On the NIR-Vis-UVA Spectrum of NO₂:

PECs of electronic states and the $\widetilde{A}^2B_2-\widetilde{X}^2A_1$ conical intersection

G. J. Vázquez

Instituto de Ciencias Físicas Universidad Nacional Autónoma de México Cuernavaca México

Collaborators

C. Godoy-Alcántar CIQ IICBA-UAEM Cuernavaca

J. M. Amero Cuernavaca

H. P. Liebermann, FBC-Mathematik und Naturwissenschaften Bergische Universität Wuppertal, Germany

V. N. Serov & O. Atabek Institut des Sciences Moléculaires d'Orsay ISMO, CNRS Université Paris-Saclay, France

Details of calculations

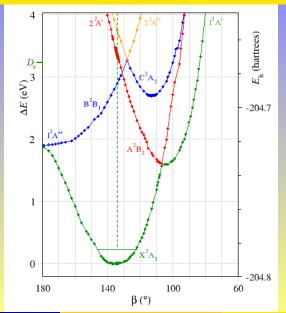
Ab initio Electronic Structure Calculations

Package MRD-CI (Buenker & Peyerimhoff)

Basis aug-cc-pVQZ

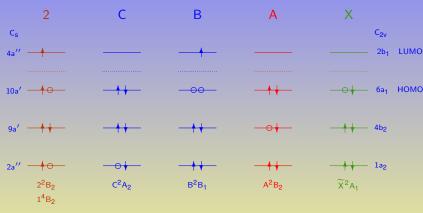
+ Ryd (3s, 3p, 3d)

SCF C_s symmetry


Three MOs in core ($1s_{O_1}$, $1s_{N_1}$, $1s_{O_2}$)

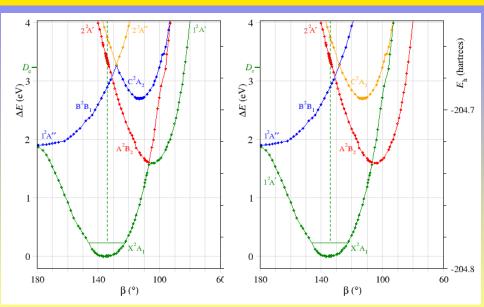
CI 17 active electrons

S & D + selected T, Q



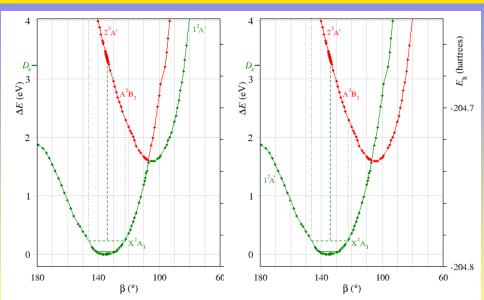
²A' and ²A" states of NO₂ in the NIR–Vis–UVA

States of NO_2 in the NIR-Vis-UVA

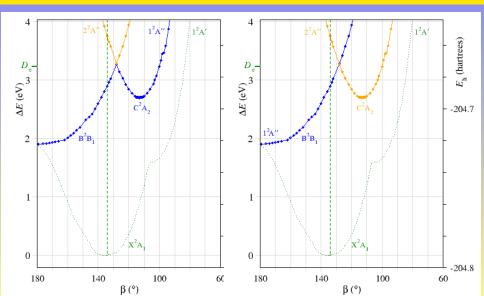


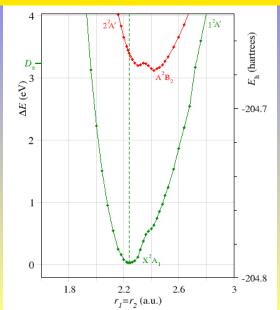
$$\widetilde{X}^2 A_1 \quad \textbf{C}_{2v} \quad (1a_1)^2 (1b_2)^2 (2a_1)^2 (2b_2)^2 (3a_1)^2 (4a_1)^2 (3b_2)^2 (5a_1)^2 (1b_1)^2 (1a_2)^2 (4b_2)^2 (6a_1)^1 \\ \quad \textbf{C}_8 \quad (1a')^2 (2a')^2 (3a')^2 (4a')^2 (5a')^2 (6a')^2 (7a')^2 (8a')^2 (1a'')^2 (2a'')^2 (9a')^2 (10a')^1$$

