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ABSTRACT 

 

This thesis introduces an implementation of a configurable small satellite mission design 

tool based on a. i. Solutions’ FreeFlyer™ platform. Designing and operating small satellite 

missions poses significant challenges due to their size and mass constraints. Small satellites have 

limited resources and constrained capabilities, such as attitude control, power, and communication. 

Optimizing the performance of these subsystems is crucial for ensuring mission success and 

maximizing scientific return.  

To address these challenges, a comprehensive, integrated tool for small satellite mission 

design and analysis is needed. FreeFlyer™ provides a highly customizable, robust, and reliable 

framework for orbital performance simulations. A vital feature of the tool is its ability to script 

adaptive mission plans. The tool supports a wide range of orbit types, propagators, maneuvers, 

models, and output options for modeling and simulating complex space scenarios. The tool allows 

users to define and adjust satellite system parameters (e.g., satellite pointing configurations, 

attitude control devices, solar array and battery sizing, and communications link budgets) in a 

unified analysis and simulation environment to evaluate the possible trade-offs in performance 

against resource costs for various design choices. 

A survey of existing programs and their shortcomings is explored. A description of an 

improved tool is provided, and examples of its applications demonstrate its effectiveness in 

optimizing and validating a previously designed small satellite mission. These case studies 

illustrate the tool’s usefulness in sizing critical mission components and showcase its potential to 

expedite the small satellite mission design process. 
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CHAPTER 1: SMALL SATELLITE MISSION DESIGN INTRODUCTION 

 

The CubeSat standards [1] established a quarter-century ago through the collaborative 

efforts of Dr. Jordi Puig-Suari of California Polytechnic State University and Dr. Bob Twiggs of 

Stanford University [2], have been instrumental in democratizing space exploration. These 

specifications have enabled diverse equipment to function together by creating uniform 

configurations and interfaces. This standardization has been a catalyst for competitive innovation, 

significantly reducing the financial barriers to launching small-scale payloads into space [3], thus 

accelerating the pace of discovery and technological advancement using small satellites [4]. 

Consequently, a wide range of applications, such as biological sciences, climate change 

monitoring, orbital debris identification, astronomy, heliophysics investigations, communications, 

and new technology demonstrations, are increasingly using CubeSats [5]. 

While smaller in size than previous generations of satellites, CubeSat mission design 

remains a multidimensional problem requiring an iterative approach to configure available 

components into a package that satisfies stakeholder objectives subject to a set of constraints (e.g., 

mass, volume, power, data). Systems engineers decompose the objectives into a set of functional 

and performance requirements allocated to the physical components, configured to address 

environmental, pointing, and configuration issues, that are verified and validated prior to flight 

operations. Initial designs are used for feasibility studies and cost estimates, and it is, therefore, 

imperative that these designs are representative of a mature solution. 

 The design process allocates a constrained set of resources (e.g., mass, volume, and power) 

to the typical satellite subsystems (e.g., Structure, Thermal, Power, Communications (Comms), 

Attitude Control (ACS), Command and Data Handling (CDH)) to satisfy mission objectives. Users 
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define the desired outcome and make iterative design changes to reallocate resources, evolving the 

design into a viable solution. Many of these design decisions are informed by the outputs from 

programs used to perform trade study analysis and simulations. Many of these programs are non-

interconnected, necessitating that the user reformat data from one program’s output as an input for 

another. This time-consuming and laborious process is prone to errors at the interfaces. 

 This thesis focuses on the development of a configurable, integrated mission design tool 

that alleviates many of these challenges. The developed tool is built on top of a.i. Solutions’ 

FreeFlyer [6]. FreeFlyer is a simulation and visualization tool with a scripting capability that can 

be used to evaluate candidate satellite configurations against mission objectives iteratively. For 

example, attitude control specifications, solar array and battery sizing, and communications link 

budget analysis, can be automated and rapidly evaluated in a FreeFlyer orbital mechanics 

simulation. The resulting design tool has proven its utility in the evaluation of Laboratory for 

Advanced Space Systems at Illinois (LASSI) missions, including the UIUC / Virginia Tech 

LAICE-F CubeSat [7].  
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CHAPTER 2: SURVEY OF MISSION DESIGN TOOLS 

 

A number of small satellite design programs have been developed to assist users in 

developing systems that meet a set of functional and performance requirements. What follows is a 

survey of the existing programs and their capabilities.  

 

The Small Satellite Concurrent Engineering Model (SmallSatCEM) 

The Small Satellite Concurrent Engineering Model (SmallSatCEM) [8] is a single-user, 

Microsoft Excel-based [9] program designed by the Aerospace Corporation in 2001 to aid in the 

conceptual design phase of small satellites less than 25 kg in mass. Excel was selected as the 

operating platform for this program due to its customizability and ease of use [8]. The program 

allows the user to rapidly design and analyze potential solutions by selecting components from a 

database of parts and comparing their performance against the requirements identified. 

SmallSatCEM offers a simplified astrodynamics model sufficient for the early conceptual design 

phase, implemented in the Visual Basic scripting language. The inclination and eccentricity of any 

small satellite can be customized for use around either Earth or Mars.  

This program uses defined requirements to assist in designing a configuration state for the 

satellite. This configuration state is then analyzed and evaluated against the original requirements. 

If the design fails to meet the requirements, the process is iterated (Figure 1). This analysis can be 

completed at both system and subsystem levels.  
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Figure 1: The iterative process of defining requirements, designing a solution, realizing the output performance 

state, and analyzing the results that the SmallSatCEM program utilizes. [8] 

 

This program is organized into several worksheets: Payload and Mission, Configuration, 

Propulsion, Command and Data Handling, Communications, Attitude Determination and Control, 

Power, Thermal, Mass Properties and Distribution, Model State, Database, and Cost. The Payload 

and Mission worksheet is where the user can capture the mission and orbit requirements. The 

subsystem worksheets are where the user can compare the requirements to a drop-down menu of 

parts provided by the database or input the specifications of a custom component (Figure 2). 

 

 

Figure 2: An example of SmallSatCEM’s graphical user interface for component selection. [8] 
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The selected subsystem designs are compiled to form the model state worksheet. The 

design can then be evaluated in each of the individual subsystems’ worksheets based on the 

satellite’s simulated performance (Figure 3). This evaluation provides answers to questions such 

as the satellite’s energy production or downlink availability over a weeklong period. 

 

 

Figure 3: A flow diagram of the SmallSatCEM program depicting data flow from the requirements to the subsystem 

design sheets, to the model state, to the analysis programs, and then back to the subsystem design sheets. [8] 

 

Two issues are evident with the design of the SmallSatCEM. The first is the component 

selection methodology. The design is based on a database of parts and maintaining an up-to-date 

database with available component offerings is challenging. The second issue arises from the 

limitations introduced by basing the program on Excel. A full astrodynamics model was never 

intended to be programmed into the software. This program cannot model high levels of fidelity 

and complex mission profiles without significant performance costs or code rewrites.  
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The System Engineering Design Tool (SEDT) 

The System Engineering Design Tool (SEDT) [10] is a single-user statistical analysis 

design program designed for the initial design phases of small satellite designs. Subsystems can 

be rapidly selected and evaluated by referencing an internal database of components, ensuring the 

selections represent a viable solution based on predefined requirements. Over 200 satellite and 

design element references makeup the database. This program calculates the mass and volume of 

the designed system, the power consumption, and the cost. 

The program is organized into five principal blocks: the Mission Design Block (MDB), the 

Systems Design Block (SDB), the Performance Verification Block (PVB), the Cost Block (CB), 

and the Visualization Block (VB) (Figure 4). The SDB is further broken down into the individual 

subsystems: Payload, Electrical Power (EP), Structure, Attitude Determination and Control 

(ADC), Telemetry, Tracking, and Communications (TT&C), Thermal Control (TC), and 

Command and Data Handling (C&DH). 
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Figure 4: A block diagram showing the organization of the SEDT and the flow of information within the program. 

[10] 

 

The Mission Design Block captures the mission’s requirements and the predetermined 

orbital parameters. The System Design Block is where the component selection takes place from 

a database of over 200 systems. This database calculates the performance (e.g., mass, volume, 

power, and cost of the subsystems). The design is evaluated in the order of Payload, EP, Structure, 

ADC, Propulsion, TT&C, TC, and C&DH. Design decisions made in earlier subsystem blocks 

constrain the design of later design blocks. The PVB compares the mass and power budgets to the 

requirements for the small satellite. The mass of the individual components is compared to the 

maximum allowable mass per subsystem. The power analysis involves conducting a simple energy 

balance analysis. The Cost Block predicts the total cost of the satellite down to a subsystem level. 
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A predictive rendering of the satellite is generated based on the structure selected in the 

Visualization Block. 

 Since the functional and performance requirements dictate satellite designs, beginning with 

the Mission Design Block is natural. In this block, the profile of the mission is selected (e.g., 

remote sensing or communications), the user requirements are input (e.g., ground station locations 

and revisit time), the mission requirements are defined (e.g., mission lifetime, inclination, and orbit 

eccentricity), and the satellite capabilities are chosen (e.g., tilt angle). The mission and orbit 

analysis sub-block receives all this data and uses it to determine the satellite’s orbital dynamics 

and its properties. This includes information such as the daylight vs. eclipse times, the data 

downlink times, the satellite’s velocity, and the orbit period (Figure 5). 

 

 

Figure 5: The flow chart provides a detailed view of the design characteristics available for customization within the 

SEDT’s mission design block. Major components include mission selection, mission requirements, user 

requirements, and satellite capability. These components feed into the mission and orbit analysis block. [10] 
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 For the System Design Block, the SEDT program utilizes a top-down design of the 

subsystems. By designing the EPS first, the rest of the subsystems are constrained to meet the 

energy generation and storage capabilities of the components selected. The second subsystem 

designed is the structure, which constrains the surface area, the mass (based on a given maximum 

density), and the volume. Following these subsystems, the ADCS, Propulsion, TT&C, TCS, and 

C&DH are designed (in that order), and components are selected to meet each subsystem’s 

requirements. 

 Within the Performance Verification Block, the design is analyzed to ensure compliance 

with the constraints placed on the system’s mass, volume, and power usage. Based on the results, 

the user may need to iterate on the components selected for the system or even revisit the design 

factors in the Mission Design Block. This iterative process continuously refines the system until 

the established requirements are met. To verify the mass and volume constraints, the ratio of the 

estimated value (from a parts database) is compared to the subsystems’ allocations. An Energy 

Balance Analysis (EBA) is conducted for power verification to determine if the satellite is 

generating sufficient power for the amount of power that is being consumed. 

