
© 2023 Reza Soleymanifar

RCP: A TEMPORAL CLUSTERING ALGORITHM FOR REAL-TIME
CONTROLLER PLACEMENT IN SOFTWARE-DEFINED NETWORKS

BY

REZA SOLEYMANIFAR

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Industrial Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Professor Carolyn Beck, Chair
Professor Srinivasa Salapaka
Professor Rayadurgam Srikant
Professor Dusan M Stipanovic

Abstract

In this comprehensive study we introduce a family of maximum entropy based clustering algorithms to

address the problem of Controller Placement (CP) or equivalently Edge Controller Placement (ECP) 1. The

shared key advantage of our algorithms is utilizing a maximum entropy based framework that in terms of

performance translates to avoiding poor locally optimum placements that most competitor ECP algorithms

are susceptible to. Controller placement is recognized as one of the most important problems and a significant

performance bottleneck in Software Defined Networks (SDN) which is a recent paradigm in telecommunication

networks that disentangles data and control planes and brings flexibility and efficiency to the mobile network.

SDN networks lie at the core of the fifth generation (5G) wireless systems and beyond and are increasingly

being adopted into telecommunication networks over the recent years. CP can be simply stated as where to

place and which network nodes to assign to each individual controller such that a desired utility or cost is

optimized. The complexity of CP problem can drastically change with mobility of SDN network nodes and

due to this observation we offer two classes of algorithms for static and dynamic placement cases.

For static controller placement problem where network nodes and controllers are assumed to be stationary,

the algorithms, referred to as ECP-LL and ECP-LB, address the dominant leader-less and leader-based

controller placement topologies and have linear computational complexity in terms of network size. Each

algorithm tries to place controllers close to edge node clusters and not far away from other controllers to

maintain a reasonable balance between synchronization and delay costs. While the ECP problem can be

conveniently expressed as a multi-objective mixed integer non-linear program (MINLP), our algorithms

outperform the state of art MINLP solver, BARON both in terms of accuracy and speed.

As for the mobile networks, we propose real-time controller placement algorithms RCP, and RCP+ to

tackle the Dynamic Controller Placement (DCP) problem. More specifically these are temporal clustering

algorithms that provide real-time solutions for DCP and provide adaptability to inherent variability in

network components (traffic, locations, etc.) and is based on a control theoretic framework for which we show

the solution converges to a near-optimal solution. The key contribution of these algorithms is the real-time

aspect of placement of controllers which to our best of knowledge was never addressed prior to this study.

Our algorithms achieve linear O(N) iteration computational complexity with respect to the number of

nodes in the network, N and can update new positions of network controller in real-time, and in accordance

with mobility of SDN network nodes. This property allows utilization of an aerial control plane using UAV

swarms. We compare our work with a frame-by-frame approach and demonstrate its superiority, both in terms

of speed and incurred cost, via simulations using some of the largest public mobility datasets with millions

of records gathered over the span of months, containing GPS trajectories of thousands of pedestrians and

vehicles in large metropolitan areas like San Francisco, US and Beijing, China. Based on these simulations,

RCP and RCP+ can be up to 25 times faster than a conventional frame-by-frame method.

1The latter is used in the context of wireless telecommunications networks.

ii

RCP+ can be viewed as the culmination of the contributions of this thesis. Interestingly ECP-LL, and

RCP can be formulated as restricted versions of RCP+ algorithm. RCP+ allows for node prioritization, sparse

subsampling, node trajectory prediction using an underlying Recurrent Neural Network (RNN), computation

parallelization, and codebook expansion, making it a viable choice even for large-scale mobility networks,

which we explore in this thesis. We benchmark RCP+ against a number of alternatives, and show that for

real sized networks, it outperforms the comparable state of the art methods.

iii

To anyone seeking truth.

iv

Acknowledgments

This project would not have been possible without the support of many people. Many thanks to my advisor,

Carolyn Beck, who read my numerous revisions and helped make some sense of the confusion. Also thanks to

my committee members, Professor Salapaka, Professor Srikant, and Professor Stipanovic, who offered insight

and support. And finally, thanks to my family and friends who endured this long process with me, always

offering support and love.

v

Table of contents

Chapter 1 Introduction . 1

Chapter 2 Literature Review . 6

Chapter 3 Methodology . 12
3.1 Static Setting . 12
3.2 Dynamic Setting . 17

Chapter 4 Results . 49
4.1 Static Setting . 49
4.2 Dynamic Setting . 51

Chapter 5 Conclusion . 60

References . 62

Appendix A Codes . 69

vi

Chapter 1

Introduction

A computer network is a complex arrangement of interconnected computers, which grants downstream users

the ability to access the entire network through seamless connectivity. These computers communicate through

what is known as networking hardware 1 that mediates transmission data, in both wired and wireless networks.

These networking devices operate using a Network Operating System (NOS) that is specialized for a given

networking device.

Conventionally the routing process or selection of paths for data packets is performed locally by the

network hardware in a distributed fashion, without a global view of the network. Due to the proprietary

nature of most NOSs, networking hardware is required to be compatible with other network components,

which introduces many difficulties in terms of operation and maintenance of the network, for example,

requiring vendor-specific training, vendor lock-in, limitations on scalability, and potential constraints on

upgrade options. SDN is a paradigm that transforms the distributed intelligence of the network into a

centralized entity called a controller. This paradigm essentially disentangles the data and control planes, fully

delegating the routing process to a dedicated device. Softwarization paradigms predate SDNs and were aimed

at prioritizing software implementation of network functions. Through the 20th century, telecommunications

technology was driven by hardware, with most functions of the network implemented in ad-hoc physical

equipment, and in the early 2000’s when commercial CPU’s became cheaper the softwarization trend became

more prevalent. Software Defined Radio (SDR), and softswitches are early examples of this softwarization

trend that may be used to replace hardware based functions with software. The data and control plane

disentanglement in SDNs is attainable through controller software, which implements an SDN protocol

like OpenFlow, and is mounted on a computer device. The ensemble of controllers constitute a logically

centralized but physically distributed intelligence for the network, as opposed to the both logically and

physically distributed controllers of legacy networks. Ensemble controllers appear to applications and policy

engines as a single, logical switch. For example, OpenFlow, described in [1], enables network controllers to

determine the path of network packets across a network of switches. The controllers are distinct from the

switches, which allows for more sophisticated traffic management. OpenFlow automatically allows rerouting

of network packets when a switch is down or a system is under maintenance; this is not possible in legacy

networks. OpenFlow is layered on top of the Transmission Control Protocol (TCP) and allows switches from

different vendors–often each with their own proprietary interfaces and scripting languages–to be managed

remotely using a single open protocol bringing immense scalability. Essentially this moves network control

1Routers, switches, repeaters, etc.

1

Figure 1.1: A typical computer network with conventional network devices.

Forwarding device with
decoupled control

Forwarding device with
embedded control

Traditional network
(distributed control)

Software Defined Network

(decoupled control)

Figure 1.2: Centralized control versus distributed control.

out of proprietary network switches and into open source and locally managed control software, enabling the

SDN paradigm, as can be seen in Figure 1.2. Following the introduction of SDNs (approximately 2012), this

approach was quickly adopted and incorporated in design of switches by major companies like HP, Google,

and Microsoft.

Wireless networks are of high importance in modern telecommunication systems as they are efficient,

mobile, responsive, accessible, have enhanced guest access and better support expansion of network. In order

to enhance these systems, Software-Defined Networks (SDN) have been introduced as an emerging paradigm

whose primary advantage is giving developers greater control over the network traffic and administration

[2]. Traditionally wireless networks have played both the role of administration and relay of data within the

same infrastructure. One of the limitations of this architecture is that modifying these networks requires

manually re-configuring nodes of the network to accommodate the new changes. Softwarization is a new

trend in wireless communication networks that helps to automate this type of manual work.

One of the most studied open research problems, on which SDN itself heavily relies, is the so-called edge

controller placement problem (ECP) [2]. Controller placement is one of the most important components

of software defined networks [4]. This problem was first introduced in [5] and is in general NP-hard (see

[6]). Controllers are network nodes which are designated to control other nodes of a network. ECP in a

fog/cloud network essentially reduces to determining how many and which nodes in the network need to be

2

Controller Links
Network Links

WiFi Routers

UAV's

Cell phones

Connected Vehicles

Households

Signal towers

Drones

Figure 1.3: Software Defined Network with mobile controller nodes. Image from [3]

designated as the controllers. This placement induces several costs including delays between edge nodes and

the controllers they are assigned to, and synchronization delay between the controllers themselves which we

refer to as delay and synchronization costs respectively throughout this study.

There are several approaches to address the ECP problem. Our approach is based on viewing this

problem in a data clustering sense. Many clustering based approaches in literature are hindered by naive

initialization and are thus prone to poor local optima. This leads to multiple optimization attempts with

varied initializations that increase total computation time needed to find an optimal placement. These

approaches are also restricted to a single objective value which prevents the decision maker from simultaneously

considering multiple controller placement criteria. We discuss the use of the deterministic annealing (DA)

algorithm, which is tailored to avoid these shortcomings, and introduce algorithms that iteratively minimize

the costs associated with ECP. We identify the core competences of our static algorithms as being (1) scalable

and fast, due to linear computational complexity in terms of problem size, (2) high quality in terms of near

optimal solutions, (3) initialization independent as we always start with one controller in the mass center of

data, (4) excellent at avoiding poor local minima due the to use of a Shannon entropy term in the clustering

objective function and (5) able to address a multi-objective scheme.

The SDN paradigm has existed for some time for wired networks, but more recently Software Defined

Mobile Networks (SDMN) has extended the softwarization paradigm to mobile networks. This paradigm

promotes usage of generic and commodity hardware and software and prioritizing software over hardware in

implementation of protocol-specific functions. The benefits of SDMN include:

• networks are directly programmable since they are decoupled from the forwarding process;

• upgrades are software-only and hardware is protocol agnostic;

• maintenance can be carried out by a wider range of vendors;

• due to a reliance on general purpose hardware, networks can be scaled up easily by adding more

commodity hardware;

• global network visibility leading to minimizing the security breaches.

In recent years, the IT community has been actively discussing SDMN as a principal 5G enabler. The

global SDN market value was $9.9 million in 2019, and will appreciate to $72.6 million by 2027 [7], with large

3

telecommunication companies like AT&T, Vodafone and Rogers already benefiting from it. More recently

usage of mobile controllers has been promoted in [8] and [9], and herein we similarly assume the overlay

network of controllers is implemented using a UAV swarm. The application potential of UAV swarms is

intriguing, and only in its infancy [10]. Do to their high mobility, aerial vehicles are an ideal choice to respond

to continuous locale changes of SDMN edge nodes in a real-time fashion. Moreover, deploying this type of

SDN controller gives great flexibility to networks in locations where ground stations may not be present [11],

[12].

The Controller Placement (CP) problem can be defined as determining the locations of controller devices

and the assignment of network nodes to these devices in the SDN network, such that certain criteria are

optimized. These criteria can be a cost, such as cumulative network delay, and/or a utility, such as load

balance, or a hybrid criterion consisting of multiple cost or utility components. In terms of the Open

Systems Interconnection (OSI) model described in [13], the optimization happens at the physical layer. This

problem was first introduced in [5], and the authors proved this problem, a variant of the celebrated facility

location problem, is NP-hard. The CP problem can be viewed as a subclass of the Dynamic Controller

Placement (DCP) problem with no dynamicity 2, and in reverse DCP can be seen as a chronologically ordered

concatenation of many CP subproblems. This perspective motivates a crude yet effective way to tackle DCP

using an existing approach for solving CP, namely viewing each CP subproblem in isolation. We recognize

this approach as the static, or naive approach, contrary to the dynamic approach that uses the temporal

relationship between CP subproblems, and prioritizes adaption and prediction over recalculation. The static

approach is blind to the evolution of CP subproblems that can be leveraged to make predictions of future

states of the network. To the best of our knowledge the static approach has been the de facto approach in the

current body of literature, until [14] proposed the first temporal algorithm to tackle DCP. A deeper inspection

of the static approach, as we will discuss later, reveals that the static approach is inherently inadequate for

the task of Real-time Controller Placement, where smooth transitions between the solutions to subproblems

are necessary to guarantee a feasible path for the mobile controllers.

There is a dichotomy in DCP rooted in the source of variability in the network. The dynamicity of the

network can be due to either (1) a change in network topology, or (2) the packet flow rate of the network.

Our focus is on a specific type of dynamicity that is rooted in the mobility of the network nodes, i.e. the

network topology change.

A subclass of DCP which was first introduced by [14] is the so-called Real-time Controller Placement 3,

emphasizing the sheer speed of placements. The definition of real-time is domain based, which can vary

from nano-seconds in finance and high-frequency trading to seconds in log file processor applications. In

the context of mobile SDNs we will assume the conventional standard in traditional networks that requires

communication between users from end to end with a latency of 20 milliseconds or less [15]. Using this

standard, we claim that many of the works in literature, which emphasize real-time aspects of their approaches,

are not practically real-time. To see this we show the computational complexity of finding a solution to a

CP subproblem is O(τ(n)T (n)) when using any iterative method. Here, τ(n) is the iteration complexity

that depends on the subroutine used for the placement, which could be anything from linear programming,

quadratic programming, to clustering and heuristic algorithms, and T (n) is the number of steps required

by the approach to reach a solution. RCP, as we will show later runs at O(n), namely τ(n) = n, T (n) = 1.

Softwarized UAV/Drone systems are a fertile ground for implementation of this type of controller placement

2The sources of dynamicity in DCP can be either changes in network topology, packet flow, or a mixture of both.
3We refrain from referring to this class of DCP subclass as RCP, to avoid confusion with RCP algorithm.

4

due to criticality of split-second position updates for aerial vehicles.

Similar to other works in the literature such as [16], RCP adopts a clustering approach to the CP problem,

whereby controller placements are matched with the position of the so-called cluster centroids. Clustering

is the task of grouping a set of objects in such a way that objects in the same group (cluster) are more

similar 4 to each other than to those in other groups [17]. Similarly clustering sequences of unlabeled point

sets taken from a common metric space is known as the temporal clustering problem [18] which is applicable

to temporally evolving data; this is the approach we adopt in this thesis to address the continuous-time

dynamics of network nodes in a typical SDMN. As we will later show, the CP problem under study can

be analytically decoupled into placement and assignment subproblems, analogous to a clustering algorithm.

Thus a clustering approach is an intuitive way to determine the underlying structure of the problem at hand.

The main distinction between RCP and other algorithms in the literature is RCP’s leveraging of the

network nodes’ trajectory history, which computationally allows removal of the outer loop that exists in

iterative optimization procedures for controller placement. Existing placement schemes are agnostic to this

temporal information, leading to under-utilization of available information and sub-optimality of performance.

These dynamics-agnostic solutions fall under what [19] first called the frame-by-frame approach, where at

each time interval the system is frozen and placements are found as if the problem is static, discarding the

previous solution and starting from scratch at each time interval. This inherently inadequate static approach

has led to suboptimal methods, yet is common in the DCP literature. Herein we offer a novel, or rather a

dynamic, perspective that is more in tandem with the nature of the problem.

To the best of our knowledge, RCP is the only dynamics-aware algorithm in the literature for addressing

DCP. Here we offer a linear time algorithm that does not necessarily return the global optimum but yields a

locally optimum solution that is seen to be very close to the global optimum. This feat is attainable through

using what is known as the Maximum Entropy Principle (MEP), or a closely related optimization concept

called convexification, where we start with a well-behaved (convex) but unrelated problem and slowly anneal it

back to the original problem, avoiding poor local optima in the process. RCP+ is a more practical replacement

for RCP that shows promising results for the real world and large-scale mobility datasets to which we apply

it in this study. We identify the contributions of our algorithms for the dynamic setting as (1) yielding

high quality solutions using the MEP and convexification techniques, despite the presence of many poor

local optima in the objective function; (2) tackling DCP using a temporal approach, whereby SDN network

history is recruited to dynamically adapt the solution as opposed to recalculating; (3) computing controller

position updates in real-time (20ms or better); (4) trajectory prediction using an auxiliary and lightweight

neural network; (5) sparse sampling of the SDN network to improve speed; (6) parallelizing the RCP+

implementation on an Nvidia GPU; and finally (7), we propose to benchmark the RCP+ algorithm against

state-of-the-art Dynamic Controller Placement (DCP) algorithms using popular large-scale mobility datasets.

These datasets consist of millions of records collected over several months and contain GPS trajectories of

thousands of pedestrians and vehicles in large metropolitan areas like San Francisco, US, and Beijing, China.

4According to some similarity measure like Euclidean distance as an example.

5

Chapter 2

Literature Review

In an abstract sense SDN can be seen as an analog of Cloud technology. More precisely Cloud computing

is the on-demand availability of computer system resources, especially data storage (Cloud storage) and

computing power, without direct active management by the user, which centralizes computing and storage

capabilities and provides it to users on demand [20]. Similarly SDN is the on-demand availability of network

resources without direct management of network nodes, that centralizes network control and provides this

service to switches. Software-Defined Networking brings a paradigm shift to network design, namely an

approach to the design of mobile networks where all protocol-specific features are implemented in software.

The so-called controller device hosts this software that essentially is an implementation of a SDN protocol

like OpenFlow.

Controller placement problem was introduced in 2012 [5] and since then many researchers have focused

on this problem. Controller placement problem can accommodate a wide gamut of objectives such as:

• Delay Reduction: Minimize the communication latency between switches and controllers to reduce

end-to-end packet transmission delays. This objective is crucial for real-time applications and services

that demand low-latency network performance.

• Fault Tolerance: Optimize controller placements to enhance network resilience against failures. By

strategically positioning backup controllers, the network can quickly recover from controller failures,

ensuring uninterrupted network operations.

• Robustness: Design controller placements that can adapt to changes in network topology and traffic

patterns while maintaining optimal performance. Robust controller placement ensures that the network

remains efficient and reliable even in dynamic environments.

• Load Balancing: Distribute the control plane traffic evenly across multiple controllers to prevent

congestion and bottlenecks. Load-balanced controller placement enhances network scalability and

resource utilization.

• Energy Efficiency: Position controllers in a manner that minimizes energy consumption. Energy-efficient

controller placement is particularly important in large-scale SDNs to reduce operational costs and

environmental impact.

• Security: Optimize controller placements to enhance network security. By strategically locating

controllers, the network can better defend against potential attacks and unauthorized access.

6

• Scalability: Design controller placements that can accommodate network growth and scale to handle

increasing traffic and device counts without sacrificing performance.

• Cost Minimization: Place controllers in a way that minimizes infrastructure and operational costs while

meeting the network’s performance requirements.

• QoS Optimization: Optimize controller placements to ensure that Quality of Service (QoS) requirements,

such as bandwidth, latency, and packet loss, are met for different types of network traffic.

• Network Coverage: Ensure that the placement of controllers provides sufficient network coverage to

manage and control all switches effectively.

According to [4] controller placement is one of the most important components of software defined networks.

[21] is the first to implement the Cuckoo search algorithm for the problem of controller placement in software

defined networks. The benchmark their algorithm against a number of other methods under two different

network topologies to showcase its superior performance. [22] identifies the main function of Software Defined

Networks (SDN) as decoupling the data plane and control plane. They summarize the bulk of the works in

controller placement problem into four master categories: latency-oriented, reliability-oriented, cost-based,

and multi-objective classes. They also identify controller-placement as one of the hottest topics in SDN.

Focusing on reliability aspects of ECP, authors in [2] address maximizing fault-tolerance aspects of

controller placement rather than performance. They show sacrificing latency for reliability is generally not a

good trade-off except in special cases. In [23] authors derive the specific position of all network controllers

by minimizing a linear function of load balance factor and total flow request cost. [24] studies the wireless

controller placement problem using a multi-objective optimization problem and measure the sensitivity of

this placement to variant metrics. The authors in [25] model and analyze a realization of the mobile core

network as virtualized software instances running in data centers and SDN transport network elements, with

respect to time-varying traffic demands. In [26], the authors develop a Quadratic Program (QP) that aims

to minimize network switch to controller latency. As network packet flows change and controller overloads

occur, they use another QP to perform switch migration to meet the increased load. In [27], the authors

introduce the algorithm LiDy+, which has run-time complexity of O(n2) (an improvement over predecessors,

with run time complexities of O(n2logn)), and requires a smaller number of controllers while achieving a

higher controller utilization. This method relies on heuristics for placing controller modules and for adjusting

the number of controllers needed according to traffic fluctuations.

[28] proposes a network partition based controller placement algorithm based on a mixture of k-means

and game theoretic initialization. They benchmark their result on OS3E network topology against vanilla

k-means. [29] proposes the Density Based Controller Placement which uses a clustering algorithm to split the

network into multiple sub-networks. Their algorithm do not use the iteration-based scheme present in most

clustering algorithms like k-means and thus enjoy faster speed.

[30] addresses ECP in the novel context of Software Defined Satellite Networks (SDSN). They address two

major categories of ECP in SDN, i.e. dynamic and static. The former assumes we need to decide on switching

on or off already existing controllers and the latter assumes we need to place the controllers for the first time

in network. [31] also considers ECP in the context of satellite networks and study the use-case scenario of

SDN-enabled satellite space segment. They design a Integer Linear Program (ILP) to address this problem.

Focusing on reliability aspect of ECP, authors in [2] address maximizing fault-tolerance aspect of controller

placement rather than performance. They address fundamental questions like performance-reliability trade-off,

7

and maximum achievable fault-tolerance for a given SDN. They show that it is generally not a good trade-off to

sacrifice latency for reliability except for some special cases. A multi-period approach to controller placement

over a finite horizon can be seen in the work of [32]. They use a multi-objective optimization model to derive

the multi-period roll-out plan for controller placements. This work is the earliest of its kind in incremental

controller placement. They discovered that a cost saving of %70 to %80 can achieved against a latency

penalty of %35 to %45 for incremental controller placement.

satellite gateway placement problem is in many ways similar to controller placement problem and is

addressed in detail in the work of [33]. They solve this problem using a hybrid, clustering and simulated

annealing method and produce near-optimal latency values. They address gateway and controller placement

simultaneously to maximize reliability and minimize latency. [34] proposes a novel scheme to minimize

measurement overhead. Thy formulate the measurement-aware Distributed Controller Placement (MDCP) as

a quadratic integer programming problem. They propose an algorithm with an approximate ratio of 1.61 and

show that it can reduce measurement overhead by over %40.

[35] uses the Analytic Hierarchy Process (AHP) to perform multi-criteria controller assignment problem.

Apart from latency they also address hop count and link utilization as part of the controller assignment

process. They use a hybridized ad-hoc genetic algorithm to solve this controller placement problem. [36]

design a multi-objective controller placement scheme that simultaneously address reliability, load balance

and low latency. They use the heuristic Adaptive Bacterial Foraging Optimization (ABFO) to solve this

problem. Thy show that their algorithm can improve SDN performance and has practical significance on

actual networks.

In this thesis we present ECP-LL and ECP-LB as the first maximum entropy based clustering algorithm

to address ECP in wireless edge networks. A tutorial on deterministic annealing for the unfamiliar reader

may be found in [37]. We distinguish our algorithms from previous clustering approaches in that it is the

first multi-objective clustering approach to the ECP problem and it does not require initialization. We

found previous algorithms in literature that typically enjoy a fast speed such as Cuckoo search, GA, and

other ad-hoc heuristics suffering from susceptibility to poor local optima solutions. On the other hand exact

approaches like quadratic integer programming are too slow to be practical for real-case scenarios. Our

algorithms address these shortcomings by leveraging their ability to sense and escape poor local minima

and at the same time enjoy fast speed due to linear computational complexity in terms of parameters of the

problem.

It turns out that the placement and assignment of network nodes to these controllers can have significant

impacts on performance of SDNs–network delay being one of the common metrics. In this light DCP came

to existence in the context of dynamic SDN systems where network topology or packet flow rate are the

two common sources of dynamicity. DCP can be defined as the task of continuously updating the optimal

placement and node association of SDN controllers in the network. Historically DCP has been tackled using

the aforementioned static approach, until [14] proposed the first temporal approach to DCP that takes

into account the dynamics of the network. It has been shown that recruiting this underutilized piece of

information can amount to significant computational savings in terms of finding an optimal solution. Table

2.1 summarizes the key works in DCP literature, along with the context of implementation and method used.

We acknowledge that there is a fair amount of research that does consider network dynamics but not in the

sense of recruiting network history, but more in the line of already being aware of the future and proactively

planning for it, as in a deterministic setting. Because this look ahead policy is extended multiple steps in

the future it is more prone to errors compared to making predictions for the immediate next step, in the

8

aforementioned dynamic approach. Because of this, proactive methods are only relevant in the context of

being aware of flow rates in future; for example a data center with consistent demand patterns.