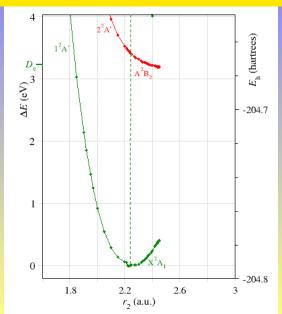
At equilibrium geometry of $\widetilde{\mathsf{X}}$



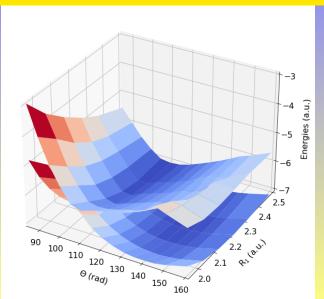
23 electrons




Diabatic



Diabatic



Asymmetric stretch ²A' states

3D plots of the ground (lower) and first excited states of NO_2 Displaying the A–X conical intersection

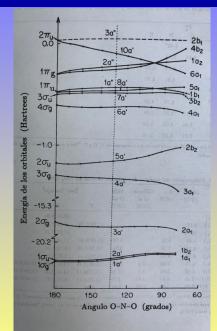


Fig. 6.1 Diagrama de Walsh del NO₂.

The $6a_1$ (10a') drops steeply as the O–N–O angle decreases

This singular behaviour of $6a_1$ modifies the relative ordering of the upper MOs \dots

This, in turn, determines the lowest-energy arrangements/occupancy of the electrons, *i.e.*, the configurations with lowest-energy

... and, ultimately, the *Order* of the electronic states.

 $\frac{\text{Changes at the MO level, translate into}}{\text{changes at the electronic state level }!}$

Plot from C. Godoy, M. Sc. Thesis, 1992

Various factors contribute to the complexity :

- i) Notice first that only few triatomics, e.g., compounds made up of second-row atoms, exhibit transitions in the IR (H-III, page 1).
 The NOo NIR spectrum is thus unusual an exception to the rule.
- ii) Four electronic states below 4 eV, namely, three excited species A^2B_2 , B^2B_1 and C^2A_2 , in addition to the ground state X^2A_1
- iii) Strong non-adiabatic effects due to two conical intersections, between A and X (A's), and between B and C (A''s)
- iv) Fine structure due to the spin angular momentum $s = \frac{1}{2}$ of the unpaired electron
- V) Hyperfine structure due to the nuclear spin angular momentum I=1 of ¹⁴N
- $\it vi$) Renner-Teller (RT) interaction between B²B₁ and X²A₁, as both, states arise from, or correlate to, the linear doubly-degenerated 1²Π_u state at 180°
- *Vii*) Predissociation. The dissociation energy of the 14 N 16 O $_2$ GS to the first dissociation limit, O(3 P) + NO(2 Π), is D_0 = 25, 128.56 cm $^{-1}$ (3.115 eV) and D_0 = 26, 051.17 cm $^{-1}$ (3.229 eV).

The Zero-Point Energy (ZPE) is $1871.05 \,\mathrm{cm}^{-1}$ (0.231 eV)

Various factors contribute to the complexity:

- i) Notice first that only few triatomics, e.g., compounds made up of second-row atoms, exhibit transitions in the IR (H-III, page 1).
 The NO₂ NIR spectrum is thus unusual, an exception to the rule
- ii) Four electronic states below 4 eV, namely, three excited species A^2B_2 , B^2B_1 and C^2A_2 , in addition to the ground state X^2A_1
- iii) Strong non-adiabatic effects due to two conical intersections, between A and X (A's), and between B and C (A"s)
- iv) Fine structure due to the spin angular momentum $s = \frac{1}{2}$ of the unpaired electron
- V) Hyperfine structure due to the nuclear spin angular momentum I=1 of ¹⁴N
- vi) Renner-Teller (RT) interaction between B²B₁ and X²A₁, as both, states arise from, or correlate to, the linear doubly-degenerated 1²Π_u state at 180°
- *Vii*) Predissociation. The dissociation energy of the 14 N 16 O $_2$ GS to the first dissociation limit, O(3 P) + NO(2 Π), is D_0 = 25, 128.56 cm $^{-1}$ (3.115 eV) and D_0 = 26, 051.17 cm $^{-1}$ (3.229 eV).
 - The Zero-Point Energy (ZPE) is $1871.05 \,\mathrm{cm}^{-1}$ (0.231 eV)
 - Hence, above 3.115 eV, all four states X, A, B and C are open energetically to predissociate into $O(^3P) + NO(^2\Pi)$