 The Cost Block implements the Small Satellite Cost Model (SSCM) [11] that the 

Aerospace Corporation created to help allocate portions of the overall hardware budget to 

individual subsystems. Cost analysis is another place where tradeoffs can be analyzed based on 

the subsystem technologies selected for more cost-sensitive missions. 

 The Visual Block [10] offers a flexible and user-friendly interface for early visualization 

of the physical configuration of the satellite hardware (Figure 6). Users can easily manipulate and 

reposition subsystems based on their specific requirements without the need for an independent 
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Computer Aided Design (CAD) software program. This flexibility empowers users to make 

informed design decisions, enhancing the overall design process. 

 

 

Figure 6: An example of the SEDT’s rendering of a satellite’s layout. The render is a multi-view 3D rendering with 

multiple cross-sections to allow the user to identify major subsystems and components. [10] 

 

 A Graphical User Interface (GUI) (Figure 7) makes it easy to determine where information 

needs to be input and where the analysis results may be found. While the database and linear 

performance predictive models (Figure 8) give the program a significant advantage in assessing 

designs, they unfortunately introduce a considerable limitation. With small satellite technologies 

constantly evolving (e.g., miniaturization and cost reductions), predictive models and databases 

quickly become outdated, resulting in future designs being based on significantly out-of-date 

expected performance values.  
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Figure 7: A screenshot of the graphical user interface of the SEDT. Major components, such as the menu bar, 

design tree window, main design window, and message window, are labeled. [10] 

 

 

 

Figure 8: Four examples of the linear performance predictive models the SEDT uses to size different systems 

onboard the satellite. Pictured from top left to bottom right are the Earth sensor, wheel mass, wheel power, and star 

sensor power. [10] 
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 While this program is very well designed and provides many nice-to-have features, such 

as the satellite visualizer, it does not take advantage of modern simulation programs that can 

provide a higher level of design analysis fidelity and more complex mission profiles. Its ability to 

choose only from a list of preset mission profiles limits this program.  

 

The Spacecraft Portal for Integrated Design in Real-Time Project (SPIDR) 

The Spacecraft Portal for Integrated Design in Real-time (SPIDR) project [12] is a satellite 

design program developed in 2009 at the USC Information Sciences Institute. USC identified three 

functions that are critical to providing an integrated solution for an early-stage satellite design: 

• The design equations and models used to calculate the necessary performance 

of components need to be incorporated. 

• An up-to-date database of procurable components needs to be integrated for 

users to reference. 

• Design optimization capabilities through different configuration iterations. 

The SPIDR program uses AGI’s Satellite Tool Kit [13] to implement the orbital dynamics 

equations and models. The program [12] also has a parts database that the users can reference and 

a standardized set of outputs that come from Hardware-in-the-Loop (HITL) testing and simulation. 

This allows for iterative optimization of solutions based on user-defined Measures of Effectiveness 

(MOEs). 

The design optimization engine of SPIDR takes two different kinds of inputs (Figure 9). 

The database of components and the optimization rules serve as the first input. The mission 

requirements and the MOEs (e.g., cost, mass, power consumption, or volume) are the second input 

required. From these inputs, the number of degrees of freedom is determined by the optimization 



13 

 

engine. These degrees of freedom include technical values, such as mass, and non-technical values, 

such as integration difficulty, based on a user-generated value weighting system.  

 

 

Figure 9: Flow chart depicting the optimization process of the SPIDR program. The user defines the mission 

requirements and optimization preferences, combined with the component database and the rules and constraints in 

the optimization engine, N feasible designs are created to be evaluated by the users. [12] 

 

The SPIDR optimization engine uses constraint reasoning techniques to solve for multiple 

“optimal” solutions based on the user inputs. After each iteration, the user can redefine their 

preferences or start over by changing the mission requirements or updating the component 

database and rules. The development of rules and constraints on a mission results in an appropriate 

design, but over or under-development of these rules could lead to an over-constrained or under 

constrained system instead, preventing the optimization engine from developing a useful solution.  

 One benefit of this type of design is that the subsystems can be designed in any order based 

on the individual mission profile. The optimization engine can optimize around mission profiles 

that require a robust power subsystem or attitude control subsystem and prioritize their design first 

so as not to constrain them any more than they already are. Another benefit of this program is the 
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user-friendly GUI (Figure 10) that provides users with an easily readable and development-

friendly environment. Rules and requirements can be inputted using a sliding bar, which allows 

for quick iterative designs and testing. 

 

 

Figure 10: A screenshot of SPIDR’s GUI. The design tree windows are on the left side, the components are on the 

upper right, and the configuration parameters are on the bottom right. Buttons to advance to the produced designs or 

back to the requirements are present on the bottom left and bottom right, respectively. [12] 

 

Once the analysis has been completed, the user can explore the subsystem tabs to see which 

components are compatible with the design and the rationale for why these parts were selected. A 

single “most optimal” design will also be displayed based on the MOE selected. 
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 One of the disadvantages of this design program is that it requires STK [13] as secondary 

software. While the use of orbital dynamics software will benefit the accuracy of the analysis, the 

configuration of the two programs to connect with one another is an inconvenience. Another 

downside to a program like SPIDR [12] is database maintenance. Without updating, the database 

will become out of date. If satellites are being designed with components that are no longer on the 

market or no longer optimal for the design, then the program becomes significantly less useful to 

the end user. Another disadvantage is that the program does not allow for custom modifications to 

the models imported from STK. 

 

System Engineering Module (SEM) 

The purpose of the System Engineering Module (SEM) [14] is to reduce the number of 

industry professionals, state-of-the-art equipment, and software programs required to complete the 

conceptual design (Phase A) of a new satellite. The program is designed to be user-friendly, 

accessible, and inexpensive to operate to allow both industry professionals and academics to take 

advantage of the solution developed. Developed in C++, the program utilizes the preexisting Space 

Trajectory Analysis (STA) program [15] offered by the European Space Agency (ESA) to handle 

the program’s astrodynamics, orbit propagation, and simulation needs. The properties of defined 

satellites within STA are passed to the SEM program to allow for assessment of the design (Figure 

11) [14].  
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Figure 11: Program integration diagram between SEM and STA. The diagram depicts how the properties of the 

satellite are passed to the SEM from STA. [14] 

 

 The SEM models the power, attitude determination and control systems, communication, 

propulsion, thermal, structure, and data handling subsystems. Performance evaluations are based 

on the design’s mass, power, thermal energy, data, communication, and propellent budgets. The 

program is meant to be used alongside additional forms of analysis, such as cost and risk 

identification. Once outputs are received from the initial satellite definition, the design can be 

iterated upon and updated to meet the mission requirements (Figure 12). 
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Figure 12: The iterative process of refining the preliminary design, mission definition, payload definition, and 

launcher selection that the user undertakes when using SEM. [14] 

 

 The user interacts with the SEM through a custom GUI (Figure 13), in which the user 

inputs the required data, selects the inputs, and views the results of the analysis. The user then 

defined the external constraints on the satellite, such as the space environment, the ground stations, 

and other satellites that will be interacted with. The payload and mission definition sections are 

responsible for differentiating missions from one another. The SEM database is populated with the 

parameters of components and can be modified to meet the user’s needs (e.g., the efficiency of a 

solar cell). The SEM tables on the other hand, contain values used in the analysis calculations 

sourced from averaged analysis or trade studies from past missions (e.g., solar cell degradation 

rate) and are not editable. Values from calculations are stored in the Data Sheet, and the 

calculations and analysis are completed in the mathematical routines block. Afterwards, the 

outputs are presented to the user. Figure 14 displays the complete architecture. 
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Figure 13: The graphical user interface for the SEM program. The program’s inputs are at the top of the window, 

and the outputs are below. Each tab of the program is a different function, subsystem, or piece of the design and 

analysis. [14] 
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Figure 14: The SEM’s programming architecture. The user who interacts with the GUI fills in the subsystem tables. 

Inputs from STA and all user inputs are checked for validity. These input are then passed through the mathematical 

routines and produce an output design based on the system’s needs and the parts database’s datasheets. [14] 

 

The SEM is the most complete version of a preliminary design program among those 

surveyed. The program features a GUI, a parts database, a full suite of subsystems that are subject 

to analysis, and operates on open-source software. The parts database is still subject to becoming 

out of date, and having to connect the program to secondary software is an annoyance. Still, the 

main disadvantage of this program is its questionable accuracy. During the program’s verification, 

an 18% under-prediction difference in predicted mass appeared when comparing identical input 

parameters between the SEM analysis and the CDF report for the Hyper mission [16]. A similar 

(19%) overestimate also appeared in the power subsystem design. Thus, while the program’s 

feature set is exemplary, its accuracy is not.  
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Design Tool Summary 

When reviewing the four conceptual design assistance programs, five characteristics were 

identified that can be used to compare them: the user interface, the use of databases, the use of 

separate orbital dynamics software, the subsystems modeled, and the accuracy of the programs. 

The first feature that all these programs have in common is their use of an user interface. 

SmallSatCEM [8] uses Excel’s Visual Basic for a customized interface. SEDT [10] uses a 

traditional Windows-like interface with a design tree to track decomposition. SPIDR [12] uses a 

Java-based interface with a similar design tree. SEM [14] uses a more modern tab-based design 

for the graphical interface. Of these different programs, it was clear that the most straightforward 

programs to navigate were the ones that separated the inputs and outputs into sections. The more 

modern designs of the SPIDR [12] and SEM [14] programs provide a better first impression and 

give the user a design they are likely already familiar with. The more mature designs of the 

SmallSatCEM [8] and SEDT [10] are less daunting to navigate after becoming familiar with the 

programs but provide a poor first impression because of their learning curves. 

The second characteristic evaluated was the use of a parts database. Every evaluated 

program depends on a parts database to extract component performance parameters from. 

Maintaining these databases is expensive, and open-source collections of components exist from 

which users can pull parts’ performance information (e.g., NASA’s State-of-the-Art Report for 

Small Satellite Components [17]). Accordingly, maintaining a parts database for the conceptual 

design program’s operation is viewed as a drawback. 

The third characteristic is the orbital dynamics software that each program uses. 

SmallSatCEM [8] programs all of the orbital dynamics calculations in Excel [9]. SEDT [10] 

integrates its simplified orbital dynamics simulations into the standalone program. SPIDR [12] 
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utilizes STK [13] for its orbital analysis and simulation. SEM [14] uses STA [15] for the orbital 

analysis piece. Using an established orbital dynamics simulator significantly increases accuracy 

and the mission profile modeling capabilities compared to the mission design programs which do 

not take advantage of one. 

