
'" X~'JA 
tj'lq 

UILU ... ENG-82 ... 2007 

~.3 CIVIL ENGINEERING STUDIES 
STRUCTURAL RESEARCH SERIES NO. 499 

AN EVALUATI N SCALING ETH DS 
R EARTH UAKE RESP NSE SPECTRA 

Metz Re-P U . .J. erence Room 
. n~versity 0:[ Illinois 

BI06 NeEL 

by 

J. M. NAU 

and 

W. J. HAll 

208 N R . U:r • OIDlne Street 
. bana ,Illinois. 61801 

A Technical Report of 

Research Supported by the 

NATIONAL SCIENCE FOUNDATION 

under Grant Nos. ENV 77-07190 

and 

PFR 80-02582 

DEPARTMENT OF CIVIL ENGINEERING 
UNIVERSITY OF ILLINOIS 

AT URBANA-CHAMPAIGN 

URBANA, ILLINOIS 

MAY 1982 





50272 -101 

REPORT DOCUMENTATION 11. REPORT NO. 

PAGE UILU-ENG-82-2007 
4. Title and Subtitle 

AN EVALUATION OF SCALING METHODS 
FOR EARTHQUAKE RESPONSE SPECTRA 

5. Report Date 

May 1982 

~--------------------------- --------------------------------------~--------- t-----------------------------~ 7. Author(s) 

J. M. Nau and W. J. Hall 
9. Performing Organization Name and Address 

University of Illinois at Urbana-Champaign 
Department of Civil Engineering 
208 N. Romine Street 
Urbana, Illinois 61801 

12. Sponsoring Oflanlzatlon Name and Address 

National Science Foundation 
Washington, D.C. 20550 

8. Performing Oflanlzatlon RePt. No. 

SRS 499 
10. Project/Task/Work Unit No. 

11. Contract(C) or Grant(G) No. 

(e) ENV 77-07190 
(G) PFR 80-02582 

13. Type of Report 8. Period Covered 

~----__ ----__ ------__ --------------------------------------------------------L.-------------------________ ~ 
15. Supplementary Notes 

1-------------------------------------- - ----- _. -.--------.----.---.-- ... - - .-- ----.---------------------1 
-16. Abstract (Limit: 200 words) 

In this study, scaling methods are evaluated with the purpose of reducing the 
dispersion encountered in normalized spectral ordinates. The scaling factors considered 
comprise two major groups, one based on ground motion data and the other, directly on 
response quantities. Within the group based on ground motion values are the integrals 
of the squared acceleration, velocity, and displacement, and those quantities derived 
therefrom, namely the root-square, mean-square, and root-mean-square motions. Included 
within the group based on response quantities are the spectrum intensity and the mean 
Fourier amplitude. 

The scaling parameters were evaluated using a set of twelve representative earth­
quake recordings. Response spectra for elastic, elastoplastic, and bilinear hysteretic 
systems for wide ranges of damping and ductility were used in the statistical study. 
The results show that a three-parameter system of spectrum intensities, computed within 
low, medium, and high frequency regions, may afford a better means of scaling earth­
quake response spectra. 

~------------------------------------------------------------------------------------------------------~ 
11. Document Analysis s_ Descriptol'$ 

Earthquake Resistant Design, Seismic, Response Spectra, Scaling Methods, Statistical 
Analysis, Dynamic Response, Inelastic Systems, Damping, Ductility 

b. Identlfiers/Open·Ended Terms 

c. COSATI Field/Group 13 M 
18. Availability Statement 

Release Unlimited 

(See ANSI-Z39.1S) 

19. Security Class (This Report) 21. No. of Pages 

UNCLASSIFIED 349 
~--------------------------+--------------------

20. Security Clus (This Page) 
UNCLASSIFIED 

See Instructions 01'1 Reverse 

22. Price 

OPTiONAL FORM 212 (4-77) 
(Formerly NTIS-35) 
Department of Commerce 





AN EVALUATION OF SCALING METHODS 

FOR EARTHQUAKE RESPONSE SPECTRA 

by 

JAMES M. NAU 

and 

WILL lAM J. HALL 

A Report on a Research Project Sponsored by the 

NATIONAL SCIENCE FOUNDATION 

Research Grant Nos. ENV 77-07190 and PFR 80-02582 

UNIVERSITY OF ILLINOIS 

Urbana, Illinois 

May 1982 





iii 

ACKNOWLEGEMENT 

This report was prepared as a doctoral dissertation by Mr. James M. Nau 

and was submitted to the Graduate College of the University of Illinois at 

Urbana-Champaign in partial fulfillment of the requirements for the degree 

of Doctor of Philosophy in Civil Engineering. The thesis was completed 

under the supervision of Professor William J. Hall. 

