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I, INTRODUCTION

1.1l Object and Scope

The classical theory of plates which assumes small deflections
and linearly elastic material behavior is noticeably deficient in de=-
gcribing the behavior of thin plates and plates made of ductile materials,
When lateral deflections exceed one-half of the thickness of a plate (l)f
the prediction of the classical theory of plates is erroneous.

Solutions for the large deflection analysis of elastic plates
are based on Von Karman's non-linear equations (1)(2)(3). These equations
include thé effects of membrane forces and the second order effects of
vertical displacements in the associated stain-displacement equations.,

There have been many recent efforts to determine the load
carrying capacity of elastic-perfectly plastic plates. Ang and Lopez (4)
found solutions for square plates that compared favorably with upper and
lower bound theories of perfectly plastic plates (5), In addition,
deflections, and stresses were found as a function of load, The general
approach of Ang and Lopez ié used in the‘présent study.,

Haytﬂornthwaite (6), Ohashi and Murakami (7) found solutions
for elastic~perfectly plastic plates and showed that membrane forces
play an Important role in the behavior of these plates even with
relatively small deflections. Cooper and Shifrin (8) showed experi=
mentally that the ultimate load carrying capacity of mild steel plates
is considerably higher than indicated by upper bound theories which are

based on small deflections.

#Numbers in parentheses refer to entries in the bibliography.



Ang and Lopez (4) demonstrated the feasibility of using a
lumped parameter model to solve non-~linear plate problems. The model
is essentially a finite difference physical analogue of the governing
differential equations of the corresponding continuous plate.

The objective of this thesis is to develop a numerical method
for analyzing plates that will take into account all non-linearities
involving displacements and material behavior., Such a method is to be
used to determine the behavior of thin to medium thick plates through-

out the entire range of loading.

1.2 Assumptions

The present development is valid only for axially symmetric
plates. In addition, the variation of displacements and stresses
through the thickness of the plafe is simplified by adopting a sandwich
. configuration., Theoretical equations are developed with the following
assumptions:

1. The plate 1s composed of three layers. The top and bottom
layers are identical and are assumed to be characterized by a
state of plane stress. They are composed of an elastic-
perfectly plastic material, Yielding is governed by the
von Mises yield criterion and plastic flow follows the Prandtl=-
Reuss flow rule, The middle layer, referred to as a shear
core, has constant thickness, is infinitely stiff with respect
to transverse shearing forces, and provides no resistance to
flexural and extensional forces. Such a plate can be propor-
tioned to exactly simulate a solid elastic plate and a plastic

membrane.



1.3

2, The Kirchoff-Love hypothesis, which states that for thin plates
and shells, a normal to the middle surface remains normal
during deflection. This assumption is not related to material
behavior, but is a direct consequence of the geometry of thin
plates and shells (9). The effect of this assumption is to
neglect shear deformations normal to the middle surface of the
plate or ghell. These deformations are negligible when com=
pared with the rotations of a flexible body such as a thin
plate or shell.

3. The principal loading of the plate is normal to the plane of
the plate.

4, The stress rate=-gstrain rate equations of plasticity are valid
for small, but finite increments of load,

5. Hooke's law is valid for large deflections.,

Notatlon

C stress-strain coefficlent matrix

D strain-displacement coefficient matrix

E 4 Young's Modulus

E (AX) residual load corresponding to AX = O,

. otherwise an element of the equilibrium

equation

F internal force vector

h half-thickness of the sandwich plate

J2 second invariant of the deviatoric
stresses

k 7 V yield limit of material in simple shear

M, MR, MR, radial bending moments per unit width



M, MT, MT,
N_, MR, NR,
N, NT, NT,
n

P

P

Pn’ PN

Pt’ PT

P, Pv(l)
Q, Q

R

S, S,

+

T

t
u, ulg u.,

i* 71

W Wes Wey W
O T R §

W

X

tangential bending moments per unit
width

radial membrane forces per unit width

tangential membrane forces per unit
width

number of discrete points of the plate,
or the number of the point on the

boundary

scalar quantity proportional to the
intensity of lecad

load vector prescribing the load
distribution

loads per unit area normal to the
middle surface of the plate

loads per unit area tangent to the
middle surface of the plate (must be
directed radially when projected on the
r=6 plane)

total vertical load on an element of
the plate within a given radial distance

shear force per unit width

coefficient matrix of internal forces in
the equilibrium equations

extension of middle surface

thickness of the sheets in the sandwich
plate

coefficient matrix of the stress=force
transformation equations

horizontal displacements; t refers to
top sheet and b refers to bottom sheet

vertical displacements; t refers to top
sheet and b refers to bottom sheet

rate of work of the deviatoric stresses
in distorting the material

displacement vector



A as a prefix, represents any incremental
quantity, e.g., AX is an incremental
displacement corresponding to an incre-
mental load, Ap ‘

AR an approximation of R
KR AX = I¥
t b,, R .
€., €.y €.(1), etc. radial strain
r® "r’ "p
ér radial strain rate
t b,. . .
Eps et, Et(l), etc. tangential strain
ét tangential strain rate
by radial mesh length of the undeformed model
u Poisson's ratio
t b, .
O, 0_, 0_(i), etc. radial stress
r® "p? Tp
ér radial stress rate

Tis OEB ci(i), etc. tangential stress

o

ch tangential stress rate

0o () an error proportional to AJ

E}, 6%, etc, barred stresses indicate a stress some=-
where between o_ and o_ + Ao_ or o_ and

r r r t
Gt + Actg etc,
au

9—34 a nondimensional load parameter where g

Eh is the normal load per unit area, a is
the radius of the plate, h is the total
thickness of an equivalent solid plate,
and E is Young's Modulus

wo/h v a nondimensional displacement parameter

where w_ is the vertical displacement at
the center of the plate and h is the
total thickness of an equivalent solid
plate



a nondimensional stress parameter where
0 is the sum of the maximum fibre
bending stress and membrane stress, a
is the radius of the plate, h is the
thickness of the equivalent solid plate
and E is Young's Modulus (Bending
stresses in the sandwich plate are
multiplied by V3 to correspond to the
extreme fiber bending stresses of a
solid plate)



II, THEORETICAL EQUATIONS

2,1 Equilibrium

Fig. 1 shows an infinitesimal element of a circular plate in
its unloaded state A and in its deformed state A® with the léads and
forces acting on it. Since the displacements and rotations of such an
element may be large, the equations of equilibrium must be satisfied in
its deformed position (9). The resulting expressions are similar to the
shell equations of equilibrium except that the geometry of the shell is
a function of the digplacements.

Fig., 2 shows the projection of A® on an r-z plane, The loads
N

Pn and Pt’ and the forces Mr’ M Nt’ and Q are the forces acting on

t? Tp?d

the element. The displacement functions u and w determine the deformed
ghape of the plate and as such determine the radius of curvature R at A%,
Summation of forces in the r-z plane and in a direction tangent to the

plate in its deformed state yields

CL(r + u) +i-—;-g-:%dr] [Nr+§-§£-§£cos-§id6]
- [(r + w) ‘lz—g-%dr] N, - zir%ﬁcosgidej
- [(r + u) +»l ; %%.dr] [Q + %%-%£= sin %i-de] (1)
- [(r + u) - : ; %% dr] [Q ~"%%=§£ sin %ﬂ de]

- 2 Rd¢ N, sin g8 cos ¢ + P_t Rd¢ (r + u) de

i
O



while summing moments in the r-z plane about the center of the element

leads to

1tz M dr
[(r + u) + —5——dr] [M_ + x— ] d6
Ju
l+=§°— d
r r dr
-[(r+u)———-é-———-dr] [Mr~-a-r-—-2--] de
- 2 Rd¢ Mt sin %ﬁ cos ¢ (2)
ou
1l +
T 9Q dr- Rdé
+ [(r + u) + dr] [Q +7a-?-b- 2—-:] - ae
ou
1+s7 30 dr. Rdé

+ [(r + u) - ——— dr] [Q = = §—J'—5= de = 0

Dividing the above equations by drd6, and neglecting higher

order terms, Eqs. (1) and (2) become, respectively,

du aNr (r + u) S du
(:L+§=F)Nr+(r+u)ar- = Q“(l"""ﬁ?)Nt

(3)

+ (r + u) S PJE = 0

and,

oM
au r . du -
(l+-§?)Mr+(r‘+u)'§~r‘-‘-(l‘fﬁ-)Mt'ﬁ(l"‘Fu)SQ-O

(%)



éw 2 du 2
(-a=z:) + (l + 'g}-’)

where S

5 3/2

8u>2 oW
[(1 + -;;;) + (ag-;) ]
and R = S,
Ce1 s 20 5% dw 82u]
t 5T 2 w2
r or

The shear force Q can be found by considering the equilibrium
of a section of the'symmetrically loaded plate within the radius r.
Fig. 3 shows this section in the r-z plane., Summation of forces in the

z direction yields

ow

SFPV or Nr
Q= Sa. T (5)
QTT(I‘ + U)(l + TF) (l + -5*-1-;

where ?; is the total vertical load from r = 0 to r = 1,

Substitution of Eq. (5) into Egs. (3) and (4) yields,

regpectively,
oW
Su (I"I’U)S-amr—' 3Nr Su
[l+§nx-;=+ - T ]Nr+(r’+u)-§;~~=(l+-5—f-)‘Nt

R (l+-5==-)

r
(6)
S2
+ P 4+ (rp+u)SP, =0

au
2mR(1 + “a?)



and

ou r du
(l+-5?)Mr+(r+u)8—1:-_(l+FxT)Mt_

82

om(l + %%)

P

v

=0

oM

10

ow
(r+u)S§=IT
N

Ju r
l"l"-g'-r-:

(7)

which are the final equilibrium equations for the plate.,

2.2 Variation of Stresses on a Cross=Section of the Plate

In order to treat the plate as a two-space problem, it is

idealized as a sandwich plate (4).

The result of this idealization 1is

to eliminate the effect of yielding throughout the thickness of the

plate, Fig. 4 is a schematic representation of the sandwich plate, It

is assumed that the thin sheets are in plane stress; i1.e., all stress

compeonents lle within the plane of the sheets and are distributed uni=

formly across their thickness,

of the plate are carried only by the shear core.