A fourth characteristic is the satellite subsystems that are modeled in each program. The 

subsystems modeled by all of these programs include ACS, communications, power, structures, 

thermal, and propulsion. All programs except for SPIDR [12] modeled the data handling 

subsystem. The programs all feature a relatively complete analysis of the typical subsystems. 

The fifth characteristic evaluated is accuracy. Any results produced by the design programs 

are expected to be of sufficient accuracy for a conceptual design. Unfortunately, the accuracy of 

the SEM program [14] is lower than that of the other programs, with 18% underpredictions for 

mass and 19% overestimates in the power requirement when compared against the Hyper 

mission’s CDF report [16]. The other programs were sufficiently accurate for this level of design. 

 

Desirable Features in a Design Tool 

Analyzing these previous programs allows for the identification of features that a future 

conceptual design small satellite design tool should and should not include. 

The first desirable feature is an intuitive user interface. Each of the surveyed programs 

implemented this to varying degrees of success. Some factors that impact the intuitiveness of the 

user interface are the consistency of the design, the clarity of buttons, menus, the use of familiar 

elements (e.g., a floppy disk icon to represent saving), and simple in-program navigation, which 

minimizes the training required to successfully operate the tool. Having an intuitive user interface 

will reduce the time needed to produce a result and increase the user’s desire to use the tool. 
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The second desirable feature is to base the design tool around an astrodynamics simulator. 

This feature is necessary to ensure that the astrodynamics accuracy is sufficient for complex 

mission profiles. There are many simulation tools that provide this functionality, such as STK [13], 

GMAT [18], and Orekit [19]. A desirable feature of the astrodynamics simulator is a user-friendly 

scripting environment to develop the subsystem analysis models in. This allows all the analysis 

and simulation work to be conducted within a single (orbital dynamics) software package instead 

of setting up a connection between the orbital dynamics software and the subsystem analysis 

software, which can be unnecessarily challenging for users. 

The third desirable feature of the conceptual satellite design tool is the performance 

modeling of the attitude control, power, data handling, communications, and structure subsystems. 

These are the most important subsystems for the conceptual design in determining the mission’s 

feasibility. This tool does not need to complete accurate thermal modeling or CAD renderings, as 

they are reliant on the determination of the interior layout, as well as the specification of materials 

and mounting mechanisms, and therefore do not need to be completed within this tool. 

The fourth feature considered important is output generation. Several different types of 

outputs need to be generated for the user to have an accurate understanding of the performance of 

the satellite and verify the proper execution of the mission plan. A modifiable 2D and 3D in-situ 

rendering of the satellite helps in verifying the mission plan’s execution. Customizable tables and 

plots are needed to output the performance of the satellite so the user can use them to analyze and 

validate the design. 

The fifth feature of a useful tool is accuracy. Comparisons of the systems sized using this 

tool will be compared to results previously calculated for existing designs. 
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CHAPTER 3: MISSION DESIGN METHODS 

 

Many technological, logistical, and regulatory constraints challenge small satellite mission 

design. The systems engineering process (Figure 15) helps to satisfy some of these challenges 

through well-established principles and practices. The process of iteratively taking a mission 

objective, deriving a set of functional requirements, assigning the functions to physical elements, 

and evaluating the resulting system performance results in a baseline solution from which higher-

fidelity solutions can be iteratively evolved as the design matures.  

 

 

Figure 15: The systems engineering “V” depicts the process from the beginning of design to the completion of 

realization. 
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Satellite Systems Engineering 

The systems engineering process starts with the formulation of functional and performance 

requirements to satisfy a set of mission objectives. Trade studies are then performed to evaluate 

the various design options for implementing a given function. Cost constraints are also used to 

make selections for the baseline solution. The process produces multiple supporting documents to 

document the design and its evolution, including a Systems Requirements Document (SRD), a 

Systems Engineering Management Plan (SEMP), a Statement of Work (SoW), and a Flight 

Assurance Plan (FAP). Figure 16 depicts the journey from the initial mission objective to the final 

solution. 
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Figure 16: A flow chart of the iterative process of taking the mission objectives and achieving a baseline solution. 

The right-most side of the figure provides additional information on the supporting documentation required at each 

stage of the process. 

 

An orbital and attitude simulation tool can expedite the development of a satellite concept 

into a mature design. The availability of a scripting language for implementing ordered processes 

allows multi-dimensional sizing calculations to be carried out for the most crucial satellite 

subsystems and components. These calculations allow the user to evaluate the performance of a 

particular design against the requirements. If a performance shortfall is revealed, the configuration 

is refined to address the shortfall, and sizing calculations are updated across all subsystems. This 

process is repeated until the solution converges.  



26 

 

The starting point for such an exercise is to define three budget allocations for the satellite: 

physical properties (mass and volume), power, and data. Mass is initially allocated to the 

subsystems to provide guidance in the selection of components that provide the required 

functionality to meet the stated mission objectives. These numbers can directly impact the launch 

vehicle’s performance in placing the satellite at a particular operational altitude in orbit. Altitude, 

in turn, is tightly coupled to other performance parameters, such as mission duration, daylight and 

eclipse times, communication pass duration, and payload data collection. 

These initial equipment selections also have associated power requirements that are added 

together to create a power budget. Consideration is given to the satellite’s various modes of 

operation throughout its orbit, including during orbital eclipses, leading to a specification for 

power-generating solar arrays and energy-storage batteries. Energy consumed from the batteries 

during eclipse must be replaced by power generated for battery charging while on the daylight side 

of the orbit.  

Attitude control and maneuvering requirements must also be addressed. The satellite’s 

attitude must be controlled to point the payload and the solar panels at specific targets. The satellite 

must also counteract any external environmental forces acting on it. Determining the magnitude 

of these forces enables orbital lifetime computations and provides information for later attitude 

control system component sizing. 

Payload data and satellite telemetry are stored onboard the satellite until it is downlinked 

to the ground over the available communications path(s). A data budget identifies the data sources, 

collection rates, and the size of each collection. Operational calculations determine the rate at 

which onboard memory is filled and depleted by each communication pass with the ground.  
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The rate at which data is transmitted to the ground is found through a link budget 

calculation. The communications channel (e.g., radio, laser) bandwidth and other pertinent 

parameters are used to compute how fast the data may be transmitted, which is tied to how much 

memory is used and then freed up after the communications pass is completed.  

 From this discussion, it is apparent that many of these parameters are interrelated. Having 

a simulation tool that can take these multi-dimensional relationships into account allows the 

designer to quickly pick a set of parameters to evaluate at each step in the iterative design process 

until the design converges. With this process in mind, the requirements for a productive simulation 

tool can now be enumerated.  

 

Design Tool Requirements 

With the objective of creating a tool to assist in the conceptual design of small satellites 

and incorporating the functions identified previously, the following requirements were identified 

for a conceptual design tool: 

1. The tool shall have an intuitive user interface. This requirement allows the tool 

to be used more efficiently by the end-user. An intuitive interface reduces the 

likelihood of user-generated errors. This requirement can be achieved by clearly 

separating input and outputs during the design process and ensuring all menus, 

buttons, and icons are apparent to the user. In addition, providing 

documentation on how to operate the software is necessary. 

2. The tool shall integrate with an established orbital dynamics software. This 

requirement ensures sufficient accuracy in the resulting analysis (at least three 
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orders of magnitude more accurate than two-body basic analysis) and allows 

for the evaluation of complicated mission profiles.  

3. The tool shall support a custom scripting environment. This requirement allows 

users to modify any pre-designed models and generate custom mission profiles. 

To meet this requirement, orbital dynamics software is selected that allows for 

custom scripts to be processed. 

4. The tool shall model ACS, Communications, Data Handling, Power, and 

Structures. This requirement establishes the subsystems to be modeled in this 

tool. By implementing the models and equations that govern the sizing and 

design of these subsystems in the custom scripting environment, these 

subsystems can have their performance analyzed based on their state in the 

orbital dynamics software.  

5. The tool shall generate a variety of outputs that define the performance of the 

satellite. This requirement is necessary so that the user can iterate on their 

design based on the previous iteration’s performance results. A few different 

types of outputs are needed, including 3D modeling capabilities, plotting 

capabilities, table generation, and terminal output.  

One available tool that satisfies these essential design tool requirements is a.i. Solutions’ 

FreeFlyer. 

 

FreeFlyer-Based Design Tool 

a. i. Solutions’ FreeFlyer tool [6] performs detailed mission analysis, satellite trajectory 

analysis, and operations planning. As a simulation, scripting, and visualization software, FreeFlyer 
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can support all phases of a mission’s development, from conceptual design to operations. 

FreeFlyer’s simulation capabilities have been independently verified and validated [20]. FreeFlyer 

[6] is used for analysis and operations by NASA, commercial satellite providers, and industry 

professionals for ground, Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geosynchronous 

Earth Orbit (GEO), and beyond. 

Mission plans capture a set of scripted instructions that a user generates to define the 

operations of a simulated satellite. These actions can be anything from maneuvering to assessing 

power use to a communications session. FreeFlyer’s most powerful feature is this freeform 

scripting capability, as it allows the user to use predefined functions to undertake complex analysis 

and post-processing on any generated data. The scripting language is based on Microsoft’s Visual 

Basic language constructs. Data can be output and saved using a variety of methods and 

visualizations (e.g., plots, tables, etc.). The simulation can also be visualized in 2D or 3D 

renderings (Figure 17). 

 

  

Figure 17: A 2D (left) and a 3D (right) example of the visualization FreeFlyer provides.  
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 FreeFlyer performs the orbital dynamics and satellite attitude calculations and, through its 

scripting language, the iterative sizing calculations for the power, data, and communications 

subsystems. The GUI is intuitive and allows for users to easily navigate through the initialization 

and the results.  

To set up and run a satellite simulation in FreeFlyer, the user first defines the mission 

profile. This includes all operation modes, as well as the conditions under which these modes are 

active. The user also needs to define any specific targets that the satellite needs to point to during 

the mission. In this step, the orbital configurations for the mission (e.g., orbiting body, altitude, 

inclination, RAAN, etc.) are set.  

Next, a comprehensive model of the satellite’s geometric platform is created. This is used 

by FreeFlyer to accurately model the external forces on the satellite. 

The third step is to model the power subsystem. The incidence angle of light from celestial 

bodies impacting the solar arrays can be modeled using vector math by considering the satellite’s 

attitude and orbital position. Power usage is tracked by assessing the power state of the various 

components. The battery’s energy storage level can also be modeled by subtracting the integrated 

power usage and adding energy back into it while charging in daylight.  

