N =500 and MAF = 0.4. This suggests 
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that a sample size of 500 could be sufficient for the DGLM to identify common variance-

controlling loci. In addition to varying the sample size and species in the “vQTN” scenario, we 

also evaluated the performance of these two vGWAS approaches across two targeted vQTN 

MAFs, effect size, and narrow-sense heritabilities. Not surprisingly, we observed that the true 

positive vQTN detection rates of both models tended to increase monotonically with their 

simulated effect sizes. We also noted that higher true positive detection rates tended to be 

observed for vQTNs with the higher targeted MAF = 0.4, which again was consistent with our 

expectations prior to conducting this study. However, higher than expected true positive 

detections were observed in maize for vQTNs with targeted MAF = 0.10. Taken together with 

the less favorable true positive detection rates in Arabidopsis for vQTNs with targeted MAF = 

0.10, these results suggest that vGWAS could be used to identify genomic regions likely to 

harbor rare vQTNs under certain circumstances. Therefore, we recommend that future studies 

investigate the impact of LD decay and marker technologies on the ability to identify rare 

vQTNs. Although there were certain settings at ℎ2  = 0.63 where the BFT outperformed the 

DGLM, the latter approach yielded more stable true positive detection rates across the two 

evaluated narrow-sense heritabilities. This result suggests that the DGLM is more robust than the 

BFT for controlling the influence of the simulated mQTN on the overall simulated trait variance, 

and further underscores our recommendation of the DGLM as the preferred vGWAS approach 

(Lipka et al., 2015). 

Limitations of our simulation studies 

Although useful for simulating traits with similar genetic architectures of real traits, the approach 

we implemented to account for the narrow-sense heritability in the “vQTN” scenario was ad hoc. 

We recommend that future studies focus on accounting for broad-sense heritabilities, as this 
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would enable more user-control over the total phenotypic variance attributable to genetic effects. 

Another limitation of our study is that we explored only one configuration of modeling the 

relationship between vQTNs and a trait. Specifically, the configuration we used in (1) is based 

on the standard deviation additive model (Hill and Zhang, 2004; Hill and Mulder, 2010). Other 

vQTN quantitative genetics models, such as reaction norm model from Hill and Mulder (2010) 

or the other forms of epistasis discussed in Cordell (2002), could be used to simulate more 

scenarios where vQTNs could arise.  

Areas for future research 

While the BFT and DGLM are two commonly used statistical methodologies for vGWAS, the 

results from our analysis of plant height in maize suggest that they may not adequately control 

for population structure and familial relatedness (Figure 1.5b). Thus, we recommend the 

consideration of more sophisticated statistical approaches for vGWAS. Two examples are the 

hierarchical generalized linear model (HGLM) (Lee and Nelder, 1996) and double hierarchical 

generalized linear model (DHGLM) (Lee and Nelder, 2006). These models account for familial 

relatedness by including the individuals as a random effect and setting their variance-covariance 

to be proportional to an additive genetic relatedness matrix. Although the associated 

computational complexity of fitting these two models rendered them impractical to evaluate in 

our simulation studies, they have been previously evaluated in wheat (Hussain et al., 2020) and 

animal breeding (Rönnegård et al., 2010). Given that the DGLM and HGLM in Hussain et al. 

(2020) both identified the same loci associated with cadmium content in wheat, we would expect 

that the HGLM and DHGLM to yield similar true positive detection rates for traits that are not 

associated with familial relatedness. We recommend that future work focuses on increasing the 
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computational efficiency of the HGLM and DHGLM so that their ability to identify vQTNs 

could be studied in a manner similar to that which is presented in this work.  

One noteworthy aspect of several prior vGWAS investigations is that the search for 

variance-controlling loci was conducted separately from a mean GWAS scan (e.g Hussein et al., 

2020; Li et al.,2020; Córdova-Palomera et al., 2020). However, Corty and Valdar (2018) 

demonstrated that models like the DGLM can be used in a single GWAS to test for associations 

with the mean of a trait, the variance of a trait, or both. Although this results in a 2x- to 3x- 

increase in the severity of the multiple testing burden (Corty and Valdar, 2018), the use of 

models like the DGLM to search for both mean and/or variance-controlling loci in a single 

GWAS scan is advantageous because it reduces the possibility of, for example, not identifying a 

mean-controlling locus because only a vGWAS scan was conducted. We therefore encourage 

future vGWAS studies to use models like the DGLM to their fullest extent by testing for mean-

controlling loci in addition to variance-controlling loci. 

The inbreeding species considered in our simulation studies, Arabidopsis, has not been 

subjected to as much artificial selection compared to what would be expected in crops (Izawa, 

2007; Woodward and Bartel, 2018). Thus, future simulations should consider an inbreeding crop 

species such as sorghum (Sorghum bicolor L. Moench) or rice (Oryza sativa L). Additionally, 

our decision to simulate traits similar to those where vQTN have already been identified resulted 

in our simulated traits resembling metabolic traits with tractable genetic architectures. However, 

a recent report in maize showed that vQTNs are also present in plant architectural and phenology 

traits (Zhang and Qi, 2021). Thus, the practicality and utility of the BFT and DGLM to identify 

variance-controlling loci in crops could be more comprehensively explored if a wider range of 

genetic architectures were studied in future work. Given that our simulation studies showed that 
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vGWAS approaches could identify sets of markers likely to harbor epistatic and GxE effects, it is 

imperative to explore the most effective use of vGWAS to identify the most important candidate 

loci so that emerging approaches such as that presented in Li et al. (2022) can quantify their 

main-, interaction-, and GxE effects as accurately as possible. Finally, peak-associated markers 

from a vGWAS could be used for breeding applications. For example, if one wants to constrain 

the range of possible trait values in a challenging environment, they could potentially select on 

alleles from peak-associated markers in a vGWAS that reduces the variance of that trait.  

1.6  Conclusion 

The ability of vGWAS approaches to identify variance-controlling loci needs to be thoroughly 

scrutinized before they can become more commonplace in quantitative genetics analysis in 

plants. We conclude that DGLM is preferred over the BFT for practical use in plant vGWAS 

because of its observed performance at sample sizes of N = 500. The ability of both vGWAS 

approaches to identify epistasis and GxE is encouraging, and future simulation studies should 

focus on other quantitative genetics parameters and additional statistical models in more plant 

species. To facilitate such future exploration of vGWAS approaches, the computational 

approaches we used to simulate traits controlled by vQTN are now publicly available free of 

charge in the simplePHENOTYPES R package (Fernandes and Lipka, 2020). 

Data Archiving  

The genotypic data, simulated trait data, ROC curves, and code to simulate traits are available at 

https://github.com/mdm10-code/vGWAS_arabidopsis_maize . 

 

https://github.com/mdm10-code/vGWAS_arabidopsis_maize
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1.7 Figures and Tables 

 

Figure 1.1. False positive detection rates for the null setting at a false discovery rate of 0.05. 

The X-axis represents the sample size of each diversity panel. The Y-axis is the proportion of 

replications where a false positive is detected at least once. The error bars depict 95% confidence 

intervals, calculated using the method from Clopper and Pearson (1934). The dotted red 

horizontal line depicts the targeted false discovery rate of 0.05. Each panel represents the species 

indicated in the title. BFT: Brown-Forsythe test; DGLM: double generalized linear model  
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Figure 1.2. True detection rates for the simulated traits under the “epistasis” scenario 

settings at a false discovery rate of 0.05. (A) Arabidopsis at a sample size of N  = 500, (B) 

maize at a sample size of N = 500, (C) Arabidopsis at a sample size of N = 1,087, and (D) maize 

at a sample size of N = 2,815. In each panel, two sets results are presented: one for the simulated 

trait with broad-sense heritability of set to 𝐻2 = 0.30, and one for those with 𝐻2 = 0.80. On each 

figure, the X-axis represents the pair of SNPs contributing to the three epistatic quantitative trait 

nucleotides (QTNs; e.g., “2a” denote the first SNP contributing to the second epistatic QTN). 

The Y-axis is the proportion of replications where a true positive is detected at least once. The 

error bars depict 95% confidence intervals, calculated using the method from Clopper and 

Pearson (1934). BFT: Brown-Forsythe test; DGLM: double generalized linear model; MLM: 

unified mixed linear model.  
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Figure 1.3.  True detection rates for the simulated traits under the “GxE” scenario settings 

at a false discovery rate of 0.05. (A) Arabidopsis at a sample size of N  = 500, (B) maize at a 

sample size of N = 500, (C) Arabidopsis at a sample size of N = 1,087, and (D) maize at a sample 

size of N = 2,815. On each figure, the X-axis represents the QTN, and a description of the which 

environment(s) in which they were simulated are detailed in the corresponding X-coordinate 

label. The Y-axis is the proportion of replications where a true positive is detected at least once. 

The error bars depict 95% confidence intervals, calculated using the method from Clopper and 

Pearson (1934). BFT: Brown-Forsythe test; DGLM: double generalized linear model; MLM: 

unified mixed linear model. 
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Figure 1.4.  True detection rates for the simulated traits under the “vQTN” scenario 

settings at a false discovery rate of 0.05. (A) Arabidopsis and (B) maize. On each panel, the 

results are subdivided into heritability (ℎ2), sample size (N), and targeted minor allele frequency 

of the QTN (MAF).  On each figure, the X-axis depicts the effect size of the vQTN, and Y-axis 

is the proportion of replications where a true positive is detected at least once. The error bars 

depict 95% confidence intervals, calculated using the method from Clopper and Pearson (1934). 

BFT: Brown-Forsythe test; DGLM: double generalized linear model; MLM: unified mixed linear 

model. 
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Figure 1.5. Genome-wide association study (GWAS) of plant height in the Goodman maize 

diversity panel. (A) Circular Manhattan plots summarizing the results from the unified mixed 

linear model (innermost circle), the Brown-Forsythe test (middle circle), and the double 

generalized linear model (outermost circle). The X-axis is the physical position of the SNPs 

along the maize genome, and the Y-axis is the –log(P-values) from each of the three GWAS 

models. (B) Quantile-quantile (Q-Q) plots showing the expected –log(P-values) under 𝐻0: No 

association at tested marker on the X-axis and the observed –log(P-values) on the Y-axis. MLM: 

unified mixed linear model (middle column); BFT: Brown-Forsythe test (top-right column); 

DGLM: double generalized linear model (bottom-right column). 
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Table 1.1. Parameters considered in the simulation study. Across all scenarios, a total of 64 unique 

configurations of these parameters were simulated. 
 dScenario nQTNa  Species Heritability Targeted MAFb Sample Size Allelic Effect 

Null 0  
Maize; 

Arabidopsis 
0.00 N/A 500; Maximum N/A 

Epistasisc 3 epistatic QTNsc 
Maize; 

Arabidopsis 
0.30; 0.80 0.10 500; Maximum 

0.75 for all 3 

QTNs; 

 

GxEd 
2 mQTNse in 2 

environments 

Maize; 

Arabidopsis 
0.70 0.3 500; Maximum 

Env.1: 0.2f, 0.5g 

Env.2: 0.8f, 0.5g 

vQTN 
1 mQTN 

1 vQTNh 

Maize; 

Arabidopsis 
0.63; 0.33 0.10; 0.40 500; Maximum 

mQTN: 0.25 

vQTN: 0.1; 0.5; 

0.9 

aQTN – quantitative trait nucleotides; bMAF – minor allele frequency; cEach epistatic effect consists of the additive-by-additive 

effect of two randomly selected single nucleotide polymorphisms; dGxE – genotype by environment; emQTN – mean QTNs; fThis 

environment-specific mQTN was simulated at the SNP in both environments, but the effect sizes differed in each environment; 
gThis environment-specific mQTN was simulated at different SNPs in each environment; hvQTN – variance QTNs. 