Various factors contribute to the complexity :

- i) Notice first that only few triatomics, e.g., compounds made up of second-row atoms, exhibit transitions in the IR (H-III, page 1).
 The NOo NIR spectrum is thus unusual an exception to the rule.
- ii) Four electronic states below 4 eV, namely, three excited species A^2B_2 , B^2B_1 and C^2A_2 , in addition to the ground state X^2A_1
- iii) Strong non-adiabatic effects due to two conical intersections, between A and X (A's), and between B and C (A"s)
- iv) Fine structure due to the spin angular momentum $s = \frac{1}{2}$ of the unpaired electron
- V) Hyperfine structure due to the nuclear spin angular momentum I=1 of ¹⁴N
- vi) Renner-Teller (RT) interaction between B²B₁ and X²A₁, as both, states arise from, or correlate to, the linear doubly-degenerated 1²Π_u state at 180°
- *Vii*) Predissociation. The dissociation energy of the 14 N 16 O $_2$ GS to the first dissociation limit, O(3 P) + NO(2 Π), is D_0 = 25, 128.56 cm $^{-1}$ (3.115 eV) and D_0 = 26, 051.17 cm $^{-1}$ (3.229 eV).
 - The Zero-Point Energy (ZPE) is $1871.05 \,\mathrm{cm}^{-1}$ (0.231 eV)
 - Hence, above 3.115 eV, all four states X, A, B and C are open energetically to predissociate into $O(^3P) + NO(^2\Pi)$

Various factors contribute to the complexity :

- i) Notice first that only few triatomics, e.g., compounds made up of second-row atoms, exhibit transitions in the IR (H-III, page 1).
 The NO₂ NIR spectrum is thus unusual an exception to the rule
- ii) Four electronic states below 4 eV, namely, three excited species A^2B_2 , B^2B_1 and C^2A_2 , in addition to the ground state X^2A_1
- iii) Strong non-adiabatic effects due to two conical intersections, between A and X (A's), and between B and C (A''s)
- iv) Fine structure due to the spin angular momentum $s = \frac{1}{2}$ of the unpaired electron
- **v)** Hyperfine structure due to the nuclear spin angular momentum I = 1 of ^{14}N
- $\it vi$) Renner-Teller (RT) interaction between B²B₁ and X²A₁, as both, states arise from or correlate to, the linear doubly-degenerated 1²Π_u state at 180°
- *Vii*) Predissociation. The dissociation energy of the 14 N 16 O $_2$ GS to the first dissociation limit, O(3 P) + NO(2 Π), is D_0 = 25, 128.56 cm $^{-1}$ (3.115 eV) and D_0 = 26, 051.17 cm $^{-1}$ (3.229 eV).
 - The Zero-Point Energy (ZPE) is $1871.05 \,\mathrm{cm}^{-1}$ (0.231 eV)
 - Hence, above 3.115 eV, all four states X, A, B and C are open energetically to predissociate into $O(^3P) + NO(^2\Pi)$

Various factors contribute to the complexity :

- i) Notice first that only few triatomics, e.g., compounds made up of second-row atoms, exhibit transitions in the IR (H-III, page 1).
 The NOo NIR spectrum is thus unusual an exception to the rule.
- ii) Four electronic states below 4 eV, namely, three excited species A^2B_2 , B^2B_1 and C^2A_2 , in addition to the ground state X^2A_1
- iii) Strong non-adiabatic effects due to two conical intersections, between A and X (A's), and between B and C (A"s)
- iv) Fine structure due to the spin angular momentum $s = \frac{1}{2}$ of the unpaired electron
- V) Hyperfine structure due to the nuclear spin angular momentum I=1 of 14 N
- vi) Renner-Teller (RT) interaction between B^2B_1 and X^2A_1 , as both, states arise from, or correlate to, the linear doubly-degenerated $1^2\Pi_u$ state at 180°
- *Vii*) Predissociation. The dissociation energy of the 14 N 16 O $_2$ GS to the first dissociation limit, O(3 P) + NO(2 Π), is D_0 = 25, 128.56 cm $^{-1}$ (3.115 eV) and D_0 = 26, 051.17 cm $^{-1}$ (3.229 eV).