The fourth step is to model the data handling and communications subsystems. Satellite 

telemetry and payload data generation rates are integrated in the satellite’s various modes of 

operation and subtracted from the total amount of available non-volatile memory. A satellite-to-

ground-station contact analysis is used to determine when a downlink opportunity is available. 

Downlink bandwidth calculations determine if there is sufficient margin to establish a link and at 

what rate data may be downlinked. Onboard memory storage increases during a downlink session 

as the ground station receives the data. 
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The final step is to capture the calculated metrics and make them available in a user-

digestible format. In Figure 18, the top and bottom left windows illustrate FreeFlyer’s plotting 

capabilities. The top right window shows a 3D visualization of the satellite’s orbit around the 

Earth. The bottom right window reports the communication parameters in a table. 

 

 

Figure 18: An example output from a satellite’s analysis in FreeFlyer.  

 

Besides making the subsystem performance outputs available for viewing, a 3D model of 

the satellite can be constructed out of 2D plate objects. Figure 19 depicts a 6U satellite with 

deployable solar arrays that utilizes this functionality. 
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Figure 19: A screenshot of the visualization for the 3D satellite planform view. The colored arrows identify the 

three principal axes of the configuration. 

 

The few examples presented touch on FreeFlyer’s versatility in modeling and evaluating 

satellite designs in a quick and efficient manner. In the next chapter, the internal mechanics of the 

available modeling components for satellite design within FreeFlyer are examined. 
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CHAPTER 4: FREEFLYER CAPABILITIES 

 

FreeFlyer’s capabilities for modeling orbit propagation, as well as custom scripting 

functionality, satisfy the previously established requirements for a small satellite design tool. This 

custom scripting capability allows for the modeling of the operational orbit, power generation and 

energy storage, data handling, and communications with the ground. The sections that follow 

provide a description of the functionality and implementation of both the preexisting and custom 

functions utilized. 

 

Orbit Models and Propagator 

In FreeFlyer [6], orbit models and propagators are essential for accurately simulating the 

satellite’s orbital dynamics. Accurate and timely evaluation requirements must be balanced to 

obtain reasonable results in a reasonable amount of time. The Runge Kutta4(5) propagator satisfies 

this requirement. The actual time it takes to move the simulation forward depends on the 

propagator used. Choosing a step size to evaluate the simulation is also a balancing act. Selecting 

a large step size decreases the simulation’s accuracy, but choosing a smaller time step results in a 

simulation that takes longer to run. After some experimentation, a step size of six seconds was 

chosen to allow for sufficient data logging frequency and mode-switching ability. This step size is 

used throughout the presented analysis.  
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Equation of Motion 

FreeFlyer propagates the satellite’s dynamics by integrating the rigid body equations of 

motion. Knowing the environmental and control torques being applied to a satellite, the equations 

of motion may be integrated to determine the resulting rotational accelerations that result.  

Expanding Euler’s equations for a rotating rigid body reveals the components along the 

three principal axes of the body-fixed coordinate system, commonly referred to as the x, y, and z 

axes (Figure 20). These axes correspond to the body’s principal moments of inertia, Ix, Iy, and Iz, 

respectively [21]. 

 

 

Figure 20: The three principal axes and the names of the rotations around these axes. 

 

The expanded forms of Euler’s equations are (Equation 1-3): 

                                                          𝑀𝑥 = 𝐼𝑥𝜔̇𝑥 + (𝜔𝑦𝜔𝑧) ∙ (𝐼𝑧 − 𝐼𝑦)                                                 (1)   

                                                         𝑀𝑦 = 𝐼𝑦𝜔̇𝑦 + (𝜔𝑥𝜔𝑧) ∙ (𝐼𝑥 − 𝐼𝑧)                                                   (2) 

                                                        𝑀𝑧 = 𝐼𝑧𝜔̇𝑧 + (𝜔𝑥𝜔𝑦) ∙ (𝐼𝑦 − 𝐼𝑥)                                                    (3) 
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where Mx, My, and Mz are the components of the external and applied disturbance torques about 

the x, y, and z axes, 𝜔̇𝑥, 𝜔̇𝑦, and 𝜔̇𝑧  are the components of the angular acceleration vector about 

the x, y, and z axes, ωx, ωy, and ωz are the components of the angular velocity vector about the x, 

y, and z axes, and Ixx, Iyy, and Izz are the moments of inertia about the x, y, and z axes. These 

equations account for the coupling between the rotational motions about the three axes due to the 

gyroscopic effects, represented by the cross-product terms (e.g., ωyωz) and the differences in the 

moments of inertia. 

To numerically integrate these equations, FreeFlyer [6] discretizes the simulation time into 

increments and then applies the Runge-Kutta 4(5) method numerical integration scheme to update 

the body’s angular velocity and orientation at each time step.  

A quaternion [22] representation of attitude is used. The angular velocity vector obtained 

at each time step is then integrated as follows (Equation 4-5): 

                                                                                𝑞̇ =  
1

2
𝑞𝛺                                                                      (4) 

                                                               𝛺 = 0 + 
𝜔𝑥

2
𝑖 +

𝜔𝑦

2
𝑗 +

𝜔𝑧

2
𝑘                                                      (5) 

The angular velocities for each axis n are represented by ωn. The quaternion derivative 𝑞̇ can be 

calculated using the current quaternion q and the angular velocity quaternion 𝛺. Given their 

difficulty being readily human interpretable, the quaternions are converted to Euler angles in a 3-

1-2 rotation set. The first step in converting from the quaternion to Euler angles is to convert the 

quaternion into a 3x3 rotation matrix. Matrix R in Equation 6 provides the equation for this. 

                                   𝑅 =  [

1 − 2𝑦2 − 2𝑧2 2𝑥𝑦 − 2𝑤𝑧 2𝑥𝑧 + 2𝑤𝑦

2𝑥𝑦 + 2𝑤𝑧 1 − 2𝑥2 − 2𝑧2 2𝑦𝑧 − 2𝑤𝑥

2𝑥𝑧 − 2𝑤𝑦 2𝑦𝑧 + 2𝑤𝑥 1 − 2𝑥2 − 2𝑦2

]                            (6)  
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From here, the rotation sequence will need to be mapped out using the corresponding Euler 

angles, with ψ representing rotation around the Z axis, θ representing rotation around the X axis, 

and ϕ representing rotation around the Y axis. Equation 7-8 represents the Direction Cosine Matrix 

(DCM). 

𝐷𝐶𝑀 = 𝑅2(ψ)𝑅1(θ)𝑅3(ϕ) =  [
cos(ψ) 0 −sin(ψ)

0 1 0
sin(ψ) 0 cos(ψ)

] [

1 0 0
0 cos(θ) sin(θ)

0 −sin(θ) cos(θ)
] [

cos(ϕ) sin(ϕ) 0

−sin(ϕ) cos(ϕ) 0
0 0 1

]           (7) 

 

𝑅2(ψ)𝑅1(θ)𝑅3(ϕ) =

 [

cos(ψ) cos(ϕ) −  sin(ψ) sin(θ) sin(ϕ) cos(ψ) sin(ϕ) + sin(ψ) sin(θ) cos(ϕ) − sin(ψ) cos(θ)

−sin(ϕ) cos(ϕ) cos (θ)cos (ϕ) sin(θ)

sin(ψ) cos(ϕ) + cos(ψ) sin(θ) sin(ϕ) sin(ψ) cos(ϕ) − cos(ψ) sin(θ) cos(ϕ) cos(ψ) cos(θ)

]            (8) 

 

By comparing the elements of these two matrices, the Euler angles can then be calculated 

(Equation 9-11): 

                                          ψ =  atan2(2(𝑥𝑦 + 𝑤𝑧), 𝑤2 − 𝑥2 + 𝑦2 − 𝑧2)                                         (9) 

                                                                ϕ =  𝑎𝑠𝑖𝑛(−2(𝑥𝑧 − 𝑤𝑦))                                                     (10) 

                                             θ =  𝑎𝑡𝑎𝑛2(2(𝑦𝑧 + 𝑤𝑥), 𝑤2 − 𝑥2 − 𝑦2 + 𝑧2)                                     (11)  

 

ACS Modeling in FreeFlyer 

When sizing the ACS subsystem, it is important to understand additional mission 

requirements, such as the satellite’s maneuvering rates and how often the satellite needs to be able 

to perform maneuvers. This chapter presents the models implemented by FreeFlyer to assist the 

designer in defining ACS component specifications. All the external environmental forces (e.g., 

gravity, SRP, drag, and lift) must be accurately modeled within FreeFlyer to determine their impact 



37 

 

on orbital lifetime (Figure 21). Once all forces have been calculated, they are summed together 

and applied to the equations of motion for integration. 

 

 

Figure 21: The environmental forces acting upon the satellite. Celestial bodies apply the force of gravity on 

the satellite. The satellite also experiences solar radiation pressure, atmospheric drag, and lift forces. 

 

Gravity 

Equation 12 calculates the magnitude of the gravity force between two bodies [23]. 

                                                                         |𝐹𝑔| =
𝐺 ∙ 𝑚 ∙ 𝑀

𝑟2
                                                               (12) 

where |𝐹𝑔| is the magnitude of the force from gravity, G is the gravitational constant (6.673E-11 

Nm2kg-2), m is the mass of the satellite, M is the mass of the secondary body, and r is the distance 
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between the satellite and the other body. This magnitude is then applied to a vector pointed from 

the satellite to each large body of influence and summed.  

 

Solar Radiation Pressure 

 Solar radiation pressure (SRP) is the force applied to an object due to the photons emitted 

by the Sun exchanging momentum with the satellite. Equation 13 [24] provides a model for SRP. 

                                                               |𝐹𝑆𝑅𝑃| =
𝑆

𝑐
∙ 𝐶𝑅 ∙ 𝐴                                                         (13) 

where FSRP is the SRP force, S is the solar constant, c is the speed of light, CR is the coefficient of 

reflectivity, and A is the area of the surface. The solar constant can be determined by FreeFlyer 

using the solar flux function, which is based on the power of the Sun and the distance between the 

Sun and the satellite. The Reflectivity Coefficient [25] is a value between zero and two that 

describes the type of momentum exchange with the object. A value of zero represents an entirely 

transparent object (e.g., no momentum exchange); a value of one represents a black body (e.g., 

momentum transferred); and a value of two represents a fully reflective object (e.g., doubling of 

the momentum). The typical coefficient of reflectivity for a satellite ranges from 1.2 to 1.5 and 

tends to decrease due to the changes in the surface properties of the satellite over time while in 

orbit. An exact value can only be measured when the value of the satellite’s surface treatments and 

exterior components is well known. The resulting force magnitude is applied along the Sun-to-

satellite vector. 
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Drag 

 FreeFlyer [6] also allows for the modeling of atmospheric drag. It is the force caused by 

the friction of the atmosphere against the satellite, which reduces the satellite’s orbital lifetime. 