Paper Proactive Context Objective Variable Solution Real-time

[38] No SDVN Load balancing+latency Traffic fluctuation ILP ✗
[26] No 5G SDN Latency Network flows QP ✗
[31] Yes LEO Constellation Flow setup time Network flows ILP ✗
[8] No Drone SDN Link quality Switch positions ILP ✗
[39] No SDN Load balancing+latency Traffic fluctuation GA ✗
[27] No SDN Maximum latency Traffic fluctuation Heuristic ✗
[40] Yes SDN Latency+migration Traffic fluctuation SA ✗
[41] No ATN Load balancing Switch positions ILP+GA ✗
[42] No SDN Flow setup time Network flows ILP ✗
[30] Yes SDSN Load balancing+latency+economic Network flows APSO ✗
[43] No SDN Flow setup time Network flows ILP ✗
[44] Yes Data Centers Latency+synchronization+migration Request rate Game theoretic ✗
[45] Yes EON Latency+controller load Network flows heuristic ✗
[46] No Edge-core SDN controller load Network flows heuristic ✗
[12] No UAV SDN Latency+synchronization Network flows heuristic ✗
[47] Yes SDN Load balancing Network flows Clustering ✗
[48] Yes SDN Synchronization+load balancing Network flows heuristic ✗
[49] Yes SDN Synchronization+load balancing Network flows Deep reinforcement learning ✗
[14] No Mobile SDN Latency+Synchronization Geo-spatial positions Temporal clustering ✓
This work No SDMN Latency+Synchronization Geo-spatial positions Temporal clustering ✓

Table 2.1: Key research in DCP literature.

They assume the incoming flow at each snapshot is already known and proactively solve the DCP problem.

They report that this “dynamic” approach outperforms the standard static approach by approximately an

average of 20%. In [8], the authors formulate the DCP problem for an SDN enabled drone network as a

Mixed Integer Non-linear Program (MINLP), and propose solving this problem using a heuristic that relies

on decoupling the placement and assignment tasks.

The authors in [40] cast DCP as a multi-period MINLP with partial information of future traffic flows.

The authors consider both operational and migration costs and decompose the problem into smaller online

problems, solving them using the Simulated Annealing (SA) algorithm. The authors in [41] design an ILP

algorithm to address dynamic controller placement in Aeronautical Telecommunication Networks (ATNs).

They propose two heuristic algorithms, DPFA and GA-DPDA, to solve the ILP problem when controller

failure happens due to packet flow overload. In [42], the authors introduce an ILP problem that considers both

migration time and switch re-assignment time. Each time a new flow profile arrives this ILP is recalculated.

Software Defined Satellite Networking (SDSN) is considered in [30] where authors partition the time

horizon into smaller intervals within which the average flow per switch is assumed known. They further

assume that back-up controller nodes are placed throughout the network, and by toggling the on-off status

of controller nodes they meet the changing network conditions. The solution approach proposed for this

problem uses Accelerated Particle Swarm Optimization (APSO). In [43], the authors report up to a 50%

improvement over static placement methods using a dynamic controller placement scheme that relies on

solving an ILP that re-calculates optimal placements when system change occurs.

In [44], the authors consider the controller assignment aspect of DCP and decompose the problem into a

series of stable matching problems with transfers, for which they propose a hierarchical two-phase algorithm

that efficiently uses knowledge of future arrival rates. They report a 46% reduction in cost and better load

balancing compared to static assignment.

In [31], in which a Low-Earth-Orbit (LEO) constellation setting is considered, the authors partition the

time horizon into static snapshots and compute optimal placements and assignments of controllers at each

time step using ILP. They assume the incoming flow at each snapshot is already known and proactively solve

9

the DCP problem. They report that this “dynamic” approach outperforms the standard static approach

by approximately an average of 20%. In [39], the authors use a multi-objective genetic algorithm (GA) to

break SDN networks into domains and sub-graphs assigned to controllers. They use inter-controller latency,

load distribution, and controller numbers as the fitness metrics of their GA algorithm. In [27], the authors

introduce the algorithm LiDy+, which has run-time complexity of O(n2) (an improvement over predecessors,

with run time complexities of O(n2logn)), and requires a smaller number of controllers while achieving a

higher controller utilization. This method relies on heuristics for placing controller modules and for adjusting

the number of controllers needed according to traffic fluctuations. The authors in [38] develop an Integer

Linear Program (ILP) for a Software Defined Vehicular Network that updates the reallocation of roadside

units (RSU) to their corresponding controllers. The dynamics of the network in this work is abstracted as

the number of vehicles communicating with a RSU at each time step; here the ILP-based algorithm objective

is to minimize a mixed latency and load balancing cost function.

The authors in [25] model and analyze a realization of the mobile core network as virtualized software

instances running in data centers and SDN transport network elements, with respect to time-varying traffic

demands. In [26], the authors develop a Quadratic Program (QP) that aims to minimize network switch to

controller latency. As network packet flows change and controller overloads occur, they use another QP to

perform switch migration to meet the increased load.

In [50] authors try to linearize CP into an Mixed Integer Program (MIP) for immediate processing by

commercial solvers like CPLEX however because the number of MIP constraints grows linearly with network

size, constrained optimization techniques become inherently impractical for real-sized networks. This is due

to the fact that typical methods like Branch and Bound have exponential worst case with respect to size of

problem [51] , thus the computational complexity can in worst case be exponential with respect to network

size.

Tolerable limits to latency for live, real-time processing is a subject of investigation and debate but is

estimated to be between 6 and 20 milliseconds [52], [53].

[54] uses an evolutionary game theory approach to DCP and tries to minimize operational cost in terms

of power consumption leading to an agile controller placement policy in the context of 5G networks. The

SDN in this problem is utilized to the backbone part of the network. [49] take a data-drive approach to

DCP considering the delay and flow fluctuations and load balance, they recruit a deep reinforcement learning

model to place controllers. The state space in this setting is the flows passing through each switch and action

space is a discrete corresponding to association of a switch with a network controller. In [48], the authors

point out that flow request nature can be ignored in DCP, and in this light offer a two step method consisting

of a greedy set coverage method to find an initial placement and a follow-up game theoretic solution to

migrate switches in order to maintain a balance between traffic overhead and controller loads. [55] offer

the POCO-PLC toolset that is an all-encompassing system for SDN controller management under dynamic

conditions.

[47] offers a bi-level controller architecture where network node migration decisions are dedicated to

a certain tier of controllers using the Dynamic Controller Clustering (DCC) algorithm. They report a

computational complexity of O (MN logN) with N and M being number of network switches and controllers

respectively. [12] Studies DCP in a UAV based communication system were WiFi access point are installed

on UAVs to provide internet access to ground nodes. [46] state that static mapping of switches to controller

can lead to load imbalance when traffic conditions change. In an edge-core SDN type system they design

an algorithm for switch to controller migration to react to controller overload instances.[45] appropriately

10

describes the CP problem as an optimal matching between switches and controllers. In the context of Elastic

Optical Networks (EON) for interconnecting data centers, they proactively optimize a hybrid cost consisting

of average latency and controller load. They propose the heuristic DMA that reacts to change in-flow rates of

the network.

To summarize, there are two main approaches for the DCP problem in the literature. Either authors

assume they proactively know the value of network variables in the future, as in [31], [40], [30], [44], or they

rely on what we earlier described as the frame-by-frame approach, as in [8], [27] amongst others. Both of

these methods fall short of real-world practicality. The former assumes availability of data that is typically

not known, and the latter does not exploit the temporal relationship between network states over time. To

overcome this gap, our work is aimed at creating a new placement procedure that can work in real-time

and exploit given temporal relationships of the system; this has led to the design of the RCP, and RCP+

algorithms.

11

Chapter 3

Methodology

3.1 Static Setting

The controller placement problem in software-defined networks exhibits an inherent dichotomy that arises

from the variability present in the network’s constituents. This dichotomy necessitates distinct approaches for

two sub-classes of the problem: static and dynamic cases. In the static scenario, the network’s topology and

traffic patterns remain relatively stable over time. Addressing this case requires a lens focused on optimizing

the placement of controllers based on a static snapshot of the network, seeking to minimize latency, maximize

efficiency, and ensure smooth data flow. On the other hand, the dynamic case involves networks with

constantly changing topologies and fluctuating traffic patterns. In this context, placing controllers in real-time

becomes crucial to meet the network’s dynamic demands. Solving the static case serves as a fundamental

stepping stone towards efficiently placing controllers in the dynamic scenario, enabling adaptability and

responsiveness to the network’s variability. By approaching each sub-class separately, the controller placement

problem can be effectively tackled, ensuring the optimal operation of software-defined networks under different

conditions and providing a foundation for intelligent and adaptive network management.

3.1.1 Problem Statement

Wireless networks can be illustrated by a graph as shown in Figure 3.1, in which the vertices are the network

nodes and the edges represent the communication between them. One or multiple numbers of these vertices

can be designated as a controller, where the optimal number and placement of these controllers depends

on how far and how close graph vertices are from each other in terms of communication delay associated

with graph edges. ECP reduces to finding this optimal assignment of controllers. In this scheme both the

nodes and controllers they are assigned to and the controllers themselves constantly communicate data. This

means that a scattered placement of controllers may reduce the delay cost but increase the synchronization

cost. On the contrary a more compact placement of edge controllers can reduce the synchronization cost

while increasing the delay cost between nodes and the controllers. Two dominant schemes for placement of

controllers typically considered are leader-less and leader-based [56]. The distinction between the two is that

in the former all pairs of controllers in the network directly communicate with each other while in the latter

controllers only communicate with a leader controller.

To cast this problem as a mathematical program we defineN as the set of all edge nodes withCard(N) = N

and Nh as the set of edge nodes that can serve as controllers with Nh ⊆ N . Additionally, xi ∈ Rd such that

12

Leader-less	scheme Leader-based	scheme

leader

Figure 3.1: Leader-based versus Leader-less edge controller placement scheme

i ∈ N determines the position of edge nodes in the wireless network. We use X = (x̂i ∈ {0, 1}, i ∈ Nh) to

represent the controller placement policy. If we choose node i to play the role of a controller then x̂i = 1

otherwise x̂i = 0. Similarly Q = (qij ∈ {0, 1}, i ∈ N , j ∈ Nh) determines the controller assignment policy

where qij = 1 if node i is assigned to controller j otherwise qij = 0. Z = (zj ∈ {0, 1}, j ∈ Nh) determines the

leader assignment policy in the leader-based scheme. zj = 1 if controller j is the leader and zj = 0 otherwise.

dij = d(xi, xj) encodes the communication delay between nodes i and j which we assume to be proportional

to the squared Euclidean distance, i.e. dij = ∥xi − xj∥22.

Leader-less Case

In this setting all controllers communicate not only with edge nodes but also with each other. Thus we incur

a controller synchronization cost between all pairs of controllers. We can express the optimal assignment as

the solution of the following integer program:

min
Q,X

N∑
i=1

∑
j∈Nh

qijdij + γ
∑

i,j∈Nh

x̂ix̂jdij
∑
k∈N

qkj (3.1)

s.t.
∑
j∈Nh

qij = 1 ∀i ∈ N (3.2)

qij ≤ x̂j ∀i, j ∈ N (3.3)

x̂i ∈ {0, 1}, i ∈ Nh (3.4)

qij ∈ {0, 1}, i ∈ N , j ∈ Nh, (3.5)

The first term in the objective function corresponds to communication delay across all node-controller pairs.

The second term shows the synchronization delay between controllers. Note that synchronization delay also

depends on how many nodes are assigned to a certain controller. Constraint (3.2) ensures that each edge node

is only assigned to one controller; constraint (3.3) ensures node assignments to a controller are only made to

designated controller nodes. Parameter γ ≥ 0 shows the relative importance of controller synchronization

delay compared to controller node delay.

13

Leader-based Case

The leader-based case is similar to the leader-less case except that controllers synchronize only with the leader.

We can express the optimal assignment in this setting as the solution to the following integer program:

min
(Q,X ,Z)

N∑
i=1

∑
j∈Nh

qijdij + γ
∑
i∈Nh

∑
j∈Nh

x̂izj (Ndij) (3.6)

s.t.
∑
j∈Nh

qij = 1 ∀i ∈ N (3.7)

qij ≤ x̂j ∀i, j ∈ N (3.8)∑
j∈Nh

zj = 1 (3.9)

x̂i ∈ {0, 1}, i ∈ Nh (3.10)

qij ∈ {0, 1}, i ∈ N , j ∈ Nh. (3.11)

Constraint (3.9) ensures that there is always exactly one leader controller in the leader-based setting.

Both leader-less and leader-based cases are NP-hard nonlinear combinatorial problems with no guarantees for

finding a global optimum solution [6].

3.1.2 Solution

We assume that the delay and synchronization costs are proportional to the squared Euclidean distance

between the network nodes. This is not an unreasonable assumption since according to [56] these costs are

proportional to if not determined by the Euclidean distances. We further assume that geospatial coordinates1

of the nodes are provided to us instead of the mutual delays between network nodes.

In the deterministic annealing clustering setting [37], the expected distortion 2 can be defined as

D =

N∑
i=1

p(xi)

M∑
j=1

p(yj | xi)D(xi, yj).

X = {xi}Ni=1 are the data points and Y = {yj}Mj=1 are cluster centroids, or edge controller locations, to be

determined. p(yj | xi) is called the association probability3 of point xi with centroid yj and D(xi, yj) is the

distortion measure which is typically chosen to be the squared Euclidean distance. We interpret p(xi) as the

relative importance given to ith node and assume, if not otherwise indicated that p(xi) =
1
N . System entropy

can be defined as H = −∑N
i=1 p(xi)

∑M
j=1 p(yj | xi) log p(yj | xi). We also define the system free energy as

F = D − TH where T is the system’s so-called temperature.4 Note that F can be viewed as the Lagrangian

for the primary objective of minimizing D, with T being the Lagrange multiplier. The central iteration of

DA can be summarized as sequentially optimizing F with respect to the free parameters, i.e. association

probabilities and centroid locations.

1Here, assumed to be a two dimensional or three dimensional vector representing the location of each edge node.
2Distortion is an average weighted distance term, between nodes and centroids, that serves as our basic cost function.
3The weighting indicating that a node belongs to a particular centroid. For each node the sum of these associations over all

centroids must equal one.
4A coefficient scaling the entropy term which indicates how important the entropy term is compared to the distortion term.

We typically reduce this coefficient from a high value to a value close to zero.

14

Leader-less Case

For the purpose of adapting the DA clustering to the leader-less ECP problem we define the distortion

measure as D(xi, yj) = d(xi, yj) + γ
∑M

j′=1 d(yj , yj′). This means the distortion between edge node xi and

controller yj not only depends on the communication delay between these two nodes but also depends on

how far yj is placed from other controllers denoted as yj′ .

In order to observe the relation to integer program (3.1)-(3.5) notice we can write total distortion as

D =

N∑
i=1

M∑
j=1

p(yj | xi)d(xi, yj) + γ

M∑
j′=1

M∑
j=1

(
d(yj , yj′)

∑
i∈N

p(yj | xi)
)

This is objective function (3.1) with hard assignments qij replaced by the soft association probabilities.

As noted earlier we define the system’s free energy as F = D − TH. Setting partial derivatives of the free

energy term with respect to association probabilities to zero and solving, yields the solution:

p(yj | xi) =
exp

(
−D(xi,yj)

T

)
Zi

, Zi =

M∑
j=1

exp

(
−D(xi, yj)

T

)
Thus the association probabilities have the celebrated Boltzmann distribution. Similarly, setting the derivatives

of F with respect to the centroids yj to zero leads to the following linear systems of equations:

ηyj − γ
∑
j′ ̸=j

yj′ = Cj , j = 1, . . .m (3.12)

where η = γ(m − 1) + 1 and Cj =
∑

i∈N p(xi | yj)xi. We can compute p(xi | yj) using Bayes’ rule. This

gives us a linear system of md variables and md equations with m and d being respectively the number of

centroids and the dimensionality of data. It is essential for the convergence of our clustering algorithm that

this linear system of equations always has a solution.

Proposition 3.1. Given the linear system of equations in (3.12) with η and Cj defined as above, if

γ ̸= 1
n−m ,

1
n−2m then there always exists a unique solution {yj}mj=1, where the coefficient matrix associated

with the system of the equations is non-degenerate with determinant
(

(γm+1)m(γ(n−m)−1))
γ(n−2m)−1

)d
.

Proof. We can write the coefficient matrix associated with (3.12) as the block matrix Θ ∈ Rmd×md with

diagonal blocks equal to ηI and non-diagonal blocks equal to −γI such that I ∈ Rd×d.

Θ =


ηI −γI . . . −γI
−γI ηI . . . −γI
...

...
. . .

...

−γI −γI . . . ηI

 (3.13)

Dividing all rows by constant −γ we get det(Θ) = (−γ)md det(Θ̄). Θ̄ is a block diagonal matrix with diagonal

elements equal to αI and non-diagonal blocks equal to I with α = − η
γ . Using straightforward linear algebra

15

we can transform Θ̄ to an upper triangular matrix:

Θ̄×


I 0 . . . 0

−1
α+n−2

I I . . . 0
...

...
. . .

...
−1

α+n−2
I −1

α+n−3
I . . . I

 =


β1I × . . . ×
0 β2I . . . ×
...

...
. . .

...

0 0 . . . βmI

 = Φ

Where βi = α − n−i
α+n−i−1 and det(Θ̄) = det(Φ) =

∏m
i=1 (βi)

d
. We can use simple telescoping to further

simplify the product to
(

(α−1)m(α+n−1)
α+n−(m+1)

)d
. This will give detΘ =

(
(γm+1)m(γ(n−m)−1))

γ(n−2m)−1

)d
which is well

defined for γ ̸= 1
n−m ,

1
n−2m .

Algorithm 1: ECP-LL

Set max # of clusters Kmax and min temperature Tmin;
Initialize: T → inf,K = 1, y1 =

∑
i∈N xip(xi);

while Convergence test do
Update:

p(yj | xi)←− exp

(
−
d(xi, yj) + γ

∑M
j′=1 d(yj , yj′)

T

)
/Zi

Solve:
ηynewj − γ

∑
j′ ̸=j∗

ynewj′ =
∑
i∈N

p(xi | yj)xi, j = 1, . . .m

Update: yj ←− ynewj j = 1, . . .m;

if T ≤ Tmin then
break;

else
Cooling Step: T ←− αT (α < 1);
Generate small random vector ϵ
Replace yj with yj + ϵ and yj − ϵ;

end
end
Perform last step iteration for T = 0;
yj ←− argminxi∈Nh

d(xi, yj);

The resulting DA clustering algorithm for the this case is given in Algorithm 1.

For the convergence test we stop at iteration τ if ∥Fτ − Fτ−1∥ < δ for some predetermined tolerance level

δ. In the last line of Algorithm 1 we designate the closest valid node to each centroid as a controller.

The iteration complexity for this algorithm depends on (a) calculation of mutual squared Euclidean

distances between xi, yj for i ∈ {1, . . . , N}, j ∈ {1, . . . ,m}, (b) similar calculation of mutual distances

between centroids, (c) calculation of association probabilities and (d) solving the linear system of equations.

The complexities for these operations are respectively, O(NKmaxd), O(K2
maxd), O(KmaxN) and O(K3

maxd
3).

For large N these terms are dominated by O(NKmaxd), thus for a maximum number of iterations τ the

algorithmic computational complexity for the leader-less case is O(τNKmaxd) which is linear in data size

and dimensionality of data.

16

Leader-based case

In order to adapt DA to the leader-based ECP problem we define an appropriate distortion measure by:

D(xi, yj) = d(xi, yj) + γ min
j∈{1,...,m}

M∑
j′=1

d(yj , yj′) (3.14)

Similarly we can consider the weighted total distortion as:

D =
∑
i∈N

M∑
j=1

p(yj | xi)d(xi, yj) + γ min
j∈{1,...,m}

M∑
j′=1

Nd(yj , yj′) (3.15)

In order to observe its relation to MINLP objective function, notice (3.6) is equivalent to the following

objective function:

min
(Q,X)

N∑
i=1

∑
j∈Nh

qijdij + γ min
j∈{1,...,m}

∑
i∈Nh

x̂i (Ndij)

To establish this equivalence, we used the relationship that forW = {wi}mi=1 and S = {W ∈ Rn
+ |
∑m

i=1 wi = 1}
then minZ∈S

∑M
j=1 zjαj = minj∈{1,...,m} αj .

We define the system’s free energy similar to the previous case. Setting the gradient with respect to the

association probabilities to zero, yields solution:

p(yj | xi) =
exp

(
−D(xi,yj)

T

)
Zi

, Zi =

M∑
j=1

exp

(
−D(xi, yj)

T

)

Denote j∗ = argminj∈{1,...,m}

M∑
j′=1

D(yj , yj′) as the index of the leader centroid and set gradient with respect

to yj to zero to yield the centroid update rules:

yj =
γNyj∗ +

∑
i∈N p(yj | xi)xi

γN +
∑

i∈N p(yj | xi)
yj ̸= yj∗ (3.16)

yj∗ =
γN

∑
j′ ̸=j∗ yj′ +

∑
i∈N p(yj∗ | xi)xi

(m− 1)γN +
∑

i∈N p(yj∗ | xi)
(3.17)

We can compute values of yj and yj∗ by substituting (3.17) in (3.16). The resulting DA clustering

algorithm for the leader-based case can be found in Algorithm 2.

The computational complexity for the leader-based algorithm is similar to the previous one, except for

the centroid calculation step in which we no longer have to compute a linear system of equations. The

computational complexity is O(NKmaxd) +O(K2
maxd) +O((N +Kmax)d) +O(NKmax). For a maximum of

τ iterations and large N this is again dominated by O(τNKmaxd).

3.2 Dynamic Setting

In the context of controller placement in software-defined networks, the dynamic case can be regarded

as an extension of the static case, wherein the problem is essentially a temporal concatenation of static

problems. As the network topology and traffic patterns evolve over time, addressing the dynamic case

17

Algorithm 2: ECP-LB

Set limits: max # of clusters Kmax and minimum temperature Tmin;
Initialize: T → inf,K = 1, y1 =

∑
i∈N xip(xi);

while Convergence test do

Update: Py|x ←− exp

−
d(xi, yj) + γ min

j∈{1,...,m}

M∑
j′=1

d(yj , yj′)

T

 /Zi;

Solve: j∗ = argminj∈{1,...,m}

M∑
j′=1

D(yj , yj′);

Solve:

ynew
j =

γNyj∗ +
∑

i∈N Py|xxi

γN +
∑

i∈N Py|x
j ̸= j∗

ynew
j∗ =

γN
∑

j′ ̸=j∗ yj′ +
∑

i∈N p(yj∗ | xi)xi

(m− 1)γN +
∑

i∈N p(yj∗ | xi)

Update: yj ←− ynewj j = 1, . . .m;

if T ≤ Tmin then
break;

else
Cooling Step: T ←− αT (α < 1);
Generate small random vector ϵ
Replace yj with yj + ϵ and yj − ϵ;

end
end
Perform last step iteration for T = 0;
yj ←− argminxi∈Nh

d(xi, yj);

18

necessitates incorporating time-dependent information to optimize controller placement. A key piece of

valuable information in this regard is the history of network node trajectories. By analyzing the past

behavior of nodes, we can gain insights into their movement patterns and trends, enabling us to make

informed predictions about the future state of the network. Leveraging historical trajectory data empowers

us to develop predictive models that anticipate network changes, facilitating proactive controller placement

strategies that adapt to the evolving network dynamics.

Moreover, in solving the extended dynamic problem efficiently, it is essential to consider the utilization of

previously derived solutions. It is observed that the consecutive solutions to controller placement within a

small time interval tend to exhibit proximity to each other due to the incremental nature of network changes.

By re-using previous solutions as initial approximations for subsequent time steps, we can significantly

reduce computation time and converge faster towards optimal solutions. This approach not only enhances

computational efficiency but also ensures continuity and consistency in the controller placement process

across time intervals. As a result, the network management system gains the ability to make intelligent and

coordinated decisions, efficiently adjusting the controller’s locations to cope with the temporal variations

in the network and maintain optimal performance over time. Integrating historical trajectory analysis and

leveraging past solutions, the dynamic controller placement problem can be effectively tackled, creating

a dynamic network management framework that remains agile, adaptable, and resilient to the changing

demands of the software-defined network environment.

3.2.1 RCP

The Real-time Controller Placement (RCP) algorithm brings a novel approach to controller node positioning in

software-defined networks by prioritizing sheer speed and delivering simultaneously real-time and near-optimal

solutions. One of the distinctive aspects that set RCP apart from traditional approaches is its utilization of

two key pieces of information that are often overlooked in the SDN literature. Firstly, RCP leverages the

history of network nodes, incorporating trajectory data, and past behavior to make informed predictions

about the network’s future state. By analyzing historical patterns and trends, RCP gains valuable insights

into how network nodes are likely to evolve over time. This predictive capability empowers the algorithm

to proactively adjust the positions of controller nodes in anticipation of forthcoming changes in network

topology and traffic patterns. As a result, the network remains agile and adaptive, dynamically aligning its

controller placements to the evolving demands of the environment.

Secondly, RCP adopts a solution adaptation approach instead of recalculating placements from scratch.