 

Table 1.2. Median AUC values of all the 32 simulation settings 

Species Setting Sample 
Size 

MAF Heritability Effect 
Size 

SNP Codename BFT DGLM MLM 

Arabidopsis vQTN 500 0.1 0.33 0.1 NA 52.57297 52.08513 52.29831 

Arabidopsis vQTN FULL 0.1 0.33 0.1 NA 52.30901 50.4743 52.13734 

Arabidopsis vQTN 500 0.1 0.33 0.5 NA 51.31866 53.40312 52.81646 

Arabidopsis vQTN FULL 0.1 0.33 0.5 NA 52.25515 53.35654 52.04732 

Arabidopsis vQTN 500 0.1 0.33 0.9 NA 52.51251 53.89955 53.20752 

Arabidopsis vQTN FULL 0.1 0.33 0.9 NA 52.7063 51.95754 51.86568 

Arabidopsis vQTN 500 0.1 0.63 0.1 NA 51.86509 52.31931 51.27516 

Arabidopsis vQTN FULL 0.1 0.63 0.1 NA 52.12818 52.48105 52.12531 

Arabidopsis vQTN 500 0.1 0.63 0.5 NA 49.99569 53.76465 51.08654 

Arabidopsis vQTN FULL 0.1 0.63 0.5 NA 52.20029 51.6923 51.82426 

Arabidopsis VQTN 500 0.1 0.63 0.9 NA 53.21822 53.43396 52.01721 

Arabidopsis VQTN FULL 0.1 0.63 0.9 NA 52.63831 53.44069 51.50445 

Arabidopsis VQTN 500 0.4 0.33 0.1 NA 52.14024 52.34366 53.80448 

Arabidopsis VQTN FULL 0.4 0.33 0.1 NA 52.18126 52.5446 52.27187 
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Table 1.2 (cont) 

Arabidopsis VQTN 500 0.4 0.33 0.5 NA 52.85383 52.72398 50.73699 

Arabidopsis VQTN FULL 0.4 0.33 0.5 NA 53.68162 56.09933 52.21413 

Arabidopsis VQTN 500 0.4 0.33 0.9 NA 52.53524 53.24144 51.94996 

Arabidopsis VQTN FULL 0.4 0.33 0.9 NA 53.90186 57.81029 50.09359 

Arabidopsis VQTN 500 0.4 0.63 0.1 NA 52.56871 51.52208 51.99103 

Arabidopsis VQTN FULL 0.4 0.63 0.1 NA 52.15106 52.94764 52.21669 

Arabidopsis VQTN 500 0.4 0.63 0.5 NA 53.36255 55.17999 53.46859 

Arabidopsis VQTN FULL 0.4 0.63 0.5 NA 52.85554 54.28068 51.78579 

Arabidopsis VQTN 500 0.4 0.63 0.9 NA 51.80207 55.11323 54.00815 

Arabidopsis VQTN FULL 0.4 0.63 0.9 NA 51.83172 57.73794 53.0169 

Maize VQTN 500 0.1 0.33 0.1 NA 59.73439 60.74553 56.60283 

Maize VQTN FULL 0.1 0.33 0.1 NA 55.58641 58.10417 55.20203 

Maize VQTN 500 0.1 0.33 0.5 NA 52.87468 50.14665 58.99188 

Maize VQTN FULL 0.1 0.33 0.5 NA 57.36674 58.13135 52.31872 

Maize VQTN 500 0.1 0.33 0.9 NA 54.82983 56.12777 57.72731 

Maize VQTN FULL 0.1 0.33 0.9 NA 56.4764 59.4778 58.01369 

Maize VQTN 500 0.1 0.63 0.1 NA 59.41097 53.78255 63.22778 

Maize VQTN 500 0.1 0.63 0.5 NA 53.14765 57.44081 58.23357 

Maize VQTN FULL 0.1 0.63 0.5 NA 61.19516 54.58347 54.93808 

Maize VQTN 500 0.1 0.63 0.9 NA 57.86849 53.73408 59.62115 

Maize VQTN FULL 0.1 0.63 0.9 NA 58.19977 60.23577 55.08327 

Maize VQTN 500 0.4 0.33 0.1 NA 51.83962 53.05837 52.16444 

Maize VQTN FULL 0.4 0.33 0.1 NA 52.58255 59.40607 53.10769 

Maize VQTN 500 0.4 0.33 0.5 NA 53.80868 53.0206 51.36311 

Maize VQTN FULL 0.4 0.33 0.5 NA 72.29017 68.92994 54.30279 

Maize VQTN 500 0.4 0.33 0.9 NA 52.50509 57.68923 52.09022 



 

31 

 

Table 1.2 (cont)  

 

Maize VQTN FULL 0.4 0.33 0.9 NA 77.05214 67.68449 51.97274 

Maize VQTN 500 0.4 0.63 0.1 NA 52.36527 50.73433 52.57057 

Maize VQTN 500 0.4 0.63 0.5 NA 51.03006 54.57586 52.57745 

Maize VQTN FULL 0.4 0.63 0.5 NA 58.83756 68.79571 52.67703 

Maize VQTN 500 0.4 0.63 0.9 NA 52.69184 56.04058 53.09614 

Maize VQTN FULL 0.4 0.63 0.9 NA 70.89146 71.534 53.4196 

Maize VQTN FULL 0.1 0.63 0.1 NA 58.3733 56.31001 54.94959 

Maize VQTN FULL 0.4 0.63 0.1 NA 53.40596 55.4274 55.10461 

Arabidopsis Epistasis 500 0.1 0.3 0.75 1a 50.1331 50.45479 50.21667 

Arabidopsis Epistasis 500 0.1 0.3 0.75 1b 50.72499 50.4195 50.22026 

Arabidopsis Epistasis 500 0.1 0.3 0.75 2a 50.33601 50.56981 50.44165 

Arabidopsis Epistasis 500 0.1 0.3 0.75 2b 50.36014 50.31238 50.18411 

Arabidopsis Epistasis 500 0.1 0.3 0.75 3a 50.88781 50.37521 50.18854 

Arabidopsis Epistasis 500 0.1 0.3 0.75 3b 50.36022 50.70047 50.20294 

Arabidopsis Epistasis FULL 0.1 0.3 0.75 1a 50.14821 50.44895 50.39826 

Arabidopsis Epistasis FULL 0.1 0.3 0.75 1b 50.59707 50.56744 50.67394 

Arabidopsis Epistasis FULL 0.1 0.3 0.75 2a 50.52063 50.7176 50.80671 

Arabidopsis Epistasis FULL 0.1 0.3 0.75 2b 50.40066 50.26271 50.73977 

Arabidopsis Epistasis FULL 0.1 0.3 0.75 3a 50.19144 50.67595 50.36948 

Arabidopsis Epistasis FULL 0.1 0.3 0.75 3b 50.08748 50.50466 50.80671 

Arabidopsis Epistasis 500 0.1 0.8 0.75 1a 50.54266 50.54514 50.17167 

Arabidopsis Epistasis 500 0.1 0.8 0.75 1b 50.40582 50.43273 50.45957 

Arabidopsis Epistasis 500 0.1 0.8 0.75 2a 50.3749 50.2822 50.57618 

Arabidopsis Epistasis 500 0.1 0.8 0.75 2b 50.29373 50.53696 50.1615 

Arabidopsis Epistasis 500 0.1 0.8 0.75 3a 50.67487 50.40837 50.21739 

Arabidopsis Epistasis 500 0.1 0.8 0.75 3b 50.29226 50.30035 50.24398 



 

32 

 

Table 1.2 (cont) 

 

Arabidopsis Epistasis FULL 0.1 0.8 0.75 1a 50.52361 50.17984 50.47854 

Arabidopsis Epistasis FULL 0.1 0.8 0.75 1b 50.40726 50.22014 50.47854 

Arabidopsis Epistasis FULL 0.1 0.8 0.75 2a 50.11095 50.91324 50.28623 

Arabidopsis Epistasis FULL 0.1 0.8 0.75 2b 50.41943 50.55049 50.28623 

Arabidopsis Epistasis FULL 0.1 0.8 0.75 3a 50.39265 50.75887 50.28623 

Arabidopsis Epistasis FULL 0.1 0.8 0.75 3b 50.52202 50.51846 50.4247 

Arabidopsis GxE 500 0.3 0.7 NA Both Environments 50.09205 50.3165 50.35181 

Arabidopsis GxE 500 0.3 0.7 NA Environment 
Specific A 

50.18458 50.36237 50.26638 

Arabidopsis GxE 500 0.3 0.7 NA Environment 
Specific B 

50.20492 50.39801 50.26673 

Arabidopsis GxE FULL 0.3 0.7 NA Both Environments 50.4035 50.61249 50.99902 

Arabidopsis GxE FULL 0.3 0.7 NA Environment 
Specific A 

50.62795 50.45034 50.82828 

Arabidopsis GxE FULL 0.3 0.7 NA Environment 
Specific B 

50.81268 50.43116 51.30795 

Maize Epistasis FULL 0.1 0.3 0.75 1a 52.32864 50.25778 50.65048 

Maize Epistasis FULL 0.1 0.3 0.75 1b 52.2307 50.57947 50.84308 

Maize Epistasis FULL 0.1 0.3 0.75 2a 52.57656 50.74501 50.52855 

Maize Epistasis FULL 0.1 0.3 0.75 2b 52.2667 50.53097 50.65048 

Maize Epistasis FULL 0.1 0.3 0.75 3a 52.49987 50.46516 50.86274 

Maize Epistasis FULL 0.1 0.3 0.75 3b 52.06507 50.65302 50.84308 

Maize Epistasis FULL 0.1 0.8 0.75 1a 54.30695 51.62179 51.10159 

Maize Epistasis FULL 0.1 0.8 0.75 1b 53.84306 52.023 51.40015 

Maize Epistasis FULL 0.1 0.8 0.75 2a 53.71757 51.59016 51.40015 

Maize Epistasis FULL 0.1 0.8 0.75 2b 53.78033 52.00053 51.10159 

Maize Epistasis FULL 0.1 0.8 0.75 3a 53.732 51.97243 51.32507 

Maize Epistasis FULL 0.1 0.8 0.75 3b 53.72608 51.70764 51.40015 
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Table 1.2 (cont) 

 

Maize GxE FULL 0.3 0.7 NA Both Environments 56.459 50.35084 53.08873 

Maize GxE FULL 0.3 0.7 NA Environment 
Specific A 

55.98505 50.66707 52.9836 

Maize GxE FULL 0.3 0.7 NA Environment 
Specific B 

56.90893 50.36751 53.04125 

Maize GxE 500 0.3 0.7 NA Both Environments 50.29954 51.15671 51.5471 

Maize GxE 500 0.3 0.7 NA Environment 
Specific A 

50.63374 50.97805 52.24543 

Maize GxE 500 0.3 0.7 NA Environment 
Specific B 

50.63556 50.91966 51.67165 

Maize Epistasis 500 0.1 0.3 0.75 1a 50.58567 50.43186 50.37853 

Maize Epistasis 500 0.1 0.3 0.75 1b 50.85551 50.05869 50.81581 

Maize Epistasis 500 0.1 0.3 0.75 2a 50.42984 50.31396 51.00688 

Maize Epistasis 500 0.1 0.3 0.75 2b 50.66408 50.69367 50.31918 

Maize Epistasis 500 0.1 0.3 0.75 3a 50.48336 50.21711 50.47427 

Maize Epistasis 500 0.1 0.3 0.75 3b 50.38972 50.63208 50.48528 

Maize Epistasis 500 0.1 0.8 0.75 1a 51.22772 50.8902 50.70673 

Maize Epistasis 500 0.1 0.8 0.75 1b 50.98016 50.56267 50.67238 

Maize Epistasis 500 0.1 0.8 0.75 2a 50.75863 50.69719 50.67238 

Maize Epistasis 500 0.1 0.8 0.75 2b 50.65302 50.35186 50.70673 

Maize Epistasis 500 0.1 0.8 0.75 3a 51.35779 50.95579 50.95794 

Maize Epistasis 500 0.1 0.8 0.75 3b 52.54604 50.61178 51.15892 

          

MAF – minor allele frequency; SNP codename – details describing which environment(s) (for the GxE setting) or epistatic QTN 

a given SNP is contributing to (for the Epistasis setting); BFT – median area under the receiver operating curve (AUC) value for 

the Brown-Forsythe test across ten randomly selected replicate traits; DGLM – median AUC value for the double generalized 

linear model across ten randomly selected replicate traits; MLM- median AUC value for the unified mixed linear mode across ten 

randomly selected replicate traits 
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CHAPTER 2: An application of vGWAS to differences in flowering time in 

maize across mega-environments 2 

2.1 ABSTRACT 

Genomic regions containing loci with effect sizes that interact with environmental factors are 

desirable targets for selection because of increasingly unpredictable growing seasons. Although 

selecting upon such genotype-by-environment (GxE) loci is vital, identifying significantly 

associated loci is challenging due to the multiple testing correction. Consequently, GxE loci of 

small- to moderate effect sizes may never be identified via traditional genome-wide association 

studies (GWAS). Variance genome-wide association studies (vGWAS) have been previously 

shown to identify GxE loci. Combined with its inherent reduction in the severity of multiple 

testing, we hypothesized that vGWAS could be successfully used to identify genomic regions 

likely to contain GxE effects. We used publicly available genotypic and phenotypic data in 

maize (Zea mays L.) to test the ability of two vGWAS approaches to identify GxE loci 

controlling two flowering traits. We observed high inflation of − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) from both 

approaches. This suggests that these two vGWAS approaches are not suitable to the task of 

identifying GxE loci. We advocate that similar future applications of vGWAS use more 

sophisticated models that can adequately control the inflation of − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠). 