Shear forces resulting from the bending

The resultant forceé

per unit width acting on a cross-section of the plate are related to

the stresses by

=
1

=
4]

(8)
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where the subscripts b and t, respectively, refer to the bottom and top
sheets of the platej; h is the half thickness of the plate, and t is the

i

thickness of the sheets,

2,3 Stress~Strain Relations

2.3.,1 Hooke's Equations

The material of the plate is assumed to be an elastic=
perfectly plastic solid, In the elastic range the material behavior is
described by Hooke's law, while beyond the elastic limit, this i1s re=
placed by an elastic-plastic law. Throughout the range of elastic
behavior of the plate, Hooke's law is used to relate stresses to strains.
For an elastic lsotropic material under plane stress conditions, Hooke's

equations in polar coordinates are

_ E
g, = 5 (e + v st)
I -u
(9)
E
9 = 2 (st T Er')
1=y

where E 1s Young's modulus, u 1s Poisson's ratio, and €, and €, are the

strains in the radial and tangential directions, respectively.

2,3.2 Elastic-Plastic Equations

Hooke's equations are not valid when the state of stress
exceeds the elastic limit as given by the von Mises yield condition.
The behavior of the material beyond this state is governed by the

elastic-plastic equations of Prandtl-Reuss. It is characterized as
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being elastic-perfectly plastic.

A loading function, ¢, may be defined as follows:
¢ = ¢ (0, o)

If ¢ < k29 where k is the yield limit of the material in simple shear,
the material is elastic and 1s governed by Hooke's law, If ¢ = k2, the
material will undergo plastic flow and a plastic stress-strain law is
used, The condition ¢ > k2 is not permissible for perfectly plastic
material, If, after plastic flow has occurred at a point, the state of
stress becomes sguch that ¢ < k2, the material is said to have unloaded
from a prior plastic state and its behavior is incrementally elastic.

| In the von Mises yield criterion ¢ = J2, the second invariant

of the deviatoric stresses. For the case of plane stress with axial

symmetry, the yield condition becomes
- 00, +09°) =k (10)

Appendix A contains a derivation of the associated flow rule

of Prandtl-Reuss. In rate form,

2 ¢ 0

o E [(20t - or) €, - (20t . cr)(zcr - ct) st]
r 2 2

(20t - cr) + (20r - ct) + 2u(20t - crr)_(zor - Ut)

(l1a)
E[(20 =0 )2 e - (20, = ¢ )(20 = a.) € 1

& = r t t Tt r r t" r
t i 2 N ' '

(20t - cr) + (20r - ct) + 2u(2ct - or)(zcr - ct)

(11b)
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2 2 o o
2(0_“-0_0 +0_ ){[(20r~0t)-u(20tfcr)] €r+[(20t”cr)"U(20r'Gt)j et}

2 2 '
(QGP-Gt) +(20t_or) +2u(20r-ct)(20t—cr)

W =

(12)

where W is interpreted as the rate of work of the deviatoric stresses
in distorting the material. Egs. (lla, b) are the constitutive relations

for the material in the plastic range and remain valid as long as

°

If W < 0, the state of unloading has occurred and Hooke's law

in incremental form must be used in place of Eqs. (lla, b).

2.4 Strain-Digsplacement Relations

The magnification of an infinitesimal line element is used as
the basis for defining strain as a function of displacements. Strain is

defined as

2
_ 1 . ds® ,
L =3 lE -1 (15a)

where ds is the infinitesimal length of the line element L before de=

formation and ds® is the infinitesimal length after deformation,
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For the case of axial symmetry,

: 2
o= et S0 + (2 ]
(13)
2
_u 1l ,u
S Tt @

where €. is the strain in the radial direction, €_ is the strain in the

t
tangential direction, u is the radial displacement and w is the vertical

displacement of a point.

2.5 Transformation of Displacements to the Middle Surface

The variables, u, w, r in Eq. (13) are evaluated at a point,
say r» = a, to ylield the strain e, at "a'" and e, at "a", As a result of
the Kirchoff-Love assumption, the displacement of any point in a plate
may be expressed in terms of the displacement funétions of the middle
surface, Accordingly, the displacement of a point ig the top sheet of
the plate can be expressed in terms of the displacement functions of
the middle surface evaluated at the corresponding point on the middle
surface. The displacement of a point in the bottom sheet can be ex-
pressed similarly.,

Fig. 5 shows the sandwich plate in the r-z plane. The shape
of the middle surface is determined by the two displacement functions
u and w. Corresponding displacements of the top sheet are expressed as
ut and wt and the displacements of the bottom sheet are expressed as
ub and wbg According to the Kirchoff-Love hypothesis, the line element
”atab” #hich is normal to the miédie surface at "a'" in the unloaded

state remains normal to the middle surface at "a'" in the deformed state.
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Therefore:

Bw
ut = u+ h x
/ ‘ auz
¢ *(-l*ar -
ou
l+'§=—=
wt = w=hzx - = + h
/// 2 du 2
(-—-) + (1 + -?;)
(1)
aw
ub = u - h X
/ (l+r)
3
b 1+§-}_}
W = w+hx ‘ = h

/ @’ )7
+(l+§*-r-—

Eq., (14), therefore, expresses the dispiacements of the top
and bottom sheets of the plate in terms of the displacements of the

middle surface.

2.6 Combination of Equations

The solution to the problem, therefore, consists of obtaining
the displacement functions u = u(r) and w = w(r) of the middle surface
of the plate at every level of loading. These functions must be smooth
and continuous through their first derivatives to insure that the assump-
tion of compatibility is satisfied.

The above equations, Egs. (6) through (9), and Egs, (13) and



16

(14) may be combined to form two partial differential equations in terms
of the unknown displacement functions, u = u(r), and w = w(r) of the
middle surface., These equatlions are valid as long as no portion of the
plate yields. The solution of the two partial differential equations
over the region of the plate, together with suitable boundary conditions
constitute the solution to a laterally loaded elastic plate.

When the load on the plate reaches a level that will cause
yvielding of some region of the plate according to von Mises'jield cri=
terion, Eq, (10), Eq. (9) must be replaced by Eg. (11), When plastic flow
occurs, the problem becomes more difficult because the stress-strain
equations are functions of the instantaneous stresses; e.,g., at some

level of load, say P, the stresses are T and © At a higher load

,t_o

level, P + AP, the stresses are o, * Aor, and o_ + Acto Therefore in

t

getting from load level P to P + AP, the stress-strain law must be

variable in o, and ¢ In other words, the correct gtresses in Eq, (11)

_to

are evaluated somewhere between (o’r9 qt) and <Ur + Ao, O+ Act)0

t

However, 1f AP 1s small, the stresses 9.9 O at load level P may be

t

used (4) in Eq, (1ll)., An alternative approximation is derived in

Appendix A,

2,7 An Incremental Approach to the Solution of Equations

Egs. (6), (7), (11), (12), (13), (1) afe non-linear in the
variables u = u(r) and w = w(r)., Therefore, the traditional techniques
used for the solution of linear analysis problémé cannot be applied
directly. rSince Eq. (il) is expressed in rate form, it has been sug-
gested (4) that an incremental approach may be taken., The basic

approach is to linearize the equations within small increments of load,
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The approach presented herein applies the same technique for
handling the plastic stregs-strain relations, but includes the non=
linear geometrical relationships., However, the solution of the cor=
responding non-linear elastic problems is not restricted to 'small"

increments of loading.
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IIT. THE MATHEMATICAL MODEL

3,1 Background

A mathematically consistent lumped parameter model is used
herein to formulate the equations in terms of the unknown displacement
functiong u and w. This type of model was first guggested by Newmark
and formally developed by Ang (10). Each physical element of the model
is point-wise compatible with a corresponding quantity in the continuum,
The model is, in fact, a physical discretization of the continuum,

Ang has established the criterion of mathematical consistency
in his models. The equations resulting from the model must correspond
to a finite difference form of the differential equations of the con-
tinuum., The advantage of this criterion is that questions concerning
uniqueness, conVefgence9 gtability, and errors can be related to similapr
questions in the theory of finite differences.

The primary advantage realized in using a model approach is
that the resulting equations can be derived through the use of elemen=
tary mechanics and simple geometry. Also, the equations are physically

meaningful when related to the model,

3,2 Description of the Model

The model described herein satisfies the Kirchoff=Love assump-
tions for the theory of plates and shells in finife’difference form, and
isrmathematically consistent with the finite difference expressions of
the differential equations of the corresponding continuum,

Fig. 6 1s a schematic representation of the model., The
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essential elements are a network of massg points interconnected by gen=
eralized axial and shear springs possessing properties identical with
whatever behavioral properties are ascribed to the gsolid,

The total mass of the solid continuum is concentrated at the
mass points. Each mass point contains the mass of the solid correspond=
ing to an elemental volume of rcheolete All displacements are defined
only at the mass points (10),

A stress point is the point of definition of the average stress
and gtrain tensors of the solid within an elemental volume of r§A9=X°tm
The material in this volume, therefore, is implicitly in homogeneous
gtates of gtress and strain. The deformability, or conversely, the
resistance, of a continuum is represented by that of a finite number of
gtress points.

The entire mass of the continuum is assumed to be In the top
and bottom sheets of the sandwich configuration, Stress-strain relation=-
ships are also established for the top and bottom sheets only, while
shear forces on a cross=-gection are assumed to be a direct consequence
of equilibrium of the plate., Accordingly, the model is made up of two
layers of mass points and stress points, which are tied together by the
Kirchoff-Love assumption of normality and the assumption that the shear
core 1g incompresgible across the thickness of the plate, These assumpé
tions force the mass points to remain on a normal to the imaginary
middle surface and a constant distance h from it during deformation,

Therefore, -the locations of the mass poilnts after deformation.
are determined by the displacements of the middle surface, Stresses
are then determined from relative displacements of the mass points of

the top or bottom sheets,
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It should be noted that the mathematical model presented
herein is essentially the same as that presented by Ang and Lopez (4)
as well as Mohraz and Schnobrich (11). Their conceptual presentation
of the model was in terms of '"rigid bars" and "deformable nodes" whereas
the presentation described herein retains the ''mass point-stress point"
notation, The resulting mathematical models are identical in every way
except that normal loads are'applied somewhat differently here., In the
rigid bar = deformable node representation of Ang and Lopez, and Mohraz
and Schnobrich, the normal loads are applied at the nodes while tan-
gential loads are applied at the centers of the rigild bars, In the
present model, both normal and tangential loads are applied at the
centers of the rigid bars. Consistent with the Kirchoff-Love hypothesis
the vertical displacements of the middle surface are located at the
"gtress points' or "deformable nodes," Horizontal displacements are
defined at the 'mass points" or the center of the "rigid bars.'" Hori=-
zontal forces are applied to "mass points" or the center of the ''rigid
barsg." The internal stresses écmputed from the model are applied at

"gtress points" or '"modal points'" of the model,
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IV, DEVELOPMENT OF MODEL EQUATIONS

4,1 Equilibrium of a Mass Point

Fig. 7 is an r-z plane of the deformed model. The load at
mass point i is resolved into a normal force PN and a tangential force

P The internal forces, NR, MR, and Q which are evaluated at stress

TO
point i-1 act on mass point i. Similarly, the internal forces, NR, MR,
and Q which are evaluated at stress point i+l act on mass point i. The
internal forces MT and NT which are evaluated at stress point i (see

Fig. 6) also act on mass point i.