When considering consecutive solutions within short time intervals, RCP capitalizes on the observation that

the network’s changes often exhibit incremental variations. As a result, the solutions for consecutive time

steps tend to be close to each other. RCP leverages this inherent proximity between consecutive solutions,

reusing the previously derived placement as a starting approximation for the subsequent time step. This

adaptation strategy significantly reduces computational overhead and accelerates convergence towards optimal

or near-optimal solutions. By avoiding redundant calculations, RCP achieves remarkable computational

savings without compromising on the quality of controller placements. The efficiency gained through solution

adaptation allows RCP to operate in real-time, providing rapid decision-making capabilities that match the

dynamic nature of mobile software-defined networks.

19

Problem Statement

We make the same assumptions on the communication protocol, controller type, and cost function as in

[56]. Specifically we assume network drones/UAV’s are SDN-enabled and programmable via an API such

as OpenFlow, similar to that described in [8]. In study paper, we will maintain a high-level focus on the

topology of the network and placement of controllers

For simplicity, our analyses are given in R2 equipped with the Euclidean norm; however our results can

be extended directly to Rn (namely, to R3 in which the basic problem lies). We further assume that the

domain of the problem Ω ⊂ R2 is a compact set that serves as the space within which the network operates.

Throughout the paper we use the shorthand notation [A]ij = aij to represent the matrix A that is constructed

by equating its ijth element to the scalar aij , and A = diag(aj) to represent the diagonal matrix A that

has aj as the jth diagonal element. We also use In to denote the identity matrix of size n × n. We may

occasionally drop the time index t ∈ R+ from the dynamical equations for the sake of readability and in such

circumstances the reader can infer this from the context of the problem. We represent a mobile network

as an undirected graph G({N ,M}, E) with N as the set of network nodes of the graph, M as the set of

controller nodes of the graph, and E as the set of edges connecting these two types of nodes. We will use

N = |N | and M = |M| to denote the number of regular network nodes and controller nodes in the network,

respectively. In the controller placement topology under study 5, there is communication between controllers

and their assigned network nodes, and between controller nodes themselves, however network nodes do not

directly communicate with each other. In fact, each node is assigned to a controller node that serves as

a gate between the node and the rest of the network [56]. In this work, we further assume that the delay

in the network is proportional to the squared Euclidean distance between source and origin of connection

due to inverse-square law, which states that intensity is inversely proportional to the square of the distance

from a source. Let xi(t), yj(t) ∈ R2 represent the location of the network node i ∈ N and controller node

j ∈M, respectively, at time t ∈ R+. The dynamics of the network node i ∈ N is determined by the function

ϕi(t, x, y) : R+ × R2N × R2M → R2 which we assume is continuously differentiable. The velocity of the

controller node j ∈M is determined by the vector uj(t) ∈ R2; it is this velocity function we aim to design to

achieve real-time controller placement by solving a cluster tracking control problem. We thus represent a

mobile SDN system by the following dynamical system:ẋ = ϕ(t, x, y)

ẏ = u
(3.18)

where x ∈ R2N , y ∈ R2M , ϕ(t, x, y) : R+×R2N×R2M → R2N , and u ∈ R2M are vectors that are constructed by

concatenation of network and controller node location and velocity vectors. Denoting ζ = [xT yT]T ∈ R2(N+M)

as the vector containing all positional information of the network nodes and controller nodes, and letting

f(t, x, y) = [ϕ(t, x, y)Tu(t)T]T ∈ R2(N+M) denote the vector containing the velocities of these nodes; then we

compactly refer to this first order possibly nonlinear state-space system as

ζ̇ = f(ζ). (3.19)

Temporal clustering refers to separation of a time-indexed set of objects into disjoint partitions known

as clusters that satisfy a certain degree of similarity. The most representative point within each cluster is

5This topology is known as leaderless if there is no hierarchy amongst the controller nodes.

20

typically called the centroid, which in this work is equivalent to the location of the controller node. Following

the approach introduced by Rose (see [37]), we leverage the Maximum Entropy Principle for our solution,

letting p(yj | xi) ∈ [0, 1] denote the intensity of association of network node i ∈ N with controller node (and

cluster) j ∈M such that
∑

j∈M p(yj | xi) = 1; this quantity is also referred to as an association weight. We

represent the objective function F : RN×M × R2N × R2M → R associated with this clustering problem by 6

F (Py|x, x, y) =
∑
i∈N
j∈M

p(yj | xi)∥xi − yj∥2

︸ ︷︷ ︸
D1:delay cost

(3.20)

+γ
∑
j∈M
j′∈M

∥yj − yj′∥2
∑
i∈N

p(yj | xi)

︸ ︷︷ ︸
D2:synchronization cost

−T

−∑
i∈N
j∈M

p(yj | xi) log p(yj | xi)


︸ ︷︷ ︸

H: entropy

Here we aim to find a set of trajectories for yj which minimizes F (Py|x, x, y), thereby minimizing latency and

synchronization times by using a maximum entropy function to help convexify the original problem. Note

that so-called migration 7 cost is outside the of scope of the present paper and so our objective function does

not reflect this cost, as in [38], [30], and [8] among others.

Solution

Based on the results of [57] and [19], in which the authors extend the results of Rose to show that for a given

set of trajectories, {yj(t)}, a Gibbs distribution will minimize equation (3.20), we have

p(yj | xi) = exp

(
−d(xi, yj)

T

)
/Zi ∀i ∈ N , j ∈M, (3.21)

where d(xi, yj) = ∥xi − yj∥2 +
∑

j′∈M∥yj − yj′∥2 is the distance function, or so-called distortion measure 8

between node i and controller node j, and Zi can be seen as the usual normalizing partition function. These

association weights will become “hard” if we let T go to zero, and uniform, as T approaches a very high value.

Formulation (3.20) and the “annealing” or “temperature” parameter T ensures that the total system delay

attains a good local minimum in theory, while the nodes are initially maximally noncommittal towards the

controllers. This latter point is essential since according to the maximum entropy principle in information

theory, among all candidate distributions, the one with highest entropy best describes the current state of

the system. This approach also has advantages for optimization over the surface of the cost function (3.20)

where local optima abound [37].

Using the terminology of [19], let [Py|x]ij = p(yj |xi) ∈ RN×M be the matrix that contains information

on the relative shape of the clusters. Similarly define [Px|y]ij = p(xi|yj) ∈ RN×M as the matrix containing

6This is a relaxed version of the cost function in [56]. For details refer to [57].
7re-positioning controllers and re-assigning network nodes.
8Distortion is a term in information theory that signifies the dissimilarity or distance between two points.

21

posterior associations p(xi|yj), which we calculate using Bayes’ rule, with p(xi) =
1
N , for all i ∈ N . Moreover,

define Py = diag(p(yj)) ∈ RM×M as the matrix containing information on the mass of the clusters, where

p(yj) =
∑

i∈N p(yj |xi)p(xi). Let P̌y|x, P̌x|y ∈ R2N×2M and P̌y ∈ R2M×2M , such that P̌y|x = Py|x ⊗ I2,

P̌x|y = Px|y ⊗ I2, and P̌y = Py ⊗ I2. In prior work, we’ve shown that the optimal placement of controller y

with respect to energy function F follows as:

y = Θ−1P̌T
x|yx (3.22)

where Θ ∈ R2M×2M is a block matrix with M2 blocks of size 2× 2. The diagonal blocks are equal to ηI2

where η = γ(M − 1) + 1 and the non-diagonal blocks are equal to −γI2. We show that for γ ̸= 1
N−M and

γ ̸= 1
N−2M , Θ−1 is well defined (see [57]). Ideally we want the function F to serve similar to a control

Lyapunov function, requiring the time derivative of F along the trajectory of network nodes and controllers

to be non-positive which then ensures a non-increasing value for (3.20), our objective function. Following the

development in [57] and [58], we can show the following.

Lemma 3.2. Given the control Lyapunov function (3.20), for the system defined in (3.18) the time derivative

of F has the following structure.

Ḟ = 2ζTΓ(ζ)f(ζ), Γ(ζ) =

[
I2N×2N −P̌y|x
−P̌T

y|x NΘPy

]
(3.23)

Proof. Using basic calculus and taking partial derivatives of F with respect to its constituents we can show

that ∀i ∈ N and j ∈M,

∂F

∂xi
= 2

xi ∑
j∈M

p(yj | xi)−
∑
j∈M

yjp(yj | xi)


and

∂F

∂yj
= 2ηNp(yj)yj −Nγp(yj)

∑
j′ ̸=j

yj′ −
∑
i∈N

p(yj | xi)xi.

Thus so far we have shown that
∂F

∂ζ
= 2ζTΓ(ζ).

The next step is to apply the chain rule

dF

dt
=
∂F

∂ζ

∂ζ

∂t
=
∂F

∂ζ
f(ζ),

from which the desired result follows.

Our goal here is to design a control law u ∈ R2M such that the output of system (3.18) asymptotically

tracks the optimal placement of controllers in the 2D plane based on the energy function (3.32). Following

the results of [59], [60], and [19] we propose the following control law, and show it results in a non-increasing

function F (t).

Theorem 3.3. For the nonlinear system given in Equation (3.19) if

u = −
[
k0 +

(xT − yT P̌T
y|x)ϕ

yT P̌yy

]
y (3.24)

22

where K0 > 0 is a positive scalar and y = NΘ
(
y −Θ−1P̌T

x|yx
)
, then Ḟ (t) ≤ 0 for all t ∈ R+.

Proof. We can expand equation (3.23) to get

Ḟ = 2
((
xT − yT P̌T

y|x

)
ϕ+

(
−xT P̌y|x +NyTΘP̌y

)
u
)
.

Now using the definition of y and 1
N P̌y|x = P̌x|yP̌y we can show that

Ḟ = 2
((
xT − yT P̌T

y|x

)
ϕ+ yT P̌yu

)
. (3.25)

Substituting the control law (3.24) into (3.25) gives us Ḟ = −2K0y
TPyy ≤ 0 for all y ∈ R2M , since P̌y is

assumed to be a positive definite matrix 9 and K0 > 0.

To make explicit the result that y asymptotically tracks the optimal placement of controllers we state

Theorem 3.5, which follows. We first introduce Lemma 3.4 without proof which is useful in the proof of

Theorem 3.5. For details please see Lemma E.1. in [19].

Lemma 3.4. For a non-negative function f : R → R of bounded variation, if
∫∞
0
f(t)dt < ∞ then

limt→∞ f(t) = 0.

Theorem 3.5. For the dynamics given by system (3.18) using the control law in (3.24), y asymptotically

tracks the optimal placement of controller nodes. That is:

lim
t→∞

y(t) = Θ−1Px|yx(t)

Proof. Because the system is constrained within the compact set Ω, the continuous real-valued function

F is bounded from below. Since Ḟ ≤ 0 we must have that F (t) → F∞ as t → ∞. This implies that∫∞
0
−Ḟ (τ)dτ = F (0) − F (∞) < ∞. Because −Ḟ is non-negative, using Lemma 3.4 we deduce that

limt→∞−Ḟ (t) = 0. Since −Ḟ (t) = 2K0y
T P̌yy and P̌y is positive definite then we must have y(t) → 0 as

t→ 0. Using the definition of y and because Θ is invertible by design, y −Θ−1P̌x|yx ∈ Null(Θ) = {0}. This
yields that y(t)→ Θ−1P̌x|yx as t→∞ analogous to Equation (3.22).

Computational Complexity The computational complexity of RCP can be determined as follows: (1)

calculating mutual distances between all xi, yj pairs (i ∈ N , j ∈ M); (2) completing similar calculations

for mutual distances between controllers; (3) calculating the distortions d(xi, yj) for all i ∈ N , j ∈ M;

(4) calculating association probabilities; and (5) updating the yj trajectories. The complexities for these

operations are respectively: (1) O(NMd), (2) O(M2d), (3) O(Md), (4) O(NM) and (5) O(MNd2). For

terms (1) to (4) the calculations are analogous to those in the study completed in [57]. For term (5) the result

comes from the fact that updating the yj requires calculating the numerator O(MNd2+Nd) and denominator

O(M2d2), plus the final multiplication by y, which is dominated by the term O(MNd2) for N >> M . For

a fixed time horizon τ we can express the overall computational complexity of RCP as O(τNMd2). This

is a significant gain over other DCP algorithms like LiDy and LiDy+ discussed in [27], which respectively

report O(N2) and O(N3) complexities in terms of network size. Using the result in Theorem 3.5 it can be

seen that in the limit RCP becomes a variation of the ECP-LL algorithm in [57] that is computed for only

one iteration per each system snapshot. This observations roughly means that, in the limit, RCP is T
d times

9Note that degenerate (zero mass) clusters are not allowed in this formulation and diagonal elements of this diagonal matrix
are always positive.

23

Algorithm 3: RCP

Initialize y ∈ R2M , starting temperature T ≈ ∞, current time t = 0, time horizon τ ∈ R+, time steps
n ∈ N, and decay rate 0 < α < 1;

∆t← τ
n ;

for i = 1 to n do
update time: t← t+ (i− 1)∆t;

update association weights Py|x using (3.21): p(yj | xi) = exp
(
−d(xi,yj)

T

)
/Zi ∀i ∈ N , j ∈M ;

update y using control law (3.24):

u = −
[
k0 +

(xT − yT P̌T
y|x)ϕ

yT P̌yy

]
y

y(t+∆t)← y(t) + u(t)∆t

update system temperature: T ← αT
end

faster than ECP-LL if on average ECP-LL takes T iterations to converge for each system snapshot. This is

because running ECP-LL over the time horizon will on average require O(τTNMd) flops.

3.2.2 RCP+

RCP+ is an enhanced version of RCP that overcomes several challenges and achieves improved performance.

It utilizes innovative techniques like MEP and convexification to produce high-quality solutions, even in

the presence of many suboptimal local optima. The algorithm adopts a temporal approach to handle DCP,

dynamically adapting solutions using SDN network history instead of recalculating. This results in quicker

and more adaptive decision-making.

A notable feature of RCP+ is its real-time controller position updates, with response times as fast as

20ms. This real-time capability allows the network to rapidly respond to changing conditions. The algorithm

also employs a lightweight neural network for trajectory prediction, enhancing future network planning.

RCP+ optimizes speed by employing sparse sampling of the SDN network and parallelizing its implemen-

tation on an Nvidia GPU.

To validate its performance, RCP+ is rigorously benchmarked against state-of-the-art DCP algorithms

using extensive large-scale mobility datasets. These datasets contain millions of records, representing GPS

trajectories of pedestrians and vehicles in major urban areas like San Francisco, US, and Beijing, China. This

thorough evaluation establishes RCP+’s effectiveness in addressing dynamic network controller placement

challenges.

Problem Statement

In [50] the authors show that the CP problem can be transformed to maximization of a submodular function,

and use a randomized greedy algorithm that provides a guaranteed bound of 0.5 (1 being the optimal) from

the optimal solution. We take a different approach and transform the CP problem into a clustering problem

which better exploits underlying structure, namely segmentation of the network into disjoint sets assigned to

24

each controller 10. This is illustrated by Figure 3.2 where each node cluster consists of many network nodes

with varying dynamics and is assigned to a controller. Nodes can be mobile, like smartphones or stationary

access switches, cellular base stations, and set-top boxes. We consider only edge nodes i.e., nodes that are

closer to the user, unlike core switches and routers of ISP backbone networks or data centers, giving a specific

type of SDMN where the SDN paradigm is applied to edge nodes (see [61]). Similar to [62], and [63] we

assume that SDN soft-switches, like Open vSwitch (OvS), are deployed to handheld mobile devices, turning

the smartphones into virtual switches that can receive control messages and forwarding rules from an SDN

controller. Both controllers and switches in the proposed network can be non-stationary. In a realistic scenario

there would be some stationary ground controllers to share the load with a flying control plane bringing

more consistency to the network. Because some nodes can be of critical importance like busy cell sites, in

the formulation we allow for a priori node weights that can alter controller placements in favor of strategic

nodes. [8] and [9] study the use of SDN-enabled aerial devices such as drones as controllers, enabling a flying

network infrastructure, as illustrated in Figure 3.2. The controllers will continuously exchange messages with

the data plane nodes they manage for statistics collection and forwarding table updates. We adopt a similar

approach and assume network controllers are SDN-enabled UAVs.

We perform our analyses in R2 equipped with the Euclidean norm and delay metric d : R2 ×R2 → [0,∞)

induced by squared Euclidean norm, i.e. d(x, y) = ∥x− y∥2, ∀x, y ∈ R2. The delay metric has a connection

to the well-known inverse square law in signal propagation strength. According to this law, the intensity or

strength of a signal, such as light or gravity, decreases with the square of the distance from its source. In our

case, the delay metric d(x, y) expresses a similar concept. As the points x and y move further apart in R2,

the squared Euclidean distance between them increases, leading to a higher delay in signal propagation or

communication between these points. results, however can be readily extended to Rn 11. We also assume

that the domain of the problem Ω ⊂ R2 is a compact set that serves as the space within which the network

operates. Throughout the rest of this study we use the shorthand notation [A]ij = aij to represent the

matrix A that is constructed by equating its ijth element to the scalar aij , and A = diag(aj) to represent the

diagonal matrix A that has aj as the jth diagonal element. Aij also represents the ijth element of matrix A.

For any matrix A, we denote Ǎ = A⊗ I2, i.e., the matrix expanded by Kronecker product. We also use In to

denote the identity matrix of size n× n. Matrix 1n×m denotes the matrix of all one’s with size n×m. With

a slight abuse of notation, here we define exp(A), and log(A) as, respectively the element-wise exponential

and logarithm of a matrix A contrary to conventional generalizations of scalar exponential and logarithm

functions.

We may occasionally drop the time index t ∈ R+ from the dynamical equations for the sake of readability

and in such circumstances the reader can infer this from the context of the problem. We represent a SDMN

as an undirected graph G({N ,M}, E) with N as the set of nodes of the graph,M as the set of controller

nodes of the graph, and E as the set of edges connecting these nodes. We will use N = |N | and M = |M|
as the number of network nodes and controllers in the network, respectively. In the controller placement

topology under study, there is communication between controllers and their assigned network nodes and

between controllers themselves 12.

In this work we assume that the delay in the network is proportional to the squared Euclidean distance

between source and origin of connection. Let xi(t), yj(t) ∈ R2 represent the location of the network node

10The assignee of a segment is called the centroid or exemplar in clustering terminology, which is the most representative
point of that segment. Here the centroids indicate the position of controllers in the network

11e.g. instead of restraining network nodes to a 2D plane, it is entirely possible to work with three dimensional positions of
nodes in space.

12This topology is known as leaderless, where it is assumed there is no hierarchy between the controllers [56]

25

UAV swarm (controllers)

Inter-controller link

Node controller link

Cellphone

Cell tower

Node cluster

Figure 3.2: Software defined mobile network.

i ∈ N and controller j ∈ M, respectively, at time t ∈ R+. The dynamics of the network node i ∈ N is

determined by the function φi(t) : R+ → R2 and we assume it is continuously differentiable, Lipschitz and

bounded. Velocity of the controller j ∈M is determined by the vector uj(t) ∈ R2. We can represent a mobile

SDN system by the following dynamical system:ẋ = φ

ẏ = u
(3.26)

where x ∈ R2N , y ∈ R2M , φ(t) : R+ → R2N , and u ∈ R2M are vectors that are constructed by concatenation

of network and control node location and velocity vectors. Denote ζ = [xT yT]T ∈ R2(N+M) as the vector

containing all positional information of the network nodes and controllers and let f(t) = [φ(t)Tu(t)T]T ∈
R2(N+M) denote the vector containing the velocities of these nodes; then we can compactly refer to this first

order system as

ζ̇ = f(ζ). (3.27)

In this setup we view DCP as the problem of finding the optimal trajectory of controllers y(t), and

optimal association weights of network nodes Py|x(t) ∈ RN×M with these controllers, for t ∈ R+ such that

a certain cumulative cost is optimized. Throughout this work we consider a hybrid cost that is comprised

of two components, synchronization and delay. Delay cost is equivalent to the cumulative network delay

resulting from communication between network nodes and controllers.

The synchronization cost is the cost of controllers transmitting data to each other and is dependent on

the distance of controllers from each other as well as the number of nodes assigned to each controller. The

more nodes that are assigned to a controller the more messages it exchanges with its peers to communicate

state of network, which comprises the overhead property of inter-controller transmissions [50]. The relative

importance of synchronization cost versus delay cost is tuned using a scalar. For further motivations for this

26

cost function view [50], and [34].

Two consecutive solutions can exhibit large spatial variations and in such cases temporal information

is not preserved. That is, two solutions might provide similar objective values, but spatially might be very

dissimilar. Finding the temporal relationship between controllers for two solutions is not always possible.

Simply connecting points makes trajectories infeasible and unrealistic. In this light a solution adaption

strategy is necessary to preserve the temporal information and a solution recalculation strategy by definition

fails to satisfy this constraint.

Let p(xi) be the prior weight (or relative importance) of the network node i ∈ N and p(yj | xi) ∈ [0, 1],

referred to as an association weight, denote the strength of the association of network node i ∈ N with

controller j ∈M, with
∑

j∈M p(yj | xi) = 1. We define matrix [Py|x]ij = p(yj | xi) as the matrix containing

these association weights. We define cluster Cj ∈M as {i ∈M | argmaxj∈M p(yj | xi) = j}, i.e., the set of

nodes whose strongest associations are with controller j ∈M. Let Py = diag(p(yj)) ∈ RM×M be the matrix

containing information on the mass of the clusters, where p(yj) =
∑

i∈N p(yj |xi)p(xi). Note that we assume

clusters are nondegenerate, namely zero mass clusters are not allowed (Py ≻ 0). Let p(xi, yj) = p(yj | xi)p(xi)
and [Pxy]ij = p(xi, yj). Moreover let [Px|y]ij = p(xi | yj), where p(xi | yj) is calculated using Bayes’ rule. Let

[∆xy]ij = d(xi, yj) ∈ RN×M and [∆yy]jj′ = d(yj , yj′) ∈ RN×M define the node-controller and inter-controller

distance matrices, respectively.

Given these definitions, we now define our objective function D : RN×M × R2M → R by

D(Py|x, y) = 1
T
NPx

(
Py|x ◦∆xy

)
1M︸ ︷︷ ︸

delay cost

+γ 1T
M (Py ◦∆yy)1

T
M .︸ ︷︷ ︸

synchronization cost

(3.28)

This objective function consists of the two competing metrics, one vying for inter-controller latency reduction

and the other for controller-node latency reduction. The geometric counterpart of this competition would be

a highly compact placement versus a highly dispersed placement.

More precisely this hybrid cost is cubic in terms of its arguments, and consists of two parts: the first term

is the sum of distances of nodes i ∈ N from all controllers j ∈M weighted by association weights and scaled

by each node’s importance; the second term, or synchronization cost is the sum of pairwise inter-controller

delays amplified 13 by the mass of, or rather ratio of network nodes assigned to, each controller. The scalar

γ > 0 determines the relative importance of the delay cost compared to the synchronization cost. If we set

γ to zero it is possible to recover a classic facility location problem (see [64]), thus CP can be viewed as a

generalization of this problem, augmented to consider distance between facilities.

Letting ∆ = ∆xy + γ1N×M∆yy denote the distortion matrix 14 containing pairwise distortions between

nodes i ∈ N and controllers j ∈M, i.e. [∆]ij = d(xi, yj) + γ
∑

j′∈M d(yj , yj′), we have

D = 1
T
N (Pxy ◦∆)1M , (3.29)

thus delay and synchronization costs can be collectively viewed as the weighted sum of distortions in the

network. Temporal clustering refers to separation of a time-indexed set of objects into disjoint segments

known as clusters that satisfy a certain degree of similarity. The most representative point within each cluster

is typically called the centroid. With this, the DCP problem herein is essentially a clustering problem where

the controllers are the centroids and the network nodes assigned to them comprise the clusters, and cost

13This encodes the overhead property of inter-controller communication. For more information on this refer to [50]
14Distortion is a concept in information theory is the cost of approximating information. Here we use it as the degree of

dissimilarity between two points.

27

function (3.28) is the objective function of this clustering problem. Time index t ∈ R+, which is dropped

from expression (3.28) for readability, emphasizes the temporal aspect of our clustering problem. To be

more precise Py|x, Py, Pxy, ∆xy, and ∆yy are all functions of time, through dependence on x, and y in the

dynamical system (3.26).

Analogous to the procedure in [37] for deterministic annealing based clustering, we invoke the maximum

entropy principle (MEP) from [65] for optimization of the cost function D. The MEP is a statistical inference

method that provides the least biased estimate–given some information–that is maximally noncommittal

towards missing information. More relevant to this context, the MEP states that among all possible

distributions, the one with highest entropy best explains the current state of the system. Similar to [37] and

using the Shannon’s entropy in [66] defined as

H(y | x) = −1T
NPx

(
Py|x ◦ logPy|x

)
1M , (3.30)

we configure the MEP based problem to maximize the entropy, subject to a certain distortion level D0 ∈ R,
namely

max H(y | x) (3.31)

s.t. D = D0, Py|x1M = 1, Py|x ≥ 0.