Otherwise, the application of vGWAS to search for GxE effects that are critical for combating 

the effects of climate change will not reach its full potential.  
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2.2 Introduction 

Climate change is already undermining many aspects of eukaryotic life, with negative impacts 

affecting species in vulnerable ecosystems, crops and livestock in breeding populations, and even 

human health (Cheng et al., 2022; Kliem and Sievers-Glotzbach, 2022). Major abiotic 

consequences of climate change include more unpredictable precipitation, whether it is too much 

or too little, as well as generally higher temperatures (Ceccarelli and Grando, 2020). In addition, 

climate change will make environments more favorable to biotic stressors such as increased 

weed, insect, and pathogen pressures (Ceccarelli and Grando, 2020; Shahzad et al., 2021). With 

these stressors becoming more prevalent due to climate change, the need to breed for more yield-

stable crops are of utmost importance (Langridge et al., 2021). One approach for achieving these 

breeding objectives is to exploit gene-by-environment (GxE) interactions (Bernardo, 2010). 

Under this approach, breeders would select against GxE loci to reduce phenotypic variance 

across environments and years (Langridge et al., 2021; Reckling et al., 2021). Contrastingly, 

breeders could also select for GxE loci to increase phenotypic variance and hence increase 

responsiveness when introducing a crop to a novel environment, new management practices, or 

new biotic pressures (Kusmec et al., 2018). Thus, the identification of GxE loci could prove to be 

pivotal for enabling breeders to promptly respond to challenging environments emerging due to 

climate change.  

The availability of approaches seeking to understand GxE (van Eeuwijk et al., 2010; Des 

Marais et al., 2013; Li et al., 2021) underscore the attention that has been given better understand 

this critical component of trait variability. Harnessing GxE interactions is vital for plant breeding 

and there are several important challenges that need to be addressed. First, identification of 
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putative GxE loci themselves poses a substantial increase in the statistical multiple testing 

correction because the number of tests for association at each marker is at least doubled 

(Dempfle et al., 2008). The resulting conservativeness arising from correcting for this could 

result in a failure to detect GxE loci of small to moderate effect sizes (Bustos-Korts, 2016; 

Gauderman et al., 2017). To further complicate this issue, the risk of identifying false-positive 

GxE interactions increases when not all environmental covariates are accounted for 

(Westerman et al., 2022). Finally, GxE loci that behave non-additively (for example, having 

different phenotypic variance between genotypic groups) may be missed entirely with the most 

commonly-used statistical approaches (Ansarifar et al., 2020; Westerman et al., 2022).  

Statistical analyses seeking to identify loci that control the variance of a trait, called 

variance quantitative trait loci (vQTL), have been shown to be capable of identifying GxE loci 

underlying simulated (Murphy et al., 2022) and real plant traits such as grain weight and water 

content in maize (Song et al., 2022). Such analyses have been routinely applied to variance 

genome-wide association studies (vGWAS) in plants and have contributed to the elucidation of 

the genetic architecture of metabolic plant traits (Shen et al., 2012; Forsberg et al., 2015; 

Hussain et al., 2020; Li et al., 2020), as well as plant architectural and phenology (Zhang and Qi, 

2021). Given these contributions, as well as the lower multiple testing correction burden in 

vGWAS arising from the need to only conduct one test of association at each marker, it is critical 

to further study the potential of vGWAS approaches to identify GxE in plants.  

There are two commonly-used vGWAS statistical approaches whose potential for identifying 

GxE have been previously shown in Murphy et al. (2022). The first approach is to conduct the 

Brown-Forsythe Test (BFT) at each marker (Brown and Forsythe, 1974). Although this test is 

computationally efficient, it has potential to lose power to detect vQTLs in the presence of other 
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large-effect loci controlling the studied trait (Hong et al., 2017; Córdova-Palomera et al., 2020). 

The other approach is the double generalized linear model (DGLM; Smyth, 1989; Ronnegard et 

al., 2012), and is widely used for vGWAS because of its potential to account for population 

structure and the presence of loci that control the population mean value of the traits. In Murphy 

et al. (2022), it was shown that the BFT and DGLM could identify simulated GxE loci at the 

largest possible tested sample size of N = 2,815.  

The purpose of this study was to apply the findings of Murphy et al. (2022) on the 

potential for vGWAS approaches to identify simulated GxE loci to the analysis of actual traits. 

We partitioned a subset of maize data collected across multiple environments (Buckler et 

al., 2009; Tian et al., 2011; Hung et al. 2012a) to Midwestern and southern mega-environments, 

and then assessed the ability of two different vGWAS approaches to detect GxE loci associated 

with two flowering time traits. From a biological perspective, there is a substantial amount of 

diversity in maize flowering time, which allows this species to thrive in both temperate and 

tropical climatic conditions (Bouchet et al., 2013).  Moreover, flowering time traits in maize are 

highly heritable and controlled by many small-effect additive loci, with GxE making a small but 

non-zero contribution to total phenotypic variance (Buckler et al. 2009). The latter implies that 

the effect sizes of GxE loci could be small, and thus we hypothesized that vGWAS could be 

particularly well-suited to identify these loci. Given the evidence of genes responsible for 

environmental sensitivity in maize (Li et al. 2016), we also hypothesized that the day lengths of 

at the Midwestern and southern mega environments were sufficiently different for vGWAS to 

identify the GxE loci responsible for differences in flowering time across environments.
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2.3 Materials and Methods 

Phenotypic Data  

We analyzed two publicly available maize traits: growing degree days (GDD) to anthesis and GDD 

to silking. These traits were collected across multiple grow-outs of the 281-member Goodman-

Buckler Diversity Panel (Flint-Garcia et al., 2005) at five locations in the USA from 2006-2009. 

This diversity panel was grown alongside the US maize nested association mapping panel  ( Yu et 

al., 2008; Buckler et al., 2009; McMullen et al., 2009), and the field design is described in the 

Materials and Methods of Hung et al. (2012a).  To study GxE, we first collated the GDD 

phenotypic data into two separate data sets corresponding to two locations in the Midwestern USA 

(Urbana, IL; and Columbia, MO; called the Midwestern mega-environment in subsequent 

analyses) and two in the Southern USA (Homestead, FL; and Ponce, PR; called the southern mega-

environment). We choose these two mega-environments due to the potential of capturing 

photoperiod sensitivity differences (Bonhomme et al., 1994; Xu et al., 2012; Chen et al., 2015). 

With the exception of Ponce, PR, all locations had two years’ worth of data. However, we excluded 

phenotypic data from Urbana, IL, 2006 and Columbia, MO, 2007 due to one of the studied traits 

being unavailable in the former and extensive missing phenotypic data in the latter. For each of 

the two traits, best unbiased linear predictions (BLUPs) of the genotype effect were predicted using 

a mixed linear model fitted at each of these two mega-environments using the lme4 R package 

(Bates et al., 2015). This mixed linear model fitted is written as follows: 

𝑌𝑖𝑗 =  𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝜀𝑖𝑗, (2.1) 

where 𝑌𝑖𝑗 represents the observed trait value of the 𝑖𝑡ℎ genotype grown in the 𝑗𝑡ℎ environment, μ 

is the grand mean, 𝐺𝑖  represents the random effect of the 𝑖𝑡ℎ genotype, 𝐸𝑗 is the random effect of 
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the 𝑗𝑡ℎ environment, and 𝜀𝑖𝑗 represents the error term for the 𝑖𝑡ℎ genotype grown in the 𝑗𝑡ℎ 

environment. Because the 5,702 recombinant inbred lines (RILs) from the US NAM panel were 

grown alongside the Goodman-Buckler diversity panel at all locations, these RILs were included 

during the model fitting process to improve BLUP accuracy, as previously described (McMullen 

et al., 2009; B. R. Rice et al., 2020).  

The process of configuring the BLUPs for GDD to anthesis and GDD to silking from each 

mega-environment for vGWAS is visualized in Figure 2.1. Briefly, for each of the two traits, the 

difference between the BLUPs from each mega-environment was taken. To factor out signals 

attributable to population structure and familial relatedness, each of these differences were fitted 

to a unified linear mixed model (MLM) similar to Yu et al., (2006) in TASSEL 5.0 (Bradbury et 

al., 2007). The Bayesian Information Criterion (BIC) (Schwarz, 1978) criterion option in the 

GAPIT R package (Lipka et al., 2012) was used to determine the optimal number of fixed-effect 

covariates (in this case, principal components, or PCs, of genome-wide markers) to include in the 

unified MLM. The ensuing analysis suggested to include the first five PCs as fixed-effect 

covariates to account for population structure. Additionally, we used the VanRaden (2008) 

additive kinship matrix to account for familial relatedness in the unified MLM. Consequently, the 

residuals from these two fitted unified MLMs (one with the difference in GDD to anthesis as the 

response variable, and one with the difference in GDD to silking as the response variable) were 

used as the response variable for vGWAS. We henceforth refer to these residuals as the GxE traits. 

All of these steps, along with each vGWAS, are outlined in a flow chart created using the 

“DiagremmeR” R package (Iannone and Iannone, 2022).
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Genotypic Data  

We used fully sequenced genotypic data from the Goodman-Buckler Diversity Panel for the GxE 

traits (Flint-Garcia et al., 2005; Bukowski et al., 2018). Briefly, this marker data set was genotyped 

for 327,056 SNPs and anchored to the B73 RefGen_v4 reference genome. The filtering and 

imputation procedures for this dataset are described in Rice et al. (2020).  LinkImpute (Money et 

al. 2015) was used to impute missing marker data.  

Competing vGWAS models 

We used two common vGWAS approaches to search for GxE, namely the Brown-Forsythe Test 

(BFT) and the double generalized linear model (DGLM). Both of these approaches are described 

in detail in Murphy et al. (2022). Briefly, both approaches test for evidence against equality of 

population variances of the GxE traits across the genotypes at a tested marker. In general, the BFT 

tests for equality of population variances across different groups by running a standard analysis of 

variance (ANOVA) on a median-derived transformation of the response variable (Brown and 

Forsythe, 1974). The test statistic follows an F-distribution under the null hypothesis of equal 

population variances across treatment levels. When applied to vGWAS, the BFT will test for equal 

trait population variances across the genotypes at a tested marker, as described previously (Shen 

et al., 2012; Murphy et al., 2022). The CAR R package was used to fit the BFT using the 

Levene.Test function with the central argument set to “median” (Fox and Weisberg, 2019). 

The DGLM is a common vGWAS statistical model that belongs to the family of 

generalized linear models. The DGLM can model a single trait to a.) explanatory variables 
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controlling its population mean and b) explanatory variables controlling its population variance. 

The DGLM can also incorporate fixed effects (e.g., PCs calculated from a genome-wide marker 

set) to control population structure and markers tagging major-effect genes that control the trait. 

More detailed descriptions of the DGLM can be found in Corty and Valdar (2018), Hussain et 

al. (2020), and Murphy et al. (2022). Because we implicitly controlled for population structure 

prior to running the vGWAS (as described in Phenotypic Data), we did not incorporate PCs in the 

mean component of DGLM. To perform the DGLM, we used R code from Hussain et al. (2020) 

and Murphy et al. (2022), which was fitted using the dglm R package (Dunn and Symth, 2020). 

 To account for multiple testing, we used the Bonferroni procedure to control for the 

genome-wide type I error rate at α = 0.05 for all tests. The CMPlots R package generated qqplots 

and Manhattan plots for all the tests (Yin, 2018). We used the genomic control (GC) (Devlin and 

Roeder, 1999) to quantify the degree of inflation of the test statistics from both vGWAS 

approaches. 