The summation of moments about i in the r-z plane yields

-0 Asé_l 5 w11 - 0y, AS§+1 RS vy,
*HR g . 8314 - MRy [ii%ill * U] (15)
+ T, [ +vuiﬂ - uiwl]} A8 = 0
and summation of forces in the direction r®* yields
-0pp sove ) (5 v 13- qp, sorey, tRR L
- NR, ) COS ¢, . [(i;l)k +u; 1+ NR, COS b, .
(16)

(i+1)A
[~~~ »+ Uppgd = NT; DA+ oug g = ug ]

AS,

+ P == [i\ + u, . + u,

T 2 i=1 1+l]}Ae

]
o



where

SIN ¢, _;

SIN ¢i+l

Cos ¢,
1=

cos ¢i+l

]

1]
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1
A - - . .
s s (A g = Wy = W * W)
1%3-1
Weal Ug 7 Wigq Y5p T Wog Uy Wi Yo
Wy Ugpq FWg g gt Wy o Ugay = Wy 5 Uy ]
L [A(w, W, - W. +w, .)
AQS S i+2 i i+l i=1
17i+1
Weao Y141 T Pipo Yiig T Wi Yiap TV Y5
Wiel Bieo P Mien Uit Wiy Uiep T Wiog Yyl
1 2
A A - B
5 [A° + <ui+l up gty uim2)
A°s.s.
1 i=1
Siel Y17 Ygan Mie2 T Mpma MY Vi1 Mioo
Wil W17 Yig1 Vioo i-1 "1 Wy g Myo)
1 2
- A A - u, o= ou,
s 5 [AT o+ Augp = uy +ug ) = uy y)
1°1+1
142 Y141 7 Mig2 Yie1 T U Yien T Vi
Wipn Wipl T Wigp Wiiq T Wy Wipq tWg W 5]
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R

) (17)

si-l and Si+l are found by replacing 1 with 1-1 and i+l,

respectively.

A = undeformed radial mesh length (Fig. 6)

The shear force Qi at any stress point i 1s obtained from the
equilibrium of normal forces of the plate from the center to i, The result-

ing equation is used to eliminate Qim and Qi+l from Eqs. (15) and (16).

1

Fig. 8 is a schematic representation of such a section of the model in
the r-z plane. The total vertical load on the plate is determined by

summing the vertical components of the loads PN(i) and PT(i) from the

center of the plate and is given by

) PN(k) + (w

B (i) = m]K [(h+u ) Prp(k)]

k41 %k=1 k+1 k-1

k=% =1, 3, 5cocove0oi if i is odd
(18)
k=05 25 beaosoaaol if i i3 even
k= .25, 2, booooood if i is even
Therefore, summing the forces in the z direction yields
Atu, . -u, We , o =W,
-, + -1 -
Pv(l_l) + Qi 1 1-1 =z Q (19)

Subgtituting Eq. (18) evaluated at i-1 into Eq. (19) and solving for Qs
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- S3 LR DOy mu ) P00+ Gy =i g) P(io)]

Q = : HOW D
i+l 1=1
W . = W, (20)
_ 1+l i=1 NR.
At b R P I

where the summation is carried to k = i-1 as in Eq. (18),

By eliminating the shear forces Qin and Qi+l from Eq. (15) by

1

using Eq, (19), the dquilibrium of moments becomes

AS; q (g =Wy (1-1)A

)
i=2
R (e Carrranrrae o e R R )
1 1e=2

AS, (w, . = w.) P
i+l 1+2 1° (i+1)A
* R ey P w7 (21)
1+2 1
(i=1)A (i+1)A
tURy ) ==y 1 = MRy [o=— g
+ MTi [A + Uspp = uiwl]
2
AS,
- i=1 (i=1)A
* Pv(l“2){tzn<in1)(k T ey e ui“l]}
i 1=2
As, .2
= . i+l (i+1)A _
FR T ey P wa =

and by eliminating Qi from Eq. (16), the equilibrium of in-plane forces

becomes
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We = W

~ i i-2 (i=1)A
- NRy {008 ¢y ) - SIN 6, ) v yl vyl
i 1=2
(Wn = W') 'y
1+2 i (i+1)A
+ MRy o {0C0S ¢, )+ SIN ¢, ] [S— * ug,, 1
i+2 1
= NT, (0 4wy = uy g) (22)

S,_, SIN ¢, .

i=1 [(i"l))\

+ -2 ey o w1
i i=2
v T(i+1)(A + Ugpn = Uy) 2 i+l”’
A Si, )
+ PT(l) 5 (id + Usoq - ui—l) =0

Eqs. (21) and (22) can be written in a more abbreviated form,

respectively, as follows:

) + (A YR, )+ (A, OUT,)

=1, }l)(MRiMl iml& 3 ,
(23)
¥ (Ai+l§ 9)(MRi+l) + <Ai+ls ll)(NRi+l) = Pil
and
(Bi“lg 3 (NR, _J) + (Bi’ g)(NT,) + (B4, 1) (NRg ) = P

(24)

where Ak 3 and Bk 3 are coefficients of the forces determined from the

k4 ]

equilibrium equations, Egs. (21) and (22), evaluated at point i. By

writing Eqs. (23) and (24) for all points of the plate, equilibrium can
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be expressed in matrix form as

R F = pP (25)

where F is a 4n vector of internal forces, F = [MRO, MTO’ NRO’ NTO’

MR,, MT,, NR , NT,,-==MR,, MT., NR,, NT,,---MR , MT , NR , NT_J, R is a

19

2n ® 4n matrix of coefficlents, and P is a 2n vector of external forces.

1* 1° 1

These correspond to the n discrete points along a radial line of the
plate. p is a scalar which is a measure of the load on the plate,

while P determines the shape of the load distribution.

4,2 Force-Stress Relations

The internal forces MRi’ MTi’ NRi’ and NTi are derived from
. . t,, b,. Ct,. b,. .

considering the stresses 7 (l)'»df (i), % (1), T, (i) acting over the
thickness of the top and bottom sheets. Ort(i) is the radial stress in
the top sheet at stress point 1 and acts over a thickness of t. orb(i)
igs the radial stress in the bottom sheet at gtress point i1 and acts

, t, . b, . .
over a thickness of t, 9, (i) and o, (1) are the tangential stresses,

The center of the top and bottom sheets are located at a distance h

from the middle surface, Therefore,

MR, = [0 “(1) - crbcm th
ur, = [0, (1) = o °(D)] th
(26)
NR, = [0 T(i) + 0 P(i)7 t
1 v r
NT, = [O;Ct(i) + c;cbun t
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o ) f -t
The internal stresses are arranged as a Un vector, or ¢ = [Ur (0),

b t b t b t, b oty b, .
g, (0), oy (0), o (0)y 0,7 (1) 0, (1), o (1), oy (1)y===0,, (1), 0 (1),

t,. b,. t b t b :
o (1), o, (1),~—-or (n), 0.7 (n), o (n), o (n)]. The in stress vector,
¢ can be transformed into the u4n force fector, F by a i4n x U4n trans-

formation matrix, T, or
To=F (27)

T is composed of n identical 4 x 4 submatrices along the main diagonal,
or

[th - th o 0
0 0 th - th

t t 0 0

)
o
o+
ct

(28)

o
[}
+
ot

4,3 Stress-Strain Relations

Hooke's law as given by Eq. (9) is used for all stress points
that are in the elastic state of stress. For all stress points that
undergo plastic flow, Eq. (1l1l) is used to represent the stress=strain

relationship. Since the plastic stress-strain relation is expressed in
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rate form, only an instantaneous relationship between stress rate and
strain rate can be found from Eq. (11). For a small change in load on
the piate, the plastic stress rate-strain rate relation can be con-
sidered linear. Expressing these in incremental form (4), Eq. (9)

becomes

_E
A = e [Asr + uAetJ

r l—u2
AG. = et [Ae. + pbe. ]
t 2 t r
1l-u

or, taking into consideration the discrete nature of the formulation,

at a stress point i,

it

—2175 [Asrt(i) + uAstt(i)]

Ao (1)
v 1-u

Adr (i) —5—5 [Asrb<i5 +'uA££b(i§]
l-u

(29)

_E_Q. [Aett(i) + uAert(i)]
1=

>
Q
N
e
A
i

E ot b,.
+ 1:55 [Aet (1) + UAEP (1)]

>
Q
>
e
s
]

Similarly, the plastic stress-strain equations become



Ao T(iy = £ [b.2 be T(i) - ab, he T(i)]
a?+p%4+omap, ¢ T Tt ot
t t P
bo Piy = £ [b, 2 be (i) - a b, As P(i)]
a2+ b 2+ 2uab b r bt
b b 5y
Ao t(i)= E [agAe t(i)—ab Ae t(i)]
t 2% 4+ b.%+ 2uab t t te r
t t 0t
ba P(1) = E [a 2 8¢ P(1) = ab, A P(1)]
t 5 5 b ot b°p o
ab + bb + 2uabbb
where,
=t -t,,
a, = 20r (i) = e (1)
—b,, —b,.
a, = 20r (i) - o, (i)
=t —-t,.
b, = 20, (i) = o, (1)
-b,, ~b,,
by = 20, (1) = 7, (1)

and the barred quantities are obtained from

af

)

T
‘ (O’r + -’5—')

Acr
@k(c’r‘f‘—ﬂ?—!)

Ao 4
r
/‘01«*"‘2“)

Ao Ao Ao
r t t
- (o o + ) * (o =)

Aoy
Bk Loy + =)

Z

Ao Ac Ao
. r t t
- (o + o + )+ (o )

which are derived in Appendix A, Sect. A.2,

Z

29

(30)
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It can be seen that Eqs. (29) and (30) can be expressed in

the following form,

po (i) = ¢ pe F(1) + Cl, Astt(i)
do P(1) = ¢,y be P(3) + Cyy, e (1)
Actt(i) = C g Be T(1) + Cyp e (1)
Actb(i) = ¢y, e, 0(0) c;2 de (1)

where the coefficilents Cij are determined from Eq. (29) or (30) depend-
ing on whether a stress point is elastic or plastic, respectively.
Therefore, the un vector of incremental stresses, Ao, is related to

the un vector of incremental strains, Ae, by the matrix equation,
Ac = Cehe (31)

where C is a 4n X Un matrix which is made up of coefficients from

Eq. (29) or (30).