Using a Lagrangian relaxation, we relax this problem into that of maximizing the Lagrangian function

L = H − β (D −D0) parametrized by a Lagrange multiplier β, and subject to probability (or association

weight) constraints. This maximization is equivalent to minimization of a so-called energy function F , given

in equation (3.32) where T = 1
β , that is, minimization of

F = D − TH. (3.32)

This energy function is analogous to Helmholtz free energy in statistical mechanics and interesting relations

between the two can are discussed in [37] and [66]. Thus the MEP problem can be viewed as a distortion

minimization problem subject to probability constraints, which we refer to as the master problem:

min F (Py|x, y) (3.33)

s.t. Py|x1M = 1, Py|x ≥ 0.

By proper annealing of the parameter T , also known as temperature, it is possible to start with highly

noncommittal solutions and slowly gravitate towards a local optimum of the cost function D. Addition of the

entropy term H to the original objective function (3.28) has implications beyond just unbiasedness and is far

important than a mere mathematical juxtaposition. This is actually the underlying mechanism that allows

RCP+ to avoid poor local optimal that abound in the cost surface of D, and yield higher quality solutions

compared to generic optimization methods that rely on multiple random initializations to discover a desirable

solution.

More specifically, addition of an entropy term also can be viewed as a convexification procedure similar

to those proposed by [67], where a convex term with a large multiplier is added to the objective function

allowing reaping the well-behaved results of convex optimization. To gain intuition as to why this is the case

we provide following example.

28

Example 3.1. Consider the real-valued function f : R→ R such that f(x) = x4 − 13x3 + 62x2 − 129x+ 99.

The local minima of this function are respectively x1 = 27−
√
41

8 and x2 = 27+
√
41

8 as can be seen in Figure 3.3

Figure 3.3: Optimization landscape.

Starting at x0 = 1.5 and using the conventional gradient descent we end up in the local minimum x1. It

can also be seen starting anywhere to the left of x = 3 we always get stuck in x1 before reaching the global

minimum x2. With a minor tweak consider the function f̂(x) = f(x)−T log(x), where T ∈ R+ and −T log(x)

can be viewed as a convex term augmenting the original function. Instead of performing the usual gradient

descent, at each descent iteration we also update the value of T such that T ← αT and α = 0.8. Starting with

T = 100 the result can be seen in Figure 3.4 starting at the same point, after third iteration gradient descent

successfully “escapes” the shallower minimum and makes its way towards the global minimum. This is in fact

the same mechanism behind maximum entropy principle that helps reaching minima that are closer to the

global minimum.

29

(a) (b)

(c) (d)

Figure 3.4: Convexification progress

At T = ∞ one may think of the convexified function as a convex envelope [68] around the original

objective that deflates with depreciation of T (as in Figure 3.4). During this process the deeper optima “stick

out” faster as the convexified function is morphing back into it’s original shape. Due to this, conventional

descent based algorithms gravitate towards deeper optima earlier than they do towards shallower ones. In

[37], Rose appropriately names a similar process Deterministic Annealing (DA) analogous to its physical

interpretation of annealing in metallurgy.

Theorem 3.6. Convexification: Assume f(x) : Rn → R twice differentiable and has bounded gradient, then

for any strongly convex c(x) : Rn → R there exists t0 > 0 such that ∀t ≥ t0, f̃(x) = f(x) + tc(x) is strictly

convex.

Proof. Because f has bounded gradient then it is Lipschitz continuous and consequently, ∀x ∈ E we have

−LI ⪯ ∇2f(x) ⪯ LI, such that L > 0 is a Lipschitz constant of f(x). Suppose c(x) is α-strongly convex such

that αI ⪯ ∇2c(x). We note that for any x ∈ Rn we have λmin(∇2f̃(x)) ≥ λmin(∇2f(x)) + tλmin(∇2c(x)),

and for t ≥ L

α
, we have λmin(∇2f̃(x)) > 0 indicating the strict convexity of f̃(x).

If we restrict the controller placements to coincide with that of network nodes 15 then at each time interval

15See reference [50] for a motivation of this restriction.

30

t ∈ R+ we can find the optimal placement of controllers as the solution of a constrained optimization problem.

To cast this auxiliary problem as a mathematical program (at time t ∈ R+) we define X = (x̂i ∈ {0, 1}, i ∈
Nh) where Nh ⊆ N is the set of nodes that can accommodate a controller. X represents the controller

placement policy such that if we choose node i to be a controller then x̂i = 1 otherwise x̂i = 0. Similarly

Q = (qij ∈ {0, 1}, i ∈ N , j ∈ Nh) determines the controller assignment policy where qij = 1 if node i is

assigned to controller j otherwise qij = 0. dij = d(xi, xj) encodes the communication delay between nodes i

and j which we assume to be proportional to the squared Euclidean distance.

We can express the optimal placements and assignments as the solution of the following mathematical

program 16:

min
Q,X

N∑
i=1

p(xi)
∑
j∈Nh

qijdij + γ
∑

i,j∈Nh

x̂ix̂jdij
∑
k∈N

p(xk)qkj (3.34)

s.t.
∑
j∈Nh

qij = 1 ∀i ∈ N (3.35)

qij ≤ x̂j ∀i, j ∈ N (3.36)

x̂i ∈ {0, 1}, i ∈ Nh (3.37)

qij ∈ {0, 1}, i ∈ N , j ∈ Nh, (3.38)

This SDN setup is similar to the the works in [56], [34], and [57] with the addition of network nodes

prior weights. This yields a Mixed Integer Nonlinear Program (MINLP) with no guarantees for the global

optimal solution, and poor local minima abound in its optimization landscape. According to our most recent

experiments, finding a local optimum of optimization problem (3.34)-(3.38) using the state of art MINLP

solver BARON on a conventional PC, with network size of 50 nodes can take up to several hours. As such,

solving this problem for each time step t ∈ R+ is not practical for real-time purposes.

Solution

In [57] we have shown that equation (3.28) can be used as a proxy 17 for objective function (3.34). This

allows design of a clustering approach to this problem that essentially relaxes this MINLP and serves as a

heuristic for it. This relaxation significantly reduces the computational complexity and has been shown to

find better solutions than the state of art MINLP solver, BARON. However this solution is designed for a

static system where nodes of the network are stationary and cannot be directly applied to a mobile SDN

setting. A naive approach to leverage this static solution in a dynamic setting is to freeze the system and find

the placement of controllers for each frozen snapshot of the system at some t ∈ R+. This static approach,

as discussed in [19], is known as the frame-by-frame approach, and is computationally suboptimal due to

starting from scratch at each time frame where information from previous system snapshots is not utilized.

Computability is an issue for all DCP methods in the literature as they fall under the frame-by-frame

category and fall short of real-world practicality for real-time purposes, such as when SDN controllers are

UAV’s and need split-second positional updates. In this light the RCP algorithm in [14] was introduced as

the first real-time and dynamics aware method that exploited the temporal information in the mobile SDN

system. RCP can also be viewed as a temporal version of the ECP-LL algorithm in [57].

Lemma 3.7 below studies the structure of F and its first order information with respect to its constituents.

16Here we imply that Q,X , dij , i ∈ N , j ∈ Nh are functions of t ∈ R+ and we drop the time index for readability.
17In this earlier work a uniform distribution is assumed for network prior weights.

31

Lemma 3.7. First order information: For the energy function F defined as in equation (3.32) the partial

derivatives with respect to network nodes x, controller nodes y, and association weights Py|x are given as

follows:

∂F

∂x
= 2(xT P̌x − yT P̌T

xy),

∂F

∂y
= yT P̌yΘ̌− xT P̌xy,

∂F

∂Py|x
= Px

(
∆+ T

(
logPy|x + 1N×M

))
,

Θ ∈ RN×M =


η −γ . . . −γ
−γ η . . . −γ
...

...
. . .

...

−γ −γ . . . η

 ,
η = γ(M − 1) + 1.

(3.39)

Proof. We will study the component-wise derivative of F with respect to xi, i ∈ N and yj , j ∈M and extend

the result to the vectors x and y. By expanding (3.32) and using straightforward calculus we can show that:

∂F

∂xi
= 2

p(xi)xi −∑
j∈M

yjp(xi, yj)

 (3.40)

∂F

∂yj
= p(yj)

ηyj − γ∑
j′ ̸=j

yj′

−∑
i∈N

xip(xi, yj) (3.41)

∂F

∂p(yj | xi)
= p(xi)

d(xi, yj)− γ ∑
j′∈M

d(yj , yj′) + T (log p(yj | xi) + 1)

 (3.42)

Equations (3.40), (3.41) now readily yield the matrix form given in Equation (3.39).

The absence of the variable y in constraints of the master problem (3.33) signals its decomposability. A

natural way to obtain this decomposition is to break the problem into placement (optimization over y) and

assignment (optimization over Py|x) subproblems as shown below:

min
y

min
Py|x

F (y, Py|x) (3.43)

s.t. Py|x1M = 1N

Py|x ≥ 0

where we recognize the inner problem as the assignment subproblem, i.e.,

F ∗(y) = argmin
Py|x:Py|x:Py|x1M=1N ,Py|x≥0

F (Py|x, y).

Consequently, the outer or the master problem can be viewed as miny F
∗(y). We call the closely related

partial minimization problem miny F (y, Py|x) the placement subproblem.

A deeper inspection of this decomposition yields that the complexity of the problem lies in the placement

subproblem as opposed to the assignment subproblem. Theorem 3.8 below sheds more light on this observation,

which we will exploit to tackle the master problem efficiently. It also reinforces the idea of decomposition

into placement and assignment subproblems as a natural way to exploit underlying structure of the problem.

As an aside, henceforth we use the term optimal or minimizer throughout the paper to refer to a locally

optimal solution, unless we explicitly refer to the global optimum.

32

Theorem 3.8. Coupled solution: For any P ∗
y|x ∈ RN×M , and y∗ ∈ R2M such that (P ∗

y|x, y
∗) is a minimizer

of master problem (3.33), then P ∗
y|x follows a Gibbs distribution and there exists maps ν : RN×M → R2M ,

and ρ : R2M → RN×M such that ν(P ∗
y|x) = y∗ and ρ(y∗) = P ∗

y|x.

Proof. Assume we know the optimal placements y∗, then master problem (3.33) reduces to

min
Py|x

F (Py|x, y
∗) (3.44)

s.t. Py|x1M = 1N

Py|x ≥ 0

We note that this is a linearly constrained convex optimization problem that we can solve analytically

using KKT conditions. The associated Lagrangian L : RN×M × RN × RN×M → R can be written as

L(Py|x, λ, µ) = D − TH + λT
(
Py|x1M − 1

)
− 1T

N

(
µ ◦ Py|x

)
1M , and the KKT conditions are

∇p(yj |xi)L(Py|x, λ, µ) = p(xi)∆ij + Tp(xi) (log p(yj | xi) + 1) + λi − µij = 0 ∀i ∈ N , j ∈M (3.45)

λi

∑
j∈M

p(yj | xi)− 1

 = 0 ∀i ∈ N , µijp(yj | xi) = 0 ∀i ∈ N , j ∈M (3.46)

∑
j∈M

p(yj | xi) = 1 ∀i ∈ N , p(yj | xi) ≥ 0 ∀i ∈ N , j ∈M, µij ≥ 0 ∀i ∈ N , j ∈M (3.47)

The stationarity condition in (3.45) implies that p(yj | xi) = exp
(
−∆ij

T

)
exp

(
−λi+µij

Tp(xi)

)
, indicating the

inequality conditions p(yj | xi) > 0 strictly hold, thus due to complimentary slackness conditions in (3.46),

µij = 0, ∀i ∈ N , j ∈ M. Furthermore, substituting the value of p(yj | xi) in the feasibility conditions in

(3.47), we get λi = Tp(xi) log
1∑

j∈M exp(−∆ij/T) , ∀i ∈ N , which yields the optimal solution to problem (3.44)

as p(yj | xi) = exp(−∆ij/T)∑
j∈M exp(−∆ij/T) , ∀i ∈ N , j ∈ M; this is the celebrated Gibbs or Boltzmann distribution.

Finally because the assignment subproblem satisfies the well-known Slater condition 18 the KKT solution is

also the global minimum of the assignment subproblem. Let Z = diag(zi), and zi for i ∈ N be a normalizing

factor that ensures
∑

j∈M p(yj | xi) = 1, i.e. Zi =
∑

j∈M exp
(
−∆ij

T

)
thus ρ(y∗) = Z−1 exp

(
−∆

T

)
= P ∗

y|x.

To show the converse, by substituting P ∗
y|x in the master problem, (3.44) reduces to argminy F (P ∗

y|x, y) =

y∗. We note this is an unconstrained convex optimization problem and solving for a stationary point yields

the global minimum y∗ = Θ̌−1P̌ ∗T

x|yx = ν(P ∗
y|x) which is readily available from equating (3.41) to zero. P̌ ∗T

x|y is

the optimal posterior distribution calculated using Bayes’ rule, namely P̌ ∗T

x|y = P̌xP̌
∗
y|xP̌

−1
y .

Finding y∗ if P ∗
y|x is known is not as analytically demanding but is computationally more expensive, thus

the complexity of the master problem is dominated by the placement subproblem. Despite availability of y∗

in closed form it is beneficial to solve the system of equations ∂F
∂y = 0 directly, as it can be faster than the

matrix inversion given below in (3.49).

Theorem 3.8 shows the optimal solution to the master problem inherently has a coupled structure, where

optimal assignments and placements can be found in terms of each other, in closed form. However this does

not immediately provide a way to optimize the master problem. Corollary 3.1 provides a procedure to narrow

down the search to solutions that satisfy this coupled property.

18Namely, there exists Py|x > 0, strictly satisfying inequality conditions.

33

Corollary 3.1. Convergence to minimizer: Define maps ν : RN×M → R2M , and ρ : R2M → RN×M such

that

ρ(y) = argmin
Py|x:Py|x1M=1N ,Py|x≥0

F (Py|x, y) = Z−1 exp

(
−∆

T

)
(3.48)

and

ν(Py|x) = argmin
y

F (Py|x, y) = Θ̌−1P̌T
x|yx (3.49)

and let y∞ ∈ R2M be a fixed point of the composition ν ◦ ρ : R2M → R2M . Then ρ(y∞) is a fixed point of

ρ ◦ ν : RN×M → RN×M and (P∞
y|x, y

∞) is a minimizer of the master problem (3.33).

Proof. Using the definition of fixed point we have y∞ = ν ◦ ρ(y∞), giving ρ ◦ ν ◦ ρ(y∞) = ρ(y∞), thus

P∞
y|x = ρ(y∞) is a fixed point of ρ ◦ ν. This implies that P∞

y|x = argmin
Py|x:Py|x≥0,Py|x1M=1

F (Py|x, y
∞) and

y∞ = argminy F (P∞
y|x, y). Due to convexity of subproblems these fixed points satisfy the KKT conditions. It

can be trivially checked that the KKT condition for the master problem is the union of KKT conditions for

the subproblems, implying that fixed points are also minimizers of the master problem.

Alternating between solutions to (3.48) and (3.49) generates the recursions P
(n+1)
y|x = ρ(y(n)), y(n+1) =

ν(P
(n+1)
y|x) and non-increasing sequences 19 F (y(n)), and F (P

(n)
y|x). Due to monotonicity of these series and

existence of a lower bound for F according to Lemma 3.9, convergence of this procedure is guaranteed.

This procedure in conjunction with annealing of parameter T is the basis of the ECP-LL algorithm in [57].

Essentially this algorithm alternates between the global optimum solutions of the two convex subproblems, to

iteratively decrease the value of F .

Remark 1. We note that a minimizer of the unconstrained assignment problem minPy|x∈RN×M F (Py|x, y),

after normalization, is a minimizer of the assignment subproblem. The proof of this trivially follows by

inspection of the KKT conditions in Theorem 3.8. That is, for implementation purposes, we can circumvent

having to deal with constraints in the assignment subproblem, and view this as an unconstrained problem,

completely eliminating having to handle constraints in the decomposition approach we propose.

Apart from strict division of constraints, this problem partition serves other motives. Using basic convex

calculus, for example as given in [68], it can be seen that F is component-wise convex with respect to Py|x
and y. This motivates the idea of working with two convex subproblems in iteration as opposed to directly

handling the master problem. Breaking the problem into convex partitions is a well-known optimization

approach that can be seen in the Expectation Maximization algorithm in [69]. In a broader sense this

procedure is widely known as grouped coordinate descent, where at each step optimization is performed only

on a group of variables.

Lemma 3.9. Existence of Lower bound: The energy function F in Equation (3.32) is a bounded smooth

function. More explicitly we have that F (Py|x, y) > −T logM, ∀Py|x ∈ RN×M , y ∈ R2M

Proof. Smoothness trivially follows from continuity of its constituents. Using Equation (3.48) and plugging

in the optimal value of Py|x in F we will get

F ∗(y) =
∑
i∈N

p(xi) log
∑
j∈M

exp

(
−∆ij

T

)
(3.50)

19With abuse of notation by F (y), and F (Py|x) we mean the series generated by altering only one of the arguments of F .

34

thus we have that

F ∗(y) +
1

β
logM =

1

β

∑
i∈N

p(xi) log
M

zi
> 0

The last inequality holds because zi < M , ∀i ∈ N , by design. Noting that F ∗(y) ≤ F (Py|x, y), ∀Py|x ∈ RN×M

the desired result follows.

With abuse of terminology we refer to minimizer of placement subproblem as “optimal”, from here

on. This is not haphazard as [50] has shown the complexity of CP lies in the placement part, because the

optimal assignement is trivially found given optimal placement. This property aligns with the computational

complexity analysis that we present later. Our end goal here is to design a control law u that continuously

reduces value of F through tracking the optimal placements of controllers in the system. The first step in

this direction is understanding the time derivative of the energy function F .

Lemma 3.10. Given the energy function defined in (3.32), and the dynamical system (3.26), the time

derivative of F has the following structure:

Ḟ = 2ζTΓ(ζ)f(ζ), Γ =

[
P̌x, −P̌xy

−P̌T
xy P̌yΘ̌

]
(3.51)

Proof. Combining Equations (3.40), and (3.41) we can show that ∂F
∂ζ = 2ζTΓ. Now by using the chain rule

we have that Ḟ = ∂F
∂ζ ζ̇ and the desired result follows.

Lemma 3.11. Positive definiteness of Θ̌: Matrix Θ̌ ∈ R2M+2M as defined in Theorem 3.7, is a positive

definite matrix, namely Θ̌ ≻ 0. Furthermore eigenvalues of Θ̌, are λ1 = γM + 1, and λ2 = 2γM + 1, with

their algebraic multiplicities being respectively of 2M − 2, and 2.

.

Proof. We analyze the eigenvalues of Θ̌ by equating its characteristic polynomial to zero.

p(λ) = det
(
Θ̌− λI

)
=

∣∣∣∣∣∣∣∣∣∣
(η − λ)I −γI . . . −γI
−γI (η − λ)I . . . −γI
...

...
. . .

...

−γI −γI . . . (η − λ)I

∣∣∣∣∣∣∣∣∣∣
= γ2M

∣∣∣∣∣∣∣∣∣∣
αI I . . . I

I αI . . . I
...

...
. . .

...

I I . . . αI

∣∣∣∣∣∣∣∣∣∣
(3.52)

Where α = −η−λ
γ . Using a similar triangularization procedure in [57] we have


αI I . . . I

I αI . . . I
...

...
. . .

...

I I . . . αI




I 0 . . . 0
−1

α+M−2I I . . . 0
...

...
. . .

...
−1

α+M−2I
−1

α+M−3I . . . I

 =


β1I × . . . ×
0 β2I . . . ×
...

...
. . .

...

0 0 . . . βmI



Where βi = α − M − i
α+M − i− 1

thus p(λ) = γ2M
(∏M

i=1 βi

)2
= γ2M (α− 1)

2M−2
(α−M − 1)

2
. Equating

p(λ) to zero yields the desired result. Note that despite having repeated eigenvalues, Θ̌ is still orthogonally

diagonalizable due to spectral theorem.

35

Lemma 3.12. Positive definiteness preservation: Pre or post multiplication by a diagonal positive definite

matrix, preserves positive definiteness.

Proof. Let A,Λ ∈ Rn×n be positive definite matrices such that Λ is also a diagonal matrix. Due to positive

definiteness of Λ, its square root and its inverse exists thus Λ−1/2 is well defined. Let AΛ = Λ1/2AΛ1/2,

and we note that xTAΛx = (Λ1/2x)TA(Λ1/2x) > 0, due to positive definiteness of A, rendering AΛ positive

definite. since AΛ = Λ−1/2 (ΛA) Λ1/2, it is similar to AΛ and shares its eigenvalues. The case ΛA trivially

follows from transposition of AΛ.

Here we revisit some of the previously defined expressions, albeit in an average sense, as they are going

to be useful in the design of the control, for propelling network controllers. Let x = x − P̌y|xΘ̌−1P̌T
x|yx as

the weighted average distance of network nodes from optimal placement of controllers. Similarly define

y = y− Θ̌−1P̌T
x|yx as the relative controller placements 20. ζ

T
= [xT yT] denotes the stacked average positions

of network and controller nodes. u = u− Θ̌−1P̌T
x|yφ, and φ̄ = P̌xφ, will similarly, and respectively denote the

relative acceleration of controllers and network nodes in the weighted average sense.

Lemma 3.13. For a non-negative function f : R → R if improper integral
∫∞
0
f(t)dt is convergent then

limt→∞ f(t) = 0

Proof. By way of contradiction assume limt→∞ f(t) = L and L ̸= 0. Then for the case where L > 0, using

definition of limit, for some M > 0 we have f(x) > L/2 for x ≥ M , thus we have
∫∞
0
f(t)dt ≥

∫∞
0
Ldt,

contradicting convergence of the improper integral. The case L < 0 follows similarly.

Theorem 3.14. Control: With proper choice of control u ∈ R2M+2N → R2M , it is possible to make time

derivative of energy function F negative, along the trajectory of System (3.26). More specifically choose u

from the sets of the form

U(α) =
{
u(ζ) = −

[
K0 +

α(ζ) + θ(ζ)

yT P̌yΘ̌y

]
y, θ

(
ζ
)
> 0,K0 > 0

}
(3.53)

Parametrized by α : R2M+2N → R2M , then we have that Ḟ (t) < 0, ∀t ∈ R+.

Proof. Using expansion of Equation (3.51) and algebraic manipulation we can show that

Ḟ = xT φ̄+ yT P̌yΘ̌u (3.54)

Now by choosing u ∈ U(α) and plugging into above equation we have that

Ḟ = xT φ̄− α(ζ)− θ(ζ)−K0y
T P̌yΘ̌y (3.55)

Letting α(ζ) = xT φ̄ we have Ḟ = −K0y
T P̌yΘ̌y − θ(ζ) < 0, due to Lemmas (3.11), and (3.12) and

assumption on non-degenerateness of the clusters.

Although F does not satisfy the conditions for a conventional control Lyapunov function, we can use it to

derive interesting stability results for the auxiliary system ẏ = u− Θ̌−1 ˙̌PT
x|yx.

20Relative to optimal placements Θ̌−1P̌T
x|yx

36

Corollary 3.2. Asymptotic stability of relative placements: The equilibrium point y = 0, for the dynamical

system (3.56), such that u ∈ U(xT φ̄) is globally asymptotically stable, i.e. ∀y(0) ∈ R2M we have limt→∞ y(t) =

0

ẏ = u− Θ̌−1 ˙̌PT
x|yx (3.56)

Proof. System (3.26) is constrained within the compact set Ω by assumption, and the continuous real-

valued function F is bounded from below, due to Lemma (3.9). Letting θ(ζ) = 0, and α(ζ) = xT φ̄ in

control law (3.53) we have Ḟ = −K0y
T P̌yΘ̌y < 0. combined with boundedness of F we can deduce that∫∞

0
Ḟ (τ)dτ = limt→∞ F (t) − F (0) < ∞, and because this improper integral converges, then according to

Lemma 3.13 we must have that limt→∞ Ḟ (t) = 0. Since P̌yΘ̌ is positive definite, due to Lemmas (3.11), and

(3.12) and assumption on non-degenerateness of the clusters, then we must have limt→∞ y(t) = 0.

Stability of the system ẏ = u − Θ̌−1 ˙̌PT
x|yx in Corollary (3.2) implies that limt→∞ y(t) = Θ̌−1P̌x|yx,

analogous to Equation (3.49). This corollary is the crux of the RCP+ algorithm that is leveraged to track

the optimal placement of controllers.

In the interim period when y ̸= 0 the placements are suboptimal and it is desirable to have a control that

decreases this time period as much as possible. The following theorem states that the equilibrium point of

the system (3.56) is exponentially stable.

Theorem 3.15. Exponential stability of the relative placements: The equilibrium point y = 0 is exponentially

stable for the dynamical system (3.56), where u ∈ U(xT φ̄), with θ(ζ) =
∣∣xT φ̄∣∣ +M1 ∥y∥ (∥x∥+ η ∥y∥) and

M1 > 0 is a bound on
∥∥∥ ˙̌Px|y

∥∥∥
∞
, and

∥∥∥ ˙̌Py

∥∥∥
∞
.