The investigation was a part of a research program sponsored by the 

National Science Foundation under Grants ENV 77-07190, Engineering Design 

For Natural Hazards and PFR 80-02582, Earthquake Engineering Design Investi­

gations. Any opinions, findings, and conclusions or recommendations expressed 

in this publication are those of the authors and do not necessarily reflect 

the views of the National Science Foundation. 

The numerical results presented in this report were obtained with the 

use of the CDC Cyber 175 and IBM 4341 computers; most of the figures were 

prepared using the Zeta 1453B plotting device. These facilities are supported 

by the Computing Services Office (CSO) of the University of Illinois. Partial 

computer service funding was provided by the Research Board of the Graduate 

College of' the University of Illinois. 

The authors wish to thank Professors A. R. Robinson, D. A. W. Pecknold, 

and R. E. Miller for their constructive comments throughout the study. The 

authors are also grateful for the assistance provided by the CSO Systems 

Consulting staff. 





iv 

ABSTRACT 

AN EVALUATION OF SCALING METHODS 
FOR EARTHQUAKE RESPONSE SPECTRA 

James Michael Nau, Ph.D. 
Department of Civil Engineering 

University of Illinois at Urbana-Champaign, 1982 

In current practice, design response spectra are scaled or normalized 

by the three peak ground motion values -- displacement in the low, velocity 

in the intermediate, and acceleration in the high range of frequencies. 

In this study, alternative scaling factors are evaluated with the purpose 

of reducing the dispersion encountered in normalized spectral ordinates. 

The scaling factors fall into two major groups, one based on ground motion 

data, and the other, directly on response quantities. Within the group 

based on ground motion values-are the integrals of the squared accelera-

tion, velocity, and displacement, and those quantities derived therefrom, 

the root-square, mean-square, and root-mean-square motions. Included 

within the group based on response quantities are the spectrum intensity 

and the mean Fourier amplitude. 

The foregoing scaling parameters have been evaluated statistically 

using a set of twelve representative earthquake recordings. Response 

spectra for elastic, elastoplastic, and bilinear hysteretic systems for 

wide ranges of damping and ductility have been used in the statistical 

study. The results show that a three parameter system of spectrum inten-

sities, computed within low, medium, and high frequency regions, may 

afford a better means of scaling earthquake response spectra. Reductions 

in dispersion ranging from 20 percent in the velocity region to 45 percent 

in the displacement and acceleration regions may be realized if elastic 
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spectra are normalized by the spectrum intensities rather than the 

peak ground motions. The spectrum intensities also afford reductions 

in scatter for normalized inelastic spectra, for low to moderate 

displacement ductilities. 

As a prelude to the investigation regarding the dispersion 

characteristics of normalized spectra, an efficient algorithm was 

developed for the computation of inelastic response spectra. The 

method is based upon the exact solution of the equations of motion 

and permits the computation of dynamic response in a simple, arithmetic 

manner. Compared with" Newmark's beta method, the procedure provides 

a two- to threefold savings in computation time. 
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1.1 Background and Motivation 

1 

CHAPTER 1 

INTRODUCTION 

In earthquake-resistant design practice, two methods are commonly 

employed to determine design forces and to verify seismic performance. 

The first method, direct step-by-step integration of the equations of 

motion, may be justified in particular cases. However, several such 

analyses are often required to encompass the range of possible structural 

models, material properties, and variabilities in ground motion. Because 

of the high cost of inelastic time-history computations, such methods may 

not be feasible, especially in preliminary design, for the vast majority 

of structures. The second method, the modal analysis-design spectrum 

approach, is particularly attractive for its simplicity. Although 

strictly applicable to linear elastic structures, approximate modal 

methods which account for hysteretic behavior of structural elements 

have been developed. Gulkan and Sozen (19) incorporate the effects of 

inelastic energy dissipation to enable the evaluation of the design force 

for a single-degree-of-freedom system using the linear design response 

spectrum. Iwan and Gates (17, 35, 36) propose a closely related approach. 

In these methods, equivalent linear system parameters (period and damping) 

are computed for the hysteretic system and the inelastic response is 

estimated from the linear response spectrum. An extension to the mu1ti­

degree-of-freedom -case, the "substitute-structure" method, has been 

reported by Shibata and Sozen (73, 74). In this technique, the design 

forces are estimated from linear elastic modal analysis of a fictitious 
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structure whose stiffness and damping are selected to account for 

inelastic action. The properties of the substitute-structure are 

related to, but are different from, those of the actual frame and 

depend upon the permissible level of inelastic response of the 

structural elements compy;ising the frame. 