The Zero-Point Energy (ZPE) is $1871.05 \, \text{cm}^{-1} \, (0.231 \, \text{eV})$

Various factors contribute to the complexity :

- i) Notice first that only few triatomics, e.g., compounds made up of second-row atoms, exhibit transitions in the IR (H-III, page 1).
 The NOo NIR spectrum is thus unusual an exception to the rule.
- ii) Four electronic states below 4 eV, namely, three excited species A^2B_2 , B^2B_1 and C^2A_2 , in addition to the ground state X^2A_1
- iii) Strong non-adiabatic effects due to two conical intersections, between A and X (A's), and between B and C (A"s)
- iv) Fine structure due to the spin angular momentum $s = \frac{1}{2}$ of the unpaired electron
- v) Hyperfine structure due to the nuclear spin angular momentum I = 1 of ¹⁴N
- vi) Renner-Teller (RT) interaction between B²B₁ and X²A₁, as both, states arise from, or correlate to, the linear doubly-degenerated 1²Π_u state at 180°
- *Vii*) Predissociation. The dissociation energy of the 14 N 16 O $_2$ GS to the first dissociation limit, O(3 P) + NO(2 Π), is D_0 = 25, 128.56 cm $^{-1}$ (3.115 eV) and D_θ = 26, 051.17 cm $^{-1}$ (3.229 eV).

The Zero-Point Energy (ZPE) is $1871.05 \,\mathrm{cm}^{-1}$ (0.231 eV)

Various factors contribute to the complexity :

- i) Notice first that only few triatomics, e.g., compounds made up of second-row atoms, exhibit transitions in the IR (H-III, page 1).
 The NOo NIR spectrum is thus unusual an exception to the rule.
- ii) Four electronic states below 4 eV, namely, three excited species A^2B_2 , B^2B_1 and C^2A_2 , in addition to the ground state X^2A_1
- iii) Strong non-adiabatic effects due to two conical intersections, between A and X (A's), and between B and C (A"s)
- iv) Fine structure due to the spin angular momentum $s = \frac{1}{2}$ of the unpaired electron
- \boldsymbol{v}) Hyperfine structure due to the nuclear spin angular momentum l=1 of ^{14}N
- vi) Renner-Teller (RT) interaction between B²B₁ and X²A₁, as both, states arise from, or correlate to, the linear doubly-degenerated $1^2\Pi_U$ state at 180°
- *Vii*) Predissociation. The dissociation energy of the 14 N 16 O $_2$ GS to the first dissociation limit, O(3 P) + NO(2 Π), is D_0 = 25, 128.56 cm $^{-1}$ (3.115 eV) and D_0 = 26, 051.17 cm $^{-1}$ (3.229 eV).

The Zero-Point Energy (ZPE) is $1871.05 \, \text{cm}^{-1} \, (0.231 \, \text{eV})$

Various factors contribute to the complexity:

- i) Notice first that only few triatomics, e.g., compounds made up of second-row atoms, exhibit transitions in the IR (H-III, page 1).
 The NOo NIR spectrum is thus unusual an exception to the rule.
- ii) Four electronic states below 4 eV, namely, three excited species A^2B_2 , B^2B_1 and C^2A_2 , in addition to the ground state X^2A_1
- iii) Strong non-adiabatic effects due to two conical intersections, between A and X (A's), and between B and C (A''s)
- iv) Fine structure due to the spin angular momentum $s = \frac{1}{2}$ of the unpaired electron
- V) Hyperfine structure due to the nuclear spin angular momentum I=1 of ¹⁴N
- vi) Renner-Teller (RT) interaction between B²B₁ and X²A₁, as both, states arise from, or correlate to, the linear doubly-degenerated $1^2\Pi_u$ state at 180°
- $\it vii$) Predissociation. The dissociation energy of the 14 N 16 O $_2$ GS to the first dissociation limit, O(3 P) + NO(2 Π), is $\it D_0$ = 25, 128.56 cm $^{-1}$ (3.115 eV) and $\it D_e$ = 26, 051.17 cm $^{-1}$ (3.229 eV).

The Zero-Point Energy (ZPE) is 1871.05 cm⁻¹ (0.231 eV).