Proof. Note that existence of M1 is guaranteed due to Lipschitz continuity of P̌y, and P̌x|y. We claim

that V (y) = 1
2y

T P̌yΘ̌y is a Lyapunov function for the system (3.56). V is positive definite due to positive

definiteness of P̌yΘ̌. Also

V̇ =
1

2

(
yT P̌yΘ̌ẏ +

˙yT P̌yΘ̌y
)
+

1

2
yT ˙̌PyΘ̌y (3.57)

= −K0y
T Θ̌P̌yy −

(
xT φ̄+

∣∣xT φ̄∣∣+M1 ∥y∥ (∥x∥+ η ∥y∥)
)
− xT ˙̌Px|yP̌yy +

1

2
yT ˙̌PyΘ̌y < 0 (3.58)

Thus far we have shown that V is a Lyapunov function. Additionally

V̇ < −K0V =⇒ V (t) ≤ exp(−K0t)V (0) (3.59)

Using Lemmas (3.18), (3.19), and (3.11) this implies that

∥y∥ ≤
√

2γM + 1

ω (γM + 1)
exp

(
−K0t

2

)
∥y(0)∥ (3.60)

where ω > 0 is a lower bound on λmin(P̌y).

Theorem 3.15 indicates that time needed to reduce y to δ ∥y(0)∥ is t = 2

∣∣∣∣∣log δ
√
ω (γM + 1)

2γM + 1

∣∣∣∣∣ /K0, for any

0 < δ < 1. It also indicates the sensitivity of settling time to the parameter K0 in Expression (3.53), where if

this time needs to be halved, then the value of K0 needs to be doubled, showing that the interim period

to settle in optimal controller placements can be made arbitrarily small. To gain even more control on the

37

convergence time it is entirely possible to recruit an annealing scheme for this parameter perhaps based on

the value of y, for example K0(t) = K1 ∥y(t)∥+K2, such that 0 < K1 < 1, and 0 < K2, which precipitates

convergence to optimal placements when ∥y∥ has large values and plateaus at K2 as y converges to 0.

For the purpose of implementation, RCP works by starting with high values of temperature T , in Equation

(3.32), and slow annealing of this parameter to T = 0. This ensures that the starting placements are highly

non-committal towards any controller 21 and is slowly biased towards minimization of cost function D as

temperature decreases. An interesting phenomenon known as phase transition ([37]) occurs as temperature is

decreased which is going to be useful for determination of the optimal number of controllers.

Theorem 3.16. Phase transition: Codebook y ∈ R2M is no longer optimal when det
[
I − 2

T Cx|yj

]
= 0, for

some j ∈M, where Cx|yj
is the covariance matrix of posterior distribution Px|y such that

Cx|yj
=
∑
i∈N

p(xi | yj)(ycj − xi)(ycj − xi)T (3.61)

and ycj =
∑

i∈N p(xi | yj)xi, ∀j ∈ M is the weighted geometric center of jth cluster. This occurs when

temperature is lowered to twice the variance along the principal axis of a cluster.

Proof. Let F ∗ equal to Expression (3.50) the necessary and sufficient condition for optimality of F ∗ with

respect to y can be defined as

d

dϵ
F ∗(y + ϵΨ) |ϵ=0= 0

d2

dϵ2
F ∗(y + ϵΨ) |ϵ=0≥ 0 (3.62)

Where Ψ ∈ R2M = [ψT
1 , ψ

T
2 , . . . , ψ

T
M] is a perturbation vector with ψj ∈ R2, ∀j ∈ M. The first deriva-

tive condition will lead to Expression (3.49), and the second derivative 22 condition with straightforward

differentiation produces the following equation.

∑
i∈N

∑
j∈M

p(xi, yj)ψ
T
j

I − 2

T
(ηyj − γ

∑
j′∈M
j′ ̸=j

yj′ − xi)(ηyj − γ
∑
j′∈M
j′ ̸=j

yj′ − xi)T

ψj

+
∑
i∈N

p(xi)

∑
j∈M

p(yj | xi)(y − γ
∑
j′∈M
j′ ̸=j

yj′ − xi)Tψj


2

= 0

which can be further simplified to

∑
j∈M

p(yj)ψ
T
j

[
I − 2

T
Cx|yj

]
ψj +

∑
i∈N

p(xi)

∑
j∈M

p(yj | xi)(Θ̌T
j y − xi)Tψj

2

= 0 (3.63)

Where Θ̌j is the jth row of Θ̌. By way of contradiction assume left hand side of Equation (3.63) is

positive and its first term is not. This means ∃j ∈M, such that I − 2
T Cx|yj

is not positive definite, and we

21Note distribution of p(yj | xi) will be uniform for T → ∞, in Equation (3.48).
22Bifurcation occurs when second derivative is equal to zero, where Hessian straddles optimality and non-optimality.

38

Initialize
codebook
y ∈ R2M

ȳ = 0? y ← y + u

T =
2λmax(Cx|yj

)? T ← αT

More
controllers?

y ← y ± ε

Final time?

Stop

N

Y

Y

N

Y

N

Y

N

Figure 3.5: Codebook expansion procedure.

can construct Ψ with ψj′ = 0 ∀j′ ∈M, such that yj′ ≠ yj , and
∑
j′∈M
yj′=yj

ψj′ = 0. This perturbation makes the

second term vanish, and rendering the left hand side non-positive. Thus left hand side is positive if and only

if the first term is positive, and phase transition occurs when for some j ∈M, det
[
I − 2

T Cx|yj

]
= 0, and the

critical temperature lowered to Tc = 2λmax(Cx|yj
), or the largest eigenvalue of covariance matrix.

Theorem 3.16 is useful in determining when to expand to codebook when current number of controllers are

not optimal. Finding λmax(Cx|yj
) could be computationally demanding for larger sized networks and instead

it is possible to follow the procedure in [37] and perturb the centroids by generating the the perturbation

vector ϵ ∈ RM and replacing each centroid y with y± ϵ at each iteration. It can be shown that when codebook

size is optimal, the newly generated centroids will collapse in one point, and if not y ± ϵ values diverge, and a

new centroid is automatically added to codebook.

In order to establish Lipschitz continuity of the control law (3.53), we will impose a mild assumption on

the consistency of clusters, similar to [19]. This assumption implies average distance between network nodes

and controller positions do not increase with time, namely xT φ̄ ≤ 0. This also implies that network nodes,

on average are “pulled” towards the cluster and not away from it.

Theorem 3.17. Lipschitz continuity of control: If the assumption on the consistency of clusters holds

(xT φ̄ ≤ 0), with choice of u(ζ) ∈ U(xT φ̄), and θ(ζ) =
∣∣yT P̌yΘ̌y

∣∣2 in Expression (3.53) then the control

u = u− Θ̌−1P̌T
x|yφ for propelling the network controllers becomes Lipschitz Continuous, and bounded.

39

u(ζ) = −

K0 +
xT φ̄+

√∣∣xT φ̄∣∣2 + ∣∣yT P̌yΘ̌y
∣∣2

yT P̌yΘ̌y

 y
More precisely for u(ζ) as defined above, we have

∥∥u(ζ)∥∥ ≤ (1 +K0)
∥∥ζ∥∥, ∀ζ ∈ R2M+2N

Proof. The proof herein is analogous to Proposition 3.43 in [59], and Theorem 4 in [19]. Note that Θ̌ has

bounded norm and Lipschitz continuity of P̌x|y trivially follows from that of softmax function. Also note that

φ is Lipschitz, and bounded by assumption. Thus we just need to prove Lipschitz continuity, and boundedness

of uS to achieve the same properties for u = u+ Θ̌−1P̌T
x|yφ. For any a, b ∈ R such that a ≤ 0, and b > 0, we

have 0 ≤ a+
√
a2 + b2 ≤ b, implying that

K0 +
xT φ̄+

√∣∣xT φ̄∣∣2 + ∣∣yT P̌yΘ̌y
∣∣2

yT P̌yΘ̌y
≤ 1 +K0

Which means ∥∥u(ζ)∥∥ ≤
K0 +

xT φ̄+

√∣∣xT φ̄∣∣2 + ∣∣yT P̌yΘ̌y
∣∣2

yT P̌yΘ̌y

 ∥y∥ ≤ (1 +K0)
∥∥ζ∥∥

establishing Lipschitz continuity of u. Let rΩ = min{r > 0 | Ω ⊂ Br}, where Br = {p ∈ R2 | ∥p∥ ≤ r, r > 0}
as the minimum radius of the smallest enclosing ball around Ω, which is well-defined due to compactness of

Ω. Note that ∥y∥ ≤ rΩ
(
1 +
√
M
∥∥Θ̌−1

∥∥), by definition thus ∥u∥ ≤ rΩ(1 +K0)
(
1 +
√
M
∥∥Θ̌−1

∥∥)
Lemma 3.18. Bounds on quadratic form: For quadratic form xTAx, where x ∈ Rn, and A ∈ Rn×n is a

symmetric matrix, the inequality λmin(A) ∥x∥2 ≤ xTAx ≤ λmax(A) ∥x∥2 holds where λmin(A), and λmax(A)

are respectively the smallest and largest eigenvalues of matrix A.

Proof. Because A is symmetric, therefore it is orthogonally diagonalizable due to spectral theorem. Thus

∃ Q,Λ ∈ Rn×n, where Q is an orthogonal, and Λ is a diagonal matrix, such that A = QTΛQ. Note that

xTAx

∥x∥2 = ∥Λ1/2Q
x

∥x∥∥
2 =

N∑
i=1

λi |zi|2

Where zi, λi are elements of respectively Q x
∥x∥ , and Λ, and

∑n
i=1 |zi|

2
= 1, due to orthonormality of Q. Thus

the right hand side achieves its maximum value for λi = λmax(A), and its minimum for λi = λmin(A) for

i = 1, 2, . . . , n, yielding the desired result.

Lemma 3.19. Bound on eigenvalues: For A,B ∈ Rn×n, such that A,B ≻ 0 we have λmin(A)λmin(B) ≤
λmin(AB) and λmax(AB) ≤ λmax(A)λmax(B).

Proof. For symmetric matrices, matrix norm equals the spectral radius thus

λmax(AB) = ∥AB∥ ≤ ∥A∥ ∥B∥ = λmax(A)λmax(B)

Applying the above inequality to inverse of AB

λmax((AB)
−1

) ≤ λmax(A
−1)λmax(B

−1)

40

Figure 3.6: Sparse sampling versus uniform sampling.

Noting that eigenvalues of matrix inverse are inverse of eigenvalues

1

λmin(AB)
≤ 1

λmin(A)

1

λmin(B)
=⇒ λmin(A)λmin(B) ≤ λmin(AB)

In order to expedite RCP+ for extremely large networks we propose a randomized algorithm that returns

a subset of the network of smaller size that is yet representative of the original network. This sampling can

be done at regular intervals to ensure the adherence to current state of the network. More specifically we

recruit the K-means++ algorithm from [70] that is originally used to seed the celebrated K-means algorithm.

The main logic behind this algorithm is to iteratively pick random nodes from the network such that at each

iteration nodes furthest away from already chosen nodes are more likely to be chosen, ensuring the subset is

maximally sprawling across the original network, capturing a sparse, yet faithful picture of the dataset. In

order to efficiently implement the multidimensional proximity search we propose k-d trees from [71] that is

essentially a multidimensional binary search tree to store node positions, with an average lookup complexity

of O(log n), for a k-d tree of size n. Sampling also should be done frequently enough to ensure adherence to

current state of network and infrequently enough so that the computational overhead of sampling does not

dominate the overall complexity of RCP+ as this procedure can be computationally demanding.

Figure 3.6 shows the result of sampling from a synthetic dataset of three color coded clusters with two

features. The result for uniform sampling adheres better to the original dataset in terms of preserving ratio

of cluster sizes as can be seen from comparing Jensen-Shannon divergence for uniform sampling versus sparse

sampling. However even though uniform sampling represents the original dataset in terms of cluster size

ratios, it misrepresents it spatially. The right diagram shows that sparse sampling adheres better to the

“shape” or spatial distribution of the clusters with the elongated shape of the green cluster, and the fanned

out shape of the blue cluster better reconstructed. Using the distance metric 23 dist(A,B) = ∥ATA−BTB∥2
23See [72], for a motivation of this.

41

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x coordinate

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y
co

or
di

na
te

N= 600, sampling ratio=5%

no sampling
sparse sampling
uniform sampling
network nodes
start
end

Figure 3.7: Sparse versus unifrom sampling trajectories

for two matrices of equal columns but different rows, we can validate the aforementioned fact by observing

that the the sparse sampling has a smaller distance to the original dataset. In the context of our problem,

for any sampling method, adherence to spatial distribution of the original dataset is critical, because the

pair-wise distances between nodes and controllers propagate into overall network delay.

This evidently can be seen in Figure 3.7 where the uniform sampling leads to a subset that is not

representative of the full data, and initialization within that subset leads to completely derailed trajectories.

On the contrary, and despite the very low sampling ratio the trajectories generated using sparse sampling

slowly, but surely merge with the full data path.

Algorithm 4: SparseSampling

Initialize:

network G({N ,M}, E), network subset N̄ = ∅ and sample size N̄ ∈ N, and empty k-d tree

for n = 1 to N̄ do

if n == 1 then
Select random node i ∈ N , using uniform distribution

else

di = argminj∈N̄ d(xi, xj), ∀i ∈ N − N̄
pi =

di∑
j∈N dj

, ∀i ∈ N − N̄
Select random node i ∈ N − N̄ , using discrete distribution pi.

end

Update network subset:

N̄ ← N̄ ∪ {i}
Add xi ∈ R2 to k-d tree of N̄

end

42

Algorithm 5: RCP+

Initialize:

network G({N ,M}, E), sampling interval K ∈ N, velocity parameter K0 ∈ R+ codebook y ∈ R2M ,

starting temperature T ≈ ∞, minimum temperature Tmin, time horizon τ ∈ N, and decay rate

α ∈ (0, 1);

for t = 1 to τ do
Sample network every K steps:

if t%K == 0 then

G({N̄ ,M}, Ē)← SparseSampling (G({N ,M}, E)) ;
Compute pairwise distance and distortions:

∆xy, ∆yy, ∆, Θ̌, Θ̌−1.

update association weights using Gibbs distribution:

Py|x ← Z−1 exp
(
−∆

T

)
;

Update y:

y ← y − Θ̌−1P̌T
x|yx

Compute u using control law (3.53):

u(ζ) = −
[
K0 +

α(ζ)+θ(ζ)

yT P̌yΘ̌y

]
y

compute velocity estimate φ̃:

φ̃ = PredictNetwork
(
G({N̄ ,M}, Ē)

)
update φ:

φ← φ̃

Update control u:

u← u+ Θ̌−1P̌T
x|yφ

Update controller positions y:

y ← y + u

if T ≥ Tmin then
update system temperature:

T ← αT ;

end

We assume that for real world networks N >> M , namely network nodes by far outnumber the controller

nodes. Given this we analyze steps in RCP+ to compute the cumulative iteration complexity. We do not take

into account the sampling step as it is carried out sporadically. We assume the computational complexity

of the prediction network 24 is negligible compared to other steps, due to low dimensionality of data that

results in a lightweight prediction model. Moreover sampling and prediction can be also done asynchronously,

although the overall effect on complexity is already nominal. At every iteration t we have to we perform

the following operations. In line (4) basic floating point operation counting shows ∆xy can be computed

in O(MN), ∆yy in O(M2), ∆ in O(MN), Θ̌ in O(M2), and its inverse in O(M3). Note that ∆ can be

naively computed in O(M2N) by directly computing 1N×M∆yy, however using the fact that it has repeated

rows it can be computed more efficiently. Thus the total will be dominated by O(MN +M3). At line (5)

computing the Gibbs distribution requires O(MN) floating point operations. In line (6), y can be computed

naively in O(M2N) corresponding to left to right multiplication in term Θ̌−1PT
x|yx or in O(M2 +MN),

for the right to left multiplication. In line (7) u can be computed in O(M2), and complexity of line (9)

24LSTM recurrent neural netowrk in this case.

43

Parallelized matrix
muliplication

Node placement
and assignment

Codebook
expansion

Clustering layer

Trajectory prediction Learning dyanmics Neural network
layer

K-means++ K-d tree Sampling layer

(Longitude, latitude,
time) triplets

Data layer

RCP+

Figure 3.8: Layers of RCP+ algorithm.

is O(MN) identical to line (6) and finally updating y at line (10) can be done in O(M). With this we

report the iteration computational complexity as O(M2N +M3) which is dominated by the term O(M2N)

that is linear in terms of network size N . On a separate matter, for step (6) namely computation of the

Gibbs distribution, it is entirely possible to run into numeric underflow, especially at low T leading to all

probabilities being set to zero, which is the natural behavior of programming implementation of exp(x) for

x→ −∞. To avoid this we use the fact that row-wise shifting of values in distortion matrix ∆ won’t affect

the Gibbs distribution. This can be trivially checked from insensitivity of softmax function to shifting of

inputs, namely for σ(z)i =
exp zi∑

j∈M exp zj
, z = {zi}Mi=1, σ(z) = {σi}Mi=1 we have σ(z + c1M) = σ(z) for any

c ∈ R. Exploiting this fact, we subtract the maximum value of each row from the entire row making sure the

row always has at least one 0 element (corresponding to maximum value prior to shifting), thus circumventing

the numeric underflow issue.

The computations in RCP+ can be decomposed into independent partitions, amenable to parallel

computing. This includes all the assignement steps, and also matrix multiplications. In addition to that,

inference using a Recurrent Neural Network (RNN) if used for network prediction, is also parallelizable.

Given this, we are able to use the power of modern GPU’s to dramatically enhance the speed of RCP+. We

acknowledge that the speed difference is nominal for smaller sized networks, and computation gain from

parallelization is significant for large-scale networks.

Trajectory prediction

One major drawback of RCP was to assume there is prior information 25 available on the dynamics of the

mobile network nodes. In this work we introduce a trajectory estimation procedure that we incorporate

as a subroutine in the RCP+ algorithm and alleviate this shortcoming. To provide a bound on controller

25Namely φ in equation (3.26) is known.

44

acceleration error, assume φ̃ is an approximation of the function φ, such that ∀t ∈ R+, ∥φ̃(t)− φ(t)∥ ≤ δ, for
some δ > 0. Following the control law (3.53), choose u ∈ U(xT φ̄) and ¯̃u ∈ U(xT ¯̃φ), such that ¯̃φ = P̌xφ̃, and

set θ(ζ) = 0, for both of these controls. We have that

∥∥u− ¯̃u
∥∥ ≤ ∥∥xT (φ̄− ¯̃φ)

∥∥∣∣yT P̌yΘ̌y
∣∣ ∥y∥ ≤ ∥x∥ δ

λmin(P̌yΘ̌) ∥y∥ ≤
√
Nδ

ν (γM + 1)
(3.64)

Where ν > 0 is a bound on λmin(P̌y), indicating the controller acceleration error can grow linearly with

square root of network size. While this is not the tightest possible bound on relative acceleration error, it

turns out, and we practically verify that final controller placements are not highly sensitive to errors in

predictions of node velocities. Thus far we have assumed that the vector field φ(t), is known, however for

real world purposes it is necessary to approximate this function based on network nodes trajectory history.

Popular methods for trajectory prediction include system identification, Kalman filtering, linear projection,

and most recently recurrent neural networks, among others. Besides being a modern approach neural networks

are a natural choice since inference can be parallelized consistent with other steps of the RCP+. In order to

design a trajectory prediction model we use a multilayer LSTM cell implemented in PyTorch 2.0 [73]. For

convenience, we may overload certain symbols that were previously used in problem statement to describe the

architecture of the neural network. Consider input sequence {x⟨t⟩}Tt=1 for each element x⟨t⟩ ∈ Rn in input

layer following recursions are performed.

i⟨t⟩ = σ
(
Wiix

⟨t⟩ + bii +Whih
⟨t−1⟩ + bhi

)
(3.65)

f ⟨t⟩ = σ
(
Wifx

⟨t⟩ + bif +Whfh
⟨t−1⟩ + bhf

)
(3.66)

g⟨t⟩ = tanh
(
Wigx

⟨t⟩ + big +Whgh
⟨t−1⟩ + bhg

)
(3.67)

o⟨t⟩ = σ
(
Wiox

⟨t⟩ + bio +Whoh
⟨t−1⟩ + bho

)
(3.68)

c⟨t⟩ = f ⟨t⟩ ◦ c⟨t−1⟩ + i⟨t⟩ ◦ g⟨t⟩ (3.69)

h⟨t⟩ = o⟨t⟩ ◦ tanh
(
c⟨t⟩
)

(3.70)

h⟨t⟩ ∈ Rh is the hidden state, c⟨t⟩ ∈ Rh is the cell state, at step t. i⟨t⟩, f ⟨t⟩, g⟨t⟩, o⟨t⟩ ∈ Rh are respectively

input, forget, cell and output gates. σ : Rh → Rh is the Sigmoid function and, similar to tanh : Rh → Rh is

applied component-wise. In a multilayer LSTM input at step t for layer l is x
⟨t⟩
l and is equal to hidden layer

at step t for previous layer, namely h
⟨t⟩
l−1. This is equivalent to stacking cells on top of each other.

We define input element x⟨t⟩ ∈ R2 as the latitude and longitude of a node at step t. In order to predict

velocity φ, at step T we use y⟨T ⟩ = x⟨T+1⟩ − x⟨T ⟩ as the label, for the training sequence {x⟨t⟩}Tt=1 of length

T . Furthermore we used a multilayer LSTM model stacked with a fully connected network as shown in

Figure 3.10 to return predictions of velocity ŷ⟨t⟩ ∈ R2. We used Mean Squared Error (MSE), namely

l
(
y⟨t⟩, ŷ⟨t⟩

)
= ∥y⟨t⟩ − ŷ⟨t⟩∥2 as the loss function to learn dynamics of the network. Because the dynamics are

dataset dependent we train a separate model for each dataset. This is equivalent to network learning the lay

of the land and streets in each dataset. Provided with enough examples the network can reasonably well

predict the next position of a node along the learned path of a street.

We used a ratio of 64% for training, 16% for validation and 20% for the test dataset. We used the training

dataset to train the model, validation to tune the hyperparameters such as sequence length, number of LSTM

45

σ σ Tanh σ

× +

× ×

Tanh

c〈t−1〉

Cell

h〈t−1〉

Hidden

x〈t〉Input

c〈t〉

Label1

h〈t〉

Label2

h〈t〉Label3

Figure 3.9: Conventional LSTM cell.

Dataset Before preprocessing After preprocessing Train Validation Test Sequence length LSTM layers Fully connected layers
Cabspotting [74] 11.2 millions 5.3 millions 3.39 millions 848,000 1.06 millions 5 3 (3,2)
T-Drive [75] 17.7 millions 4.12 millions 2.63 millions 672, 000 824, 000 4 4 (5, 3, 2)
UCI [76] 18,107 10,203 6,529 1,632 2,040 2 N/A (4,2)

Table 3.1: Neural network architectures for node trajectory prediction.

layers and architecture of the fully connected part. Finally we used the test dataset that the model is blind to,

to evaluate the best model. Training the model can be done asynchronously, carried out at planned junctures

or more expensively and for smaller sized networks, in an online fashion.

The node positions in mobility datasets are collected asynchronously and the time between position

updates are not necessarily always uniform. This can prevent RCP+ from directly being applied to these

datasets since firstly RCP+ requires synchronous update on positions of the network nodes. Moreover if a

trajectory has highly non-homogenous time intervals between position updates, this can lead to “confusion”

of the LSTM model. To better understand this consider a trajectory with three points, where the time

interval between the first two positions are in milliseconds and between second and third, an hour; clearly the

positions of the first two points are much closer to each other than would be for the third point. Because this

temporal information is not supplied to the model and in some sense is embedded in the order of element in

a sequence, uniformity of time intervals thus is necessary for the LSTM model to work properly. In order

to select trajectories with this property, for each trajectory we compute coefficient of variation CV =
σ

µ
,

where µ is the average of time intervals, and σ is the standard deviation. Based on this metric we discard

any trajectory with CV ≥ β, where β is a dataset dependent constant, to ensure some level of uniformity in

the training dataset. β values for Cabspotting, UCI, and T-drive datasets are respectively, 0.1, 0.1, and 0.3.

From practice a lower threshold would be more strict but rejects more trajectories that could otherwise be

still useful for the purpose of training.

Figure 3.10 shows the general architecture of the model that we used to learn the dynamics of the datasets.

This essentially is a multilayered LSTM attached to a fully connected network. From prior knowledge of low

dimensionality of input and comparison with similar tasks, we know a smaller network will fit the dataset

46

Figure 3.10: Three layer LSTM network attached to a three layer fully connected network.