Linkage disequilibrium analysis 

To assess the local linkage disequilibrium (LD) in candidate genomic regions identified by our 

vGWAS approaches, we calculated 𝑟2 estimates between each SNP in a given genomic region 

with the SNP that has the highest − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒) in this genomic region using TASSEL 

version 5 (Bradbury et al., 2007). The resulting 𝑟2 estimates of the candidate genomic region were 

plotted with the − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) with respect to base pairs in the B73 reference genome 

(version 4) using an R script previously used in Lipka et al. (2013).
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Mixed model fitted across mega-environments 

To assess the extent to which the two mega-environments captured GxE underlying GDD to 

anthesis and GDD to silking, the following mixed model was fitted to each of these two traits: 

𝑌𝑖𝑗𝑘 = 𝜇 +𝑀𝐸𝑖 + 𝑇𝑟𝑖𝑎𝑙𝑘(𝑖) + 𝐺𝑗 + (𝑀𝐸𝑥𝐺)𝑖𝑗 + 𝜀𝑖𝑗𝑘, (2.2) 

where 𝑌𝑖𝑗𝑘 represents the observed trait value of the 𝑗𝑡ℎ genotype grown in the 𝑘𝑡ℎ trial (i.e., 

particular year at a particular location) nested within the 𝑖𝑡ℎ mega-environment; μ represents the 

grand mean; 𝑀𝐸𝑖 represents the random effect of the 𝑖𝑡ℎ mega-environment; 𝑇𝑟𝑖𝑎𝑙𝑘(𝑖) is the 

random effect of the 𝑘𝑡ℎ trial nested within the 𝑖𝑡ℎ mega environment; 𝐺𝑗 is the random effect of 

the 𝑗𝑡ℎ genotype; (𝑀𝐸𝑥𝐺)𝑖𝑗 is the random two-way interaction effect between the 𝑖𝑡ℎ mega-

environment and the 𝑗𝑡ℎ genotype; and 𝜀𝑖𝑗𝑘 represents the error term for the 𝑗𝑡ℎ genotype grown 

in the 𝑘𝑡ℎ trial (i.e., particular year at a particular location) nested within the 𝑖𝑡ℎ mega-

environment. After fitting this model in the “statgenGxE” R package (van Rossum, 2022), we 

used the variance component estimates to assess the contribution of (𝑀𝐸𝑥𝐺)𝑖𝑗 variance 

component (which quantifies GxE) to the overall phenotypic variability of both traits. 

2.4 Results 

Midwestern and southern mega-environments capture GxE for both studied traits 

We fitted model (2) across the two mega-environments for GDD to anthesis and GDD to silking. 

The results revealed that the variance component estimate corresponding to the GxE term (i.e., 

the variance component estimate of the (𝑀𝐸𝑥𝐺)𝑖𝑗 random effect) accounted for approximately 
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20% of the total variability of both traits (Tables 2.2 and 2.3). This suggests that the subdivision 

of the publicly available field trials into Midwestern and Southern mega-environments captures a 

sufficient amount of GxE for both of the studied traits to justify conducting the ensuing vGWAS. 

DGLM identified the greatest number of statistically significantly associated markers 

Even after using the conservative Bonferroni procedure to adjust for multiple testing across the 

genome at 𝛼 = 0.05, each of the two tested vGWAS approaches identified markers that were 

statistically significantly associated with both GxE traits (i.e., the difference in GDD to anthesis 

and GDD to silking across the two mega-environments). The two vGWAS approaches found 

more markers that significantly associated with the difference in GDD to anthesis than the 

difference in GDD to silking. This maybe attributed to the fact that some accessions underwent 

anthesis but not silking in this dataset. Of the two vGWAS approaches, the DGLM identified the 

greatest number of statistically significant associations. The number of significantly associated 

markers identified from each vGWAS approach are summarized in Figure 2.2 and presented in 

detail in Table 2.1.  

Neither vGWAS approaches did not sufficiently control for false positives 

For each of the tested traits, we noted that both vGWAS approaches yielded − log10(𝑃 −

𝑣𝑎𝑙𝑢𝑒𝑠) that were highly inflated relative to what would be expected under the corresponding 

null hypotheses tested at each marker (Figure 2.3). The greatest amount of such inflation was 

observed for the DGLM. Nevertheless, the observed increases in − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) for all the 

analyses performed suggest that these two vGWAS approaches inadequately control for false 

positive associations for these data.  
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Peak-associated markers from vGWAS approaches colocalized to similar genomic regions 

within traits 

We sought to characterize the consistency of which genomic regions were found to contain peak-

associated markers across the two vGWAS approaches (Figure 2.4). This task was particularly 

challenging for analyzing the vGWAS results for the difference in GDD to anthesis because the 

DGLM identified statistically significant associations on every chromosome. Nevertheless, many 

of the peak-associated markers identified by the DGLM were located roughly in the same 

genomic regions as peak-associated markers identified by the BFT. When vGWAS was 

conducted on the difference in GDD to silking, we noted that the DGLM and BFT both 

identified markers significantly associated with the difference in GDD to silking in proximal 

genomic regions located on Chromosome 9. 

Chromosome 9 region containing plausible candidate genes consistently identified from 

both vGWAS approaches for both traits  

To illustrate the potential of these vGWAS approaches to highlight potential candidate genes, we 

present detailed results for GDD to anthesis using the DGLM in the genomic region on 

Chromosome 9 in Figure 2.5. We also created similar figures for the other vGWAS scans, which 

can be found in Figures 2.6-2.8. Across all vGWAS approaches and traits, the strongest peak 

associations (S9_151791144 and S9_151791148; 154942763 and 154942767 bp, respectively, P-

value 1.19 𝑥 10−10) was identified for the difference in GDD to anthesis by the DGLM. This 

marker was within 40 Kb of two candidate genes (Zm00001d048358 and Zm00001d048359, 
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B73 version 4). We also noted that there were SNPs surrounding these two candidate genes that 

are in moderate LD with this peak-associated SNP.  

2.5 Discussion 

One of the most important findings of our previous study (Murphy et al., 2022) was that vGWAS 

approaches could identify quantitative trait nucleotides contributing GxE effects to simulated 

traits. Therefore, we evaluated the potential for two different vGWAS approaches to identify 

genomic regions likely to contain loci with GxE effects in real, publicly available flowering time 

traits in maize. Although all two vGWAS models identified statistically significant marker-trait 

associations, we also observed that they yielded highly inflated − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠). Thus, this 

analysis did not provide any further insights into the contribution of GxE to maize flowering 

time, but instead suggested that there is a critical need to explore the genomic sources underlying 

this severe inflation and to account for them in vGWAS models.  

vGWAS identified markers significantly associated with the difference between at least one 

flowering time trait across two mega-environments  

Identifying specific loci with GxE effects is vital because alleles at these loci could be selected 

for (or against) to achieve specific breeding goals. Selecting for such GxE loci is theoretically 

favorable for both introducing a crop to a novel environment and increasing responsiveness to 

favorable environments using new management practices (Kusmec et al., 2018). On the other 

hand, selecting against GxE loci is preferred when breeding for uniformity and stability in 

unpredictable growing environments (Bernardo, 2010; Kusmec et al., 2018). The fact that both 

vGWAS models identified statistically significant associations for the difference in two 
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flowering time traits across two mega-environments suggests that vGWAS could become a 

viable approach to help breeders identify GxE loci once the issues of inflated − log10(𝑃 −

𝑣𝑎𝑙𝑢𝑒𝑠) are addressed. 

Inflated false positive rates prevent inferences on GxE in flowering timeThe genetic 

architecture of flowering time in maize is consistent with the Fisher-Orr model (Fisher, 1918; 

Orr, 1998) in that it consists of many small-effect genes, as well as a small number of large-

effect genes (Bouchet et. 2013, Peiffer et al. 2013). In particular, the analysis conducted by 

Buckler et al. (2009) in the US Maize NAM population provided overwhelming evidence that 

flowering time is controlled by many small-effect genes, and that the overarching genetic 

architecture can be well-approximated by accounting for their additive effects. Analyses 

conducted in other panels have identified larger-effect loci (e.g., Romay et al. 2013, Bouchet et 

al. 2013), while also underscoring that flowering time appeared to be controlled by a large 

number of small-effect genes (Bouchet et al. 2013; Li et al. 2016).  

Although not as strong as the collective contribution of the additive effects of these 

genes, Buckler et al. (2009) found evidence that GxE contributes to the overall genetic 

architecture of flowering time. It was for this reason that we chose to perform our vGWAS 

analysis on GDD to anthesis and GDD to silking. Specifically, the potential for vGWAS to 

identify smaller-effect GxE loci (by reducing the severity of the multiple testing correction) 

could highlight which particular loci contribute to the small GxE signals detected by Buckler et 

al. (2009). Unfortunately, our analyses did not provide further elucidation into the genetic 

architecture of flowering time because both vGWAS approaches yielded substantially inflated 

type I error rates. Therefore, we urge future research to determine how to reduce the severity of 
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inflated type I error rates in vGWAS approaches and then reconduct this analysis. Once this issue 

is resolved, vGWAS has potential to characterize the putatively small-effect GxE loci for 

flowering time in maize. This could lead to similar, complementary advances that were already 

made for understanding the role of GxE for flowering time in Arabidopsis (Sasaki et al., 2015) , 

sorghum (Li et al., 2018) , and rice (Guo et al., 2020).  

Future studies need to overcome the hurdle of high false positive rates 

The most important finding from this study was the severe inflation of − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) 

from both vGWAS approaches, especially those from the DGLM. This degree of inflation was 

surprising because both GxE flowering time traits were first fitted to a unified MLM that 

accounted for population structure and familial relatedness (please see the Materials and 

Methods for details). The residuals from this fitted model were used in our subsequent vGWAS 

evaluations. Similar approaches have been implemented in previous studies (Shen et al., 2012; 

Forsberg et al., 2015; Li et al., 2020), and thus we anticipated that these sources of false positives 

would have already been accounted for in our vGWAS. Consequently, we empirically 

demonstrated that the fixed and random effects used by the unified MLM to account for false 

positives in traditional GWAS approaches are not guaranteed to also account for false positives 

inflating vGWAS associations. Thus, it is imperative that future research focuses on identifying 

and characterizing the genomic sources underlying these false positives. Concurrently, the 

computational bandwidth of statistical models that should account for these sources of false 

positives, for example the hierarchical generalized linear model (HGLM) and the double 

hierarchical generalized linear model (DHGLM) (Lee and Nelder, 1996; Lee and Nelder, 2006;
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Rönnegård and Valdar, 2012), needs to be reduced so that researchers can feasibly use them in a 

vGWAS. 

Follow-up studies need to address the inflation of − 𝐥𝐨𝐠𝟏𝟎(𝑷 − 𝒗𝒂𝒍𝒖𝒆𝒔) before 

investigating the putative GxE genomic regions identified in our study 

Even though the tested vGWAS statistical approaches were prone to severe inflation of 

− log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠), both of them identified a genomic region of interest on Chromosome 9 

containing peak-associated markers with both traits. This result does offer some promise of using 

vGWAS as a tool for prioritizing GxE genomic regions. However, follow-up studies using more 

sophisticated vGWAS models like the HGLM and DHGLM that account for false positives need 

to be conducted to determine if there are still peak-associated markers in this genomic region 

after explicitly controlling for population structure and familial relatedness. These follow-up 

studies should also be complemented with vQTL linkage mapping analyses as described in Corty 

and Valdar (2018). By using biparental crosses and similar experimental populations, linkage 

mapping has the potential to confirm peak vGWAS associations in independent data where 

extraneous sources of genetic variability can be controlled for by the mating design (Nordborg 

and Weigel, 2008; Korte and Farlow, 2013). 

2.6 Conclusion 

While our previous work highlighted the potential of the BFT and DGLM to identify GxE loci in 

simulated traits (Murphy et al., 2022), the analysis conducted here clearly shows these 

approaches yielded highly inflated − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) when applied to searching for GxE 

signals associated with flowering time in maize. This inflation highlights a serious weakness in 

this application of both approaches, and thus we recommend not applying the BFT and DGLM to 
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search for GxE loci with real trait data. That said, this also needs to be explored on a trait-by-trait 

basis. There is a critical need for future studies to explore use of more sophisticated vGWAS 

models to account for false positives. Without such an undertaking, the potential for using 

vGWAS to highlight specific genomic regions likely to harbor GxE loci for agronomically 

important traits like flowering time in maize will not be realized. 