Similar approximate modal techniques, proposed by Newmark and Hall, 

involve the use of inelastic design spectra with conventional elastic 

modal analysis (21, 58, 59). Simplified rules for obtaining inelastic 

spectra from elastic spectra have been developed and refined over the 

years (47, 49, 50, 55, 85). Investigators (3, 4) question the validity 

of this method of deriving inelastic design spectra, especially when 

structures are located in near-fault regions. Other investigators (1) 

point out that the modal analysis-inelastic spectrum method is unable 

to reliably predict localized yielding and that ductility demands may 

considerably exceed those implied in the inelastic spectra. These 

findings are particularly evident as the number of degrees-of-freedom 

increases (86), although gross estimates of ductility requirements are 

in closer agreement with design levels (I). Recognizing these short­

comings, several investigators have proposed modifications to improve 

results. Tansirikongkol and Pecknold (77), for example, introduce the 

concept of modal ductility and a means of modifying the elastic mode 

shapes to enable better prediction of variations of yielding throughout 

a structure. 

Other studies demonstrate the utility of simple, approximate methods 

of analysis and design. The study by Montgomery and Hall (42) presents 

results for low-rise steel structures including shear buildings, moment 
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frames, and X-braced frames. Results of inelastic time-history 

computations were compared with those obtained from the inelastic 

spectrum-modal analysis procedure and a modified quasi-static building 

code approach. This investigation indicates that complicated methods 

are not required for analyzing low-rise buildings of practical propor­

tions. Montgomery and Hall further conclude that the design rules 

applicable for·single-degree-of-freedom systems can be used to predict 

the inelastic response of (and can be used in the design of) low-rise 

structures. 

In view of the foregoing discussion, it is apparent that the design 

spectrum approach has been and will continue to be a viable technique in 

earthquake-resistant design. Studies of the dynamic response of single­

degree-of-freedom systems permit the inclusion of, at reasonable cost, a 

large number of actual earthquake motions and structure-related parameters. 

The response spectrum, an effective medium for summarizing the results, 

readily permits the assessment of the influence of the various factors 

affecting response and provides at least an approximate means of estimating 

the response of more complex structural systems. Furthermore, statistical 

analyses of earthquake response spectra and attenuation studies of ground 

motion parameters have permitted the development of simplified seismic 

design criteria expressed in the form of smoothed design spectra. 

Early recommendations for earthquake design spectra were published 

by Housner (24, 25) and by Newmark and Hall (46). In 1973, the results 

of companion statistical studies by Newmark (51) and Blume (5) were 

reported, which together form the basis for current design practice (13, 

52). In current practice, the earthquake hazard at the particular site 
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is characterized by estimates of the expected peak values of ground 

acceleration, velocity, and displacement. The corresponding design 

spectra are constructed by amplifying these ground motion maxima by 

appropriate factors determined from the previously mentioned statistical 

studies. In the roughly ten years since the development of these design 

procedures, two important observations have been made. First, from the 

statistical studies themselves, it has been noted that the dispersion or 

scatter in the data is large. For example, coefficients of variation 

exceeding 50 percent have resulted when spectra are normalized or scaled 

by peak ground motion values. Secondly, from observations following 

actual earthquakes, it has been noted that levels of damage are incon­

sistent with large ground motion maxima. That is, greater levels of 

damage might have been expected had the peak instrumental ground motions 

been known beforehand. Of course, these peak parameters convey little 

or no information regarding the earthquake duration and frequency content, 

two important elements affecting the damage. The conclusion is that 

ground motion maxima, alone, are poor indicators of earthquake damage 

potential or earthquake strength. 

The objective of this study is to evaluate the current practice of 

scaling earthquake response spectra by the three peak ground motions. 

Other investigators have suggested such studies (40), and, in fact, 

Cornell, Banon, and Shakal (11) have reported results in which response 

spectra were scaled by mean Fourier amplitudes of acceleration. In this 

study, alternative scaling techniques are investigated in greater detail 

than heretofore considered. 
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1.2 Objectives of Study 

The primary objective of this study is to investigate alternative 

methods for scaling earthquake response spectra. The approach, simply 

stated, is to statistically evaluate normalizing factors which have been 

proposed over the years, with the goal of reducing (ideally, minimizing) 

the dispersion or scatter encountered in current scaling methods. It 

must be pointed out that the purpose is not to recommend a new or radically 

different procedure for establishing design spectra. Rather, the goal is 

to formulate a basis, within the general framework of current practice, 

upon which further research can lead to improved methods for specifying 

the earthquake hazard and the corresponding design response spectra. 