Equation 14 is used to model the atmospheric drag [26]. 

                                                                   |𝐷| = 𝐶𝐷  ∙ 𝐴𝐷  ∙  𝜌 ∙
𝑣2

2
                                                         (14) 

where |D| is the magnitude of the drag force, CD is the coefficient of drag, AD is the drag area, ρ is 

the local density of the atmosphere, and v is the velocity of the satellite (relative to the atmosphere). 

The force is applied in the negative direction of the velocity vector. On average, the drag 

coefficient is 2.2 but can vary based on atmospheric conditions [27]. As the satellite’s altitude the 

atmospheric density value increases. FreeFlyer [6] generates an analytic model of the atmospheric 

density values based on the altitude of the satellite. 

 

Lift 

Atmospheric lift is also modeled [28]. This force pushes the satellite away from the orbiting 

body. It is modeled using Equation 15. 

                                                          |𝐿| = 𝐶𝐿  ∙ 𝐴𝐿  ∙  𝜌 ∙
𝑣2

2
                                                              (15) 

where |L| is the magnitude of the lift vector, CL is the coefficient of lift, AL is the area that lift is 

applied, ρ is the local density of the atmosphere, and v is the velocity of the satellite (relative to 

the atmosphere). The lift force is applied along  𝑈𝐿
⃑⃑ ⃑⃑  (Equation 16). 

                                                                      𝑈𝐿
⃑⃑ ⃑⃑ = 𝑣  × (𝑅⃑ × 𝑣 )                                                               (16) 
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with UL representing the lift unit vector, 𝑣  equaling the relative velocity of the satellite, and 𝑅⃑  

being the satellite’s position vector. The velocity with respect to Earth’s atmosphere can be 

determined based on Equation 17. 

                                                                  𝑣 =  𝑣𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ −  𝜔𝐸⃑⃑ ⃑⃑  ⃑  ×  𝑅⃑                                                       (17) 

where 𝑣  is the relative velocity vector, 𝑣𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ is the velocity of the satellite, 𝜔𝐸⃑⃑ ⃑⃑  ⃑ is the vector of 

Earth’s spin axis, and 𝑅⃑  is the satellite’s position vector. 

Orbital Updates 

After all forces and torques acting on the satellite are calculated, they are summed up 

(Figure 22) and applied to the equations of motion by FreeFlyer.  Any net negative change in 

orbital velocity results in orbital decay impacting the lifetime of the satellite [29].  

 

 

Figure 22: Integration of the environmental forces being applied to the satellite results in a change of orbital 

velocity, leading to altitude decay and eventual reentry. [29] 
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Power Modeling in FreeFlyer 

When sizing the power subsystem, it is necessary to know how much power the satellite 

consumes and how much charging power will be needed to replace the energy that the batteries 

expend during the eclipse portion of the orbit. FreeFlyer is provided with the information necessary 

to model the satellite’s power generation, power consumption, and battery storage systems. These 

three models interact with one another as shown in the diagram in Figure 23. 

 

 

Figure 23: Power generation, consumption, and storage flow chart. The solar panel generates power from the Sun’s 

radiation. Efficiency losses in the MPPT, PDU, and batteries reduce this power 

 

Power Generation Model 

Peak power is generated when the Sun directly illuminates the solar panels, and power 

generation diminishes as the Sun strikes off-angle [30]. The angle between the Sun and the satellite 

is labeled as θ (Figure 24).  
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Figure 24: A visualization of the angle θ between the solar panel normal and the Sun-satellite vector.  

 

The amount of energy generated by the arrays is also affected by the “solar constant,” [31] 

which represents the solar illumination flux deposited on the solar arrays (usually given in W/m2). 

The solar constant is dependent on the satellite’s distance from the Sun and changes by up to 7% 

throughout the course of a year in Earth’s orbit (Figure 25). 

 

 

Figure 25: A plot of the dynamic solar constant throughout the year. The solar constant can change as much as 7% 

throughout the year. 
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To compute the amount of power that can be generated, the number of solar cells mounted 

to the array is multiplied by the area of an individual solar cell (Equation 18).  

                                                                           𝐴𝑆𝑃 = 𝐴𝑆𝐶 ∙ 𝑛                                                                   (18) 

where 𝐴𝑆𝑃 equals the area of the solar panel, 𝐴𝑆𝐶  equals the area of a solar cell, and n represents 

the number of solar cells on the solar panel. Solar cell efficiency is the last variable needed to 

determine the satellite’s generated power. The solar cell efficiency commonly ranges from 20% to 

40% [17] and can be found in the specification sheet of the selected solar cell. Equation 19 provides 

the equation for calculating the generated power [30]. 

                                                           𝑃𝐺 = cos(𝜃) ∙ 𝑆 ∙ 𝐴𝑆𝑃 ∙ 𝜂                                                  (19) 

where  is the solar incidence angle, PG is the power generated, S is the solar constant, and η 

represents the solar cell efficiency. 

Power can also be generated from the sunlight reflected off Earth’s atmosphere [32]. To 

determine this value, three additional values are required. The first is the albedo factor (α), a 

coefficient ranging from zero to one, with more reflective surfaces having a higher albedo. This 

value constantly changes while orbiting around Earth, and it is affected by cloud cover and other 

surface features. The annual average value is 0.3. The following variable is the view factor of the 

Earth-facing array, which can be calculated as Equation 20. 

                                                                                𝑣𝑓 = cos(𝜑)                                                               (20) 

where vf represents the view factor variable coefficient, and φ represents the angles between the 

satellite’s solar panel normal vector and the satellite-to-Earth normal vector (Figure 26).  
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Figure 26: A visualization of the angle φ between the solar panel normal and the Earth-satellite vector.  

 

The intensity of the sunlight decreases proportionately to the cosine of the angle between 

the Sun-to-Earth vector and the Earth-to-satellite vector (Equation 21). 

                                                                             𝑖𝑓 = 𝑆 ∙ cos(𝛽)                                                           (21)  

where if represents the intensity factor, S is equal to the solar constant, and β represents the angle 

between the satellite-to-Earth vector and the Earth-to-Sun vector (Figure 27). 
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Figure 27: A visualization of the angle β between the Sun-Earth vector and the Earth-satellite vector.  

 

In Equation 22, the Albedo Power Generation Equation is obtained by combining all of 

these factors. 

                                                                     𝑃𝐺 = 𝐴𝑆𝑃 ∙ 𝜂 ∙ α ∙ 𝑣𝑓 ∙ 𝑖𝑓                                                      (22) 

where PG is the power generated, 𝐴𝑆𝑃 is the area of the solar panel, η is the solar cell efficiency, α 

is the albedo factor, vf is the view factor coefficient, and if is the intensity factor. 

Another factor that needs to be considered when designing a power generation model is 

the potential shadowing of other solar panels if deployables are present. If the satellite has any 

deployables, they may partially or entirely obstruct the face of the satellite from the Sun or Earth. 

A script was developed to model the platform configuration information provided by the user to 

call FreeFlyer [6] provided functions to determine the view factor of the Sun and Earth for the 

solar panels as well as the illuminated percentage value for each panel. 
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Maximum Power Point Tracking (MPPT) [33] allows solar power systems to be optimized 

in terms of power production. This component maximizes power (which can be calculated using 

P = I · V) by continuously adjusting the electrical operating point of the array to maximize the 

output power. The output conditions that maximize power output are called the Maximum Power 

Point (MPP) (Figure 28). The MPPT optimizes the power output by using a control algorithm to 

determine which direction to adjust the operating voltage to increase the power output within the 

parameters allowed by both the solar array and the battery bank to which the cells are connected. 

 

 

Figure 28: A plot displaying the current vs. voltage curves of a solar panel along with its power vs. voltage curve. 

The MPP is the maximum point on the watts vs. the voltage curve and the equivalent voltage on current vs. voltage 

curve.  

 

MPPTs are not 100% efficient; a percentage of the maximum possible power generated is 

lost as heat in the process. Lower percentages of peak power generation result in less efficient 

operation of the MPPTs (Figure 29). 
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Figure 29: A plot of the efficiency of the MPPTs at various power outputs. The trend is that at lower power outputs, 

the MPPTs become less efficient. [33] 

 

Solar panel degradation occurs because of material degradation, thermal cycling, 

outgassing, radiation, abrasion, and micrometer impacts. While the exact degradation rate vary 

from manufacturer to manufacturer and is also based on operating domain, commercial-grade solar 

cells typically have a degradation rate of 3% per year in LEO [34]. The solar panel degradation 

factor, D, can be modeled using the formula provided in Equation 23. 

                                                                         𝐷 =  (1 − 𝑟)𝑡/365                                                              (23) 

where r is the degradation rate and t is the time in days. 

The efficiency of the Power Distribution Unit (PDU) is also considered when determining 

the total power usage. As a result of voltage conversions and wiring resistances, a small portion of 

power is lost to heat, with typical ranges of efficiencies for a small satellite PDU ranging from 

95% to 99% [17]. Equation 24 gives the total energy consumed by the satellite. 
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                                                                            𝑃𝑈 = 
∑(𝑃𝐶)

𝑘
                                                                    (24) 

where PC represents the power consumed by the components, k represents the power distribution 

efficiency percentage, and PU represents the total power used. The total power used is measured 

at each time step and may vary depending on the satellite’s mode of operation. 

 

Power Consumption Model 

A satellite is comprised of several power-consuming components. Once the designer makes 

their initial component selections, a power budget is developed to identify each component’s 

power consumption and duty cycle. For example, the flight computer must operate 100% of the 

time to control the satellite, while battery heaters may only be on intermittently to maintain 

temperature. Individual components can be commanded on and off in FreeFlyer at specific times, 

depending on the satellite’s mode of operation. The power consumed over time is then summed to 

provide an estimate of the orbit average power required for satellite operations. An example of a 

power budget is shown in Table 1. 

 

Table 1: Example Power Budget. 