Data Availability  

The genotypic and phenotypic data, results, and scripts used for the analyses are available at 

https://github.com/mdm10-code/An-application-of-vGWAS-to-differences-in-flowering-time-in-

maize-across-mega-environments 
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2.7 Figures and Tables 

Figure 2.1. Flow chart. Summarizing the steps taken to process the difference in best linear 

unbiased predictions (BLUPs) for growing degree dates (GDD) to anthesis and silking calculated 

between the Midwestern and Southern mega-environments, factor out sources of genetic 

variability attributed to population structure and familial relatedness, and then run a variance 

genome-wide association study using the Brown-Forsythe test (BFT) and double generalized 

linear model (DGLM). Orange rectangles depict each step this process, and black arrows depict 

the how these steps are interconnected with each other. BIC, Bayesian information criterion; 

PCs, principal components; TASSEL, a software package whose abbreviation is Trait Analysis 

by aSSociation, Evolution, and Linkage. 
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Figure 2.2. Venn diagrams. Showing the number of statistically significant SNPs for each trait 

identified by two variance genome-wide association studies (vGWAS) approaches, the Brown-

Forsythe test (BFT) as the left circle, and the double generalized linear model (DGLM) as the 

right circle. The overlap between the circles represents the number of statistically significant 

SNPs that were identified in both of the vGWAS approaches. (A) Venn diagram showing the 

number of statistically significant SNPs identified by the vGWAS tests and their overlaps for the 

difference in growing degree days (GDD) to anthesis. (B) Venn diagram showing the number of 

statistically significant SNPs identified by the vGWAS tests and their overlaps for the difference 

in GDD to silking. 
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Figure 2.3. Quantile-quantile (QQ)-plots of all the tested variance genome-wide association 

studies (vGWAS) approaches (rows) tested in all traits (columns). For each plot, the 

observed − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) from testing each marker is presented on the Y-axis, while the 

expected − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) assuming the corresponding null hypotheses are correct are 

presented on the X-axis. The orange dots correspond to SNPs that are statistically significant 

after the Bonferroni procedure was used to control for multiple testing across the entire genome 

at 𝛼 = 0.05, whereas the blue dots correspond to non-statistically significant SNPs. Lambda 

values (𝜆 ) for genomic control are shown to the right of each QQ-plot. (A and C) QQ-plot of the 

difference in growing degree days (GDD) to anthesis for the Brown-Forsythe test (BFT) and 

double generalized linear model (DGLM). (B and D) QQ-plot of the difference in GDD to 

silking for the BFT and DGLM.  
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Figure 2.4. Summary of two variance genome-wide association studies (vGWAS) results. 

(A-D) Manhattan plots of the association results from the two vGWAS approaches across the ten 

maize chromosomes. The Y-axis represents the − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) plotted with respect to B73 

RefGen_v4 genome position (X-axis). The gray horizontal line represents the threshold from 

Bonferroni procedure to control for genome-wide type I error rate at α = 0.05. Statistically 

significantly associated SNPs are highlighted in purple. (A and C) Association results from the 

Brown-Forsythe Test (BFT) and double generalized linear model (DGLM) for difference in 

growing degree days (GDD) to anthesis. (B-D) Association results from the BFT and DGLM for 

difference in GDD to silking.  
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Figure 2.5. Variance genome-wide association studies (vGWAS) results for the difference in 

growing degree days (GDD) to anthesis. Plot of association results from the double generalized 

linear model (DGLM) and linkage disequilibrium (𝑟2) estimates in the genomic region between 

152 and 158 Mb on Chromosome 9. The left Y-axis presents − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) from the 

vGWAS, while the right Y-axis and plots the  𝑟2 values between each SNP and the peak 

associated marker, which is indicated by an orange triangle. The X-axis is the B73 RefGen_v4 

position of this 6-MB region on Chromosome 9. The gray vertical-lines represent the 

− log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) of the SNPs. The blue triangles represent the 𝑟2 values of each SNP 

relative to the peak associated SNP. The solid purple lines represent the end positions of  

Zm00001d048358 (154,923,673 bp) and Zm00001d048359 (154,975,225 bp).
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Figure 2.6. Variance genome-wide association studies (vGWAS) results for the difference in 

growing degree days (GDD) to anthesis. Plot of association results from the Brown-Forsythe 

(BFT) and linkage disequilibrium (𝑟2) estimates in the genomic region between 152 and 158 Mb 

on Chromosome 9. The left Y-axis represents the − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) from the vGWAS, while 

the right Y-axis plots the 𝑟2 values between each SNP and the peak associated marker, which is 

indicated by an orange triangle. The X-axis is the B73 RefGen_v4 position of this 6-MB region 

on Chromosome 9. The gray vertical-lines represent the − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) of the SNPs. The 

blue triangles represent the 𝑟2 values of each SNP relative to the peak associated SNP. The solid 

purple lines represent the end position of Zm00001d048358 (154,923,673 bp) and the start 

position of Zm00001d048359 (154,975,225 bp). 
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Figure 2.7. Variance genome-wide association studies (vGWAS) results for the difference in 

growing degree days (GDD) to silking. Plot of association results from the Brown-Forsythe test 

(BFT) and linkage disequilibrium (𝑟2) estimates in the genomic region between 152 and 158 Mb 

on Chromosome 9. The left Y-axis represents the − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) from the vGWAS, while 

the right Y-axis plots the 𝑟2 values between each SNP and the peak associated marker, which is 

indicated by an orange triangle. The X-axis is the B73 RefGen_v4 position of this 6-MB region 

on Chromosome 9. The gray vertical-lines represent the − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) of the SNPs. The 

blue triangles represent the 𝑟2 values of each SNP relative to the peak associated SNP. The solid 

purple lines represent the end positions of Zm00001d048358 (154,923,673 bp) and 

Zm00001d048359 (154,975,225 bp).
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Figure 2.8. Variance genome-wide association studies (vGWAS) results for the difference in 

growing degree days (GDD) to silking. Scatter plot of association results from the double 

generalized linear model (DGLM) and linkage disequilibrium (𝑟2) estimates in the genomic 

region between 152 and 158 Mb on Chromosome 9. The left Y-axis represents the 

− log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) from the vGWAS, while the right Y-axis plots the 𝑟2 values between each 

SNP and the peak associated marker, which is indicated by an orange triangle. The X-axis is the 

B73 RefGen_v4 position of this 6-MB region on Chromosome 9. The gray vertical-lines 

represent the − log10(𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠) of the SNPs. The blue triangles represent the 𝑟2 values of 

each SNP relative to the peak associated SNP. The solid purple lines represent the end positions 

of Zm00001d048358 (154,923,673 bp) and Zm00001d048359 (154,975,225 bp).
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Table 2.1. The number of statistically significant SNPs identified by the variance genome-

wide association studies (vGWAS) tests for the difference in growing degree day (GDD) to 

anthesis and silking. BFT refers to the Brown-Forsythe test, while DGLM refers the double 

generalized linear model.   

Test   Trait  Number of 

SNPs identified  

BFT  Difference in GDD to anthesis  22  

DGLM  Difference in GDD to anthesis  102  

BFT  Difference in GDD to silking  7  

DGLM  Difference in GDD to silking  19  

 

Table 2.2. Variance component estimates from a mixed model fitted to growing degree days 

to anthesis across the two mega environments. The model is described in detail in the 

Materials and Methods. 
 

vcov vcovPerc 

region 384.5954 0.028366 

region:trial 892.103 0.065798 

genotype 8179.5 0.603287 

genotype:region 2578.504 0.19018 

residuals 1523.514 0.112368 

 

Table 2.3. Variance component estimates from a mixed model fitted to growing degree days 

to silking across the two mega environments. The model is described in detail in the Materials 

and Methods.  
 

vcov vcovPerc 

region 273.5458 0.021469 

region:trial 558.4567 0.043829 

genotype 7627.474 0.598622 

genotype:region 2721.498 0.213589 

residuals 1560.752 0.122491 
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CHAPTER 3: Exploring the potential for vGWAS to stabilize genomic 

selection across environments 3 

3.1 Abstract  
The ability to breed both for, and against, stability will be paramount for parts of the world most 

prone to climate change. Plant breeders need to reduce the time and resources needed to identify 

varieties that still produce sufficient yield in environments with the worst-case scenarios of the 

resulting abiotic and biotic stresses. Genomic selection (GS) is a promising avenue to get ahead 

of climate change in plant breeding. Even though GS models that can account for genotype-by-

environment (GxE) interactions exist, inaccurate incorporation of these signals could negatively 

impact their predictive ability. A quantitative genetics phenomenon that may be useful for 

improving predictive abilities under these circumstances are variance quantitative trait loci 

(vQTLs). Previous work has shown that GxE is one of the potential genetic sources underlying 

vQTLs. Therefore, we investigated the potential of using peak-associated markers from a 

variance genome-wide association study (vGWAS) conducted in a training population to 

improve the predictive ability for growing degree days to anthesis-silking interval collected 

across multiple environments in a subset of the US maize (Zea mays L.) nested association 

mapping population. We observed that incorporating peak-associated vGWAS signals tended to 

lower predictive abilities across all families and environments. This suggests that more 

development is needed before deploying the strategy of using peak-associated vGWAS signals in 

a GS framework. We provide specific suggestions for further research investigating how to better 

utilize GxE manifested as vQTLs into breeding for and against stability. 
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3.2 Introduction 

A rapidly expanding human population and an increase in westernized diets will greatly tax 

global food production for the rest of the 21st century (Brown & Funk, 2008; Tai et al., 2014). 

The global food supply will be put under further stress by climate change. Not only will climate 

change increase the unpredictability and intensity of abiotic stressors relating to precipitation and 

temperature, but it will also lead to the proliferation of biotic stressors like insects, pathogens, 

and weeds (Ceccarelli & Grando, 2020; Shahzad et al., 2021). With more unpredictable stressors 

becoming the new norm, there is a call in plant breeding to prevent massive fluctuations in crop 

variety performance in not only across years, but even within the same growing season (Leng & 

Huang, 2017; Raza et al., 2019). A solution in countering these fluctuations and creating yield 

stable varieties in crops is to select against alleles that display high phenotypic plasticity across 

different environments, i.e., alleles with genotype-by-environment (GxE) interactions (Bernardo, 

2010; Kusmec et al., 2018). In contrast, there are scenarios where breeding for phenotypic 

plasticity in crops is ideal. A few examples of where it would be ideal to select for phenotypic 

plasticity in crops are introduction into novel environments, exposure to new management 

practices in favorable environments, changes in consumerism preference like organic foods, or 

when new disease pressures arise (Desclaux et al., 2007). Thus, the ability to utilize GxE and 

plastic alleles in plant breeding have serious implications for food security (de Oliveira Silva et 

al., 2020; Kusmec et al., 2018; Mahmood et al., 2022). 

Genomic selection (GS) has potential to accelerate the development of varieties with 

optimal breeding values in environments under unprecedented biotic and abiotic stresses arising 

from climate change  (Xiong et al., 2022). The use of GS in plant breeding programs has become 

widespread due to its proven potential to increase genetic gain while simultaneously decreasing 



 

 

61 

 

the resources needed for evaluation (Meuwissen et al., 2001; Heffner et al., 2010; Roorkiwal et 

al., 2018). Through fitting a linear model in a training population that equates observed 

phenotypes to genome-wide marker sets plus an error term, GS provides genomic estimated 

breeding values (GEBVs) for breeding germplasm that has not been phenotyped (Meuwissen et 

al., 2001; Goddard and Hayes, 2007). Because these GEBVs can be obtained without the need to 

grow out and phenotype such breeding germplasm, GS typically reduces the time needed for 

evaluating breeding materials, and thus could expedite the deployment of yield-stable varieties 

(Goddard and Hayes, 2007; Xiong et al., 2022). However, GS prediction accuracies can be 

negatively affected if GxE is not accurately quantified, especially across highly diverse growing 

conditions and environments. Consequently, decreases in prediction accuracies may affect the 

prospects of selecting optimal individuals based on GEBVs (Spindel and McCouch, 2016). Such 

decreases could be mitigated due to extensive research in adapting GS models to accurately 

quantify GxE through multi-kernel frameworks (Burgueño et al., 2012; Heslot et al., 2014; 

Jarquín et al., 2014; Cuevas et al., 2017). 