Two additional objectives of this study may be identified. The first 

is to examine and compare several numerical procedures for computing earth­

quake response spectra. Although this investigation is not intended to be 

comprehensive, the findings show that considerable savings in computational 

effort may be realized when advantage is taken of the piecewise-linear 

character of both the earthquake ground motion and the load-deformation 

functions commonly employed in the modeling of hysteretic behavior. The 

second objective is to assess the influence of damping and inelastic 

material model parameters on mean spectra. As in previous studies (35, 

36, 69), the goals are to determine the effect of viscous damping when 

combined with inelastic action and to examine the sensitivity of response 

to varying levels of strain-hardening in the bilinear hysteretic load­

deformation model. The results of this comparative phase of the study 

may prove useful in preliminary design, when the details concerning the 

load-deformation characteristics of structural elements have not yet 
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been precisely evaluated. 

1.3 Organization 

This introductory ,chapter has set forth some of the evidence 

supporting the design spectrum approach in earthquake-resistant design. 

In addition, the techniq~e presently used to construct design spectra was 

briefly described. Together, these presentations provided the background 

and enabled the formulation of the objectives for the research task 

reported in this study. 

Chapter 2 begins with an overview of response spectrum concepts with 

emphasis on the interpretation of the response quantities summarized in 

spectra computed from strong-motion earthquake records. An account of 

current approaches employed to characterize the earthquake hazard, where­

from design spectra are constructed, is presented. 

In Chapter 3, the properties of the single-degree-of-freedom systems 

and the actual earthquake recordings used in the statistical study are 

described. Also included in Chapter 3 is a detailed description of the 

numerical procedure used to compute response spectra. Briefly, this 

technique is based upon the exact solution of the equations of motion 

and permits the evaluation of response in an efficient, arithmetical 

manner. Other details regarding spectral calculation, including 

computation of response from ground motions with nonzero initial condi­

tions and the development of spectra for preselected levels of displace­

ment ductility, are discussed. The spectra for elastic, elastoplastic, 

and bilinear systems, computed from the ensemble of twelve earthquake 

records, are presented in Chapter 3. An examination of these spectra 

provides some insight into the effects of damping and inelastic behavior, 
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and how these effects differ for ground motions of varying characteristics. 

Chapter 4 contains a description of the two groups of normalizing or 

scaling factors proposed by numerous investigators as improved measures 

of earthquake strength. The parameters based on ground motion data 

include the integrals of the squared motions and the closely related 

root-square, mean-square, and root-mean-square values of acceleration, 

velocity, and displacement. Those based directly on response quantities 

include Housner's spectrum intensity and the mean Fourier amplitude. 

Chapter 4 closes with an outline of the statistical procedure used to 

evaluate the various scaling parameters. 

Chapter 5 begins with a comparison of mean normalized spectra 

to determine the general influence of damping and strain-hardening on 

seismic response. The major purpose of Chapter 5, however, is to describe 

the results of the statistical evaluation of the scaling methods described 

in Chapter 4. The results show that the average dispersion in elastic 

spectra may be minimized by normalizing by the spectrum intensity, 

computed over appropriately selected frequency intervals. In addition, 

the spectrum intensity reduces the scatter, compared with that associated 

with scaling by ground motion maxima, in inelastic spectra for low to 

moderate ductilities. 

Finally, Chapter 6 presents a summary and the significant conclusions 

of this study. Also, a critical review of this research effort is 

presented so that the results and conclusions may be perceived in proper 

scope. This critical appraisal enables the suggestion of topics for 

further study. 



8 

1.4 Notation 

The notation and symbols used in this study are defined where they 

appear in the text. For ease of reference, however, a list of the most 

important symbols follows: 

A = design ground acceleration; also used as a subscript which 
denotes the acceleration region of the response spectrum 

a ground acceleration 

a acceleration of prefixed ground motion pulse 

a = modified ground acceleration 

[A] , [B] 

a. ,b. 
J J 

b.,c.,d. 
J J J 

c 

c cr 

d 

A 

d 

E ,E ,Ed a v 

elements of matrix [A] 

matrices relating response quantities at time t
i
+

1 to those at time t. 
J. 

variables used to define pseudove1ocity in the jth 
frequency interval 

coefficients in the influence functions for the 
prefixed ground motion pulse, j = 1,2,3 

elements of matrix [B] 

constant in coefficients b., c., and d. 
J J J 

constants of integration 

coefficient of variation 

damping constant for the sing1e-degree-of-freedom system 

critical damping 

constant in the expression for the frequency ensemble work 

design ground displacement; also used as a subscript which 
denotes the displacement region of the response spectrum 

ground displacement 

displacement of prefixed ground motion pulse 

integral of the squared ground acceleration, velocity, 
and displacement, respectively 
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m 