47

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x coordinate

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y
co

or
di

na
te

N = 750, M = 4

Ground truth
Linear prediction
network nodes
start
end

Figure 3.11: Overlapping trajectories of RCP+ for using ground truth velocities versus linear prediction of
velocities.

correctly and the hyperparameters such as number of recurrent layers and number of layers and neurons in

the attached fully connected network is selected using a randomized search, combined with cross-validation

[77]. Unlike Cabspotting and T-drive datasets we recruit a linear model with a sequence length of 2 to learn

the dynamics of the UCI dataset. This is expected as this dataset has a noticeably smaller size, and is prone

to more complicated models overfitting this dataset.

It turns out that highly accurate estimates of node velocities are not necessary for the RCP+ to work

properly. Our observation shows that as long as the individual predictions sum up to the correct direction of

movement of clusters, then the placements stay reasonably close to that of ground truth. This can be evidently

seen in Figure 3.11 where the dynamics 26 are simulated using a first order linear system with random noise.

Due to addition of noise, nodes show chaotic behavior on the micro level, however they collectively move in a

common direction as part of the clusters. We observe that even at this level of unpredictability using a crude

linear prediction with a sequence length of one in lieu of the ground truth value of node velocities, results

in nearly identical controller trajectories. This verifies the fact that even though more accurate velocity

predictions lead to better placements, the trajectories prediction however is not a performance bottleneck for

RCP+. More concretely controller placements y ∈ R2M computed using RCP+ are not highly sensitive to

node velocities φ ∈ R2N .

26Refer to Chapter 4 for more information

48

Chapter 4

Results

In this section, we evaluate the performance of our introduced controller placement algorithms. Through a

rigorous bench-marking process, we compare our algorithms against competing alternatives using synthetic

and real-world network datasets.

4.1 Static Setting

In order to evaluate the performance of ECP-LL and ECP-LB algorithms we compare their final costs with

the integer programs (3.1)-(3.5) and (3.6)-(3.11). We use the state-of-the-art MINLP solver BARON to draw

this comparison. We used Gaussian distribution to generate our data with K as the number of Gaussian

clusters within the data. During the implementation we perform a grid search over the hyper-parameter

space of Kmax to find its optimum value.

49

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x coordinate

1.0

0.5

0.0

0.5

1.0
y

co
or

di
na

te

ECP-LL vs. MINLP, gamma=0.1, N=40
Data
MINLP, obj. value: 31.26
ECP-LL, obj. value: 11.98

(a)

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x coordinate

1.0

0.5

0.0

0.5

1.0

y
co

or
di

na
te

ECP-LB vs. MINLP, gamma=0.1, N=50

Data
MINLP, obj. value: 10.25
ECP-LL, obj. value: 9.60

(b)

0.5183 0.5759 0.6399 0.7110 0.7900 0.8778
= 1

T

2

4

6

8

10

of

 C
en

tro
id

s

ECP-LL Clustering Phase Transition, gamma=0.05, N=2000

(c)

Figure 4.1: (a) ECP-LL vs. MINLP (b) ECP-LB vs. MINLP (c) Phase transition phenomenon

Superior performance of ECP DA-based clustering algorithms can be observed even in small problem

instances like in Figure 4.1 (a) and (b). While BARON is stuck in a poor local optimum with an excessive

number of controllers, ECP-LL has managed to achieve a considerably lower objective value with fewer

controller placements.

In Figure 4.2, as a result of avoiding controller synchronization cost as γ increases it can be observed that

the controller placements become more and more compact. At the limit when γ →∞ we can see that the

codebook will collapse into a single controller for both leader-less and leader-based cases.

Figure 4.3 shows the trade-off between different hyper-parameters for ECP-LL algorithm. (a) shows as

γ increases the optimal objective value also increases and stays relatively constant for very large values of

γ. This is due to the fact that for large γ, controller placement becomes more packed and at its extreme

we would have only one controller to cancel out synchronization cost. Figure 4.3 (b) also shows the same

pattern that as γ increases ECP-LL places fewer controllers in edge network. Figure 4.3 (c) shows the

optimal value for hyper-parameter Kmax in ECP-LL algorithm. We validate that the optimal value of Kmax

is the number of inherent clusters in the dataset. Figure 4.3 (d) Shows the the values of non-projected

and projected 1 solutions versus the number of iterations. The projected solution is obtained by setting

association probabilities to either zero or one and then projecting the solution centroids onto the data set.

1At the last step of algorithm we mapped centroids onto the closest edge node available. We call such a solution projected,
otherwise we call the solution non-projected.

50

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x coordinate

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75
y

co
or

di
na

te

ECP-LL Clustering, gamma=0.0, N=3000
Cluster 1
Cluster 2
Cluster 3

(a)

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x coordinate

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

y
co

or
di

na
te

ECP-LL Clustering, gamma=1.5, N=3000
Cluster 1
Cluster 2
Cluster 3

(b)

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
x coordinate

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
co

or
di

na
te

ECP-LB Clustering, gamma=0.0, N=2000
Cluster 1
Cluster 2
Cluster 3
Cluster 4

(c)

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
x coordinate

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
co

or
di

na
te

ECP-LB Clustering, gamma=0.35, N=2000
Cluster 1
Cluster 2
Cluster 3
Cluster 4

(d)

Figure 4.2: Controller placement sensitivity to parameter γ

We observed that the two converge to the same value across most scenarios. Since the non-projected optimal

objective value serves as a lower bound for that of the projected, we can assume ECP-LL has reached, in

worst case, a near-optimal solution.

Table 4.1 compares performance of ECP-LL against MINLP. While ECP-LL by far outperforms MINLP

in terms of total run time, the difference in accuracy is emphasized as problem size increases. ECP-LL and

ECP-LB provide consistent performance both in terms of accuracy and speed across different data sizes and

varying data clusters as it is by design resilient to local minima that riddle the cost function surface. Figure

4.4 illustrates how run time grows linearly as a function of data size and number of clusters.

4.2 Dynamic Setting

We performed simulations using Python 3.9.0 on a Razer Blade 15 laptop with Intel Core i7-10750H @ 2.60

GHz CPU, 16.0 GB RAM, Nvidia RTX 2060 GPU (1920 cores and 6GB memory) and Windows 10 Operating

System. For the initial problem, data is generated as Gaussian distributions with randomized mean and

standard deviations. Each starting cluster (distribution) is assigned to a destination cluster of equal size and

each point in the initial cluster is assigned to a random point in the respective destination cluster.

The synthetic datasets herein are generated as Gaussian distributions with randomized mean and standard

51

0.0 0.2 0.4 0.6 0.8 1.0
gamma

0

20

40

60

80

100

120

op
tim

al
 o

bj
ec

tiv
e

va
lu

e

K=4
N = 100
N = 200
N = 300
N = 400
N = 500

(a)

0.0 0.2 0.4 0.6 0.8 1.0
gamma

2

4

6

8

10

12

of

 e
dg

e
co

nt
ro

lle
rs

K=10
N = 100
N = 200
N = 300

(b)

2 4 6 8 10

20

40

60

80

100

120

140

op
tim

al
 o

bj
ec

tiv
e

va
lu

e

optimal value of K_max

maximum # of clusters

N=100
N=200
N=300
N=400
N=500

gamma=0.05, K=5

(c) (d)

Figure 4.3: (a) γ vs. optimal obj. value (b) γ vs. optimal # of controllers (c) Kmax vs. optimal obj. val. (d)
Iteration # vs. projected and non-projected solutions obj. function values

deviations. Each starting cluster (distribution) is assigned to a destination cluster of equal size and each

point in the initial cluster is assigned to a random point in the respective destination cluster. The network is

modeled as a first-order linear dynamical system similar to (3.26) with node positions given by x(t) : R+ → R2,

x(t) = (xstart − xend) exp(−kt) + xend. At t = 0 we start at xstart ∈ R2 and as t→∞ the system converges

to xend ∈ R2. The value k for each point is randomized and is generated using the Rayleigh distribution with

parameter σ = 0.5, and the probability distribution function f(x;σ) = x
σ2 exp(

−x2

2σ2). Rayleigh distributions

are typically used for simulation of particle trajectories, which have coordinate-wise normally-distributed

velocities [78].

Due to arithmetic underflow that can occur in the floating point division in the update rule (3.21) we

recommend the following normalization approach for any point x ∈ Ω:

xnew =
x− µ

σmax − σmin
(4.1)

where µ =
∫
Ω
xdx∫

Ω
dx

is the mass center of the domain space Ω. σmin = minx∈Ω ∥x∥∞ and σmax = maxx∈Ω ∥x∥∞
are the minimal and maximal values the coordinates of points in Ω can take, with ∥.∥∞ being the infinity

or max norm. After this normalization the network is restrained within the box [−1, 1]× [−1, 1]. Table 4.3

52

Table 4.1: Duration and total communication delay as a function of size of dataset N and number of clusters
K with γ = 0.1. Tuples show completion time (sec), objective value and number of placed controllers triplets.
ECP-LL vs BARON

N=20 N=40 N=60

K=2 (0.31,7.10,2), (622.24,15.37,4) (0.52,13.24,2), (606.73,37.08,5) (0.78,17.50,2), (627.56,585.03,55)
K=4 (0.48,8.65,7), (614.54,12.93,5) (0.77,12.20,7), (610.03,28.41,8) (1.08,16.82,7), (624.12,233.88,48)
K=6 (0.67,7.75,4), (605.20,13.70,6) (1.20,15.19,4), (607.32,38.64,9) (1.61,23.26,4), (638.92,95.92,13)
K=8 (0.87,6.53,4), (1630.94,9.39,6) (1.34,18.66,4), (606.02,42.28,9) (1.96,25.82,4), (618.61,390.73,54)
K=10 (1.05,6.81,2), (602.03,10.32,5) (1.76,12.60,2), (617.59,27.35,10) (2.49,19.46,4), (621.64,81.89,15)

Table 4.2: Duration and total communication delay as a function of size of dataset N and number of clusters
K and γ = 0.1. Tuples show completion time (sec), objective value and number of placed controllers triplets.
ECP-LB vs BARON

N=20 N=40 N=60

K=2 (0.93,1.99,5), (2.11,6.21,4) (1.63,3.68,5), (373.22,11.88,4) (2.36,6.22,2), (906.84,15.24,3)
K=4 (1.49,2.89,6), (14.87,4.34,5) (2.69,4.58,7), (267.35,6.09,6) (4.58,6.79,7), (604.13,9.16,6)
K=6 (2.06,3.52,8), (63.59,4.88,3) (3.71,8.14,5), (305.31,8.85,5) (5.23,9.10,8), (612.36,12.78,5)
K=8 (2.81,2.71,11), (16.87,3.78,4) (4.61,8.17,11), (458.29,10.56,5) (7.06,11.73,11), (604.58,15.07,5)
K=10 (3.40,3.05,8), (68.99,4.90,4) (7.10,5.04,9), (297.49,7.25,4) (10.16,7.34,12), (607.64,12.27,5)

shows performance of RCP in comparison with ECP-LL algorithm. It can be observed that RCP can be

consistently up to 25 times faster than the frame-by-frame method using ECP-LL, although the inference

time for both algorithms grow linearly with the size of network. Figure 4.6 shows various properties of the

RCP algorithm. Plot (a) shows the CDF 2 of inference time 3 for the RCP algorithm given various network

sizes. Plots (b) and (c) show the quartiles of inference time for both RCP and ECP-LL algorithms using

the box plot. Plot (d) shows the distance of RCP placements to the optimal controller locations. As can

be seen this distance converges to zero over time. Plot (e) shows the evolution of total network delay for

both ECP-LL and RCP algorithms. Plot (f) compares the inference time of RCP versus ECP-LL algorithms

across various network sizes.

Table 4.3: Average inference time (Milliseconds).

Network size ECP-LL RCP
average STD average STD

50 22.92 8.38 0.83 0.30
100 35.65 20.00 1.35 0.72
500 224.79 67.29 9.03 3.22
1000 370.30 167.19 14.27 6.56

In order to validate RCP+ we recruit multiple popular and publicly available mobility datasets. Table 4.4

shows the properties of each dataset. These datasets contain records of time and location pairs of moving

people and cars on the streets of various locations on earth. The records are chronically ordered per data

collection device, thus data can be reconstructed into trajectories. The end to end time span of these datasets

vary a lot from weeks to years. For implementation purposes on datasets that have a wide temporal span, we

2Cumulative distribution function.
3Here inference time is the time it takes to compute optimal placements for a system snapshot.

53

1000 2000 3000 4000 5000
Data size

10

20

30

40

50

Ru
n

tim
e

(s
ec

)

ECP-LL, gamma=0.1, K=4
Max.
Mean
Min.

(a) (b)

1000 2000 3000 4000 5000
Data size

10

20

30

40

50

60

Ru
n

tim
e

(s
ec

)

ECP-LB, gamma=0.1, K=4
Max.
Mean
Min.

(c)

2 3 4 5 6 7 8 9 10
of clusters

0

10

20

30

40

50

Ru
n

tim
e

(s
ec

)

ECP-LB, gamma=0.1, N=2000
Max.
Mean
Min.

(d)

Figure 4.4: ECP algorithms run time vs. # of clusters and data size.

only experiment with an excerpt of the data, focusing the simulation to a single day of the year, preferably a

busier day. The objective of this benchmarking study is to evaluate the performance of RCP+ in dynamic

scenarios where the network topology and traffic patterns continuously change over time due to the movement

of pedestrians and vehicles. By using real-world mobility datasets, we aim to simulate realistic and challenging

network conditions that reflect the complexities of urban environments.

Figure 4.7 shows the heat map generated for these datasets. Since the plots include the whole dataset,

the warmer colors shows congestion both temporally and spatially, most notably in the centers of business in

the cities.

Figure 4.8 shows the placement controllers using RCP+ versus the optimal placements. Optimal as

mentioned earlier corresponds to a locally optimal point specifically generated using the ECP-LL algorithm–to

which RCP+ is the dynamic counterpart. This can be viewed as the solution that would be found if RCP+

Dataset No. of records
trajectories per day distance time intervals

Time span Location Owner
avg. std total avg. std avg. std

Cabspotting [74] 11.2 millions 477 77 2 million km 237 m 225 m 58 secs 26 secs 24 days San Francisco, USA Dartmouth
T-drive [75] 17.7 millions 9,838 185 1.5 trillion km 146 m 252 m 42 secs 50 secs 6 days Beijing, China Microsoft
UCI [76] 18.1 thousands 2.2 1.7 804 km 45m 62 m 7.86 secs 8.1 secs 493 days Aracaju, Brazil UCI

Table 4.4: Public mobility datasets

54

(a) (b)

(c)

Figure 4.5: Performance of RCP for three network topologies and mobility models.

had infinite time at each time step to compute the placements.

Figure 4.9 shows sensitivity of the RCP+ trajectories to the hyperparameter K0 that according to control

law 3.53, it magnifies the velocity of controllers. It can be seen that for smaller values of K0 stabilization at

optimal placements happens at a slower rate. On the other hand for values of K0 that is too high stabilization

occurs at a faster rate however it is possible that it will distort the trajectories generating non-smooth paths,

a behavior similar to gradient descent algorithm with a high learning rate. This can be alleviated as we

mentioned earlier by annealing this hyperparameter; this fact can be observed from comparison of plots (c)

and (d).

Algorithm
UCI Cabspotting T-drive
µ σ µ σ µ σ

RCP+ 0.31 0.14 2.13 1.01 14.31 6.21
RCP [14] 1.02 0.31 9.32 2.09 72.21 17.41
ECP-LL [57] 23.41 8.32 221.91 75.21 1531.92 426.6
Randomized Greedy [50] 41.25 1.93 500.05 83.19 2341.44 260.14

Table 4.5: Inference time (Milliseconds) of DCP algorithms for mobility datasets.

55

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Performance of RCP in terms of delay and inference time.

56

(a) UCI dataset, Aracaju, Brazil. (b) T-drive dataset, Beijing.

(c) Cab-spotting dataset, San Francisco, USA.

Figure 4.7: Heat map of records in public mobility datasets.

57

0.02 0.04 0.06 0.08 0.10 0.12
Longitude

0.00

0.02

0.04

0.06

0.08

0.10

La
tit

ud
e

Aracaju, Brazil
RCP+
Optimal

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f p
oi

nt
s

(a) Aracaju, Brazil, N = 71,M = 3 (b) Beijing, China, N = 4398,M = 10

(c) San Francisco, USA, N = 474,M = 5

Figure 4.8: UAV swarm placements for mobility datasets, using RCP+.

58

1.0 0.5 0.0 0.5 1.0
x coordinate

1.0

0.5

0.0

0.5

1.0

y
co

or
di

na
te

2D dynamical system

RCP+
Optimal
network nodes
start
end

(a) K0 = 8× 10−5

1.0 0.5 0.0 0.5 1.0
x coordinate

1.0

0.5

0.0

0.5

1.0

y
co

or
di

na
te

2D dynamical system

RCP+
Optimal
network nodes
start
end

(b) K0 = 1× 10−3

1.0 0.5 0.0 0.5 1.0
x coordinate

1.0

0.5

0.0

0.5

1.0

y
co

or
di

na
te

2D dynamical system

RCP+
Optimal
network nodes
start
end

(c) K0 = 2× 10−3

1.0 0.5 0.0 0.5 1.0
x coordinate

1.0

0.5

0.0

0.5

1.0

y
co

or
di

na
te

2D dynamical system

RCP+
Optimal
network nodes
start
end

(d) K0 = 2× 10−3, anneal rate = 0.9

Figure 4.9: Sensitivity analysis of hyperparameter K0.

59

Chapter 5

Conclusion

In this thesis we introduced a family of maximum entropy based clustering algorithms for placement of

controller devices in SDN networks in static and dynamic network scenarios. Our static algorithms ECP-LL

and ECP-LB each address a different controller placement topology, and their design is inspired by a Mixed

Integer Nonlinear Program. We show that our algorithms outperform state of art MINLP solver, BARON in

both speed and accuracy. Total computational complexity for these algorithms is O(τNKmax) which is linear

in data size, and maximum number of clusters. The main contributions of our static solutions in comparison

with other ECP algorithms is quality of placement in terms of fewer controller devices placed and overall

network delay. Typical ECP algorithms depend on multiple initialization and are collectively susceptible to

getting trapped in poor local optima that abound the objective function of controller placement problem.

ECP-LL and ECP-LB require no initialization and consistently yield placements that in practice has been

shown to be very close to or exactly match the globally optimum placement of controllers.

Wired networks were the first to be affected by prevalence of softwarization paradigm, and as such SDN

was implemented in data centers and ISP networks. More recently SDMN’s were introduced as an analog in

the context of wireless networks. Given high dynamicity of SDMN’s, researchers have hypothesized about

using mobile devices to host the so-called controller software, that leads to enabling instantaneous reaction to

abrupt shifts in the network. In this light we introduced the RCP algorithm, a temporal clustering algorithm

for real-time controller placement in mobile SDN systems. RCP can be viewed as a temporal extension of

ECP-LL that was mainly designed to tackle the real-time aspect of CP without compromising the quality

of placements. To the best of our knowledge, RCP is the first algorithm in DCP literature that exploits

the temporal relationships of the network dynamics in order to efficiently adapt placement solutions in

real-time. RCP leverages the principle of maximum entropy to avoid poor local optima that abound on

the surface of our balanced cost function, and thus consistently provides high quality solutions. Unlike

conventional methods that shrink the decision space into a discrete set, our algorithm allows use of the open

search method for placement, which makes it unlikely to yield sub-optimal solutions. RCP has linear O(N)

iteration computational complexity with respect to the network size and can be substantially faster than the

conventional frame-by-frame approach. A major drawback of RCP is that it assumes network node dynamics

is known, and this was the original motivation for introduction of RCP+ and creating a more practical

solution for real-time controller placement problem.

RCP+ can be considered as a major step towards recruiting UAV swarms in order to implement the

mobile controller concept in SDN’s that offer continuous control over the performance of these networks.

60

RCP+, a successor to the RCP algorithm, used for real-time placement of controllers in software defined

networks can be considered an upgrade that significantly improves the practicality of its predecessor on

multiple fronts. In this light our work recruits various subroutines such as sparse network sampling, node

prioritization, trajectory prediction using neural networks, and computation parallelization over GPU’s

that enables application to real world datasets and maintains the inference time of RCP+ within modern

definitions of real-time computation. In this work we prove various properties of RCP+ including exponential

stabilization to optimal placements, phase transition conditions, and convergence proof of our method. We

benchmarked RCP+ against comparable state of art algorithms and show that it can by far outperform

the conventional static approach both in terms of speed and overal network delay. We ackonwledge that

performance of RCP+, in terms of cumulative delay can rely heavily on choice of hyperparameters. A future

direction of this work can be to automate the process of hyperparameter selection, based on network size and

its dynamics. Moreover, we propose extension of RCP+ to take into account node link quality, constrained

size of clusters, constrained inter-controller distances, and application to resilience to UAV swarm jamming,

in hostile environments.

61

References

[1] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,” SIGCOMM Comput.

Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008, issn: 0146-4833. doi: 10.1145/1355734.1355746.

[Online]. Available: https://doi.org/10.1145/1355734.1355746.

[2] A. Alshamrani, S. Guha, S. Pisharody, A. Chowdhary, and D. Huang, “Fault Tolerant Controller Place-

ment in Distributed SDN Environments,” in 2018 IEEE International Conference on Communications

(ICC), IEEE, May 2018, pp. 1–7, isbn: 978-1-5386-3180-5. doi: 10.1109/ICC.2018.8422593. [Online].

Available: https://ieeexplore.ieee.org/document/8422593/.

[3] D. Dungay, Software Defined Networking (SDN) Explained — Comms Business, 2016. [Online]. Available:

https://www.commsbusiness.co.uk/features/software-defined-networking-sdn-explained/.

[4] H. Kuang, Y. Qiu, R. Li, and X. Liu, “A Hierarchical K-Means Algorithm for Controller Placement

in SDN-Based WAN Architecture,” in 2018 10th International Conference on Measuring Technology

and Mechatronics Automation (ICMTMA), IEEE, Feb. 2018, pp. 263–267, isbn: 978-1-5386-5114-8.

doi: 10.1109/ICMTMA.2018.00070. [Online]. Available: https://ieeexplore.ieee.org/document/

8337381/.

[5] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,” in Proceedings of the

first workshop on Hot topics in software defined networks - HotSDN ’12, New York, New York, USA:

ACM Press, 2012, p. 7, isbn: 9781450314770. doi: 10.1145/2342441.2342444. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=2342441.2342444.

[6] A. K. Singh and S. Srivastava, “A survey and classification of controller placement problem in SDN,”

International Journal of Network Management, vol. 28, no. 3, e2018, May 2018, issn: 10557148. doi:

10.1002/nem.2018. [Online]. Available: http://doi.wiley.com/10.1002/nem.2018.

[7] Vigas G, Software Defined Networking Market Size, Share — Forecast - 2027, 2020. [Online]. Available:

https://www.alliedmarketresearch.com/software-defined-networking-market.

[8] M. Alharthi, A. E. M. Taha, and H. S. Hassanein, “Dynamic controller placement in software defined

drone networks,” in 2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings,

Institute of Electrical and Electronics Engineers Inc., Dec. 2019, isbn: 9781728109626. doi: 10.1109/

GLOBECOM38437.2019.9013799.

[9] M. A. Sayeed, R. Kumar, and V. Sharma, “Efficient data management and control over WSNs using

SDN-enabled aerial networks,” International Journal of Communication Systems, vol. 33, no. 1, e4170,

Jan. 2020, issn: 10745351. doi: 10.1002/dac.4170. [Online]. Available: http://doi.wiley.com/10.

1002/dac.4170.

62

https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/ICC.2018.8422593
https://ieeexplore.ieee.org/document/8422593/
https://www.commsbusiness.co.uk/features/software-defined-networking-sdn-explained/
https://doi.org/10.1109/ICMTMA.2018.00070
https://ieeexplore.ieee.org/document/8337381/
https://ieeexplore.ieee.org/document/8337381/
https://doi.org/10.1145/2342441.2342444
http://dl.acm.org/citation.cfm?doid=2342441.2342444
https://doi.org/10.1002/nem.2018
http://doi.wiley.com/10.1002/nem.2018
https://www.alliedmarketresearch.com/software-defined-networking-market
https://doi.org/10.1109/GLOBECOM38437.2019.9013799
https://doi.org/10.1109/GLOBECOM38437.2019.9013799
https://doi.org/10.1002/dac.4170
http://doi.wiley.com/10.1002/dac.4170
http://doi.wiley.com/10.1002/dac.4170

[10] M. Campion, P. Ranganathan, and S. Faruque, “UAV swarm communication and control architectures:

a review,” Journal of Unmanned Vehicle Systems, vol. 7, no. 2, pp. 93–106, 2019. doi: 10.1139/juvs-

2018-0009. [Online]. Available: https://doi.org/10.1139/juvs-2018-0009.

[11] C. Singhal and K. Rahul, “LB-UAVnet: Load Balancing Algorithm for UAV Based Network using SDN,”

in International Symposium on Wireless Personal Multimedia Communications, WPMC, vol. 2019-

November, IEEE Computer Society, Nov. 2019, isbn: 9781728154190. doi: 10.1109/WPMC48795.2019.