Although selecting for or against GxE alleles both have merit for plant breeding, there are 

barriers in identifying these types of loci. These include both an extensive multiple testing 

correction and that GxE effects may not always behave additively (Yang, 2014; Wang et al., 

2021; Waters et al., 2023). Ultimately, such barriers could result in the underutilization of 

moderate-sized, but biologically important GxE loci in breeding (Struchalin et al., 2012; 

Malosetti et al., 2013). Alternate quantitative genetics approaches that seek to identify loci 

associated with the population variance of a trait (i.e., variance quantitative trait loci or vQTLs; 

Rönnegård & Valdar, 2012) have potential to bypass these barriers in detecting GxE interactions. 

Analogous to detecting mean QTLs (hereafter called mQTLs), variance genome-wide 
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association studies (vGWAS) and vQTL linkage mapping approaches have been developed to 

detect and quantify vQTLs (Corty & Valdar, 2018). While many statistical approaches have been 

deployed for vGWAS, two commonly-used approaches are the Brown-Forsythe Test (BFT) and 

the double generalized linear model (DGLM). While useful because of its simplicity, the BFT 

cannot directly control for population structure and familial relatedness (Hong et al., 2017). In 

contrast, the DGLM can control for population structure as fixed effects but cannot account for 

familial relatedness (Y. Lee & Nelder, 1996; Rönnegård & Valdar, 2012). Our previous 

simulation study has demonstrated that it is possible for both of these vGWAS approaches to 

identify GxE effects simulated using marker data (Murphy et al. 2022). Thus, GxE loci identified 

by vGWAS could theoretically be incorporated into a GS model as fixed-effect covariates or as a 

separate kernel; the inclusion of such loci could facilitate breeding efforts seeking to select for 

germplasm with stable phenotypes across environmental fluctuations. While the potential for 

vGWAS and related analyses to identify GxE loci have been evaluated for real traits in animals 

(Mouresan et al., 2019; Braz et al., 2021), these approaches have been underexplored for real 

traits in plants (Song et al., 2022; Murphy and Lipka, in press).  

To the best of our knowledge, the performance of GS models that include GxE loci 

identified through a vGWAS as fixed-effect covariates has never been evaluated. However, a 

study conducted by Mouresan et al. (2019) could shed light on the potential of vQTL to improve 

GS prediction accuracy. Using both simulated and real trait data, Mouresan et al. (2019) 

observed that GS models including peak-associated markers from a vGWAS as a fixed-effect 

covariate tended predict GEBVs more accurately than traditional GS models for traits that were 

controlled by vQTLs. Even though this model shows promise, this model employed by 

Mouresan et al. (2019) did not explicitly allow for a GxE term. Nevertheless, this study suggests 
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that it is merited to evaluate the impact of incorporating vGWAS results into GS models used to 

breed for phenotypic stability.  

The purpose of this study was to investigate if incorporating vGWAS signals into a GxE 

genomic selection model can generate consistent GEBVs across environments to implement this 

for breeding for stability. We used publicly available genotypic and multi-environment 

flowering-time phenotypic data from the US nested association mapping (NAM) populations in 

maize (Zea mays L.) ( Yu et al., 2008; Buckler et al., 2009; McMullen et al., 2009). We 

hypothesized that incorporating peak vGWAS associations into the GS model can increase 

prediction accuracies under certain circumstances, as seen in both Mouresan et al. (2019) and in 

parallel with studies that investigated accounting for mQTLs in genomic prediction models 

(Bernardo, 2014; Rice & Lipka, 2019).   

3.3 Materials and Methods 

Genotypic and Phenotypic Data 

We used genotypic and phenotypic data from the US maize nested association mapping (NAM) 

panel, which has been previously described (Yu et al., 2008; Buckler et al., 2009; McMullen et 

al., 2009). Briefly, this panel was created by crossing 25 genetically diverse maize inbred lines to 

B73, the common parent, to form 25 recombinant inbred line (RIL) families. The resulting panel 

comprises of approximately 5,000 recombinant inbred lines (RILs), with the typical RIL family 

size being approximately 200 RILs. To perform our analyses, we used 14,772 markers measured 

in 4,635 of the NAM RILs that have been used and described in previous analyses (Diepenbrock 

et al., 2017, Diepenbrock et al. 2021). In summary, these marker data were obtained from 

genotyping by sequencing (Elshire et al., 2011; Glaubitz et al., 2014) using a procedure where 

markers were imputed every 0.1 cM, as described in (Ogut et al., 2015). 
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For the phenotypic dataset, we analyzed growing degree days (GDD) to anthesis-silking interval 

(GDDASI) from the traitMatrix_maize282NAM_v15-130212.txt from Panzea 

(http://www.panzea.org/#!phenotypes/c1m50 accessed March 2020). These data consist of the 

Goodman-Buckler Diversity Panel (Flint-Garcia et al., 2005) and the US maize NAM panel 

grown at seven locations. The data collection procedures and experimental design details are 

described in (Hung et al., 2012a).  

Due to the computational complexities of the ensuing analyses, we used a subset of the 

NAM panel and available locations. Specifically, we used six NAM families, each with a diverse 

founder representing at least one of the heterotic maize groups summarized in Liu et al. (2003) 

and that segregated for photoperiod sensitivity (Coles et al., 2010; Hung et al., 2012b). To 

emulate the full NAM panel's genetic composition, most of the families had a 

tropical/subtropical line as a diverse founder that still displayed variation for flowering time. 

Accordingly, five of the families we selected were Z002 (B73 x CML103; tropical), Z003 (B73 x 

CML228; tropical), Z010 (B73 x Hp301; popcorn), Z011 (B73 x IL14H; sweet), and Z014 (B73 

x Ky21; non-stiff stalk) (Flint-Garcia et al., 2005; Gage et al., 2020). We also selected NAM 

family Z020 (B73 x NC350) due to the broad adaptability of NC350, a subtropical/tropical line 

adapted to temperate environments (Nelson et al., 2016; Woodhouse et al., 2021). The subsets of 

environments we considered were at Aurora, NY, Urbana, IL, and Clayton, NC, due to the lower 

rates of missing data at these locations. Accordingly, we considered the available GDDASI data 

from both the 2006 and 2007 field seasons at each of these environments. Inclusion of these 

phenotypic data from the 2007 field season data sets are of particular interest because the United 

States experienced a severe drought that year, which is ideal for studying abiotic stress (Price et 

al., 2011).

http://www.panzea.org/#!phenotypes/c1m50 accessed March 2020
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Stability Analysis 

Stability estimates were obtained from fitting the Finlay-Wilkinson Regression (FWR) model 

(Finlay and Wilkinson, 1963) to every RIL in the six NAM families we selected, using an 

approach analogous to Gage et al. (2017). Thus, for each RIL we fitted the following simple 

linear regression model: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥𝑖 + 𝜀𝑖𝑗  , (3.1) 

where 𝑌𝑖𝑗 is the observed GDDASI value of the 𝑗𝑡ℎ NAM RIL in the 𝑖𝑡ℎ environment, 𝛽0𝑗 is the 

intercept parameter for the 𝑗𝑡ℎ NAM RIL, 𝛽1𝑗 is the slope parameter of the 𝑗𝑡ℎ NAM RIL, 𝑥𝑖 is 

the GDDASI value of B73 checks measured in the 𝑖𝑡ℎ environment, and 𝜀𝑖𝑗 is the random error 

term for the 𝑗𝑡ℎ NAM RIL in the 𝑖𝑡ℎ environment ~NID(0, 𝜎𝜀𝑗
2 ). We fitted this FWR model using 

the lm() function in R and we extracted the least squares estimate of the slope. The resulting 

slope estimates all of the NAM RILs were used as the response variables in parts of the ensuing 

analyses. 

Cross-Validation Scheme employed for ensuing analysis 

We used the cross-validation 00 (CV00) scheme to assess how accurate the GS models described 

below can predict GEBVs for unobserved RILs in unobserved environments (Guo et al., 2020; 

Jarquin et al., 2020, Jarquin et al., 2021). Under this scheme, the validation sets consisted of the 

RILs of a given NAM family in a given environment. The corresponding training set consisted of 

the GDDASI values from the RILs of the remaining NAM families observed in the remaining 

environments. This scheme resulted in a total of 36 different combinations of training and 

validation sets. 
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vGWAS Analysis 

To assess the potential for variance quantitative trait loci (vQTLs) to produce stable GEBVs 

across environments, we undertook a two-step process using the Brown-Forsythe Test (BFT) and 

double generalized linear model (DGLM). First, we conducted a vGWAS on each training set to 

find vQTLs associated with the slope estimates obtained from FWR. We previously described 

the BFT in the simulation study conducted in Murphy et al. (2022) to identify GxE loci that 

manifest themselves as vQTLs. The marker from this vGWAS with the strongest association 

(i.e., with the lowest P-value from testing 𝐻0: Population variances of the slope estimates from 

FWR are equal across all genotypes at the tested marker) was then included as a fixed-effect 

covariate in the dispersion part of the following DGLM: 

𝑌𝑖𝑗𝑘 = 𝜇𝑚 + 𝜀𝑖𝑗𝑘 (3.2) 

where 𝑌𝑖𝑗𝑘 corresponds to the GDDASI of the 𝑘𝑡ℎ RIL in the 𝑗𝑡ℎ environment and the 𝑖𝑡ℎ family; 

𝜇𝑚 is the intercept; and  𝜀𝑖𝑗𝑘  is the error term corresponding to the 𝑘𝑡ℎ RIL in the 𝑗𝑡ℎ 

environment and the 𝑖𝑡ℎ family ~𝑁(0, 𝜎𝑖𝑗𝑘
2 ). This DGLM links the error population variance 𝜎𝑖𝑗𝑘

2  

to the following linear combination of explanatory variables: 

log(𝜎𝑖𝑗𝑘
2 ) =  𝜇𝑣 + 𝑎𝑣𝑠𝑘   (3.3) 

where 𝜎𝜀𝑖𝑗𝑘
2  is the residual variance to the 𝑘𝑡ℎ RIL in the 𝑗𝑡ℎ environment and the 𝑖𝑡ℎ family; 

variance intercept; 𝑎𝑣 is the effect size of the SNP with the lowest P-value from the vGWAS 

scan ran using the BFT; and 𝑠𝑘 is the observed genotype of the SNP with the lowest P-value 
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from the vGWAS scan at the 𝑘𝑡ℎ RIL, encoded as 0, 1, or 2. This DGLM was fitted using the 

dglm R package (Symth, 1989; Dunn and Symth, 2020), with code derived from Hussian et al 

(2020) and Murphy et al (2022). The resulting residuals from this DGLM are considered as one 

of the two response variables for the GS model described in the next section.  