4,4 Strain-Displacement Relations

Strain is defined by Eq. (13a). Fig. 9 shows two mass points,
i=1 and i+1l, connected by the stress point i1 in the top sheet of the
plate before and after deformation. Initially the two mass points i-1
and i+l are a distance X apart, but after deformation they are separated

by a distance,
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t t 2 t t |2
- A -
// (wi+l Wi—l) + (X + Ul ui—l)

From Eq. (13a),

t 2 \ £ 2
P 1 (wi+l - W l) + (A + Uy - ui—l)
e (1) ==L[ - 1]
r 2 AQ
or, simplifying,
ut ut 2 2
t,, _ i+l " Ti-1 1 t t t t
e (1) P Y [Cugyy mugy) * Gy =wy )
(32a)
Similarly,
ub ub 2 2
b,,, _ i+l = “i-1 1 b b b b
fp (1) = X P Ll - Gy )
(32b)
2
. 20" 20w )
e, (1) = ==py=t =5y (32¢)
17 A
2
b 2 uib 2(uib)
€. (i) = ) + lz AQ (324d)

The displacements uit9 wit of the top sheet and uib, wib of
the bottom sheet are‘related to the displacements Uss We of the middle
surface as required by the Kirchoff-Love hypothesis of normality.

Fig., 10 shows this graphically. The displacements uit and wiJc are

determined from the displacement Usy W by proceeding a distance h from
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the middle surface in a direction perpendicular to an imaginary line
drawn through the points i-1 and i+l on the middle surface., The result

of this geometric construction is:

h (w - W, .)

u.t =u, il il (33a)
* - 2 u ) D)
<-—=—T—=m-l*l ) (1 2T
h (w, - We o)
wP =y, - il -l (33b)

2 4 - u 2
1 l) + (1 + i+l 1ml)

h (A + u. 41 " ui=l)

/// i+l
1 1 ) N N 5
/// i+l "

+ h (33c)

h (A + ui+l = ui"l)

2 u 2
i+l; l“l)

-~ h (33d)

e Arl Ity 41+

The strain at stress points in the top and bottom sheets can
be expressed as a function of the displacements of the middle surface by

substituting Eq., (33) (which is evaluated at i-=1, i, and i+l) into

Eq. (32), The resulting strain-~displacement equations then become
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(1)

1]
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Uiel ~ Yia1 . b [wi+2 i M7 Wl~2]
) A AS. AS,
1+l i=1
1l 2 2
32 CCugpg =y )7 % Gy =wy )
W, w W, = W
+2 1 1 =2
2h [(u, u, (== )
i+l 17, =
(34a)
. . )(A + ui+2 - U A+ u, = u _2)]
i+l i-1 ASl+l AS.ul
W - W, W, = W, 2
h2 [( 1+2 i1 1«2)
AS. AS
i+1 i-1
2
(A + ui+2 ul A+ ui o ul_2) ]
A81+l Xslul
Yiel ~ Yio1 _h [wi+2 Wi _ Wi - W1—2]
A A Asi+ll ASl_l
1 2 2
;;5 [(ul+l ul_l) + (wl+l - wl_l) ]
W, W W, = W
+2 i 1 =2
oh [(u, . - u, _)(= - )
i+l i=1 A8i+l ASl“l
(34b)
v )(A Py T U Mty - “i
i+l i=1 Xsi+l lsiﬁl
W, - W, W, = W, 2
h2 [( i+2 i1 1~2)
AS, ER
i+l 1i-1
_ _ 2
(A + ui+2 ui } A+ ui uin) ]
AS, S

i+l i-1
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. W e
t,o.y o 2 2h irl i-1 2 2 Lh
e (1) = 7pu; * T X =% teem Yy Tt Y
1 i7A it
2 (3kc)
y Wit T Vil , 2h (Wipq = Wioq)
ASy 1222 22 s,
1
ebgy =2y _2n, M T i o 2 _un
RS W] 1A AS ,2.2 1 2.2 i
1A 17X
) (3u4d)
y Wit1 T Wi , _2h (Wipp = Wi q)
28 2.2 2 512

Z 2
W = W, U. = U,
where S, = /(ﬂiT—&;i) + (1 + il T lml) , and

S, and Si+

io1 are the same as Si except 1 1s replaced by i-1 and i+l,

1

respectively,

4,5 An Incremental Form of the Field Equations of the Model

It was pointed out in Sect., 2.7 that the stress-strain
equations must be in incremental form because of the use of the incre=
mental theory of plasticity. Therefore, the remainder of the field
equations are converted to an incremental form., The form of the equa=-
tions developed in this section provides an efficient means for their
numerical solufiono

The technique described in Chapter V takes advantage of the
incremental form to find solutions for the equations which are non=
linear becausé of changes in geometrye. This technique is efficient in

the elastic range of behavior because it is not restricted to small
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increments of loading.

A simplification is necessary for the treatment of the term
Sio It represents the ratio of elongation or shortening of the middle
surface to the original (unloaded) dimensions within one mesh length of
‘the model, Its primary effect is in those terms which produce bending
stresses., Since bending stresses become less important with larger
deformations, it 1s assumed that ASi has negligible effect for a small
increment of loading, This assumption is supported in Sect, 7.5 where
solutions are shown to be practically independent of load increment in
the elastic range.

The incremental form of the strain displacement equations at

a point 1 can be expregsed as
Ae, = D, AX, (33)
i i1

where Asi is the vector of strains, [Aert(i)9 Asrb(i)9 Aett(i)9 Aatb(i)],

AXi is the vector of displacements, [Agi_Q, Awi_29 Aui~l° Awi«lm_"AWi+23”
and Di is the matrix,
Fill dipd1g === -=--~-- dlglO
41 ) |
Di = N ‘
31 ' ,
T B duglq_




where:

1,10

and dzl through
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oh%s,  hAs,
1 i
e (=t —)
i=1 A A
2 2
1 , 2hog 2nB, 2h I, hoAT
Syl Al el wal e s e
i1 A AC A
ai Aai 2hI‘i 2hAFi
- (5t = + + )
'X )2 2)\2 X X

C (= — - - )
>\2 2)\2 A A
1 1
- d., S, ., (g=+ )
11 "i-1 Si+l Si—l
1 1
-d., S, , (g=—t =)
12 "i-1 Si+l Si~l
- 413
- dyy
i-1
d
S
5i-1
= de b4
i+l
d2,lo are the same as dll through dl,lO’ respectively,
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when h is replaced with -=h.

d31 =0
d32 =0
dgg = 0
2h L4h 2h2
d,, = - L + U, + ==———— (28, + AB.)]
3t i?s, 4%, t iRt 2 *
i i i

_ 2 L L2 4h

dgs = r* T Wt Tz Myt oo (B + 46y)
i%A i7A i7A Si
d36 =0
d37 =0
dgg * = day
dag = O
dg,10 = ©
and, du,l through du,lo are the same as ds,l through d3,1o’ respectively,

when h is replaced with =h.
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i i+l i=1
Si = Wi+l - Wlml
. Mivg T VWi Wi T Moo
* 141 Si-1
- U, A . = U,
. A+ Us o u, ) +ou, U 5
t irl Sia1

and,

Ao, = Au, - Au,

AB, = bw, . - Aw,

i+l i-1
= A Aw, - Aw.
AT. = Awi+2 w _ W : W1~2
* Si1 Si-1
- Au. My, = .
AS. = éui+2 Y _ Ui ,Au1n2
i~ S g

i+l 1-1

Now, by applying Eq.. (33) to all points of the plate the strain disg=

placement equations can be summarized in the matrix équation,
Ae = D AX (3u)

where Ae 1g the 4n vector of strains, AX is the 2n vector of displace=
ments aﬁd D is the 4n x 2n matrix obtained by the suitable assemblage
of fhe submatrices D:o

The matrix T in Eq. (27) is composed of constant terms,

Therefore, Eq. (27) can be expressed in incremental form directly as
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AF = T Ac (35)

The equilibrium equation, Eq. (25), is an assemblage of the
displacement variables and cannot be converted directly to an incre=
mental form as was done for the other equations., The following form of
the equations makes use of the incremental approach, but in a somewhat
different form.

A change in loading, say Ap i1s accompanied by a change in the
matrix R, AR, a éhange in the Véctor F, AF, and a change in P, AP, such

that the resulting equilibrium equation becomes
(R + AR)(F + AF) = (p + Ap)(P + AP)
Rearranging terms, this eduation becomes

(R + AR) AF = Ap (P + AP) + tp(P + AP)=(R + AR)F]
(36)
The term AF represents the change in internal forces
corresponding‘to an increment of load, AP, As plastic straining in-
creases, AF becomes smaller.  Additional load carrying capacity of the
plate then becomes more a function ofvthe changing shape of the plate,
This would cause the left hand side of Eq, (36) to become a null vector,

The ideal form of Eq. (36) would be

(R + AR) AF + ARF = Ap(P + AP) + pAP
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However, the incremental displacement, AX cannot be factored from AR,
and also AP cannot be computed directly., This difficulty can be over-
‘come by augmenting Eq. (36) with an approximate expression for ARF which
is denoted by ARF. The approximate forﬁ is found by assuming that the
only significant change in shape of the plate is a result of vertical
displacements. In this way, the incremental displacements can be
factored from the expression ARF, The particular expressions retained
in this elemenf are found in the coefficients of the membrane forces in
Eq. (21). = The predominant change can be seen to be roughly propor-
tional to the finite difference expression for the slope of the de=

flected plate, Eqg, (36) becomes

(R + AR)AF + 1ARF = Ap(P + AP) + [p(P + AP) = (R + AR)F] + ZRF

(36a)

"qu (36a) is obtained by adding ARF to both sides of Eq, (36), On the
right hand side of the equation, ARF is a vector of constants,
Now, if Eqs. (35), (31), and (34) are substituted in Eq. (36a)

— ‘ a
and the remainder of ARF after factoring out AX is denoted by ARF, then

[(R + AR) TCD + ARE] AX = Ap(P + AP)

. (37)
+ [p(P + AP) - (R + AR) F1 + ARF AX

Equation (37) represents a system of 2n simultaneous non-
linear equations expressed in terms of the unknowns, AX corresponding
to an increment of load, Ap. A vector AX satisfying these equations

‘constitutes a gsolution to the problem,
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4,6 Boundary Conditions

Boundary conditions are defined by prescribing appropriate
geometric or stress conditions of mass points or stress points on a
boundary. These may be described as follows:

The term fixed edge is used to describe the boundary condi-
tion in which the vertical displacement at the edge is zero and the
slope of a tangent plane to the middle surface of the plate at the
edge is also zero., For the case of a mass point n on the boundary,
these conditions are given respectively by w, o= 0 and Wop W

For the case of a stress point n on the boundary, wo_q® 0 and

W = 0, prescribe the same conditions of zero displacement and zero

n+l

slope.