9096139.

[12] S. Ur Rahman, G. H. Kim, Y. Z. Cho, and A. Khan, “Deployment of an SDN-based UAV network:

Controller placement and tradeoff between control overhead and delay,” in International Conference on

Information and Communication Technology Convergence: ICT Convergence Technologies Leading the

Fourth Industrial Revolution, ICTC 2017, vol. 2017-December, Institute of Electrical and Electronics

Engineers Inc., Dec. 2017, pp. 1290–1292, isbn: 9781509040315. doi: 10.1109/ICTC.2017.8190924.

[13] J. D. Day and H. Zimmermann, “The OSI reference model,” Proceedings of the IEEE, vol. 71, no. 12,

pp. 1334–1340, 1983. doi: 10.1109/PROC.1983.12775.

[14] R. Soleymanifar and C. Beck, “RCP: A Temporal Clustering Algorithm for Real-time Controller

Placement in Mobile SDN Systems,” Dec. 2021. [Online]. Available: https://arxiv.org/abs/2112.

03037v1.

[15] M. Osama, A. A. Ateya, S. Ahmed Elsaid, and A. Muthanna, “Ultra-Reliable Low-Latency Communica-

tions: Unmanned Aerial Vehicles Assisted Systems,” Information, vol. 13, no. 9, 2022, issn: 2078-2489.

doi: 10.3390/info13090430. [Online]. Available: https://www.mdpi.com/2078-2489/13/9/430.

[16] A. Abdelaziz et al., “Distributed controller clustering in software defined networks,” PLOS ONE, vol. 12,

no. 4, C.-H. Huang, Ed., e0174715, Apr. 2017, issn: 1932-6203. doi: 10.1371/journal.pone.0174715.

[Online]. Available: https://dx.plos.org/10.1371/journal.pone.0174715.

[17] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,” ACM Comput. Surv., vol. 31,

no. 3, pp. 264–323, Sep. 1999, issn: 0360-0300. doi: 10.1145/331499.331504. [Online]. Available:

https://doi.org/10.1145/331499.331504.

[18] T. K. Dey, A. Rossi, and A. Sidiropoulos, “Temporal clustering,” arXiv preprint arXiv:1704.05964,

2017.

[19] P. Sharma, S. M. Salapaka, and C. L. Beck, “Entropy-based framework for dynamic coverage and

clustering problems,” IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 135–150, Jan. 2012,

issn: 00189286. doi: 10.1109/TAC.2011.2166713.

[20] H. Yang and M. Tate, “A descriptive literature review and classification of cloud computing research,”

Communications of the Association for Information Systems, vol. 31, no. 1, p. 2, 2012.

[21] F. Li and X. Xu, “A Discrete Cuckoo Search Algorithm for the Controller Placement Problem in

Software Defined Networks,” in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile

Communication Conference (IEMCON), IEEE, Nov. 2018, pp. 292–296, isbn: 978-1-5386-7266-2. doi:

10.1109/IEMCON.2018.8614785. [Online]. Available: https://ieeexplore.ieee.org/document/

8614785/.

[22] J. Lu, Z. Zhang, T. Hu, P. Yi, and J. Lan, “A Survey of Controller Placement Problem in Software-

Defined Networking,” IEEE Access, vol. 7, pp. 24 290–24 307, 2019, issn: 2169-3536. doi: 10.1109/

ACCESS.2019.2893283. [Online]. Available: https://ieeexplore.ieee.org/document/8618449/.

63

https://doi.org/10.1139/juvs-2018-0009
https://doi.org/10.1139/juvs-2018-0009
https://doi.org/10.1139/juvs-2018-0009
https://doi.org/10.1109/WPMC48795.2019.9096139
https://doi.org/10.1109/WPMC48795.2019.9096139
https://doi.org/10.1109/ICTC.2017.8190924
https://doi.org/10.1109/PROC.1983.12775
https://arxiv.org/abs/2112.03037v1
https://arxiv.org/abs/2112.03037v1
https://doi.org/10.3390/info13090430
https://www.mdpi.com/2078-2489/13/9/430
https://doi.org/10.1371/journal.pone.0174715
https://dx.plos.org/10.1371/journal.pone.0174715
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/331499.331504
https://doi.org/10.1109/TAC.2011.2166713
https://doi.org/10.1109/IEMCON.2018.8614785
https://ieeexplore.ieee.org/document/8614785/
https://ieeexplore.ieee.org/document/8614785/
https://doi.org/10.1109/ACCESS.2019.2893283
https://doi.org/10.1109/ACCESS.2019.2893283
https://ieeexplore.ieee.org/document/8618449/

[23] P. Tao, C. Ying, Z. Sun, S. Tan, P. Wang, and Z. Sun, “The Controller Placement of Software-

Defined Networks Based on Minimum Delay and Load Balancing,” in 2018 IEEE 16th Intl Conf

on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and

Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology

Congress(DASC/PiCom/DataCom/CyberSciTech), IEEE, Aug. 2018, pp. 310–313, isbn: 978-1-5386-

7518-2. doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00059. [Online]. Available: https:

//ieeexplore.ieee.org/document/8511902/.

[24] A. Dvir, Y. Haddad, and A. Zilberman, “Wireless controller placement problem,” in 2018 15th IEEE

Annual Consumer Communications & Networking Conference (CCNC), IEEE, Jan. 2018, pp. 1–4, isbn:

978-1-5386-4790-5. doi: 10.1109/CCNC.2018.8319228. [Online]. Available: http://ieeexplore.ieee.

org/document/8319228/.

[25] A. Basta, A. Blenk, M. Hoffmann, H. J. Morper, K. Hoffmann, and W. Kellerer, “SDN and NFV

dynamic operation of LTE EPC gateways for time-varying traffic patterns,” in Lecture Notes of the

Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,

vol. 141, Springer Verlag, 2015, pp. 63–76, isbn: 9783319162911. doi: 10.1007/978-3-319-16292-85.

[26] N. Mouawad, R. Naja, and S. Tohme, “Optimal and Dynamic SDN Controller Placement,” in 2018

International Conference on Computer and Applications, ICCA 2018, Institute of Electrical and

Electronics Engineers Inc., Sep. 2018, pp. 413–418, isbn: 9781538643716. doi: 10.1109/COMAPP.2018.

8460361.

[27] M. T. I. ul Huque, W. Si, G. Jourjon, and V. Gramoli, “Large-Scale Dynamic Controller Placement,”

IEEE Transactions on Network and Service Management, vol. 14, no. 1, pp. 63–76, Mar. 2017, issn:

1932-4537. doi: 10.1109/TNSM.2017.2651107. [Online]. Available: http://ieeexplore.ieee.org/

document/7812749/.

[28] B. P. R. Killi, E. A. Reddy, and S. V. Rao, “Cooperative game theory based network partitioning

for controller placement in SDN,” in 2018 10th International Conference on Communication Systems

& Networks (COMSNETS), IEEE, Jan. 2018, pp. 105–112, isbn: 978-1-5386-1182-1. doi: 10.1109/

COMSNETS.2018.8328186. [Online]. Available: http://ieeexplore.ieee.org/document/8328186/.

[29] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li, and T. Li, “Density cluster based approach for controller

placement problem in large-scale software defined networkings,” Computer Networks, vol. 112, pp. 24–

35, Jan. 2017, issn: 1389-1286. doi: 10.1016/J.COMNET.2016.10.014. [Online]. Available: https:

//www.sciencedirect.com/science/article/abs/pii/S1389128616303620.

[30] S. Wu, X. Chen, L. Yang, C. Fan, and Y. Zhao, “Dynamic and static controller placement in Software-

Defined Satellite Networking,” Acta Astronautica, vol. 152, pp. 49–58, Nov. 2018, issn: 0094-5765.

doi: 10.1016/J.ACTAASTRO.2018.07.017. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0094576518308269.

[31] A. Papa, T. De Cola, P. Vizarreta, M. He, C. Mas Machuca, and W. Kellerer, “Dynamic SDN Controller

Placement in a LEO Constellation Satellite Network,” in 2018 IEEE Global Communications Conference

(GLOBECOM), IEEE, Dec. 2018, pp. 206–212, isbn: 978-1-5386-4727-1. doi: 10.1109/GLOCOM.2018.

8647843. [Online]. Available: https://ieeexplore.ieee.org/document/8647843/.

64

https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00059
https://ieeexplore.ieee.org/document/8511902/
https://ieeexplore.ieee.org/document/8511902/
https://doi.org/10.1109/CCNC.2018.8319228
http://ieeexplore.ieee.org/document/8319228/
http://ieeexplore.ieee.org/document/8319228/
https://doi.org/10.1007/978-3-319-16292-8 5
https://doi.org/10.1109/COMAPP.2018.8460361
https://doi.org/10.1109/COMAPP.2018.8460361
https://doi.org/10.1109/TNSM.2017.2651107
http://ieeexplore.ieee.org/document/7812749/
http://ieeexplore.ieee.org/document/7812749/
https://doi.org/10.1109/COMSNETS.2018.8328186
https://doi.org/10.1109/COMSNETS.2018.8328186
http://ieeexplore.ieee.org/document/8328186/
https://doi.org/10.1016/J.COMNET.2016.10.014
https://www.sciencedirect.com/science/article/abs/pii/S1389128616303620
https://www.sciencedirect.com/science/article/abs/pii/S1389128616303620
https://doi.org/10.1016/J.ACTAASTRO.2018.07.017
https://www.sciencedirect.com/science/article/pii/S0094576518308269
https://www.sciencedirect.com/science/article/pii/S0094576518308269
https://doi.org/10.1109/GLOCOM.2018.8647843
https://doi.org/10.1109/GLOCOM.2018.8647843
https://ieeexplore.ieee.org/document/8647843/

[32] T. Das and M. Gurusamy, “INCEPT: INcremental ControllEr PlacemenT in Software Defined Net-

works,” in 2018 27th International Conference on Computer Communication and Networks (ICCCN),

IEEE, Jul. 2018, pp. 1–6, isbn: 978-1-5386-5156-8. doi: 10.1109/ICCCN.2018.8487454. [Online].

Available: https://ieeexplore.ieee.org/document/8487454/.

[33] J. Liu, Y. Shi, L. Zhao, Y. Cao, W. Sun, and N. Kato, “Joint Placement of Controllers and Gateways in

SDN-Enabled 5G-Satellite Integrated Network,” IEEE Journal on Selected Areas in Communications,

vol. 36, no. 2, pp. 221–232, Feb. 2018, issn: 0733-8716. doi: 10.1109/JSAC.2018.2804019. [Online].

Available: http://ieeexplore.ieee.org/document/8286925/.

[34] Zhiyang Su and M. Hamdi, “MDCP: Measurement-Aware Distributed Controller Placement for Software

Defined Networks,” in 2015 IEEE 21st International Conference on Parallel and Distributed Systems

(ICPADS), IEEE, Dec. 2015, pp. 380–387, isbn: 978-0-7695-5785-4. doi: 10.1109/ICPADS.2015.55.

[Online]. Available: http://ieeexplore.ieee.org/document/7384318/.

[35] A. Jalili, M. Keshtgari, R. Akbari, and R. Javidan, “Multi criteria analysis of Controller Placement

Problem in Software Defined Networks,” Computer Communications, vol. 133, pp. 115–128, Jan.

2019, issn: 0140-3664. doi: 10.1016/J.COMCOM.2018.08.003. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0140366418300045.

[36] B. Zhang, X. Wang, and M. Huang, “Multi-objective optimization controller placement problem in

internet-oriented software defined network,” Computer Communications, vol. 123, pp. 24–35, Jun.

2018, issn: 0140-3664. doi: 10.1016/J.COMCOM.2018.04.008. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0140366416307241.

[37] K. Rose, “Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related

Optimization Problems,” California Institute of Technology, Tech. Rep., 1998. [Online]. Available:

https://pdfs.semanticscholar.org/4ce8/bc485df9ac987f18d99c7af1d95f9cbea6b2.pdf.

[38] S. Toufga, S. Abdellatif, H. T. Assouane, P. Owezarski, and T. Villemur, “Towards Dynamic Controller

Placement in Software Defined Vehicular Networks,” Sensors, vol. 20, no. 6, p. 1701, Mar. 2020,

issn: 1424-8220. doi: 10.3390/s20061701. [Online]. Available: https://www.mdpi.com/1424-

8220/20/6/1701.

[39] S. Champagne, T. Makanju, C. Yao, N. Zincir-Heywood, and M. Heywood, “A genetic algorithm

for dynamic controller placement in software defined networking,” in GECCO 2018 Companion -

Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion, New York,

NY, USA: Association for Computing Machinery, Inc, Jul. 2018, pp. 1632–1639, isbn: 9781450357647.

doi: 10.1145/3205651.3208244. [Online]. Available: https://dl.acm.org/doi/10.1145/3205651.

3208244.

[40] M. He, A. Varasteh, and W. Kellerer, “Toward a Flexible Design of SDN Dynamic Control Plane: An

Online Optimization Approach,” IEEE Transactions on Network and Service Management, vol. 16,

no. 4, pp. 1694–1708, Dec. 2019, issn: 19324537. doi: 10.1109/TNSM.2019.2935160.

[41] D. K. Luong, Y. F. Hu, J. P. Li, F. Benamrane, M. Ali, and K. Abdo, “Traffic-aware Dynamic Controller

Placement using AI techniques in SDN-based aeronautical networks,” in AIAA/IEEE Digital Avionics

Systems Conference - Proceedings, vol. 2019-September, Institute of Electrical and Electronics Engineers

Inc., Sep. 2019, isbn: 9781728106496. doi: 10.1109/DASC43569.2019.9081810.

65

https://doi.org/10.1109/ICCCN.2018.8487454
https://ieeexplore.ieee.org/document/8487454/
https://doi.org/10.1109/JSAC.2018.2804019
http://ieeexplore.ieee.org/document/8286925/
https://doi.org/10.1109/ICPADS.2015.55
http://ieeexplore.ieee.org/document/7384318/
https://doi.org/10.1016/J.COMCOM.2018.08.003
https://www.sciencedirect.com/science/article/pii/S0140366418300045
https://www.sciencedirect.com/science/article/pii/S0140366418300045
https://doi.org/10.1016/J.COMCOM.2018.04.008
https://www.sciencedirect.com/science/article/pii/S0140366416307241
https://www.sciencedirect.com/science/article/pii/S0140366416307241
https://pdfs.semanticscholar.org/4ce8/bc485df9ac987f18d99c7af1d95f9cbea6b2.pdf
https://doi.org/10.3390/s20061701
https://www.mdpi.com/1424-8220/20/6/1701
https://www.mdpi.com/1424-8220/20/6/1701
https://doi.org/10.1145/3205651.3208244
https://dl.acm.org/doi/10.1145/3205651.3208244
https://dl.acm.org/doi/10.1145/3205651.3208244
https://doi.org/10.1109/TNSM.2019.2935160
https://doi.org/10.1109/DASC43569.2019.9081810

[42] M. He, A. Basta, A. Blenk, and W. Kellerer, “How Flexible is Dynamic SDN Control Plane?” Technical

University of Munich, Tech. Rep., 2018.

[43] M. He, A. Basta, A. Blenk, and W. Kellerer, “Modeling flow setup time for controller placement in

SDN: Evaluation for dynamic flows,” in IEEE International Conference on Communications, Institute

of Electrical and Electronics Engineers Inc., Jul. 2017, isbn: 9781467389990. doi: 10.1109/ICC.2017.

7996654.

[44] T. Wang, F. Liu, and H. Xu, “An Efficient Online Algorithm for Dynamic SDN Controller Assignment

in Data Center Networks,” IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 2788–2801, Oct.

2017, issn: 10636692. doi: 10.1109/TNET.2017.2711641.

[45] Y. Liu, H. Gu, X. Yu, and J. Zhou, “Dynamic SDN Controller Placement in Elastic Optical Datacenter

Networks,” Asia Communications and Photonics Conference, ACP, vol. 2018-October, Dec. 2018, issn:

2162108X. doi: 10.1109/ACP.2018.8596219.

[46] S. Hegde, R. Ajayghosh, S. G. Koolagudi, and S. Bhattacharya, “Dynamic controller placement in

edge-core software defined networks,” IEEE Region 10 Annual International Conference, Proceedings/-

TENCON, vol. 2017-December, pp. 3153–3158, Dec. 2017, issn: 21593450. doi: 10.1109/TENCON.2017.

8228403.

[47] H. Sufiev, Y. Haddad, L. Barenboim, and J. Soler, “Dynamic SDN Controller Load Balancing,”

Future Internet, vol. 11, no. 3, 2019, issn: 1999-5903. doi: 10.3390/fi11030075. [Online]. Available:

https://www.mdpi.com/1999-5903/11/3/75.

[48] Z. Li, Y. Hu, T. Hu, and P. Wei, “Dynamic SDN Controller Association Mechanism Based on Flow

Characteristics,” IEEE Access, vol. 7, pp. 92 661–92 671, 2019. doi: 10.1109/ACCESS.2019.2927173.

[49] Y. Wu, S. Zhou, Y. Wei, and S. Leng, “Deep Reinforcement Learning for Controller Placement in

Software Defined Network,” in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), 2020, pp. 1254–1259. doi: 10.1109/INFOCOMWKSHPS50562.2020.

9162977.

[50] Q. Qin, K. Poularakis, G. Iosifidis, and L. Tassiulas, “SDN Controller Placement at the Edge: Optimizing

Delay and Overheads,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications,

IEEE, Apr. 2018, pp. 684–692, isbn: 978-1-5386-4128-6. doi: 10.1109/INFOCOM.2018.8485963. [Online].

Available: https://ieeexplore.ieee.org/document/8485963/.

[51] W. Zhang, “Branch-and-Bound Search Algorithms and Their Computational Complexity.,” UNIVER-

SITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFORMATION SCIENCES INST, Tech.

Rep., 1996.

[52] S. Kudrle, M. Proulx, P. Carrières, and M. Lopez, “Fingerprinting for solving A/V synchronization

issues within broadcast environments,” SMPTE Motion Imaging Journal, vol. 120, no. 5, pp. 36–46,

2011, issn: 15450279. doi: 10.5594/J18059XY.

[53] M. Horani and M. O. Hasna, “Latency Analysis of UAV based Communication Networks,” in 2018

International Conference on Information and Communication Technology Convergence (ICTC), 2018,

pp. 385–390. doi: 10.1109/ICTC.2018.8539626.

66

https://doi.org/10.1109/ICC.2017.7996654
https://doi.org/10.1109/ICC.2017.7996654
https://doi.org/10.1109/TNET.2017.2711641
https://doi.org/10.1109/ACP.2018.8596219
https://doi.org/10.1109/TENCON.2017.8228403
https://doi.org/10.1109/TENCON.2017.8228403
https://doi.org/10.3390/fi11030075
https://www.mdpi.com/1999-5903/11/3/75
https://doi.org/10.1109/ACCESS.2019.2927173
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162977
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162977
https://doi.org/10.1109/INFOCOM.2018.8485963
https://ieeexplore.ieee.org/document/8485963/
https://doi.org/10.5594/J18059XY
https://doi.org/10.1109/ICTC.2018.8539626

[54] Alevizaki Victoria-Mariaand, Anastasopoulos Markosand, Tzanakaki Annaand, and Simeonidou Dimitra,

“Joint Fronthaul Optimization and SDN Controller Placement in Dynamic 5G Networks,” in Optical

Network Design and Modeling, Tzanakaki Annaand Varvarigos, Manosand Muñoz Rauland, Nejabati

Rezaand, Yoshikane Noboruand, Anastasopoulos Markosand, and Marquez-Barja Johann, Eds., Cham:

Springer International Publishing, 2020, pp. 181–192, isbn: 978-3-030-38085-4.

[55] D. Hock, M. Hartmann, S. Gebert, T. Zinner, and P. Tran-Gia, “POCO-PLC: Enabling dynamic

pareto-optimal resilient controller placement in SDN networks,” in Proceedings - IEEE INFOCOM,

Institute of Electrical and Electronics Engineers Inc., 2014, pp. 115–116, isbn: 9781479930883. doi:

10.1109/INFCOMW.2014.6849182.

[56] Q. Qin, K. Poularakis, G. Iosifidis, S. Kompella, and L. Tassiulas, “SDN Controller Placement With

Delay-Overhead Balancing in Wireless Edge Networks,” IEEE Transactions on Network and Service

Management, vol. 15, no. 4, pp. 1446–1459, Dec. 2018, issn: 1932-4537. doi: 10.1109/TNSM.2018.

2876064. [Online]. Available: https://ieeexplore.ieee.org/document/8491378/.

[57] R. Soleymanifar, A. Srivastava, C. Beck, and S. Salapaka, “A Clustering Approach to Edge Controller

Placement in Software-Defined Networks with Cost Balancing,” IFAC-PapersOnLine, vol. 53, no. 2,

pp. 2642–2647, Jan. 2020, issn: 2405-8963. doi: 10.1016/J.IFACOL.2020.12.379.

[58] Y. Xu, S. M. Salapaka, and C. L. Beck, “Clustering and coverage control for systems with acceleration-

driven dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1342–1347, 2014, issn:

00189286. doi: 10.1109/TAC.2013.2292726.

[59] R. Sepulchre, M. Janković, and P. V. Kokotović, “Constructive Nonlinear Control,” Communications

and Control Engineering, 1997. doi: 10.1007/978- 1- 4471- 0967- 9. [Online]. Available: http:

//link.springer.com/10.1007/978-1-4471-0967-9.

[60] E. D. Sontag, “A ’universal’ construction of Artstein’s theorem on nonlinear stabilization,” Systems

and Control Letters, vol. 13, no. 2, pp. 117–123, Aug. 1989, issn: 01676911. doi: 10.1016/0167-

6911(89)90028-5.

[61] K. Poularakis, Q. Qin, E. Nahum, M. Rio, and L. Tassiulas, “Bringing SDN to the mobile edge,” in

2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable

Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City

Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1–6. doi: 10.1109/

UIC-ATC.2017.8397407.

[62] J. Lee et al., “MeSDN: Mobile Extension of SDN,” in Proceedings of the Fifth International Workshop

on Mobile Cloud Computing & Services, ser. MCS ’14, New York, NY, USA: Association for Computing

Machinery, 2014, pp. 7–14, isbn: 9781450328241. doi: 10.1145/2609908.2609948. [Online]. Available:

https://doi.org/10.1145/2609908.2609948.

[63] D. Syrivelis, G. Iosifidis, D. Delimpasis, K. Chounos, T. Korakis, and L. Tassiulas, “Bits and coins:

Supporting collaborative consumption of mobile internet,” in 2015 IEEE Conference on Computer

Communications (INFOCOM), 2015, pp. 2146–2154. doi: 10.1109/INFOCOM.2015.7218600.

[64] A. Ahmadi-Javid, P. Seyedi, and S. S. Syam, “A survey of healthcare facility location,” Computers &

Operations Research, vol. 79, pp. 223–263, 2017.

67

https://doi.org/10.1109/INFCOMW.2014.6849182
https://doi.org/10.1109/TNSM.2018.2876064
https://doi.org/10.1109/TNSM.2018.2876064
https://ieeexplore.ieee.org/document/8491378/
https://doi.org/10.1016/J.IFACOL.2020.12.379
https://doi.org/10.1109/TAC.2013.2292726
https://doi.org/10.1007/978-1-4471-0967-9
http://link.springer.com/10.1007/978-1-4471-0967-9
http://link.springer.com/10.1007/978-1-4471-0967-9
https://doi.org/10.1016/0167-6911(89)90028-5
https://doi.org/10.1016/0167-6911(89)90028-5
https://doi.org/10.1109/UIC-ATC.2017.8397407
https://doi.org/10.1109/UIC-ATC.2017.8397407
https://doi.org/10.1145/2609908.2609948
https://doi.org/10.1145/2609908.2609948
https://doi.org/10.1109/INFOCOM.2015.7218600

[65] E. T. Jaynes, “Information Theory and Statistical Mechanics,” Physical Review, vol. 106, no. 4,

p. 620, May 1957, issn: 0031899X. doi: 10.1103/PhysRev.106.620. [Online]. Available: https:

//journals.aps.org/pr/abstract/10.1103/PhysRev.106.620.

[66] C. E. Shannon, “A Mathematical Theory of Communication*,” 1948.

[67] D. P. Bertsekas, “Convexification procedures and decomposition methods for nonconvex optimization

problems,” Journal of Optimization Theory and Applications 1979 29:2, vol. 29, no. 2, pp. 169–197,

Oct. 1979, issn: 1573-2878. doi: 10.1007/BF00937167. [Online]. Available: https://link.springer.

com/article/10.1007/BF00937167.

[68] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[69] A. P. Dempster, ; N. M. Laird, and ; D. B. Rubin, “Maximum Likelihood from Incomplete Data via

the EM Algorithm,” Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, no. 1,

pp. 1–38, 1977.