On the complexity ...

viii) Dissimilar geometrical traits of A and X. The geometries (β_e, r_e) of A and X are rather different.

The A and X minima are shifted appreciably with respect to each other. The bending equilibrium angles, for instance, are $\beta_e(A) = 101.9^\circ$ and $\beta_e(X) = 134.1^\circ$.

Also, a singular feature of A is that it drops steeply as the bending angle decreases. The shifted A vis-à-vis X minima and the steepness of A are at the origin of the long bending vibrational progressions observed in the A \leftarrow X transition.

- Ab initio MRD-CI electronic structure calculations of NO₂.
- PECs (bending, symmetric/asymmetric stretch) of the five states rooted in the NIR-Vis-UVA: X²A₁, A²B₂, B²B₁, C²A₂ and 2²B₂.
- NO₂ is one of the smallest species displaying the complexity associated with the coupling
 of the electronic and nuclear motions and the break-down of the BO adiabatic
 approximation.
- These phenomena, which in NO₂ are already apparent in the NIR, become common at higher energies, notably in the visible, but chiefly in the UV region where Rydberg-valence interactions set in.
- We mentioned various non-adiabatic processes, e.g., conical intersections, RT interactions, relaxation of vibrational energy, electronic-to-vibrational (E-V) energy transfer, dynamics of photodissociation/predissociation & of photoionization/autoionization
- \circ NO₂ has become a preferred testing ground for the study of such non-adiabatic processes
- Studies of the above processes in this 'simple' triatomic species can provide a detailed insight into the mechanisms of intramolecular energy redistribution in molecular systems

- Ab initio MRD-CI electronic structure calculations of NO₂
- o PECs (bending, symmetric/asymmetric stretch) of the five states rooted in the NIR-Vis-UVA : X^2A_1 , A^2B_2 , B^2B_1 , C^2A_2 and 2^2B_2 .
- NO₂ is one of the smallest species displaying the complexity associated with the coupling
 of the electronic and nuclear motions and the break-down of the BO adiabatic
 approximation.
- These phenomena, which in NO₂ are already apparent in the NIR, become common at higher energies, notably in the visible, but chiefly in the UV region where Rydberg-valence interactions set in.
- We mentioned various non-adiabatic processes, e.g., conical intersections, RT interactions, relaxation of vibrational energy, electronic-to-vibrational (E-V) energy transfer, dynamics of photodissociation/predissociation & of photoionization/autoionization
- \circ NO₂ has become a preferred testing ground for the study of such non-adiabatic processes
- Studies of the above processes in this 'simple' triatomic species can provide a detailed insight into the mechanisms of intramolecular energy redistribution in molecular systems

- Ab initio MRD-Cl electronic structure calculations of NO₂.
- PECs (bending, symmetric/asymmetric stretch) of the five states rooted in the NIR-Vis-UVA: X²A₁, A²B₂, B²B₁, C²A₂ and 2²B₂.
- o NO_2 is one of the smallest species displaying the complexity associated with the coupling of the electronic and nuclear motions and the break-down of the BO adiabatic approximation.
- These phenomena, which in NO₂ are already apparent in the NIR, become common at higher energies, notably in the visible, but chiefly in the UV region where Rydberg-valence interactions set in.
- We mentioned various non-adiabatic processes, e.g., conical intersections, RT interactions, relaxation of vibrational energy, electronic-to-vibrational (E-V) energy transfer, dynamics of photodissociation/predissociation & of photoionization/autoionization
- \circ NO₂ has become a preferred testing ground for the study of such non-adiabatic processes
- Studies of the above processes in this 'simple' triatomic species can provide a detailed insight into the mechanisms of intramolecular energy redistribution in molecular systems

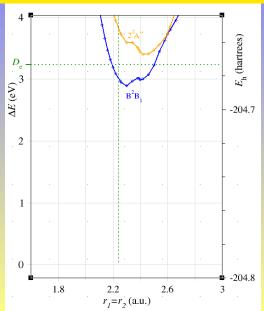
- Ab initio MRD–CI electronic structure calculations of NO₂
- PECs (bending, symmetric/asymmetric stretch) of the five states rooted in the NIR-Vis-UVA: X²A₁, A²B₂, B²B₁, C²A₂ and 2²B₂.
- NO₂ is one of the smallest species displaying the complexity associated with the coupling
 of the electronic and nuclear motions and the break-down of the BO adiabatic
 approximation.
- These phenomena, which in NO₂ are already apparent in the NIR, become common at higher energies, notably in the visible, but chiefly in the UV region where Rydberg-valence interactions set in.
- We mentioned various non-adiabatic processes, e.g., conical intersections, RT interactions, relaxation of vibrational energy, electronic-to-vibrational (E-V) energy transfer, dynamics of photodissociation/predissociation & of photoionization/autoionization
- \circ NO₂ has become a preferred testing ground for the study of such non-adiabatic processes
- Studies of the above processes in this 'simple' triatomic species can provide a detailed insight into the mechanisms of intramolecular energy redistribution in molecular systems