Component 
Voltage 

(V) 

Amperage 

(A) 
Quantity Duty Cycle (%) Total Power 

Flight Computer 3.3 0.1 1 100% 0.33 

Payload 

Controller 
3.3 0.075 1 100% 0.25 

PDU 3.3 0.0455 1 100% 0.15 

Heaters 3.3 0.1 4 20% 1.33 

Magnetorquers 3.3 0.121 6 50% 1.2 

Reaction Wheels 

(Steady State) 
3.3 0.0455 4 100% 0.6 

Sun Sensors 5.0 0.01 6 100% 0.3 

IMU 3.3 0.3 1 100% 1.5 

Radio 5.0 1.0 1 5% 5.0 

Payload 20.0 1.0 1 30% 20.0 
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Battery Model 

 The satellite battery model [30] takes into account the maximum battery capacity and the 

desired maximum Depth of Discharge (DOD) allowed, as a function of the desired battery life. 

DOD is the percentage of the energy in the battery that can be used without significantly degrading 

the battery’s lifetime, given the number of charge cycles the battery pack will experience. The 

maximum battery capacity can be determined simply by multiplying the number of battery cells 

by the cell’s capacity (Equation 25). Most small satellite battery packs come in multiples of two 

or four cells. 

                                                                            𝐶𝑇 = 𝐶𝐵  ∙   𝑛                                                                   (25) 

where CT is the total capacity of the batteries, CB is the capacity of a single battery cell, and n is 

the number of battery cells. 

To determine the battery pack’s maximum DOD [35], the number of charge and discharge 

cycles must be estimated as a function of the satellite lifetime and orbital period (Equation 26). 

                                                                                 𝑄 =
𝑇𝐿

𝑇𝑂
                                                                        (26) 

where Q is the number of cycles that the batteries experience, TL is the lifetime of the satellite, and 

TO is the time of the satellite’s orbit period. Battery manufacturers provide guidelines for selecting 

an appropriate DOD for their batteries. An example of the Battery Cycle vs. DOD plot for a NaS 

battery is provided in Figure 30. 
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Figure 30: A NaS Cycle Count vs. Depth of Discharge graph. Based on the number of charge and discharge cycles 

planned within the mission lifetime, the usable capacity of the batteries changes. These plots look different for 

different battery chemistries. [35] 

 

 FreeFlyer computes a running total of the amount of energy stored in the batteries. After 

every time step, energy consumed by satellite operations is subtracted from this total and any 

surplus energy generated for charging is added to this value.  

  

Data Budget Modeling in FreeFlyer 

This section presents the models implemented in FreeFlyer that allow the user to determine 

the amount of data generated onboard the satellite by system telemetry and the payload to size the 

nonvolatile storage needed onboard the satellite. 

The first step in sizing this storage component is estimating the data generation rates of the 

payload and other components within the satellite. This involves identifying the resolution (e.g., 

size) of the data packages, the frequency of reporting, and the type of data that needs to be stored. 

An example of this data budget can be seen in Table 2. 
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Table 2: Example Data Budget. 

Component Data Field Unit 
Data Format / 

Bytes 
Quantity 

Frequency 

(per second) 

Payload CMD State Boolean unsigned / 2 1 1 

Payload Power Amps double / 4 1 1 

Payload Heater Amps unsigned / 2 1 1 

Reaction Wheel Rotation Rate Deg/S double / 4 4 1 

Gyroscope Rotation Rate Deg/S double / 4 4 1 

Battery Voltage V double / 4 1 1 

Battery Current A double / 4 1 1 

Battery Temperature C double / 4 8 0.1 

 

At each time step, the data generated since the last step is summed together and tabulated as the 

Data-Generated value (Equation 27). 

                                                                   𝐷 =  ∑(𝐹 ∙ 𝑛 ∙ 𝑓)  ∙  𝑡                                                         (27) 

where D is the number of bytes generated this time step, F is the number of bytes generated per 

data field, n represents the number of components generating that particular type of data, f 

represents the frequency of the data logging, and t represents the timestep in FreeFlyer. The 

resultant Data-Generated variable is continuously summed together after every time step. 

Depending on the mode of operation of the satellite, the data generated at each time step may be 

different from the previous value.  

 Data is collected from the payload and satellite subsystems and stored before downlink 

sessions with the ground station. Data generated at each timestep is added to the running storage 

total and decremented from the total when a downlink occurs at the rate determined by the link 

analysis.  
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Communications Modeling in FreeFlyer 

FreeFlyer allows the user to define the characteristics of the ground station and onboard 

radio for the communications subsystem required to recover satellite data on the ground. FreeFlyer 

determines when the satellite has a line of sight with a ground station and then assesses whether a 

viable downlink can be established, given the performance parameters provided for the space and 

ground equipment implementing the link [6].  

 

Ground Station Visibility 

The FreeFlyer visibility calculator function determines if a satellite is within range of a 

ground station. Ground station locations are specified using latitude, longitude, and altitude (for 

location), along with the horizon mask definition, to determine the minimum angle of elevation 

required for successful communication (Figure 31). The mask represents the region in which 

communications between the satellite and the ground station can take place.  

 

 

Figure 31: A visualization of the mask’s elevation. 

 

The options for the mask’s geometry are between a cone (uniform) or a custom shape 

(which allows for a custom horizon polygon to be projected). For the cone-shaped mask, the user 

can specify the minimum usable elevation. For custom shape masks, the user can edit the number 
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of points on the polygon and change their location with respect to the center point of the ground 

station (Figure 32).  

 

 

Figure 32: An example input with varying elevation for the custom-shaped mask. The figure displays a 13-point 

mask with varying elevations between 10 and 5 degrees. 

 

In Figure 33, the ground station and its mask are red, and the visibility segment is yellow. In 

FreeFlyer, a visibility segment between the satellite and a ground station can be created. A 

visibility segment determines whether a set observer (e.g., the satellite) can see a target (e.g., the 

ground station). If any other object (e.g., a planet, satellite, or star) is between the satellite and the 

ground station, the visibility calculator will report that a link is unavailable.  
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Figure 33: Spacecraft downlink 3D visualization in FreeFlyer. The yellow represents the visibility segment. The 

custom-shaped mask is represented in red. The red dot represents the ground station location. 

 

Link Budget 

Along with the ground station being visible from the satellite, a transmitted signal must be 

strong enough to achieve the desired bandwidth. The link budget analysis is based on the Friis 

transmission equation (Equation 28). The Friis transmission equation [36] is a basic equation that 

can be used to determine the margin of the link between the ground station and the onboard radio 

in dB.   

                                                              𝑀 = − 𝑆𝑅 + 𝑃𝑇 + 𝐺𝑇 + 𝐺𝑅 + 𝐿                                               (28) 

where M is the margin in the link, SR is the ground station’s sensitivity, PT is the transmitter’s 

power, GT is the transmitter’s gain, GR is the receiver’s gain, and L is the Free-Space Path Loss 

(FSPL) of the signal between the satellite and the ground station. All units are in dB.  

Equation 29 represents the free-space path loss of the signal. The free-space path loss, L, 

is the energy loss resulting from transmitting through space and the atmosphere. 
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                                                                   𝐿 = 20𝑙𝑜𝑔10 (
4𝜋 ∙ 𝑓 ∙ 𝑑

𝑐
)                                                      (29) 

where L represents the total free-space path loss between a transmitter and a receiver, f represents 

the signal frequency, d is the distance between the transmitter and the receiver, and c is the speed 

of light. Figure 34 displays a visual representation plot of the Friis transmission equation. 

 

 

Figure 34: A visual representation of the Friis transmission equation with labels illustrating what components are 

contributing to the increase or decrease in the system’s total dBm.  

 

One factor not computed directly in this link analysis, but is frequently subtracted from the 

margin, is atmospheric attenuation. This factor is typically addressed by adding a margin of at least 

three dB to the link budget. There are several other minor factors that are accounted for in this 

margin, including losses from coaxial cable runs and thermal noise. 

 After determining that a link can be established, the rate of data that is capable of being 

sent to the receiver is calculated. To do this, the Shannon-Hartly theorem [37] (Equation 30) is 

used. 

                                                                          𝐶 = 𝐵 ∙ log2 (1 +
𝑆

𝑁
)                                                     (30) 
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where C is the channel capacity in bits per second, B is the bandwidth in hertz, and the S/N function 

is the signal-to-noise ratio of the communication. The channel capacity (data rate) is based on the 

bandwidth available and the signal-to-noise ratio of the communications link. This data rate is 

multiplied by the time step to determine the amount of data that can travel from the satellite to the 

ground station per step while the communications link is established. 

 

Downlink Modeling 

 To model the downlink budget (Figure 35) in FreeFlyer, the satellite line of sight range to 

the ground station is calculated using the visibility calculator function. The strength of the 

connection between the satellite and the ground station is then evaluated by performing a link 

budget analysis. This analysis determines the rate at which data can be downlinked from the 

satellite to the ground station. Now that the downlink rate is established, the data currently stored 

within memory can be broadcast from the satellite to the ground station and deleted from the 

satellite, freeing up memory for future data to be stored.  

 

Figure 35: A flow chart illustrating data generation, data storage, and data-downlink. The reverse command-uplink 

path is also shown. 
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CHAPTER 5: DESIGN REFERENCE MISSION 

 

To establish the FreeFlyer tool’s utility, a design reference mission is defined to 

demonstrate various features of the tool. Several specific questions about the design can be 

answered:  

1. What is the impact of environmental forces and moments on the lifetime of the 

satellite?  

2. What is the size of the solar arrays required to carry out the mission?  

3. How many batteries are required to operate the satellite during the eclipse?  

4. How much onboard storage is required to facilitate data downlink to the 

ground? 

For this exercise, a previously defined LASSI mission, LAICE-F [7], serves as a 

checkpoint with verified performance parameters to compare with this tool’s outputs. LAICE-F 

completed its Preliminary Design Review (PDR) in June 2022. Mission-defining PDR parameters 

were input into the FreeFlyer tool (APPENDIX A), and the results are compared to those obtained 

for LAICE-F at PDR to ensure the scripted models were implemented correctly into the FreeFlyer 

scripts. 

 

Design Reference Mission Profile 

LAICE-F is a 6U CubeSat with two payloads. The first payload (known as the VT payload) 

measures the variations in ion and neutral density gravities that gravity waves create. The second 

payload (known as the UIUC payload) measures airglow brightness to determine the wave’s 
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parameters. LAICE-F’s concept of operations outlines the major functions that the satellite will 

provide throughout the mission’s lifetime (Figure 36). 

 

Figure 36: LAICE-F’s concept of operations. The major mission phases are defined from the launch to the end of 

mission. [7] 

 

Steps three, four, and five of the concept of operations are modeled in FreeFlyer. Several 

constraints have been incorporated into this model, which captures the principal payload 

requirements listed in Table 3. 