Marker by Environment Genomic Selection Model 

We considered the Marker by Environment (MxE) genomic selection model that has been 

proposed in Lopez-Cruz et al. (2015). Briefly, this is a multi-trait model, where the phenotypic 

values across each of the six environments are set to be an individual trait. The MxE model 

considers both common marker effects across all environments and environment-specific marker 

effects; the latter is potentially useful for quantifying the contribution of GxE to the overall 

genetic architecture of the trait of interest (Lopez-Cruz et al., 2015; Crossa et al., 2017). The 

MxE model is written as follows in matrix notation: 

(
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=
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, (3.4) 

where 𝒀𝒊 is an N-dimensional vector of phenotypic observations of the 𝑖𝑡ℎ  environment; 𝟏 is an 

N-dimensional vector of 1’s; 𝜇𝑖 is the population mean of 𝒀𝒊; 𝒖𝟎 =

(𝒖′𝟎𝟏, 𝒖′𝟎𝟐, … , 𝒖′𝟎𝟔)′~𝑀𝑉𝑁(𝟎, 𝜎𝐺0
2 𝑮𝟎) is an Nx6-dimensional vector of random genetic effects 

of the RILs that are common to all environments;  𝒖′𝟏 = (𝒖′𝟏𝟏, 𝒖′𝟏𝟐, … , 𝒖′𝟏𝒋)~𝑀𝑉𝑁(𝟎, 𝑮𝟏) is 

an Nx6-dimensional vector of random genetics effects that are specific to each environment;   

𝜺 = (𝜺′𝟏, 𝜺′𝟐, … , 𝜺′𝟔)′~𝑀𝑉𝑁(𝟎, 𝜎𝜀
2𝑰); 𝜎𝐺0

2  is the population variance of each element of 𝒖𝟎; 𝜎𝜀
2 is 

the population variance of each element of 𝜺; and 𝑰 is an 𝑛𝑘 𝑥 𝑛𝑘 identity matrix. 𝑮𝟎 is an 

additive genetic relatedness calculated as follows:
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𝑮𝟎 = (

𝑿𝟏𝑿′𝟏 ⋯ 𝑿𝟏𝑿𝒋
′

⋮ ⋱ ⋮
𝑿𝟏𝑿′𝒋 ⋯ 𝑿𝟔𝑿𝒋

′
)/𝑝, (3.5) 

where 𝑿𝒋 is an 𝑁𝑥𝑝 matrix of genotype values for p markers across the N RILs grown in the 𝑗𝑡ℎ 

environment. Each marker is encoded as 0,1, and 2. 𝑮𝟏 is analogous to 𝑮𝟎, but is a block-

diagonal matrix that i.) does not consider relatedness between RILs across environments and ii.) 

has separate variance components at each environment. 𝑮𝟏 is calculated as follows: 

𝑮𝟏 = (
𝜎𝑢11
𝟐 𝑿𝟏𝑿′𝟏 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝜎𝑢61

𝟐 𝑿𝟔𝑿𝟔
′
)/𝑝, (3.6) 

where 𝟎 is an n x n matrix of zeros, 𝜎𝑢1𝑖
2  is the population variance of the 𝑖𝑡ℎ element of 𝒖𝟏, and 

all other terms are as previously described. 

 For each of the training sets obtained from the CV00 cross-validation scheme, we fitted 

this model twice. The response variable for the first model was the observed GDDASI value, 

while the response variable for the second model was the residuals from the DGLM models 

described in (2) and (3). Thus, the former response variable does not account for peak vGWAS 

associations, while the latter response variable does. We measured predictive ability from the 

resulting GEBVs in each corresponding validation set by estimating the Pearson correlation 

between the observed GDDASI values and the GEBVs. When using the residuals from the 

second model, we estimated the Pearson correlation between the residuals and GEBVs. To assess 

stability across environments, we calculated Pearson correlations between the median GDDASI 

values of each RIL across all environments and the median GEBVs across all environments. We 

used the “DiagremmeR” R package to illustrate all of these steps in our proposed pipeline 

(Iannone and Iannone, 2022) (Figure 3.1).
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3.4 Results 

Overall, predictive abilities of GEBVs for GDDASI were consistently lower and tended to be 

negative when accounting for peak vGWAS associations from a training set (Figure 3.2). When 

the peak-associated vGWAS signals considered, Families Z003 and Z020 had the highest and 

lowest overall predictive abilities, respectively. Irrespective of integrating peak-associated 

vGWAS signals, Family Z010 tended to yield higher predictive abilities, while Family Z014 

tended to yield lower overall predictive abilities.  

Did including peak-associated markers from vGWAS improve prediction accuracy within 

environments? 

In general, predictive abilities were observed to be lower at each environment when peak 

vGWAS associations were included (Figure 3.3). However, a few exceptions were noted, 

especially for Aurora 2006. Incorporating vGWAS signals into the analysis also tended to yield 

negative predictive abilities. These results refute our hypothesis that incorporating peak vGWAS 

associations can improve predictive abilities within environments.  

Did including peak-associated markers from vGWAS improve prediction accuracy across 

environments? 

The Pearson correlation between the median GEBVs and the median GDDASI values across 

environments tended to be higher when peak vGWAS associations were not considered. (Figure 

3.4). Family Z002 had the highest predictive ability when peak vGWAS associations were 

considered, while Family Z020 had the lowest predictive ability. When peak vGWAS signals 

where not considered, Family Z010 had the highest predictive ability, while Family Z014 had the 

lowest. 
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3.5 Discussion 

We incorporated peak-associated vGWAS signals into cross-environment predictions of GEBVs  

for GDDASI in a subset of the US maize NAM population grown in multiple environments. We 

observed that such an incorporation yielded a substantial reduction in predictive abilities. These 

results suggest that incorporating peak-associated vGWAS signals into genomic prediction is not 

a viable approach for assisting plant breeding efforts to select for or against stability across 

environments. 

Prospects of using vQTLs to assist in genomic selection and breeding for stability 

Because of the theory behind a GxE locus manifesting itself as a vQTL (Rönnegård & Valdar, 

2011), this GS study focused on incorporating peak-associated vGWAS signals into a GxE  

framework via the GS model proposed by Lopez-Cruz et al. (2015). The research presented here 

suggests that incorporating peak-associated vGWAS signals into GS models reduces predictive 

abilities. Nevertheless, we observed low predictive abilities regardless of whether or not peak 

vGWAS associations were considered. A possible explanation for this result is the cross-

validation scheme itself. We sought to predict GEBVs of untested RILs in untested environments 

(i.e., in a CV00 cross-validation scheme), and therefore we expected lower overall predictive 

abilities, as reported in previous studies (Ankamah-Yeboah et al., 2020; Jarquin et al., 2020). It is 

worth investigating how different cross-validation schemes influence the predictive abilities 

when incorporating peak-associated vGWAS signals.  

A few trends stood out when observing the predictive abilities across families. Family 

Z020 has surprisingly low prediction accuracies. The diverse founder of this family, NC350, is a 
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tropical inbred line adapted to temperate climates. We initially predicted that Z020 would have 

the highest predictive abilities because NC350 can be grown in temperate, subtropical, and 

tropical environments (Nelson et al., 2016; Woodhouse et al., 2021). However, the tropical 

families (Z002 and Z003) had the highest raw (Figure 3.2) and median-based (Figure 3.4) 

predictive abilities when peak vGWAS associations were accounted for. 

The Aurora 2006 environment had the highest predictive abilities among the validation 

environments when peak-associated vGWAS signals were accounted for (Figure 3.3). In 

contrast, Aurora 2006 yielded the lowest predictive abilities when no peak-associated vGWAS 

signals were not accounted for. This may suggest that the vGWAS conducted on the training sets 

may have detected a genomic locus that is highly predictive of breeding values for this particular 

environment.  

We were initially going to investigate this approach with all possible locations grown 

during the 2006-2009 field seasons that are publicly available. However, we only focused on 

these locations due to their low rate of missing phenotypic data. Investigating the predictive 

abilities in more tropical locations, such as Homestead, Florida, or Ponce, Puerto Rico, would be 

interesting to investigate to see how a tropical environment may impact predictive abilities.  

Considerations in using peak-associated vGWAS signals for breeding for stability 

Despite the overall low predictive abilities observed when peak-associated vGWAS signals were 

incorporated into GS, our findings suggest that there are potential areas that warrant further 

investigation. First, we explored only one trait (GDDASI) in our study. Investigating a more 

comprehensive range of traits with contrasting genetic architectures should shed light on the 

generalizability of our findings. Second, we chose to analyze the US NAM population to better 

control for the confounding effects of population substructure and familial relatedness often dealt 
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with diversity panels (Flint-Garcia et al., 2005; McMullen et al., 2009). This was important 

because we previously noticed P-value inflation when using the BFT and DGLM to identify GxE 

loci in the Goodman-Buckler maize diversity panel (Murphy and Lipka, in press). Thus, the 

choice of germplasm should also be considered when using peak-associated vGWAS signals. If 

one were to use this approach with a diversity panel, then population structure and familial 

relatedness could be addressed implicitly by extracting residuals from a linear mixed model as 

described in the vGWAS literature (Shen et al., 2012; Forsberg et al., 2015; Murphy et al., 2022). 

Nevertheless, we demonstrated in Murphy and Lipka (in press) that even such an approach does 

not always guarantee adequate control of false positives. Future research should consider 

studying other multi-parent populations like multi-parent advanced generation inter-cross 

(MAGIC) and random-open-parent association mapping (ROAM) populations (Dell’Acqua et 

al., 2015; Xiao et al., 2016). 

 For calculating stability estimates, we used the widely utilized the FWR model to obtain 

slope estimates. Finlay-Wilkinson regression is often used for assessing stability in plant 

breeding due to its parsimonious interpretation (Walsh and Lynch 2014). However, FWR does 

have drawbacks, including increased bias from missing data across multiple environments and 

potentially inducing large sampling variance from assuming fixed effects (Lian & De Los 

Campos, 2016). It may be worthwhile to investigate additional stability statistical models such as 

the Additive Main Effects and Multiplicative Interaction Model to reduce any extraneous sources 

of variation when calculating stability estimates (Cornelius, 1993; Piepho, 1995). 

 We ran the BFT on the slope estimates from FWR to identify peak-associated vGWAS 

signals. The rationale for using BFT instead of the DGLM is that we demonstrated in Murphy et 

al. (2022) that the BFT and DGLM performed similarly when searching for GxE loci. However,
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 one caveat Murphy et al. (2022) identified in using vGWAS for GxE genomic prioritization is 

that a large sample size was often needed in maize to use vGWAS for this matter successfully. 

The NAM subset we used may not have had a large enough sample size to identify GxE loci that 

manifested as a peak-associated vGWAS signal. It may be worthwhile to also investigate the 

performance of DGLM, but we hypothesize that DGLM will perform on par with BFT. 

  Finally, our study used the MxE GS model from Lopez-Cruz et al. (2015). The rationale 

for using this model was that it allows for marker effects to change across environments, which 

is theoretically optimal for quantifying GxE. However, a drawback of the MxE model is that it 

assumes that the contributions of GxE are additive. In addition, Lopez-Cruz et al. (2015) did note 

that MxE performed best when the environments had a positive correlation with one another. It is 

possible that our selected environments did not have all positive correlations. An alternate model 

that theoretically addresses these drawbacks was proposed by Cuevas et al. (2016), in which a 

non-Gaussian kernel is used to account for GxE in the model.  

How incorporating peak-associated vGWAS signals parallels incorporating peak-

associated mGWAS markers in a GS model 

The rationale for incorporating peak-associated vGWAS signals is analogous to what has been 

demonstrated with incorporating peak-associated mean GWAS (mGWAS) signals in genomic 

selection (Bernardo, 2014; Rice & Lipka, 2019). The theory is that predictive abilities can be 

improved when single or multiple peak-associated mGWAS signals accounting for at least 10% 

of the phenotypic variance are incorporated into GS models better to quantify GEBVs. While 

Rice and Lipka (2019) demonstrated that predictive abilities improved in some simulations, most 

of the simulations yielded lower predictive abilities when including peak-associated mGWAS 

signals into the GS model. Considering what has been observed with such incorporation of peak-
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associated mGWAS signals, there may be some explanations for why incorporating peak-

associated vGWAS signals lowered predictive abilities. One is that we used this approach in an 

outcrossing species (maize) (Wallace et al., 2014). Rice and Lipka (2019) did note that predictive 

abilities in simulation settings in sorghum, an inbreeding species, tended to be higher than that of 

maize when incorporating peak-associated mGWAS signals. Incorporating peak-associated 

vGWAS signals into genomic selection models should also be explored in inbreeding species as 

well.  

Another plausible explanation of why incorporating peak-associated vGWAS signals 

lowered predictive abilities is that the peak-associated vGWAS signals may have been due to 

either a pure vQTL, an epistatic QTL, or additional confounding in the error term (Rönnegård & 

Valdar, 2011). In addition, Rice and Lipka (2019) also mentioned that the population size of the 

training and validation populations might also factor into the success of incorporating peak-

associated GWAS signals. This is especially important because i.) our validation families tended 

to be less than 200 RILs and ii.) larger sample sizes are often needed when searching for vQTLs 

compared to mQTLs ( Lee and Nelder, 2006; Rönnegård & Valdar, 2012).  