The term simple support is used to describe an edge that is

free to rotate but restralned from vertical displacement. For the

case of a masg point n on the boundary, these requirements are given by
W, F 0 and MRn = 0, respectively, For the case of a stress point at n,
continuity of a model element is provided by Wt Woep © 0 which also
approximates the condition of zero displacement. The equilibrium equa-
tion at n is written for a half-mass at n., The tangential stresses act

over 1/2 mesh length and the radial moment at n+l is set to zero.

The term restrained edge refers to a boundary in which no

horizontal motion at the edge is allowed. It is prescribed by u, =0

for a mass point on the bound = k i
D ary and uog + Ul 0 for a stress point

on the boundary. Conversely, the term unrestrained edge refers to an

edge which is free to move horizontally. This is prescribed by setting
NRn = 0 for the case of a stress point on the boundary, and by neg-

lecting the effect of all membrane forces outside the boundary when
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determining in-plane equilibrium of a mass point on the boundary.
Special conditions are required at the center of the plate
because an apparent singularity exists as the radius of the plate tends

+u ., =0, W ., =w,. =0,

to zero, Rotational gymmetry requires u, =0, u -1 +1

1 1

and w_, - W, = 0. The equations that have vanishing denominators are
expressions for internal forces at the center. The internal forces at
the center of the plate are evaluated by taking the limit of their equa-
tions as the. radius approaches zero, In the limit, the radial strain is
equal to the tangential strain since a homogeneous state of strain

exlsts at the center. Therefore, the expressions for tangential strain

can be replaced by those for radial strain at the center, giving,

E(L + u) Aet

t - t _
Aqt(O) = Aor(o) = > Er(o)
l -1
and, Aob(o) = Acb(o) =By Asb(o)
r t 1 - u2

where Asﬁ(o) and Aai(o) do not contain r.
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V. METHOD OF SOLUTION

5,1 Reduction of Incremental Equations to a Linear Form

The matrix equation, Eq. (37), when augmented by appropriate
boundary conditions expresses the relation between the vector of incre=
mental displacements, AX, and the vector of incremental loads, Ap. The
coefficient matrices in Eq. (37) are cdmputed priof to the addition of
the load increment. Given a set of incremental loads, Ap, the solution
is assumed to be the set of incremental displacements which satisfy

these equations. Now, let

(R + AR) TCD + ARF

F(AX)

E(AX)

p(P 4 AP) = (R + AR) F

If X is zero, it can be seen that E(AX) = 0, since AP and AR would be

zero and

pP = RF = 0

P + AP and R + AR are the coefficients of the equation of equilibrium

in the deformed position X + AX, and F and P are the internal, and
external forces in the deformed position X. Therefore E(AX) is the
residual when the "old" forces, T and P, are substituted in the '"new"
equations., In fact, if Ap =0, E(AX) is exactly the residual associated
with a given solution to the equatiéns; In other words, if a set of
displacements X ére in error by AX, then E(AX) is the residual force in

the equations of equilibrium,
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The equations may then be written in the form
F(AX) AX = Ap(P + Ap) + E(AX) + ARF AX (38)
y
If a value for AX is substituted in F(AX), (P + AP), E(AX), and ARF AX,
the result is a set of simultaneous linear equations in AX, If the

correct value of AX is used, the equations are satisfied and AX is the

incremental solution vector,

5.2 Solution of the Simultaneous Equations

The solution of Eq., (38) is obtained for an initial load
increment vector, Ap, by setting X to zero in the terms F(AX), (P + AP),.
E(AX), and AEF AX, The result is a set of simultaneous linear equations
in AX, These equations are solved by Gauss elimination for a first

trial value, AX Next, AXl is used in the calculation of the terms

l'
"

F(AX), (P + AP), E(AX), and ARF AX to obtain another set of linear

simultaneous equations which are solved by Gauss elimination for a second

trial value, AX2° This is continued until two successive trial values

AX AXi agree within a small tolerance. Then, AXi is assumed to be

i-1°
the solution of Eq. (38) for the first load increment, Aplo

A solution to the problem now exists for the load level,
D = Apl, and the complete set of corresponding internal forqes9 external
forces, and displacements are known. Therefore, the equations can be
set up for the next load increménts Ap25 These equations are solved by

the same recursive technique described above, Additional load incre-

ments are applied until the desired load level is attained.
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The aforementioned procedure is graphically depicted in Fig, 11
which is a plot of the relation between one of the elements in the dis-
placement vector X and the load parameter, p. Setting the element of
AXl to zero for the first iteration will result in a solution correspond-
ing to the linear elastic solution to the same problem, yielding point a
in Fig, 11, When this value 1s used in the second iteration, a solution
is obtained along line b=-o which is designated as c. Now, when the
value at ¢ i1s used in the third iteration, a solution at e 1s obtained,
This is continued and?Points e, g, 1, etc,, are obtained., When two
successive trials are sufficiently close to one another, the last value
1s taken to be the soJ:utiono Path o'a'b'c'd'e'f' depicts a subsequent
load increment where Spposite curvature is encountered, Note that the
first trial always foilows a path tangent to the curve o=z, Convergence
of this iterative sch;me appears to b§ assured, The following observa-
tions can be made concerning the magnitude of Ap:

1. From a computational éxperiment9 it waé determined that

the effect of Ap on the parameter S + AS is insignificant,

2, The efficiency gf solviﬁg a problem depends on the magni=

tude of Ap, if Ap 1is small; the solution must be incre-
mented many times, but convergence for each load increment
is rapid. Conversely, 1f Ap is large, fewer increments
are needed, but convergence is slow. It was found that

in the glastic range, very large increments are most
efficient, There does seem to be a limit, however, when
successive values of X turn out fo be several orders of

magnltude apart.



46

3., If a very large number of inqrements are used, roundoff
errors may be introduced, Thié was determined to be
relatively insignificant due to the automatic correction

. inherent in the solution. The term E(AX), which is the
residual of the equations corresponding to AX = 0, serves
to correct the solution as the procedure progresses,

4, The only important restriction on p is during plastic
flow, If Ap is too large, the vield criterion, Eq. (10),
will be violated, In fact, Ap must be adjusted to a
value which will result in a stress relation which meets

o)

the yield criterion within a small tolerance, (say, 1% of

J In addition, during plastic flow, Ap must be rela-

2o
tively small in order to insure that the assumption out-
lined in Sect. 2,5 is wvalid,

5. The magnitude of Ap may also be limited by certain
stability requirements of the nonlinear equations, This
was observed at latter stages of loading where the solution

process appears to be more sensitive to the magnitude of

AP,

5,3 Segaration

A phenomenon which will be called separation occurs in the
problem sclution as formulated thus far. Separation can best be ex-
plained in reference to the solution of a linear elastic problem with
the model, For the sake of brevity and clearness of explanation, let

the formulation of the problem be designated as
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FX = P (39)

where F is the stiffness matrix for the model, X is the displacement
vector and P is the load vector., If only the odd numbered terms in X
are taken, the odd values are represented and if only the even numbered
terms in X are taken, the even values are represented, These two sets
will hereinafter be referred to as the "odd string" and "even string.”

It can be shown (12) that the solution of Eq. (39) breaks
down into two parts. When the terms in F and P corresponding to the
odd string only are retained, the solution will be exactly the same as
when all the terms are retained., The same effect occurs when the terms
corresponding to the even string are retained. Therefore, the two
solutions are independent,

For linear elastic problems, there is no disadvantage asso-
clated with separation and it disappears with decreasing mesh size,
Also, the two strings appear to bound the true solution of the problem
for any mesh size and in this sense it is an advantage.

The fact that the two strings are not identical is caused by
the application of inconsistent boundary conditions, For example, the
boundary condition associated with the odd string may correspond to
that for a stress point on the boundary, while the boundary condition
assoclated with the even string would correspond to a mass point on the
boundary, or vice versa, Cbnsequently9 the solutions of the two strings
will in&ariably no% agree,

In the large deflection problem and in the elastic=plastic
problem, the tWo strings are weakly coupled. However, separation still

occurs as evidenced by an examination of the solutions, but in these
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cases the equations cannot be broken apart., In fact, the equations are
coupled by ''second order" terms, In the case of large deflections
these terms are always of a stiffening nature and in the case of plas-
ticity they are always of a weakenlng nature,

A typical plot of the solution for the large deflection
elastic problem is shown in Fig., 12, Line o-a represents the solution

" for Xl and line o-b represents the solution for qu The even sgtring as
characterized by o=b can be thought of as being stiffer than the odd
string characterized by o=a, As was mentioned, the elements in K which
tie the two strings together tend to make K gtiffer by an amount
related to the magnitude of X, In other words, the greater X is, the
stiffer K will be, In addition, the stiffening of the odd string is
due to the coupling with the even string and vice versa., The true
solution appears to be between lines o-a and o-b; therefore, the values
of the weaker string are too large and the values of the stiffer string
are too small., As the load increases, fhe stiffer string tends to
become stiffer., Conversely, the weaker string becomes weaker, This
is evidenced by the eventual divergence of the two strings.,

The opposite effect was observed when an elastic-plastic
problem was solved., Lopez (12) circumvented this problem by a clever
arrangement of mass points and stress pointévon the boundary of a square
plate., In this case, it is pessible to arrange the even and odd strings
in an asymmetrical fashion such that the boundary conditions at one edge
for one string is compensated by the 5oundary condition at the other
edge., However, this iIs not possible for a circular plate or for a plate

of general shape.
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When separation becomes severe, as in the case of the diverging
strings shown in Fig, 12, the condition of continuocus displacements that
is assumed in the derivation of the strain displacement functions is
severely violated, The viclation of this conditlon suggests that the
problem of separation may be resolved by the addition of a continuity

requirement between the displacements of the two strings.