 

Table 3: The LAICE-F requirements that were implemented into FreeFlyer. 

Req # Requirement 

1.0 The VT payload shall be aligned to ram ± 10°. 

2.0 The UIUC payload shall operate only during eclipse. 

3.0 The UIUC payload shall be aligned to nadir ± 10° during operations. 

4.0 The UIUC payload shall be kept pointed > 23° away from the Sun.  

5.0 The Satellite shall complete its scientific objectives within 9 months and be designed 

to have a mission lifetime > 2 years. 
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These payload requirements primarily influence the attitude control and power generation 

requirements levied on the satellite. Since LAICE-F lacks orbit-raising thrusters in its design, 

orbital parameters to meet the mission lifetime requirements were selected to complete the mission 

objective before the satellite’s natural orbit decay removed it from orbit. Due to launch availability 

and the primary orbital regions in which science can be collected, an orbit inclination of 51.6 was 

selected. Therefore. deployment from the ISS is feasible, so the initial altitude used for the analysis 

is 420 km [38]. 

 All sizing for the power subsystem design is based on the defined power budget (Table 4) 

assembled using the initial component selections from LAICE-F’s PDR. 
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Table 4: LAICE-F PDR Power Budget 

Component 
Voltage 

(V) 

Amperage 

(A) 
Quantity 

Duty Cycle 

(%) 
Total Power 

Flight 

Computer 
3.3 0.1 1 100% 0.33 

Payload 

Controller 
3.3 0.075 1 100% 0.25 

Power 

Distribution 

Unit 

3.3 0.0455 1 100% 0.15 

Battery 

Heaters 
3.3 0.1 4 100% 1.33 

Magnetorquers 3.3 0.121 6 50% 1.2 

Reaction 

Wheel 
5.0 0.03 4 100% 0.6 

Sun Sensor 5.0 0.01 6 100% 0.3 

GPS Receiver 3.3 0.0378 1 100% 0.12 

GPS Antenna 3.3 0.02 1 100% 0.07 

IMU 5.0 0.3 1 100% 1.5 

Radio Rx 5.0 0.033 1 100% 0.17 

Radio Tx 5.0 2.618 1 1.11% 0.09 

UIUC Payload 

(Standby) 
5.0 0.036 1 66% 0.12 

UIUC Payload 

(Active) 
5.0 1.3 1 33% 2.7 

VT Payload 

(Standby) 
5.0 0.634 1 100% 3.17 

VT Payload 

(Active) 
5.0 1.73 1 100% 8.65 

 

Power generation is provided by a solar panel deployed across the -X face of the spacecraft. The 

panel is composed of two sets of solar arrays, initially positioned along the side of the satellite 

prior to deployment. The solar cells have an efficiency of 30% [39] and an area of 30.18 cm2. For 

power storage, the battery cells store 11.59 WHrs each [40], with the batteries configured in a two-

series, two-parallel (2S2P) arrangement [7]. Batteries can only be added in sets of two in this 

configuration. The batteries begin the mission fully charged. 
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The complete data budget for the bus telemetry is provided in APPENDIX B, and an 

overview of the satellite’s data budget is shown in Table 5. On average, 912 bytes of data are 

generated per second. LAICE-F utilizes an S-Band radio [41], a patch antenna [42], and a ground 

station at UIUC with a minimum elevation angle of 5° [7]. The communication systems are 

modeled using a downlink frequency of 2.2 GHz with a desired bandwidth of 1 MHz. The power 

and gain link budget info for the radio and ground station are in Table 6. 

 

Table 5: LAICE-F data generation rates. 

Source Data (bits / second) 

Satellite Bus 3072 

VT Payload 2704 

UIUC Payload 168 

Overhead (25%) 1464 

 

 

Table 6: Communication systems performance parameters for LAICE-F 

Variable Value (dBm) 

Receiver Sensitivity -110 

Transmitter Power 30 

Receiver Power 53 

Transmitter Gain 6 

Receiver Gain 32.6 
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 With the design reference mission for LAICE-F defined, the new FreeFlyer tool can now 

be used to iterate through component sizing analysis to establish the orbital lifetime, the size of 

the solar arrays and batteries, and the data storage requirements that accommodate the downlink 

schedule for the given set of orbital parameters. 

 

Design Reference Mission Modeling 

Power 

The first subsystem to be analyzed is the power subsystem. It is necessary to ensure that 

the satellite bus and both payloads receive sufficient power throughout the mission phases. To 

ensure this, two questions are asked: How big do the solar panels need to be? How many battery 

cells are necessary? 

The PDR design of the power subsystem for LAICE-F consists of dual-deploying solar 

panels (Figure 37). Each deployable contains 14 solar cells, and five are located on the center body 

of the satellite, for a total of 61 solar cells. Eight battery cells are configured into a two-series, 

four-parallel pack that is used for energy storage during the orbit’s eclipse periods.  

 

 

Figure 37: LAICE-F CAD model displaying the double deployable solar cells. [7] 
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The peak power generation of LAICE-F is predicted using Equation 19, where  the 

incidence angle, is 0, S, the solar constant, is 1361, 𝐴𝑆𝑃, the area of the solar panel, is 61 * 

0.003018, and η, the solar cell efficiency, is equal to 0.3. A plot shows the power generated during 

a day-in-the-life of the satellite, moving in and out of eclipse (Figure 38). The predicted peak 

power estimated from LAICE-F’s power budget is 75.16 W. The FreeFlyer tool, incorporating 

precise orbital and attitude information, yields a close value of 74.73 W. 

 

 

Figure 38: Power generation plot generated by the FreeFlyer tool. Displays a peak power generation value of 74.73 

W and a minimum power of 0 W due to the inability of the satellite to generate energy while in the eclipse portion of 

the orbit. 
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When expanding the simulation to cover an entire year, it is noted that the power generation 

unexpectedly drops to zero multiple times throughout the year (Figure 39). After further analysis, 

it is evident that the inertially stabilized solar panels are turned edge-on to the Sun during these 

periods. 

 

 

Figure 39: Energy storage plot showing the results of the edge on solar panels. There are multi-week-long periods 

where the batteries become completely drained and the satellite fails. 
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This occurs because of the recession of the right ascension of the ascending node (RAAN) when 

LAICE-F’s orbit traces the terminator between the eclipse and sunlit portions of the orbit (Figure 

40). To mitigate the edge-on behavior, solar array Sun tracking becomes a requirement. The 

FreeFlyer simulation is updated to rotate the solar arrays to point directly at the Sun when not in 

eclipse. The power system maintains power generation at  > 73.24 Watts throughout the year, 

eliminating the seasonal gap that resulted from inertial pointing. 

 

 

Figure 40: Case A shows an “edge-on” case for LAICE-F, which results in minimal power generation for the 

spacecraft. Case B shows an ideal maximum power generation case. [7] 

 

To determine if the PDR design incorporating 61 solar cells is sufficient for LAICE-F, the 

total power generation requirement needs to be calculated. Battery charging power needs to be 

added to the power that the satellite uses while on the sunlit portion of the orbit, replenishing the 

energy in the batteries utilized on the eclipse portion of the orbit.  

LAICE-F has four operational modes defined for the mission. The Single Payload 

operating mode consumes ~16 W and corresponds to a powered satellite bus and VT payload. The 
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Single Payload mode is the default mode of operation and is active during the sunlit side of the 

orbit. The Dual Payload operating mode consumes ~18.5 W and corresponds to the powered 

satellite bus, VT payload, and UIUC payload. This is the second most frequent mode of operation, 

and it is active during the eclipse portions of the orbit. The Single Payload with Comms consumes 

~29.5 W and occurs on the sunlit side of the orbit if a communications downlink session occurs 

while the VT payload and bus are also operating. It is a short duration high-power mode. Similarly, 

the Dual Payload with Comms consumes ~32 W occurs when a downlink is in progress during the 

eclipse portion of the orbit while the satellite bus, VT payload, and UIUC payload are operating. 

These modes of operation are evident in the visualization of power consumption (Figure 41). The 

power consumption plot is most useful when troubleshooting the implementation of the mission 

profile to ensure the correct systems turn on and off when they should.  

 

 

Figure 41: LAICE-F operational modes verified in the power consumption plot that FreeFlyer generated. 
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During the daylit portion of the orbit, the orbit average power consumed is estimated to be 

17.18 W based on the Single Payload mode and the Single Payload with Comms mode. During 

the eclipse portion of the orbit, an orbit average power is estimated to be 19.92 W based on the 

Dual Payload mode and the Dual Payload with Comms mode. 

By dividing the orbit average energy used during eclipse (19.92 * 0.744 = 14.82 WHrs) 

deprecated by the DOD (20%) [35], the total capacity of the batteries required to support operations 

of the satellite during the eclipse is found (90.8 WHrs). By dividing this value by the energy 

capacity of a single battery cell (11.59 WHrs), the number of battery cells comes out to 7.82 battery 

cells. Because batteries come in even integer numbers, the number of battery cells is rounded up 

to eight. Notably, the PDR design for LAICE-F matches this result [7].  

The charging power calculation is slightly more involved. It is based on the average power 

consumption during eclipse (14.82 WHrs) and the time the satellite is charged on the sunlit side of 

the orbit (0.816 hours). Multiplying these two values predicts that the batteries must charge at a 

rate of 18.16 W to reach full capacity before the next eclipse period. Thus, to keep the satellite 

operational and to charge the batteries, it must generate a total of 35.34 W. 

LAICE-F has a two-year mission design requirement. Given that solar cells deteriorate at 

an average annual rate of 3% [34], it's crucial to factor in this degradation in the solar panel's sizing 

to guarantee the satellite's battery charging and operation as it nears its end of life. To account for 

the 3% degradation factor per year for two years, the satellite needs to produce 37.49 W at the 

beginning of its mission.  

Going from power generation requirements to solar cell specifications, the 37.49 W 

generation requirement requires a 31.22 solar cell configuration when applying the worst-case 

solar constant. However, similar to batteries, manufacturers do not produce deployable solar array 
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panels in fractions. Each deployable array comprises 14 cells (28 per pair), necessitating the use 

of a pair of double deployable panels to meet the system power requirements. This results in a 

significant margin for the design. The plot below shows the power generated and energy stored 

from eight batteries and 61 cells configured in a double-deployable solar array design (Figure 42). 