3.6 Conclusions 

Our findings clearly suggest that further research needs to be invested into incorporating GxE 

loci into GS to breed for stability. We recommend that researchers investigate how to best 

incorporate GxE with a broader range of germplasm, traits with differing genetic architectures, 

different GS models, stability measurements, and genotyping platforms. If the results of vGWAS 

were to be considered in a GS model, we call for developing such models that can directly 

incorporate peak-associated vGWAS signals while simultaneously allowing a GxE interaction 

term, in contrast to our approach that used residuals from a DGLM fitted prior to running the GS 
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model. We also recommend that simulation studies be used to see how different quantitative 

genetics parameters can influence the effectiveness of this approach in breeding for stability. 

These measures should be taken in future research to fully explore the extent to which using the 

results from a vGWAS can bolster GS-based approaches to breed for stability, if at all. 

3.7 Figures  

 

Figure 3.1. Flow chart. Summarizing the steps to perform genomic selection with or without 

incorporating a peak-associated vGWAS signal. If peak-associated vGWAS signals were 

incorporated, slope estimates were calculated using Finlay-Wilkinson Regression, run a variance 

genome-wide association study using the Brown-Forsythe Test (BFT), fit the peak-associated 

vGWAS signal as a fixed effect in DGLM to obtain residuals, and then run the genomic selection 

model on the residuals for each training population. If peak-associated vGWAS signals were not 

incorporated, the genomic selection model was fitted on the raw growing degree days to anthesis 

silking interval (GDDASI) measurements. Orange rectangles represent each step in this pipeline, 

and the black arrows represent how these steps are related
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Figure 3.2. Distribution of predictive ability for each family across environments. The x-

axis represents each of the tested nested association mapping families. Briefly, the NAM families 

used in this study include B73 x CML103 (Z002), B73 x CML228 (Z003), B73 x Hp301 (Z010), 

B73 x IL14H (Z011), B73 x Ky21 (Z014), and B73 x NC350 (Z020). The y-axis represents the 

Pearson correlation between Growing Degree Days Anthesis Silking Interval (GDDASI) and 

genomic estimated breeding values (GEBVs) (Predictive Ability). The left panel represents the 

scenario where the MxE model was ran with peak-associated vGWAS signals incorporated the 

scenario where the Marker by Environment (MxE) genomic selection model was ran without 

peak-associated variance genome-wide association study (vGWAS) signals incorporated. The 

right panel represents the scenario where the Marker by Environment (MxE) genomic selection 

model was ran without peak-associated variance genome-wide association study (vGWAS) 

signals incorporated
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Figure 3.3. Distribution of predictive ability for each environment across families. The x-

axis represents each of the tested environments. Briefly, the environments used in this study 

where Aurora 2006 (06A), Clayton 2006 (06CL1), Aurora 2007 (07A), Clayton 2007 (07CL1), 

Urbana 2007 (07U), and Urbana 2006 (65). The y-axis represents the Pearson correlation 

between Growing Degree Days Anthesis Silking Interval (GDDASI) and genomic estimated 

breeding values (GEBVs) (Predictive Ability). The left panel represents the scenario where the 

MxE model was ran with peak-associated vGWAS signals incorporated. The right panel 

represents the scenario where the Marker by Environment (MxE) genomic selection model was 

ran without peak-associated variance genome-wide association study (vGWAS) signals 

incorporated.
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Figure 3.4. Distribution of the median predictive ability for each family across the tested 

environments. The x-axis represents each of the tested nested association mapping families. 

Briefly, the NAM families used in this study include B73 x CML103 (Z002), B73 x CML228 

(Z003), B73 x Hp301 (Z010), B73 x IL14H (Z011), B73 x Ky21 (Z014), and B73 x NC350 

(Z020).  The y-axis represents the Predictive Ability from the median growing degree days 

anthesis silking interval (GDDASI) and the median genomic estimated breeding values (GEBVs) 

for each RIL across all environments. The left panel represents the scenario where the MxE 

model was ran with peak-associated vGWAS signals incorporated represents the scenario where 

the Marker by Environment (MxE) genomic selection model was ran without peak-associated 

variance genome-wide association study (vGWAS) signals incorporated. The right panel 

represents the scenario where the Marker by Environment (MxE) genomic selection model was 

ran without peak-associated variance genome-wide association study (vGWAS) signals 

incorporated.
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CHAPTER 4: The parallel universe of vGWAS to traditional GWAS 

While vQTLs can be a valuable tool in plant breeding and quantitative genetics, especially for 

GxE, further research must be conducted before realizing this full potential. While being first 

noted and described in the earlier days of when mean QTL mapping approaches were being 

developed, vQTLs have only recently received attention within the plant science community 

(Weller et al., 1988; Shen et al., 2012; Forsberg et al., 2015). While most plant science vGWAS 

publications have focused on using vGWAS to identify putatively epistatic loci, the application 

of vGWAS to elucidate regions likely to harbor GxE interactions is still in its infancy (Hussain et 

al., 2020; Li et al., 2020; Murphy et al., 2022; Song et al., 2022). Depending on the breeding 

goal, identifying GxE loci through vGWAS can help breeders identify such loci of small to 

moderate effect that may be missed from traditional GxE analyses due to the need to test every 

marker and environment interaction (Dempfle et al., 2008; Bustos-Korts et al., 2017; Gauderman 

et al., 2017). Breeders can either select against a vQTL allele to breed for stability and 

unpredictable growing environments or for a vQTL when introducing a crop to a new 

environment in its strictest sense (Desclaux et al., 2008; Kusmec et al., 2018; Langridge et al., 

2021; Reckling et al., 2021).  

The biggest hurdle in using vGWAS on a more widespread scale for GxE and other 

studies is the issue of false positives. Currently, the most widely used vGWAS statistical models, 

the BFT and DGLM, cannot explicitly control for familial relatedness. This problem can 

theoretically be indirectly addressed by extracting residuals from a linear mixed model like the 

unified linear mixed model in Yu et al. (2006). However, such an approach does not always 

guarantee that false positives will be controlled, as I observed from my work when using 

vGWAS to detect GxE loci in flowering-time traits in maize (Murphy and Lipka, in  press). 
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Some alternative models can directly address the confounding factors from population 

substructure and familial relatedness, namely the HGLM and DHGLM (Lee and Nelder, 1996; 

Lee and Nelder, 2006; Rönnegård and Valdar, 2012). However, the bottleneck preventing the 

wide-scale deployment of these models is the computational burden required to fit them to the 

scale of modern plant genotypic and phenotypic data. For vGWAS to be deployed routinely in 

plant breeding, we need to further develop the computational infrastructure needed to fit these 

models. 

Despite these bottlenecks in vGWAS, many parallels with traditional GWAS may 

provide exciting opportunities to expand the scope of vGWAS. So far, within plant science and 

breeding, vGWAS has been performed in Arabidopsis, maize, wheat, and mung bean. While we 

focused on flowering-time traits in maize, which did have vQTLs identified from independent 

germplasm, there are other traits where vQTLs have been identified such as plant height in 

maize. It is warranted to look at other germplasm to see if the same vQTLs are identified (Shen 

et al., 2012; Forsberg et al., 2015; Li et al., 2020; Ageev et al., 2021; Zhang and Qi, 2021; Song 

et al., 2022). Many crop and plant communities may benefit from using vGWAS to help aid in 

breeding for uniformity and stability, responsiveness, and, of course, as a way to prioritize 

genomic regions with epistasis and or GxE signals. There are some plant communities, 

especially, that may benefit from running vGWAS more often. For example, an important 

breeding objective in potato breeding is to breed for uniformity in potato size for ease of 

processing (Bradshaw et al., 2006). Another crop that may also benefit from breeding for 

uniformity is maize. Even though vQTLs have been described in maize, one maize breeding 

community that may benefit the most from vQTLs is sweetcorn, where uniformity in ear size,
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nutrient profile, and healthy-looking ears is desired (Tracy, 1996). These are just a few examples 

where vQTLs may be valuable in plant breeding by selecting against vQTLs (Ordas et al., 2008). 

Another way that vQTLs can be identified is in traditional single-marker linkage mapping 

approaches. The DGLM can be used for this exact purpose, as demonstrated in Corty and Valdar 

(2018). Using vQTL biparental mapping populations has yet to be explored in the plant breeding 

and science realm. Using a vQTL identified from biparental mapping will provide a 

complementary approach to vGWAS in a similar vein to traditional GWAS and QTL mapping 

(Tibbs Cortes et al., 2021). While QTL mapping in biparental crosses do not suffer from false 

positives arising from population structure issue and familial relatedness, biparental populations 

can severally limit the genetic diversity present in these populations (Keurentjes et al., 2011). 

Multi-parent populations and joint-linkage mapping can address this shortcoming (Scott et al., 

2020); while such populations and approaches would be valuable to vQTL mapping, there has 

(to my current knowledge) yet to be an approach developed specifically for vQTL mapping.  

Currently, vGWAS and vQTL mapping only can model a single trait at a time. While 

considering only a single trait may answer the biological question being asked, multiple traits in 

one quantitative genetics model may answer additional biological questions like pleiotropy 

(Auge et al., 2019; Kim et al., 2009; Rice et al., 2020). There are theoretical benefits to looking 

at vQTLs through a multi-trait framework. Multi-trait statistical approaches can increase 

statistical power in detecting a vQTL by utilizing genetic and trait correlations. This would 

address the shortcoming of identifying a vQTL (and potentially a GxE or epistatic QTL) with 

improved precision, especially if one of the traits has either low heritability or small overall 

genetic effects (Rönnegård & Valdar, 2012). From the biological perspective, it has been noted 

that epistasis and GxE can be multi-trait in nature (Majumdar et al., 2020; Konigorski and 
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Glicksberg, 2021).  In theory, a multi-trait vGWAS approach may detect multi-trait GxE and 

epistasis. Interest has been pushed in breeding for stability for multiple traits at once (Olivoto et 

al., 2019). Selecting against a multi-trait vQTL allele may help realize this objective.  

 My work with genomic selection and peak-associated vGWAS signals has the greatest 

need for further development. While Mouresan et al. (2019) provided a framework for including 

peak-associated vGWAS signals for genomic prediction, further research is needed to develop 

and deploy this model into a plant breeding program geared towards selecting for or against 

stability. While my approach of incorporated peak vGWAS signals lowered the overall 

prediction accuracies, my work establishes a baseline for future studies to improve this approach. 

All the statistical approaches employed in this this dissertation were frequentist. So far, 

only one Bayesian model called the Bayesian test for heteroskedasticity (BTH) has been 

proposed for vGWAS in Dumitrascu et al. (2019). A rationale that Dumitrascu et al. (2019) gave 

for using their Bayesian approach is that priors can give more reliable estimates for the mean and 

variance effects and can distinguish between a true vQTL and non-genetic sources or error. That 

said, this model performed on par with the DGLM in some instances, but the main limitation of 

deploying the BTH is the computational demands. However, the BTH would be worth 

investigating within plant breeding applications. In addition to BTH, Bayesian forms of DGLM 

and HGLM exist that can be modelled within R (Bonner et al., 2021). This may be worthwhile to 

investigate not just for vGWAS but also for GS.   

The incorporation of time series into vGWAS approaches have great potential. To date, 

time series applications to traditional GWAS has been proposed as a way to identify more 

candidate loci involved with the developmental trajectory of a trait throughout the plant’s life 

cycle (Moore et al., 2013; Miao et al., 2020). One intriguing observation noted by Li et al. (2020) 
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is that epistasis tended to be more enriched the earlier development stages of grain 

moisture, whereas GxE tended to be enriched for later developmental trajectories of grain 

moisture content in maize. Epistatic interactions have also been reported in other studies 

investigating time-series GWAS (Muraya et al., 2017; Knoch et al., 2020). These observations 

warrant the investigation of using a time-series vGWAS to aid in identifying additional epistatic 

and GxE loci in this framework. 

In conclusion, vQTLs have the potential to aid in detecting GxE loci, but more 

development is needed to realize this potential. As vGWAS and accompanying analyses gain 

momentum in plant breeding for studying GxE, many things to consider come to mind. 

Inferences based off vGWAS could provide insight into not only GxE loci but for many different 

biological phenomena.  At the same time, the current limitations of vGWAS identified in this 

dissertation, including false positives with current methods, computational demands of running 

more sophisticated vGWAS and vQTL models, and how to best incorporate vGWAS results into 

GS, need to be addressed in future research. Ultimately, mitigating these limitations could result 

in realizing the full potential of vGWAS to assist plant breeding efforts to study and better 

understand GxE in a changing global environment. 
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