5.4 Continuity of Displacements

- Since the two strings are tied together loosely with second
order terms, each string contains the primary terms in the equation
describing a problem., It is suggested that only one string be used in
the formulatlon of the equations; this leaves the displacements of the
other string undefined, The displacements of the second string can be
related to those of the first string by imposing a continuity require-
- ment, The necessary continulty equations are derived by forcing the
second string to assume displacements which will cause the model to
deform contiﬁuouslyo

For the purpose of explanation, let the odd string be used
for the basic formulation of the problem, This leaves the even string
undefined, Let Xinghere i is even, be defined by passing a cubic
X,

X X, as in Fig, 13, The result ylelds

curve through Xia35 319 23410 “343
X, = -£=[=x + 9 X + 9 X - X.. .1 (40)
i 16 7 1 1

i=3 i=1 1+1 1+3

By applying Eq, (40) to all even numbered points, a complete

set of displacements for the second string 1s obtained, The model,
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therefore, 1s forced to deform smoothly., The basic characteristics of
the model are retained; ’chat‘iss the equations remaln a finite difference
analogue of the governing differential equation, are still physically
meaningful, and can be derived through elementary principles of mechanics
and basic material equations,

Finite difference operators are derived by applying a Taylor's
expansion about a point of the displacement function. The resulting
power series 1s truncated so as to retain all terms within an accuracy
of O(RQ)Q The continuity equation, Eq., (40), can be derived from the
game power seriles about the point Xi by retaining all terms within an
accuracy of O(Au)o

It should be noted that a straight line function could be used
in place of the cubic displacement function, but it was found that the
cubic function gives answers slightly better and with very little addi-
tional effort, The straight line equation is equivalent to a truncation
of the power series for the displacement function with an accuracy of

0(x%),
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VI, COMPUTER PROGRAMS

6.1 Objectives of the Computer Programing

A computer program was written for the IBM 7094 computing
system, It was designed to accomplish the following:

l. Efficiency of computations,

2, Restriction to immediate access storage,

3. Minimum input,

4, Flexibility for solving a wide variety of problems.

5, Maximum utilization of output features and simplicity of

output format,

6. Automatic adjustment of load increments with provision

for manual adjustments through input.

Efficiency of computations was achieved through the elimina-
tion of all unnecessary computations. All of the matrices presented in
Chapter IV are banded or in other words have zero elements everywhere
except near the main diagonelo Only the elements inside the band of
each matrix are generated and manipulated during matrix operations., An
extremely efficient simultaneous equation solver was used, This routine
was developed by John W. Melin of the Department of Civil Engineering
at the University of Illinois., It uses Gauss elimination to solve a
set of simultaneous equations that are characterized by a banded coeffi-
clent matrix., Storage requirements are limited to that for the elements
of the band above the main diagonal after elimination, the solution
vector, a list equal in length to the number of equations, and a vector

of sufficient length to store the non=-zero elements of one equation
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(that is, the elements of one row of the coefficient matrix that lie
within the band). |
Immediate access storage on the IBM 7094 consists of approxi=
mately 32,000 locations., The storage required for this program is
roughly proportional to the number of mass points or stfess points used
to discretize the continuumob The available storage was sufficient to
prescribe 120 mass points and stress points along'the radius of the
‘plate., This represents an extremely "fine" mesh and is deemed suffi-
clent for all practical problems. For the solution to a linear elastic
problem (the first iterate of the large deflection solution), this mesh
gize will produce answers which are in error by less than ,1% of the
corresponding exact procedures. The degree of accuracy is approximately
inversely proportional to the square of the number of mesh points,
Input to the program consists of:
1., Number of mesh points
2., Number of load increments
3, Maximum number of iterations to be allowed within each
load increment
4, The thickness to span ratié of the plate (%0
5. Poisson's ratio
6. The tolerance on successive iterations
7. The initial load and the load increment
8, Control information which causes more or less information
to be output by the program. For example, solution
vectors after each iteration and the coefficient matrix

generated prior to the solution of the simultaneous
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equations can be output.
9. The yield limit’in simple shear expressed as a fraction
of Young's modulus
10, A tolerance on yielding expressed as a fraction of J2
11. A flag which designates the controlling '"'string," and a
flag which denotes whether the problem is starting or
whether it is a confinuation of a previous run, If it is
a continuation, additional input is needed to describe the
load, displacement, and force configuration of the pre-
vious run., This is supplied as output at the end of each
computer run.
The amount of inpdt is the minimum required for the degree of
flexibility desired. In addition to the listed input, a subroutine
must be written to describe the desired loading configuration, The load
can be specified as a function of the displacements as well as any shape
corresponding to the mesh size of the model,
Output varies according to that designated by the input, but
it essentially consists of the load, the yleld table, horizontal and
vertical’displacementsg-and stresses at each point of the mesh for each
increment of loading. In addition, the stresses can be output as plotted
curves on 35 mm film from the Cathode Ray Tube plotter attachment for the
IBM 7094,
- Load increments are designated as input. However, during
plastic flow, they must be adjusted so as to not "overshoot" the yield
criterion., These adjustments are carried out automatically by an

interpolation scheme.,
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6,2 Description of the Computer Program

Fig, 14 is a flow diagram of the computer program. The
solution begins by incrementing the load and setting the incremental
displacements to zero, Then, the equilibrium equations are generated
and solved for a new value of the incremental displacements, In general,
these do not agree with the old values and are then used to generate a
new set of equilibrium equations. The equations are solved recursively
‘until two successive iterates agree within a small specified tolerance,
The total displacements and stresses are then computed,

The stresses are examined to determine if any new yielding or
unloading has occurred,. If a point has values of stresses that are
inadmissible on the baslis of the yield criterion, the incremental load
is reduced by an interpolation process and the above procedure is
repeated for the new value of incremental load. If the yield criterion
is not violated, the yield table i1s adjusted to reflect new yielding or
unloading. Then, the total stresses at all plastic nodes are corrected
because, in general, they will lie outside of the admissible region
defined by the vyield condition.

Additional load increments are applied and the procedure is
repeated. When the last load increment has been added, the program
terminates and outputs information which is necessary to continue the

problem from that stage at a later time if desired,
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VII., SAMPLE PROBLEMS

7,1 Clamped Plate Loaded with a Uniform Pressure

Fig. 15 contains a graph of load versus deflection reproduced
from a report by E. T, Onat and R. M, Haythornthwaite (l3)°v A 1/4 inch
thick circular plate, 10 inches in diameter and made of mild steel was
tested under a uniform pressure. The test was conducted to about three
plate thicknesses. The test results clearly show the importance of
membrane effects on the behavior and ultimate load carrying capacity of
the plate, In addition, the upper bound load predicted (14) on the
basis of the small deflection assuﬁption as shown in Fig, 15 is much
teoo low.

Fig, 15 also contains a graph of load versus deflection from
the present calculation., The parameters used in the calculations were
adjusted to simulate the aforementioned plate., In order to make the
sandwich plate behave as a sollid plate, the cross-sectional areas and
the flexural rigidities of the sandwich plate are taken equal to those
of the solid plate. Poisson's ratio was taken to be .28 and Young's
modulus was set at 30,000,000 psij while the tensile yield strength was
agsumed to be 33,000 psi. The mesh size, A, was taken to be 1/25 of
the radius, This resulted in 100 equations plus the boundary conditions,

Throughout the elastic range, the behavior of the sandwich
plate is similar to that of the solid plate, However, a difference
occurs in the plastic range of behavior when the primary resisting
forces are flexural, This is because the stresses in the solid plate

vary over the thickness whereas those of the sandwich plate are
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conéentrated at the two outer sheets. Because of this, the equivalent
sandwich plate yields at a much higher load. After yilelding, the sand-
wich plate becomes more flexible in bending than the solid plate because
it is equivalent to a plate yielded all through the crogs-section,
whereas the solid plate yields only part of the way, At large plastic
deflections, the behavior of the sclid plate and sandwich plate are very
much alike since at large deflections the membrane effect, which is
influenced mostly by the cross-sectional areas of the plates, 1s most
significant.

From Fig. 15 it can be seen that a reaéonably close agreement
is achieved throughout the entire range of the test results, The
straing at a deflection of two plate thicknesses are large enough for
strain-hardening to become a factor in the test of the real plate.
Consequently, the real pléte stiffens beyond this point, while in the
calculation the material is elastic-perfectly plastic and thus a
softening effect ig indicated beyond this point., The computations pro-

ceeded smoothly with a uniform load increment of
aH
2= o009
until a load level of approximately

Sui’I:L].
Eh

At that point, it was observed that a reduction in the lcad increment

was necessary, This may be attributed to the existence of a stability
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requirement. Accordingly, the load increments were reduced to
L. 003
and calculations continued up to a total load of

-SE-Z- = 5,26
Eh

Fig. 16 shows the distributions of the radial stress in the
top sheet of the plate at different load levels, Initially, the
stresses in the central regions of the plate are compressive, Aé
deflections increase, the character of the plate changes from flexure
to membrane and the stresses in the plate become primarily tensile,
Because of perfect plasticity, the stresses over a major portion of
the plate approach a nearly uniform level at the higher loads,

Fig. 17 shows the corresponding distribution of the radial
stresses in the bottom sheet of the plate., The tensile region of the
plate grows with increasing load and becomes nearly constant over most
of the plate after large plastic deformation.

Fig. 18 iz a graph of the radial distribution of the tangen-
tlal stresses in the top sheet. Initlally, the stresses are primarily
compressi&égi As a consequenée of plastic flow and large deflection,
the stregses approach a constant fensile value over ébout 75% of the
ceﬁtral porfi&n ofkthe'piateo Because of the Kirchoff-Love assumptio-h9
a point on‘thé top”surface of the plate must move toward the center

even at very large deflection., Therefore, the tangential stregses must
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be: compressive near the boundary. This region is seen to decrease with
increasing loads. The distribution of the same stress in the bottom
sheet is shown in Fig, 19, It also approaches a constant tensile value
over most of the platg0 The unusual pattern near the boundary is again
due to the imposition of the Kirchoff-Love requirement.,

The heavy lines in Figs, 16 to 19 denote the plastic region
of the plate.