- Ab initio MRD-CI electronic structure calculations of NO₂.
- PECs (bending, symmetric/asymmetric stretch) of the five states rooted in the NIR-Vis-UVA: X²A₁, A²B₂, B²B₁, C²A₂ and 2²B₂.
- NO₂ is one of the smallest species displaying the complexity associated with the coupling
 of the electronic and nuclear motions and the break-down of the BO adiabatic
 approximation.
- These phenomena, which in NO₂ are already apparent in the NIR, become common at higher energies, notably in the visible, but chiefly in the UV region where Rydberg-valence interactions set in.
- We mentioned various non-adiabatic processes, e.g., conical intersections, RT interactions, relaxation of vibrational energy, electronic-to-vibrational (E-V) energy transfer, dynamics of photodissociation/predissociation & of photoionization/autoionization
- NO₂ has become a preferred testing ground for the study of such non-adiabatic processes
- Studies of the above processes in this 'simple' triatomic species can provide a detailed insight into the mechanisms of intramolecular energy redistribution in molecular systems

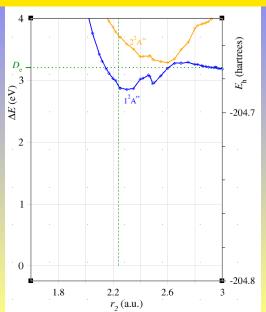
- Ab initio MRD-CI electronic structure calculations of NO₂.
- PECs (bending, symmetric/asymmetric stretch) of the five states rooted in the NIR-Vis-UVA: X²A₁, A²B₂, B²B₁, C²A₂ and 2²B₂.
- NO₂ is one of the smallest species displaying the complexity associated with the coupling
 of the electronic and nuclear motions and the break-down of the BO adiabatic
 approximation.
- These phenomena, which in NO₂ are already apparent in the NIR, become common at higher energies, notably in the visible, but chiefly in the UV region where Rydberg-valence interactions set in.
- We mentioned various non-adiabatic processes, e.g., conical intersections, RT interactions, relaxation of vibrational energy, electronic-to-vibrational (E-V) energy transfer, dynamics of photodissociation/predissociation & of photoionization/autoionization
- $\circ~\text{NO}_2$ has become a preferred testing ground for the study of such non-adiabatic processes
- Studies of the above processes in this 'simple' triatomic species can provide a detailed insight into the mechanisms of intramolecular energy redistribution in molecular systems

- Ab initio MRD-CI electronic structure calculations of NO₂
- PECs (bending, symmetric/asymmetric stretch) of the five states rooted in the NIR-Vis-UVA: X²A₁, A²B₂, B²B₁, C²A₂ and 2²B₂.
- NO₂ is one of the smallest species displaying the complexity associated with the coupling
 of the electronic and nuclear motions and the break-down of the BO adiabatic
 approximation.
- These phenomena, which in NO₂ are already apparent in the NIR, become common at higher energies, notably in the visible, but chiefly in the UV region where Rydberg-valence interactions set in.
- We mentioned various non-adiabatic processes, e.g., conical intersections, RT interactions, relaxation of vibrational energy, electronic-to-vibrational (E-V) energy transfer, dynamics of photodissociation/predissociation & of photoionization/autoionization
- \circ NO₂ has become a preferred testing ground for the study of such non-adiabatic processes
- Studies of the above processes in this 'simple' triatomic species can provide a detailed insight into the mechanisms of intramolecular energy redistribution in molecular systems

A few months ago


Emeritus Prof. Osman Atabek passed away suddenly.

In this posthumous contribution


the authors pay

Homage to the scientist, colleague and friend.

Symmetric stretch ²A" states

Asymmetric stretch ²A" states