 

 

Figure 42: Energy storage and power consumption plot generated by FreeFlyer in the 61 solar cell and 8 battery 

configuration. Notable features include the margin between the battery charge levels and the DOD, as well as the 

rate at which the batteries recharge. 

 

Several design features are evident in the plot. The excess capacity of the solar array can 

be seen in the saturation of the battery “flat-tops” at the point where the batteries have completed 

recharging for eclipse but the satellite is still on the sunlit side of the orbit, generating excess 

energy (Figure 43). 
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Figure 43: Excess energy production is evident in the “flat-tops” of the energy storage plot. Labels show the 

proportion of the time of eclipse, batteries charging in the sunlight, and when the batteries aren’t charging in the 

sunlight. 

 

To summarize the results of this design exercise carried out by the FreeFlyer tool, the data 

generated by FreeFlyer closely matches the initial predictions for the performance of a 61 solar 

cell and eight battery cell power subsystem (Table 7). The difference in values comes from 

FreeFlyers’ ability to accurately model the attitude and orbital dynamics of the satellite when 

computing the satellite’s power-generating capability. 
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Table 7: Comparison between the FreeFlyer power calculations and the predicted calculations. 

Parameter Predicted Value FreeFlyer Value 

Solar Cell Quantity 61 61 

Battery Cell Quantity 8 8 

Max Power Generation 75.16 W 74.73 W 

 

Data and Communications 

Now that it has been determined that there is sufficient power for the payloads to run 

whenever they want in their operating domains, the total amount of data storage necessary to store 

the payload and telemetry data before downlink needs to be determined.  

The first value used in determining the size is the average rate of data generation. Based 

on a calculated 52.3% daylit and 47.7% eclipse orbit breakdown, the LAICE-F PDR [7] 

determined that the average data rate for the satellite bus, VT payload, UIUC payload, and 

overhead is equal to 7.312 kb per second. In one day, 631.72 Mb of data are generated. 

The next value to determine is the total time and the frequency of downlink sessions. In a 

24-hour period, six consecutive orbits are available for the satellite to downlink data. These passes 

have an average length of 259.2 seconds. With the downlink sessions happening in sequential 

orbits and the average orbit being 93.6 minutes long, there is a 14.64-hour period where no data 

can be downlinked, but data is still collected. During this period, at the average data generation 

rate, 385.371 Mb of data will be generated. This value is the maximum data storage needed for 

nominal satellite operations. 

The downlink rate of the S-band radio was determined to be 3.3 Mb per second through a 

link budget analysis calculation with a 10 dB margin. To downlink all the data from the pass, 
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116.78 seconds of downlink is required. With the average pass being over two to three times this 

length, LAICE-F can comfortably downlink all the data on any pass.  

When simulating this system in FreeFlyer (Figure 44), the amount of downlinked data is 

accurately calculated to be 385 Mb for the largest downlink. Each downlink was also completed 

in less than two minutes. 

 

 

Figure 44: The data storage availability over the course of two days. 

 

The data generated by FreeFlyer matches the initial predictions for the quantity of data storage 

needed and the radio’s capabilities (Table 8). 
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Table 8: Comparison between the FreeFlyer calculations and the predicted calculations. 

Parameter Predicted Value FreeFlyer Value 

Max Storage Needed 385.371 Mb 385 Mb 

Time to Complete Largest Downlink 116.78 s 120 s 

 

Environmental Forces 

Another question a satellite designer may have is: What is the lifetime of the satellite? To 

compute the orbital lifetime, several factors must be integrated to determine the delta-v being 

applied to the satellite by atmospheric drag. Drag is a function of the solar flux (e.g., how active 

the Sun is), orbital altitude, and satellite configuration. FreeFlyer may be used to take all of these 

factors into account to estimate the time for LAICE-F’s orbit to decay to 250 km, which is 

considered the entry interface for satellites with less than a day or two left in orbit [29].  

 To calculate the drag [26] and lift [28] forces, Equations 14 and 15, respectively, are used. 

The satellite’s relative velocity is a common input between both the drag and lift calculations. At 

this altitude, a relative velocity of 7850 m/s is used. The second shared variable is the atmospheric 

density. Referencing the MSISE-90 Model [43] for atmospheric densities, a value of 4.02 E-11 

kg/m3 is found for the deployment altitude of 420 km. The coefficient of drag is 2.2 [27], and the 

coefficient of lift is 1.2. For the LAICE-F platform configuration [7], the drag area is 0.022 m2, 

and the lift area is 0.3036 m2. This results in a calculated drag force of 0.0000599 N and a 

calculated lift force of 0.000451 N. Table 9 compares the estimated forces to the FreeFlyer tool’s 

calculations. 
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Table 9: Summary of predicted versus FreeFlyer-calculated forces. 

Force Predicted Value FreeFlyer Value 

Gravity 215.43 N 215.40 N 

SRP 0.00000193 N 0.00000190 N 

Drag 0.0000599 N 0.000028 - 0.000063 N 

Lift 0.000451 N 0.00124 - 0.00645 N 

 

Figure 45 illustrates the LAICE-F drag and lift forces calculated by FreeFlyer over a couple 

of orbits. FreeFlyer integrates these forces to calculate the satellite’s velocity change for each orbit.  

 

 

Figure 45: Drag and Lift forces are modeled in FreeFlyer; oscillating behavior results from dynamic lift and drag 

area calculations. 
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Integrating the impact of these forces on the satellite results in an orbital decay plot, as illustrated 

in Figure 46. FreeFlyer provides an estimated lifetime of 327 days, which is in line with the 

historical lifetimes for 6U CubeSats launched from the ISS [29].  

 

 

Figure 46: Orbital decay plot generated in FreeFlyer for LAICE-F. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

 

The FreeFlyer-based CubeSat orbital dynamics simulation tool and planform configuration 

scripts developed for this thesis are used to model the performance of a small satellite. This tool 

models the satellite’s orbital position, attitude, power generation and energy storage, data 

generation and storage, and communications downlinks to assess the satellite’s performance. The 

tool fulfills the requirement of allowing the user to swiftly evaluate a point solution, enabling the 

rapid generation of design iterations to identify the optimal configurations for a given mission. 

With this base functionality, additional add-ons are envisioned for future work, adding to 

the utility of this tool for use in the satellite design process. Adding a subsystem performance 

optimizer based on user-defined parameters would remove the need for the user to interpret the 

results and update the configuration manually when using the tool. Additional components could 

be modeled, including various types of attitude determination and control devices, to add higher 

levels of fidelity to the simulation. Thermal analysis capabilities would also increase the accuracy 

of the power generation model and allow for the verification of thermally sensitive missions. 

In summary, the custom tool developed for this thesis may be used by satellite designers 

when iteratively evaluating satellite configurations and performance early in the design process. 

The tool excels in both the accuracy of the simulations and in reducing the time it takes to perform 

analysis through the incorporation of modeling scripts within the FreeFlyer platform. It has been 

made available and will find considerable use in future LASSI design exercises. 
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APPENDIX A: FREEFLYER CODE AND USAGE DOCUMENTATION 

 

The tool utilized for the analysis presented in this thesis as well as usage documentation 

can be requested from the author or accessed at https://github.com/meh4/FFSS_AIO 
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APPENDIX B: LAICE-F TELEMTRY DATA BUDGET 

 

 Table 10 displays LAICE-F’s data budget that was utilized to determine the data generation 

rates of the satellite bus. The Payload generation rates and telemetry totals are provided in Table 

5. 

 

Table 10: LAICE-F Telemetry Data Budget 

Data Field Units Data Format Cadence 

Mag Time Tag Unix Time Unsigned long int  

Magnetorquer X-1 Tag Amps Double 1 second 

Magnetorquer X-2 Tag Amps Double 1 second 

Magnetorquer Y-1 Tag Amps Double 1 second 

Magnetorquer Y-2 Tag Amps Double 1 second 

Magnetorquer Z-1 Tag Amps Double 1 second 

Magnetorquer Z-2 Tag Amps Double 1 second 

Attitude Time Tag Unix Time Unsigned long int  

Attitude Pitch Deg Double 1 second 

Attitude Yaw Deg Double 1 second 

Attitude Roll Deg Double 1 second 

Propagated Orbit Time Tag Unix Time Unsigned long int  

On-board Propagated Altitude Km Double 1 second 

On-board Propagated Latitude Deg Double 1 second 

On-board Propagated Longitude Deg Double 1 second 

Reconstructed Orbit Time Tag Unix Time Unsigned long int  

Reconstructed Altitude Km Double 1 second 

Reconstructed Latitude Deg Double 1 second 

Reconstructed Longitude Deg Double 1 second 

Satellite Time Unix Time Unsigned long int 1 second 

Orbit Number # Long int 1 second 

Battery SOC V/% Double 1 second 

VT Heater Cmd State Boolean Unsigned int 1 second 

VT Heater Power Amps Double 1 second 

VT payload Power Cmd State Boolean Unsigned int 1 second 

VT Payload Power Amps Double 1 second 

Battery 1 Temperature Sensor Deg C Unsigned int 10 seconds 

Battery 2 Temperature Sensor Deg C Double 10 seconds 

Battery 3 Temperature Sensor Deg C Double 10 seconds 

Battery 4 Temperature Sensor Deg C Double 10 seconds 

Radio Temperature Deg C Double 10 seconds 
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Table 10 (cont.): LAICE-F Telemetry Data Budget 

CDH Temperature Deg C Double 10 seconds 

Radio Power Cmd Boolean Unsigned int 1 second 

Gyro 1 Deg / S Double 1 second 

Gyro 2 Deg / S Double 1 second 

Gyro 3 Deg / S Double 1 second 

Gyro 4 Deg / S Double 1 second 

Wheel Speed 1 RPS Double 1 second 

Wheel Speed 2 RPS Double 1 second 

Wheel Speed 3 RPS Double 1 second 

Wheel Speed 4 RPS Double 1 second 

Wheel Current 1 Amps Double 1 second 

Wheel Current 2 Amps Double 1 second 

Wheel Current 3 Amps Double 1 second 

Wheel Current 4 Amps Double 1 second 

Battery Current Amps Double 1 second 

Battery Voltage Voltage Double 1 second 

Solar Panel Current Amps Double 1 second 

Battery Temp 5 Deg C Double 1 second 

Battery Temp 6 Deg C Double 1 second 

Battery Temp 7 Deg C Double 1 second 

Battery Temp 8 Deg C Double 1 second 

Array 1 W Double 1 second 

Array 2 W Double 1 second 

Array 3 W Double 1 second 

Array 4 W Double 1 second 

Array 5 W Double 1 second 

 

 

 

 

 

 

 

 

 

 