The profile of the vertical displacements is shown in Fig., 20,
In the elastic range, the slope of the curve 1s horizontal at the fixed
boundary., However, when ylelding occurs at the boundary, the support
then acts as a hinge., The shape of the deflected surface at a load

level of

is almost spherical for most of the central portion of the plate., The
corresponding profile for the horizontal displacements of the middie
surfaéé is shown in Fig. 21,

The curves in Figs. 16 through 19 are the results for the
odd numbered mesh points. The stresses at the odd numbered mesh points
satisfy the equilibrium equations at all levels of load, The stresses
at the even numbéred points are merely computed from the interpolated
displacements and consequently may not satisfy equilibrium,

The behavior of an elastic-perfectly plastic plate restrained
from inward movement at the edge under uniform pressure can be charac-

terized as follows., The state of stress is approximately constant over
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70% of the radius when large plastic flow has occurred; at the latter
stage of deformation, the shape of the deflected surface tends to a
gpherical surface, A spherical state of stress begins at the center
and propagates toward the edge with-increasing load, It may be deduced
that the ultimate load (pressure) carrying capacity of a circular plate
would correspond approximately to the pressure inside a sphere of the
same radius, producing the same state of stress, This ultimate load
and resulting shape cannot be obtalned with the technique presented
herein because of the computational difficulties near the boundary,

It should be noted that the Kirchoff=Love assumption of
normality is inappropriate near the clamped edge boundary after large
rotation occurs at‘the plastic hinge. A more appfopriate boundary con=
dition would take into account the variation of stress through the

thickness of the plate and shear deformations,

7.2 Simply Supported Plate Unrestrained at the Edge with a Concentrated

Load at the Center

Fig, 22 contains a graph of load versus central deflection -
(curve A) from a report by R, M, Cooper and BQ’Ao Shifrin (8), It”
represents the results from a test of a circular plate ,104 inch thick
and 17,3125 inches in diameter. The piate is éf mild steel and was
loaded through a loading rod of 0,6 inch diameter located at the center
“of the plate. It was éupported on a l7=inch diameter ring.

A problem simulating the above test was considered in the
analysis. The results of this analysis are also shown in Fig, 22, The

boundary was assumed to be simply supported with unrestralned in=plane
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motion'at the edge. The loading was assumed to consist of a uniform
pressure applied over a circular area of radius .34625 inch., The
diameter of the plate was taken to be 17,3125 inches and the thickness,
0,104 inch, Poisson's ratio is .28 and Young's modulus is 30,000,000
psl., The tensile yield strength is 37,000 psi, All of these material
constants are taken to be the same as those of the test specimen,

At first glance, there appears to be some disagreement over
the range of loading. This difference is attributable to two causes.

l. The test was started after an initial load was placed on

the plate to bring it level with its support,

2, Strain-hardening occurred in the region of the plate

directly under the central load.

An analysis was made te determine the effect of an initial
load on the test results, Within the early elastic range of behavior
it was assumed that the test should compare favorably with an elastic
analysis. Accordingly, an initial load of 124 1lbs, corresponding to a
central deflection of .116 inch was found to account for the differences
in the first 200 lbs. of load.

Since the analytical solutlion assumes perfectly plastic
behavior, it was decided to compare results at some distance from the
center of the plate, Curve C is a graph of the experimental load-
deflection relation for a point at 1,37 inches from the center of the
plate. It has been‘adjusféd to take into acocunt the initial load of
124 lbs, Curve D is the corresponding result of the analysis, Agree-
ment appears téybé excellent,

In the test, plastic straining was observed in the top of the
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plate near the edge at a load of 2200 1lbs, The analysis indicated the
gsame yilelding at a load of about 2,030 lbs, The measured inward in-
plane displacement at the edge of the plate was ,013 inch at a load of
3,862 lbs, whereas the analysis indicated .0165 inch at approximately
the same load, It 1s expected that friction of the support would
restrain this motion somewhat,

Figs. 28 through 26 are graphs showing the distribution of
stresses along the radius at increasing load levels., As might be ex-
pected, the behavior near the concentrated load is somewhat erratic,
This is due to the fact that the mesh size is coarse with respect to the
small loading area. The mesh size is ,34625 inch which corresponds
exactly to the size of the loaded area. As was mentioned in Sect, 7.1,
the curves correspond to the calculated resulfs of the odd numberedv

points., Also, the heavy lines denote the plastic region of the plate,

7.3 Elastic Solutions

Several solutions were obtained in the elastic range for the
pufpose of comparing the present method with existing theories, TFig, 27
is redrawn from the results of pressure tests of clamped plateé per=
formed by McPherson, Ramberg, and Levy (15). The tests were made of
5,0 inch diameter, 178=RT aluminum alloy plates of various thicknesses,
The points denoted by ciféles were obtained from a ,0658=inch thick
platéov‘Thé points denoted by squares were obtained from a .0300=inch
plateqv The solid squére points represent test results where a permanent
central déflection greater than .0l inch was observed. Alsoc drawn on

this figure are. theoretical curves of several investigators. The most
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accurate of these theoretical curves (represented by the solid line) is
generally known to be that corresponding to an extension of Nadai's
theory (15),

The points denoted by a triangle were obtained with the method
presented here., They compare favorably with Nadai's solution of the
theoretical equations. The deviation of the calculated results (the
present results and those obtained with Nadai's theory) with the tests
of McPherson, Ramberg; and Levy can be attributed to the clamping
apparatus and the fact that the experiments were for aluminum alloy
Which is not a lineafly elastic material., It should)also be observed
fhat the stresses at the clamped edge were near the yield limit at a

load level of‘only

I
255 = 180
Eh
whereag the experiments indicated that plastic flow occurs only after a

permanent set of .01 inch which corresponds to a load level of

Since the stress distribution of a solid plate when compared with that
of the sandwich idealizatlion would indicate higher stresses in the
outer fibers, first yielding (at the outer edge) of a solid plate could

have occurred at load levels even lower than

n
g8 - 180
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The solid lines in Fig. 28 are redrawn from the results de-
scribed by Timoshenko (l1). They represent the theoretical results ob-
tained by Federhofer and Egger of simply supported circular plates with
immovable edges. Fig. 28 contains a graph of the central deflection,
the extreme fiber stress at the center, and the extreme fiber stress
in the radial and tangential directions at the edge of the plate. The
points denoted by a triangle were obtained by the method presented
herein. The agreement between the two solutions is certainly excellent,

Fig. 29 is a similar graph obtained for a simply supported
plate with movable edges, The results obtained with the present method
are shown with dashed lines. After a deflection of about five plate
thicknesses, it is seen that the results obtained herein differ signifi-
cantly from those of Federhofer and Egger., Fig. 30 is a scale drawing

of the deflected plate at a load level of
I
35 =172

It can be seen that the horizontal displaéements near the edge are very
large, They are large enough that sec;nd order terms of this displace-
ment are important. The theoretical equatioﬁs presented by Timoshenko
and reportedly used by Federhofer and Egger (1) neglected the second
order effects of horizontal displacements, whereas the solutions ob=
tained herein include this effect. The most important difference is in
determining the slope of the deflected plate near the edge. The slope

is approximated by Timoshenko as



64

dr

whereas the exact expression is

7.4 Convergence of Results with Decreasing Mesh Size

The solutions obtained herein are essentially solutions of the
finite difference approximation of the governing differential equations.
The error assoclated with this approximation has been shown to be pro-
portional to the square of the mesh size (16), In the absence of
accumulated round-off errors, extrapolation to zero mesh-size should
give a value for the computed function that is very close to the exact
solution of the governing differential equations, The behavior of
results plotted agalnst varying mesh size was examined to determine the
degree of accuracy obtained by the method described herein.,

There are two distinct questions relating to accuracy obtained
by the present method. The first is concerned with the convergence of
the solutions obtained with decreasing mesh size to the true solution,
The second question is related to the validity of using a continuity
relation to avoid the separation discussed in Sect, 5.4, The computer

program is designed so that the continuity relation can be imposed on
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either the odd or even numbered string. In addition, the boundary can
be placed at an odd or even numbered point. Therefore, four combinations
of boundary conditions with respect to the placement of the boundary and
the Imposition of the continuity relation are possible., Presumably, any
of the four combinations should give valid solutions,

Figs., 31 and 32 were obtained for a simply supported plate

restrained at its edge and loaded with a uniform pressure to the level

Ei; = 2,566

Eh
The centerline deflection plotted against varying mesh size is shown in
Fig. 31, Fig, 32 is a similar plot for the membrane stress at the edge,
The points denoted by a shaded triangle and an open triangle are ob=
tained by placing the boundary at an odd numbered point, while the
points denoted by a square and a circle were obtained by placing the
boundary at an even numbered point. The points denoted by a shaded
triangle and a gquare were obtained by satisfying the equilibrium equa-
tions at the odd numbered mesh points and those denoted by an open
triangle and a circie correspond to satisfying equilibrium at the even
numbered points., The maximum stress at the center was also found as a
function of mesh size, However, the range of solutions was so small
(GaQ/Eh2 = 1,915 to 1.,918) that a graph was not prepared.

| The convergence of solutions with decreasing mesh size shown

in Figs. 31 and 32 gives a strong indication of the validity of the
proposed method of solution, It may be observed that the four solutions

in Fig. 31 or 32 converge on a common solution at zero mesh length,



66

7.5 The Effect of Load Increment on Errors in the Elastic Range

Solutions were obtained for a simply supported plate restrained

at the edge up to a load level of

which corresponds to a centerline displacement of wo/h = 1,424, A set
of solutions were obtained by incrementing the load 40 times and another
set by incrementing the load 2 times. In both cases, successive itera-
tions were required to converge to within 0.1% of one another for each
load increment. Displacements, centerline stresses and edge stresses
were found to agree within 0.07%, 0.17%, and 0.08%, respectively., The
variance is of the same order of magnitude as the iteration tolerance
and the error is evidently not cumulative, As was mentioned in Sect,
5,2, the term E(AX), which is the residual corresponding to AX = 0,

serves to correct the solution as the procedure progresses.
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VIII, SUMMARY AND CONCLUSIONS

A numerical technique has been presented to analyze elastic-
plastic plates without the usual assumptions of small deflections., By
using a lumped-parameter model the continuous plate is replaced by one
with a finite number of degrees of freedom, The field equations are
then derived directly from the model for large deflection geometrvy.
These equations turn out to be a finite difference approximation to the
corresponding "exact" differential equations, Hence, a solution formu-
lated through the model can be shown to tend to the corresponding
problem of a continuum,

In order to make the‘problem more easily tractable, the
plates are assumed to be a sandwich configuration, consisting of a
rigid shear core between two thin elastic-perfectly plastic sheets.

The shear core is incapable of developing flexural and membrane stresses.
The Prandtl-Reuss equation 1s used to describe the material behavior of
the thin sheets which are assumed to be in plane stress.

The plate and its loading are assumed to be axially symmetric,
thereby limiting the problem to one independent space variable,

A recursive technique is presented to solve the non-linear
equations which are expressed as a function of displacements, Within
each iteration, the equations are simultaneously linear and solved by a
modified Gauss elimination scheme. Successive iterations converge to a
unique solﬁtion for each increment of loéd. Load is added in small
increments until a desired level of loading is achieved,

The technique is programmed for the IBM 7094 computing system
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at the University of Illinois., Three sample problems are presented
which compare favorably with test results, and are also shown to be
consistent with other theoretical solutions in the elastic range.