[70] D. Arthur and S. Vassilvitskii, “K-Means++: The Advantages of Careful Seeding,” in Proceedings of

the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’07, USA: Society

for Industrial and Applied Mathematics, 2007, pp. 1027–1035, isbn: 9780898716245.

[71] J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Commun.

ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975, issn: 0001-0782. doi: 10.1145/361002.361007. [Online].

Available: https://doi.org/10.1145/361002.361007.

[72] M. Ghashami, E. Liberty, J. M. Phillips, and D. P. Woodruff, “Frequent Directions : Simple and

Deterministic Matrix Sketching,” CoRR, vol. abs/1501.01711, 2015. [Online]. Available: http://arxiv.

org/abs/1501.01711.

[73] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in

Advances in Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

[Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-

high-performance-deep-learning-library.pdf.

[74] D. Kotz, T. Henderson, I. Abyzov, J. Yeo, and R. Santos, Cabspotting dataset, Downloaded from

https://crawdad.org/dartmouth/campus/20090909, Sep. 2009. doi: 10.15783/C7F59T. [Online]. Avail-

able: http://www.lac.inpe.br/~rafael.santos/Docs/CAP394/Proj_Cabspotting.html#about.

[75] Y. Zheng, T-Drive trajectory data sample, Aug. 2011. [Online]. Available: https://www.microsoft.

com/en-us/research/publication/t-drive-trajectory-data-sample/.

[76] M. O. Cruz, H. T. Macedo, R. Barreto, and A. P. GuimarÃ£es, GPS Trajectories Data Set, 2016.

[Online]. Available: https://archive.ics.uci.edu/ml/datasets/GPS+Trajectories.

[77] S. Yadav and S. Shukla, “Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal

Datasets for Quality Classification,” Proceedings - 6th International Advanced Computing Conference,

IACC 2016, pp. 78–83, Aug. 2016. doi: 10.1109/IACC.2016.25.

[78] S. E. Tuller and A. C. Brett, “The goodness of fit of the weibull and rayleigh distributions to the

distributions of observed wind speeds in a topographically diverse area,” Journal of Climatology,

vol. 5, no. 1, pp. 79–94, 1985. doi: https://doi.org/10.1002/joc.3370050107. [Online]. Available:

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3370050107.

68

https://doi.org/10.1103/PhysRev.106.620
https://journals.aps.org/pr/abstract/10.1103/PhysRev.106.620
https://journals.aps.org/pr/abstract/10.1103/PhysRev.106.620
https://doi.org/10.1007/BF00937167
https://link.springer.com/article/10.1007/BF00937167
https://link.springer.com/article/10.1007/BF00937167
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
http://arxiv.org/abs/1501.01711
http://arxiv.org/abs/1501.01711
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.15783/C7F59T
http://www.lac.inpe.br/~rafael.santos/Docs/CAP394/Proj_Cabspotting.html#about
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://archive.ics.uci.edu/ml/datasets/GPS+Trajectories
https://doi.org/10.1109/IACC.2016.25
https://doi.org/https://doi.org/10.1002/joc.3370050107
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3370050107

Appendix A

Codes

In this part we present the Python code used to implement the algorithms presented in this thesis. Python

version 3.9 is used throughout the code base below.

Listing A.1: RCP Algorithm

1

2 class RCP:

3 """

4 Real -time Controller Placement (RCP) algorithm for mobile Software Defined

Networks.

5 """

6

7 def __init__(self , t_series , y_0=None , m=None , seed=5,

8 k_0=5e-5, k=1, alpha =0.9, gamma =0.1,

9 rand_init=False , T=1, save_name=’rcp_hist ’, ground_truth=True):

10 """

11 Initialize the RCP algorithm.

12

13 Parameters:

14 t_series (list): List of time -series data points , where each element

is an array of shape (n, 2).

15 y_0 (ndarray , optional): Initial set of m 2D points. If None , m must

be provided.

16 m (int , optional): Number of points in the initial set y_0. Required

if y_0 is None.

17 seed (int , optional): Seed for random number generation.

18 k_0 (float , optional): Initial value of k parameter.

19 k (float , optional): Scaling factor for the k parameter at each

iteration.

20 alpha (float , optional): Multiplicative factor to decrease T at each

iteration.

21 gamma (float , optional): Scaling factor for the synchronization cost

importance.

22 rand_init (bool , optional): Whether to add random noise to the

69

initial set y_0.

23 T (float , optional): Temperature parameter for probability

calculations.

24 save_name (str , optional): Name of the file to save intermediate RCP

history.

25 ground_truth (bool , optional): If True , use the next time step as

ground truth for phi.

26

27 Returns:

28 None

29 """

30 self.t_series = t_series

31 self.y_0 = y_0

32 self.m = m

33 self.seed = seed

34 self.k_0 = k_0

35 self.k = k

36 self.alpha = alpha

37 self.gamma = gamma

38 self.rand_init = rand_init

39 self.T = T

40 self.save_name = save_name

41 self.ground_truth = ground_truth

42 self.dur_hist = []

43 self.distortion_hist = []

44

45 def fix_probs(self , p):

46 """

47 Automatically rebalances probabilities so that all probabilities have

value greater than or equal to some minimum probability threshold.

Used to avoid degenerate cases where a cluster size ratio is too small

or zero.

48

49 Parameters:

50 p (ndarray): Array of probabilities.

51

52 Returns:

53 ndarray: Array of probabilities with fixed values.

54 """

55 m = len(p)

56 min_prob = 1e-40

57 mask_violations = p < min_prob

58

59 mask_rest = np.logical_not(mask_violations)

60 violation_locs = np.where(mask_violations)

61 rest_locs = np.where(mask_rest)

62

70

63 n_violations = len(violation_locs)

64 n_rest = m - n_violations

65 residual = (n_violations * min_prob) / n_rest

66

67 for loc in violation_locs:

68 p[loc] = min_prob

69

70 for loc in rest_locs:

71 p[loc] -= residual

72 return p

73

74 def rcp(self):

75 """

76 Run the RCP algorithm.

77

78 Returns:

79 tuple: A tuple containing RCP history , duration history , and

distortion history.

80 """

81 if not np.all(self.y_0) and not self.m:

82 raise Exception(’y_0 and m cannot be both None’)

83 elif not np.all(self.y_0):

84 x_0 = self.t_series [0]

85 np.random.seed(self.seed)

86 rnd_indices = np.random.choice(len(x_0), size=self.m, replace=False)

87 self.y_0 = x_0[rnd_indices , :]

88

89 self.m = len(self.y_0)

90

91 if self.rand_init:

92 np.random.seed(self.seed)

93 eps = np.random.randn(self.m, 2) * 1e-1

94 self.y_0 = self.y_0 + eps

95

96 horizon = len(self.t_series)

97 alpha = self.alpha

98 k_0 = self.k_0

99 n = self.t_series [0]. shape [0]

100 eta = self.gamma * (self.m - 1) + 1

101 i2 = np.eye (2)

102

103 theta = np.zeros ((2 * self.m, 2 * self.m))

104 for i in range(self.m):

105 for j in range(self.m):

106 i_start = i * 2

107 i_end = i_start + 2

108 j_start = j * 2

71

109 j_end = j_start + 2

110 if i == j:

111 theta[i_start:i_end , j_start:j_end] = np.kron(eta , i2)

112 else:

113 theta[i_start:i_end , j_start:j_end] = np.kron(-self.gamma , i2)

114

115 def d(x, y):

116 return norm(x - y) ** 2

117

118 y = self.y_0

119 rcp_hist = []

120

121 for t in range(horizon - 1):

122 t0 = time()

123 rcp_hist.append(y)

124 x = self.t_series[t]

125 if self.ground_truth or t == 0:

126 phi = self.t_series[t + 1] - self.t_series[t]

127 else:

128 phi = self.t_series[t] - self.t_series[t - 1]

129

130 phi_f = phi.flatten ()

131 D = np.array ([[d(x_ , y_) + self.gamma * sum(d(y_ , _y_) for _y_ in y)

for y_ in y] for x_ in x])

132 temp = np.array ([[-(d(x_, y_) + self.gamma * sum(d(y_, _y_) for _y_

in y)) / self.T for y_ in y] for x_ in x])

133 c = np.max(temp , axis =1).reshape((-1, 1))

134 temp -= c

135 p_yx = np.exp(temp)

136 Z = np.sum(p_yx , axis =1).reshape((-1, 1))

137 p_yx = p_yx / Z

138 p_yx_ = np.kron(p_yx , i2)

139

140 distortion = np.sum(np.multiply(D, p_yx))

141 self.distortion_hist.append(distortion)

142

143 p_x_temp = (np.ones(n) * (1 / n)).reshape((-1, 1))

144 p_x = np.diag(np.ones(n) * (1 / n))

145 _p_y = self.fix_probs(np.sum(p_yx * p_x_temp , axis =0))

146 p_y = np.diag(_p_y)

147 p_y_ = np.kron(p_y , i2)

148

149 p_xy = p_x @ p_yx @ inv(p_y)

150 p_xy_ = np.kron(p_xy , i2)

151 x_f = x.flatten ()

152 y_f = y.flatten ()

153 y_ = n * theta @ (y_f - inv(theta) @ p_xy_.T @ x_f)

72

154 term1 = x_f - y_f @ p_yx_.T

155 term2 = y_ @ p_y_ @ y_

156 u = -(k_0 + (term1 @ phi_f) / term2) * y_

157 y_f += u

158 y = y_f.reshape ((self.m, 2))

159 save_pickle(rcp_hist , f’temp_data /{self.save_name }. pickle ’)

160 self.T *= alpha

161 k_0 *= self.k

162

163 self.dur_hist.append(time() - t0)

164

165 return rcp_hist , self.dur_hist , self.distortion_hist

Listing A.2: Synthetic dataset generation

1 from sklearn.datasets import make_blobs

2 from matplotlib import pyplot as plt

3 import numpy as np

4 from tools.plots import plot_system

5 from tools.file_ops import save_pickle

6

7 class SyntheticDatasetGenerator:

8 def __init__(self):

9 pass

10

11 def noise(self , rng: float = 5e-3, size: tuple = (1, 1), noisy: bool = False)

-> np.array:

12 """

13 noise function

14 :param rng: range of collected samples

15 :param size: number of collected samples

16 :param noisy: whether to add noise or not

17 :return: numpy array

18 """

19 if noisy:

20 return np.random.uniform(-rng , rng , size=size)

21 else:

22 return np.zeros(size)

23

24 def exp_func(self , t: int , x_0: np.array , x_1: np.array , k: float , T: int ,

noisy: bool = False) -> np.array:

25 """

26 return location at time ’t’ according to first order linear dynamics

27 :param t: time to return location

28 :param x_0: starting location

29 :param x_1: end location

30 :param k: velocity parameters

73

31 :param T: time horizon

32 :param noisy: whether to add noise or not

33 :return: numpy array

34 """

35 d = x_0.shape [0]

36 x_t = (x_0 - x_1) * np.exp(-k * t / T) + x_1

37 return x_t + self.noise(size=(d,), noisy=noisy)

38

39 def lin_func(self , t: int , x_0: np.array , x_1: np.array , k: np.array , T: int ,

noisy: bool = False) -> np.array:

40 """

41 return location at time ’t’ according to a linear trajectory

42 :param t: time to return location

43 :param x_0: starting location

44 :param x_1: end location

45 :param k: velocity parameters

46 :param T: time horizon

47 :param noisy: whether to add noise or not

48 :return: numpy array

49 """

50 d = x_0.shape [0]

51 x_t = ((x_1 - x_0) / T) * t + x_0

52 return x_t + self.noise(size=(d,), noisy=noisy)

53

54 def loc_func(self , t: int , idx: int , noisy: bool = False) -> np.array:

55 """

56 calculates current location of a point given time ’t’

57 :param t: time to return location

58 :param idx: index of point in dataset

59 :param noisy: whether to add noise or not

60 :return: numpy.array

61 """

62 result = self.calc_func(t, self.X[idx], self.X_[idx], self.K[idx],

self.T, noisy=noisy)

63 return result

64

65 def move(self , t: int , noisy: bool = False) -> np.array:

66 """

67 creates a (n,2) matrix representing location of points at time t

68 :param t: time to return location

69 :param noisy: whether to add noise or not

70 :return: numpy.array (n,2)

71 """

72 X_new = np.zeros((self.n, self.d))

73 for idx in range(self.n):

74 X_new[idx , :] = self.loc_func(t, idx , noisy=noisy)

75 return X_new

74

76

77 def gen_dataset(self , seed1: int = 20, seed2: int = 22, n_samples: int = 300,

centers: int = 3,

78 cluster_std: int = 1, T: int = 100, case: str = ’exp’, bound:

float = 1,

79 compactness: float = 12, speed_var: float = 1e-3,

open_destination: bool = False ,

80 noisy: bool = False , save: bool = True , animate: bool = True)

-> dict:

81 """

82 generates synthetic dataset

83 :param seed1: random seed for starting clusters

84 :param seed2: random seed for end clusters

85 :param n_samples: number of sample points

86 :param centers: number of clusters in dataset

87 :param T: number of simulation steps

88 :param case: dynamics of points , either ’exp’ or ’lin’

89 :param bound: system is approximately constrained in [-bound , bound] box

90 :param compactness: compactness of generated clusters

91 :param speed_var: adds variety to speed of points

92 :param open_destination: if points are matched with a corresponding

cluster

93 :param noisy: add noise to point dynamics

94 :param save: save generated dataset

95 :param animate: plot synthesis progress

96 :return: {’args ’:args , ’history ’:history , ’labels ’:labels , ’K’:K}

97 """

98 # args used to create the dataset. Returned for reproduction purposes

99 args = locals ()

100

101 # orign clusters centers are scattered around (-bound , 0) [south -west]

102 self.X, labels = make_blobs(n_samples , centers=centers ,

103 n_features =2, random_state=seed1 ,

104 center_box =(-bound , 0),

cluster_std=np.array(cluster_std) /

compactness)

105 # destination clusters centers are scattered around (bound , 0)

[north -east]

106

107 self.X_, labels_ = make_blobs(n_samples , centers=centers ,

108 n_features =2, random_state=seed2 ,

109 center_box =(0, bound),

cluster_std=np.array(cluster_std) /

compactness)

110

111 self.n, self.d = np.shape(self.X)

112 self.label_vals = np.unique(labels)

75

113 # velocity parameters of each point

114 self.K = np.zeros ((self.n, self.d))

115

116 # Generating stochastic dynamics parameters

117 for label in self.label_vals:

118 # stores indices of points of each cluster

119 indices = np.array(np.argwhere(labels == label)).flatten ()

120 # cluster size

121 size = len(indices)

122 np.random.seed(seed1)

123 # horizontal velocity parameters

124 K1 = speed_var * np.random.rayleigh (0.5, size=(size , 1)) + 0.015

125 np.random.seed(seed2)

126 # vertical velocity parameters

127 K2 = 2 * np.random.uniform (0.7, 1) * K1

128 K_ = np.concatenate ((K1, K2), axis =1)

129 self.K[indices] = K_.copy()

130

131 # indices of labels for starting and end clusters

132 self.indices = {label: labels == label for label in self.label_vals}

133 self.indices_ = {label: labels_ == label for label in self.label_vals}

134

135 # Set the calculation function based on the case

136 if case == ’lin’:

137 self.calc_func = self.lin_func

138 elif case == ’exp’:

139 self.calc_func = self.exp_func

140

141 # a list of size ’T’ with each element being a (n,2) matrix

142 history = []

143

144 if open_destination is False:

145 # re-arranges rows of X_ so that matching labels are in the same rows

with X

146 temp = self.X_.copy()

147

148 for label in self.label_vals:

149 self.X_[self.indices[label]] = temp[self.indices_[label]]

150

151 # moving through time horizon

152 for t in range(0, T):

153 X_new = self.move(t, noisy=noisy)

154 history.append(X_new)

155 time_series = {’args’: args , ’history ’: history , ’labels ’: labels ,

’K’: self.K}

156 if save == True:

157 save_pickle(time_series , ’temp_data/time_series.pickle ’)

76

158 if animate == True:

159 plot_system(self.X, X_new , self.X_, t, T)

160 plt.clf()

161 return time_series

Listing A.3: Plotting facilities

1

2 import matplotlib.pyplot as plt

3 import matplotlib

4 import numpy as np

5 import random

6 from sklearn.neighbors import KDTree

7 from typing import List , Union , Optional , Tuple

8

9 plt.rcParams.update ({’font.size’: 16})

10 matplotlib.rcParams[’font.sans -serif’] = "Times New Roman"

11 matplotlib.rcParams[’font.family ’] = "sans -serif"

12

13 def plot_system(X_0: np.ndarray , X_new: np.ndarray , X_: np.ndarray , t: int , T:

int) -> None:

14 """

15 Plot the 2D dynamical system.

16

17 Args:

18 X_0 (np.ndarray): Initial data points.

19 X_new (np.ndarray): New data points at time t.

20 X_ (np.ndarray): Final data points.

21 t (int): Current time step.

22 T (int): Total time steps.

23 """

24 x = X_new[:, 0]

25 y = X_new[:, 1]

26 x_0 = X_0[:, 0]

27 y_0 = X_0[:, 1]

28 x_1 = X_[:, 0]

29 y_1 = X_[:, 1]

30

31 plt.xlabel(’x coordinate ’)

32 plt.ylabel(’y coordinate ’)

33 plt.title(’2D dynamical system (’ + str(t) + ’/’ + str(T) + ’)’)

34 plt.scatter(x, y, color=’turquoise ’, alpha =0.25, edgecolors=’black’)

35 plt.scatter(x_0 , y_0 , color=’cyan’, alpha =0.02, edgecolors=’purple ’)

36 plt.scatter(x_1 , y_1 , color=’purple ’, alpha =0.03, edgecolors=’cyan’)

37 plt.minorticks_on ()

38 plt.grid(b=True , which=’major’, color=’black’, linestyle=’--’, alpha =0.15)

39 plt.grid(b=True , which=’minor’, color=’black’, linestyle=’-’, alpha =0.01)

77

40 plt.pause(1e-3)

41

42 def animate_system(t_series: List[np.ndarray]) -> None:

43 """

44 Animate the 2D dynamical system over time.

45

46 Args:

47 t_series (List[np.ndarray]): List of data points over time.

48 """

49 X_0 = t_series [0]

50 X_ = t_series [-1]

51 t = 0

52 for X in t_series:

53 t += 1

54 plot_system(X_0 , X, X_, t, len(t_series))

55 plt.clf()

56

57 def plot_nodes(data: np.ndarray , label: str , color: str , alpha: float ,

edgecolors: str , zorder: int = 2) -> None:

58 """

59 Plot network nodes.

60

61 Args:

62 data (np.ndarray): Data points.

63 label (str): Label for the legend.

64 color (str): Node color.

65 alpha (float): Node transparency.

66 edgecolors (str): Edge color.

67 zorder (int , optional): Z-order for plotting. Defaults to 2.

68 """

69 x = data[:, 0]

70 y = data[:, 1]

71 plt.scatter(x, y, color=color , alpha=alpha ,

72 edgecolors=edgecolors , zorder=zorder , label=label)

73

74 def fix_collisions(indices: List[List[int]]) -> None:

75 """

76 Fix collisions in indices.

77

78 Args:

79 indices (List[List[int]]): List of indices.

80 """

81 len_ = len(indices)

82 indices_unique = {item [0] for item in indices}

83 buffer = set(range(len_))

84 un_assigned = buffer - indices_unique

85 for item in indices:

78

86 n = item [0]

87 if n in buffer:

88 buffer.remove(n)

89 else:

90 n_ = random.choice(list(un_assigned))

91 item [0] = n_

92 un_assigned.remove(n_)

93 return None

94

95 def realign_paths(paths: np.ndarray) -> None:

96 """

97 Realign paths to fix collisions.

98

99 Args:

100 paths (np.ndarray): Array of paths.

101 """

102 paths_ = list()

103 steps = len(paths)

104 for step in range(steps):

105 points = paths[step]

106 if step > 0:

107 indices = points_tree.query(points , k=1, return_distance=False)

108 fix_collisions(indices)

109 paths[step] = points[indices.flatten ()]

110 points_tree = KDTree(points)

111

112 def plot_paths(paths: np.ndarray , label: str , color: str = ’orange ’, alpha: float

= 0.6,

113 edge: Optional[str] = None , realign: bool = False , scatter: bool =

False ,

114 s: int = 20) -> None:

115 """

116 Plot paths.

117

118 Args:

119 paths (np.ndarray): Array of paths.

120 label (str): Label for the legend.

121 color (str , optional): Path color. Defaults to ’orange ’.

122 alpha (float , optional): Path transparency. Defaults to 0.6.

123 edge (Optional[str], optional): Edge color. Defaults to None.

124 realign (bool , optional): Whether to realign paths. Defaults to False.

125 scatter (bool , optional): Whether to use scatter plot. Defaults to False.

126 s (int , optional): Marker size for scatter plot. Defaults to 20.

127 """

128 if realign:

129 realign_paths(paths)

130 m = paths.shape [1]

79

131 paths_ = []

132 for path_idx in range(m):

133 path = paths[:, path_idx , :]

134 paths_.append(path)

135

136 ctr = 0

137 for path in paths_:

138 x = path[:, 0]

139 y = path[:, 1]

140

141 if ctr == 0:

142 if scatter:

143 plt.scatter(x, y, s=s, marker=’.’, c=color , edgecolors=edge ,

alpha=alpha , label

Listing A.4: Trajectory prediction

1

2 import torch

3 import torch.nn as nn

4 import torch.optim as optim

5 from torch.utils.data import DataLoader , TensorDataset

6 import numpy as np

7

8 class LSTMWithFC(nn.Module):

9 def __init__(self , input_size: int , hidden_size: int , n_layers: int ,

10 fc_hidden_sizes: Tuple[int , ...], output_size: int):

11 """

12 LSTM model with fully connected layers.

13

14 Parameters:

15 input_size (int): Size of the input features for each time step.

16 hidden_size (int): Size of the hidden state of LSTM cells.

17 n_layers (int): Number of stacked LSTM layers.

18 fc_hidden_sizes (Tuple[int , ...]): Tuple of integers representing the

number of neurons in each fully connected layer.

19 output_size (int): Size of the output of the fully connected layers.

20 """

21 super(LSTMWithFC , self).__init__ ()

22 self.n_layers = n_layers

23

24 # LSTM layers

25 self.lstm = nn.LSTM(input_size=input_size , hidden_size=hidden_size ,

num_layers=n_layers , batch_first=True)

26

27 # Fully connected layers

28 self.fc_hidden_layers = nn.ModuleList ()

80

29 last_layer_size = hidden_size

30 for hidden_layer_size in fc_hidden_sizes:

31 self.fc_hidden_layers.append(nn.Linear(last_layer_size ,

hidden_layer_size))

32 last_layer_size = hidden_layer_size

33

34 self.fc_output = nn.Linear(last_layer_size , output_size)

35

36 def forward(self , input_data: torch.Tensor) -> torch.Tensor:

37 """

38 Forward pass of the LSTM model with fully connected layers.

39

40 Parameters:

41 input_data (torch.Tensor): Input data as a tensor of shape

(batch_size , sequence_length , input_size).

42

43 Returns:

44 torch.Tensor: Output of the fully connected layers as a tensor of

shape (batch_size , output_size).

45 """

46 # LSTM forward pass

47 lstm_output , _ = self.lstm(input_data)

48

49 # Extract the last time step’s output from the LSTM

50 last_output = lstm_output [:, -1, :]

51

52 # Fully connected layers forward pass

53 fc_hidden_outputs = last_output

54 for fc_layer in self.fc_hidden_layers:

55 fc_hidden_outputs = torch.relu(fc_layer(fc_hidden_outputs))

56

57 output = self.fc_output(fc_hidden_outputs)

58 return output

59

60 def train_model(train_loader , model , criterion , optimizer , device):

61 model.train()

62 total_loss = 0.0

63 for inputs , targets in train_loader:

64 inputs , targets = inputs.to(device), targets.to(device)

65

66 optimizer.zero_grad ()

67 outputs = model(inputs)

68 loss = criterion(outputs , targets)

69 loss.backward ()

70 optimizer.step()

71

72 total_loss += loss.item() * inputs.size (0)

81

73

74 return total_loss / len(train_loader.dataset)

75

76 def validate_model(val_loader , model , criterion , device):

77 model.eval()

78 total_loss = 0.0

79 with torch.no_grad ():

80 for inputs , targets in val_loader:

81 inputs , targets = inputs.to(device), targets.to(device)

82

83 outputs = model(inputs)

84 loss = criterion(outputs , targets)

85

86 total_loss += loss.item() * inputs.size (0)

87

88 return total_loss / len(val_loader.dataset)

82

	Introduction
	Literature Review
	Methodology
	Static Setting
	Problem Statement
	Leader-less Case
	Leader-based Case

	Solution
	Leader-less Case
	Leader-based case

	Dynamic Setting
	RCP
	Problem Statement
	Solution

	RCP+
	Problem Statement
	Solution
	Trajectory prediction

	Results
	Static Setting
	Dynamic Setting

	Conclusion
	References
	Codes