In theAabsence~of formal proofs, the problem of convergence
of solutions with-decreasing mesh size has been studied with respect to
the known errors associated with finite difference approximations.,  The
results of this investigation show that a sequence of solutions deter=-
mined with decreasing mesh size tend to a unique solution, Assuming
this solution to be correct, the error is seen to be proportional to
the square of the mesh size. The validity of the solutions is supported
by the favorable comparison with test results.

Although the solution method is described and used herein for
circular plates of elastic~perfectly plastic material, the method is

equally applicable for other material equations,
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APPENDIX A

Al Derivation of Plastic Stress-Strain Equations

The following derivation of the stress-strain equations
follows the procedure outlined in Reference (5)., This derivation is
restricted to the assumptions stated in Chapter I,

According to the von Mises yield criterion,

where J2 ig the 2nd invariant of stress deviation and k is the yield
1limit of the material in simple shear, In terms of polar coordinates
where the stresses are symmetric about the z-axis and for the case of
plane stress,

2
+ Ge)

2
J, = 1/3 (cr - arc

2 0

hence, the von Mises condition becomes

The total strain is assumed to be the sum of the elastic
strain according to Hooke's law and the plastic strain denoted by ¢’
and ", respectively,

For plane stress, the mean normal stress is

71

+ 0% = 3k (A1)

s = 1/3 (crr + ce) (A2)
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and the stress deviator is

s, = 0,-s
Sg = 0g - s (A3$
s, = -s
The mean normal strain is
e = 1/8 (sr +eg * sz)
and the strain deviation is
e, = €, - ¢
eg = €5 - & (AL)

By assuming that there is no permanent change in volume, the

plastic cbmponent of the mean normal strain must disappear, or

e" = 1/3 (er" + sg + s;) = 0 (A5)
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Therefore, the plastic strain deviation is identical to plastic strain

or
e = N
r  fp
ef = eg (A8)
1 = 1
e -
z  Fz

According to the Prandtl-Reuss theory, the rate of change of
the plastic strain'deviation is at any instant propértional to-the: -

instantdneous stress deviation, or

2Ge" =T s
r r

hA Al =

2G§e =T Sg

QG;” = I g
2z Z

where I' 1s a constant of proportionality and G is given by

P E
G“221+u)

where E i1g Young's modulus and W is Poisson's ratio.



According to Hooke's law,

2Ge! = s
r r
0' : o

2Gee Sg

2Ge! = s
z z

Therefore, the rate of total strain is

2Ge =8 + T s
r r r

QGee = sg + T Sg

26e =5 + I s
Z Z Z

I may be eliminated from these equations by multiplying

Eq. (A7) by s, Eq (A8) by Sg9 and Eq. (A9) by S0

vields
2G (s + 6s. +es) = 2 Tk
rr CA] Z 7
Therefore, r = il
2
k
where

=o
1
[0
L]
+
[0]
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(A7)

(A8)

(A9)

Summing the results

(A10)

(A11)
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The quantity W may be interpreted as the rate at which the
stresses do work in connection with the change of shape. W must be
positive for plastic straining to take place, Otherwise, the material
is unloading; in which case, Hooke's law in rate form may be used for
elastic unloading.,

Substituting (Al0) into (A7) through (A9) yields

W
s = 26 (e = === g ) (A12)
r r 2k2 r
Sg = 2G (ee - uﬁf se) (A13)
2k
s =26 (e = —im s ) (Alh)
Z Z 2 "z

2k

W may be expressed in terms of the total stresses and strain
rates by substitution of Eqs. (A3) and (A4) into (All) and taking note

that

)
o

(7]
it
w
~

(O]

where
E

K= 5tm=om
is the elastic bulk modulus, This yields

o

€

Mo

ss
- (A15)

r r 6 0
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Eqs. (A12), (Al3), and (AlL) can now be expressed in terms of
total stresses, strains, stress rates and strain rates., The stress

rates can then be determined as follows:

2 o o
. E [(20e - or) €, - (20e - cr)(QGr - de) ee]
r 2 2
(20e - or) + CQGr - ce) + 2u(20e - cr)(zcr - ce)
(A16)
2 e o
. E [CQGr - de) €g = (20e - or)(QGr - ce) er]
9g = 7 p

(20’6 - Gr) + (QGr - Ge) + Qu(ch - cr)(2dr - Ge)

If Eq. (A2) and its derivative are substituted into Eq, (AlS5)

and using Eq. (Al6), W may be expressed as follows:

2(o§~0roe+og) {[(20 ~0p)=u(20,-0 )] &r+[(209=6r)=U(20r=66)j Ee}

W =
2 2
(2Gr~06) +(209”0r) +2u(20r~oe)(268=6r)

(AL17)

The yield criterion, Eq. (Al), the stress rate-strain rate
equation, Eq. (Al6) and Eq. (Al7) are the basic equations of perfect
plasticity used in the solution of the problems described herein, Geo-
metrically, the state of stress is represented by a point in stress

space of ., and ¢, in the present case. Yielding of the material occurs

e

when the stress state is on the boundary of the stress space defined by

the yield criterion, No state of stress outside of this region is
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permissible for a perfectly plastic material. For plastic straining
(according to the plastic stress rate-strain rate equations) to take

place, W must be positive,

A2 An Incremental Form of the Plastic Stress-Strain Equations

Eq. (Al6) represents the instantaneous stress rate-strain rate
relation corresponding to a state of stress, T Tgo It is assumed that
the stress-strain law is time independent., Therefore, the rates can be

taken with respect to the instantaneous load on the plate. In other

words,

o acr
r 537"
s ace
6 - 3p

d¢e
é:,;_..r’

r P

é ) Bse
6 - 3p

The solution technique employed herein requires that the load

be increased in finite increments. Therefore,



Lo} Ac
I‘z r
p ~ Ap

ace ) Aoe

op ~ Ap
3e Ae

—  ——

ap ~ Abp

aae ) Aee
op =~ bp

Now, for a finite increment of loading, the stress=strain
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relation at a point changes during the load increment because the state

of stress changes during the increment., At load level p, the functional

stress-strain relation can be stated as
o = £(o) ¢
while at load level p + Ap,
¢ = £(o + Ao) &

For a finite load increment, the finlte increments, Ao, Ae must be

related by some function 0, where o < 0 < o + Ao, In other words,

Ao = £(T) Ae
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It i1s proposed that 0 be evaluated on the basis of

Bcr Adr
T = R (A18)
) 5 .35 0
r® 706

and that the three stress states (org Tg3 05 Og3 O, * Ao, Og + Acy)

satisfy the yield criterion,

Let E; and Ee be related by

g +‘£ii
) 2
= (A19)

Qaj
D
i
a
Y
+
,-SDB

O+
r 2

where Eq. (Alg) is the equation of a straight line from g, = 0g = 0

passing through the bisector of the chord between (Gr9 Ue) and

(or + Aor, Oq + A0y), Substituting Eq. (A19) into the yileld criterion,

)
Eq. (Al), yields

7 Aor
E _ . 3 k (Gr+—2—’“)
r Ao 2 i Ao Ao Ag, 2
(o + r) (o + r)(c + e) + (0, + e)
T2 0 T e T T2V T T2 6 ' T2
(A20a)
bog
_ fgk (Ge +T)
Oy =

V// ’ Acr 2 : Acr Ag, Ebe 2
(Op * =) = (Ot 50 + =) + (0 + =)

(A20b)
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The slope of the yield function evaluated at the above E?g 9q

can be shown to be

3]
3?3 z - ——— (A21)
0|— - 20 = O
0 , O r 5}
r 5]

and if Eqs., (A20) are substituted in Eq. (A21),

Adr

BGP i 20, - o+ Ace - =
,_0,6,, = i (A22)

Gr’ ce 20r - ce + Acr - =5

Now, the stresses o+ Adr and Og + Ade also satisfy the yield criterion,

From this the following can be shown:

Acr
Adr ) 206 - or + Ace -5 (425)
Ag Ade

QUP = oe + Aor -~

Therefore, from Eqs., (A22) and (A23), Eq., (Al8) is proved to be correct,

e} Ag
r - I
Or9 Oe

For a finite increment of loading, the terms ?; and ?e are

substituted for o, and ¢, respectively in the stress=-strain equation,

8

Eq. (Al6), and the stress rates and strain rates become finite incre-

ments,
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- -0 —_ - — -
E [(20e - cr) Aer - (20e - or)(20r - ce) Aae]

Ao =

r - TS =2 = = .2 == =

(206- cr) + (20r - ce) + 2u(20e - or)(Qor - Ue)

(A2ua)
q—es—2 s oo em= o
E [(Qor - de) Aae - (20e - Gr)(QGr - oe) Aer]
Ace = —————s - —— s e . —

(206= Gr) + (20r = oe) + 2u(20e - or)(zcr - ce)

(A24D)

where 0 and Ee are evaluated by Eq. (A20).

It should be noted that Eq, (A24) is non-linear in terms of
Ac,, and Aceo It is solved by letting Acr = 0, bog = 0 for the first
iterate in the solution scheme described in Secto¢5020 Successive
iterations use the old value of Acrr’9 Ace in the right side of Eq., (A24),
When convergence is obtained, all of the equations are satisfied and

o, * Acr9 Og t Ace satisfy the yield criterion. 0, and 0y as well as

. and 04, always satisfy the yield criterion,



Figure 1, Infinitesimal element of a circular
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Projection of an infinitesimal element on the r-z plane.
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Figure 3. Section of a circular plate projected on the r-z plane.
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Figure 4, Sandwich configuration.
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Figure 7, Equilibrium of a mass point of the model,
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Figure 8, Equilibrium of shear forces from the model.
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Figure 9. Strain from the model.,
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Figure 12. Separation of strings.
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Figure 15. Load-deflection curves for a clamped plate subjected to a uniform

pressure,
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Figure 16, Radial stress in the top sheet.
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Figure 16, Radial stress in the top sheet,
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Figure 17. Radial stress in the bottom sheet.
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Figure 18. Tangential stress in the top sheet.
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Tangential stress in the bottom sheet.

96



Figure 20. Vertical displacement profiles.
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Figure 21. Horizontal displacement profiles of the middle surface.
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Load-deflection curves for a simply supported plate loaded
with a concentrated load.
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Figure 24, Radial stress in the bottom sheet.
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Figure 25, Tangential stress in the top sheet.
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Figure 26. Tangential stress in the bottom sheet.
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Figure 28. Displacements and stresses versus normal locad for a simply
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Figure 29. Displacements and stresses versus normal load for a simply
supported plate with movable edges.
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Figure 32. Convergence of radial membrane stress at the edge with
decreasing mesh length,