E max 

F(w) 

FS 

f 
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= energy per unit mass absorbed by the single-degree­
of-freedom system 

maximum energy absorbed by the single-degree­
of-freedom system 

Fourier spectrum of ground acceleration 

mean Fourier amplitude 

undamped natural frequency for the single-degree­
of~freedom system 

f2 = lower frequency limit for spectral calculations 
from records with nonzero initial motions 

f = starting frequency within each logarithmic cycle s 

g. 
J 

H 

h 

i 

j = 

k 

:MMI 

m 

N 

n 

influence functions for the prefixed ground motion 
pulse, j = 1,2,3 

duration of the prefixed ground motion pulse 

normalized integral of the squared ground acceleration 

subscript denoting ith quantity; also used as a 
discrete time coordinate for the prefixed ground 
motion pulse 

an index 

spring stiffness of the linear elastic single-degree­
of-freedom system; initial and unloading stiffness 
of elastoplastic and bilinear hysteretic systems 

local or Richter magnitude 

Modified Mercalli Intensity 

body-wave magnitude 

mass of the single-degree-of-freedom system 

number of equal time steps into which the prefixed 
ground motion pulse is divided 

an index; also used to denote the number of 
earthquake records 

o = subscript denoting initial values of ground 
acceleration, velocity, and displacement 
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P ,P 'Pd a v 

R 

R R y' max 

rms 

rs 
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subscript denoting peak values of ground 
acceleration, velocity, and displacement 

= mean-square ground acceleration, velocity, 
and displacement, respectively 

resistance or spring force in the single-degree­
of-freedom system 

yield and maximum resistance or spring force, 
respectively, in the single-degree-of-freedom system 

subscript denoting root-mean-square values of 
ground acceleration, velocity, and displacement 

subscript denoting root-square values of 
ground acceleration, velocity, and displacement 

spectral displacement 

8 = pseudo-spectral velocity 
v 

8 
a 

s 
v 

'" - -
Sd,8 ,S v a 

81 

s 

T 

t 

.. 
u,u,u 

u 
e 

pseudo-spectral acceleration 

mean pseudo-spectral velocity 

ordinates of mean pseudovelocity spectra 

spectrum intensity 

set remaining after an excursion of yielding 

undamped natural period for the single-degree­
of-freedom system 

time 

time for buildup of 5 and 95 percent, respectively, 
of the integral of the squared ground acceleration 

total duration of the earthquake ground motion 

relative displacement, velocity, and acceleration, 
respectively, of the single-degree-of-freedom system 

maximum displacement of the elastic single-degree­
of-freedom system 

= maximum relative displacement and velocity, 
respectively, of the single-degree-of-freedom system 



u 
y 

u u yp' yn 

U 1 un.!. 

v 

v 

A 

V 

00 

X,X,x 

x 
max 

z 

11 

initial yield displacement of the single-degree­
of-freedom system 

current positive and negative yield displacements, 
respectively, of the single-degree-of-freedom system 

= relative displacement at the instant of unloading 
for the single-degree-of-freedom system 

design ground velocity; also used as a subscript which 
denotes the velocity region of the response spectrum 

ground velocity 

v,eloci ty of prefixed ground motion pulse 

frequency ensemble work 

period ensemble work 

absolute displacement, velocity, and acceleration, 
respectively, of the single-degree-of-freedom system 

maximum absolute acceleration of the single-degree­
of-freedom system 

denotes ground acceleration, velocity, or displacement 

ratio of strain-hardening stiffness to initial elastic 
stiffness for the bilinear hysteretic single-degree­
of-freedom system 

S fraction of critical damping for the single-degree­
of-freedom system 

6
2 

= equivalent fraction of critical damping associated 
with the strain-hardening branch of the bilinear 
hysteretic force-deformation model 

~ = prefix denoting an incremental quantity 

~ displacement ductility 

E denotes summation 

a = standard deviation 

L = time coordinate for the prefixed ground motion pulse; 
also used as a dummy variable of integration 

¢ spectral reduction or deamplification factor 
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w = spectral scaling factor 

w = undamped circular natural frequency of the sing1e­
degree-of-freedom system 

W
2 

I 
] 

} 

= damped circular natural frequency of the sing1e­
degree-of-freedom system 

= equivalent .circu1ar frequency associated with the 
strain-hardening branch of the bilinear hysteretic 
force-deformation model 

denotes the absolute value of a quantity 

denotes a matrix quantity 

= denotes a vector quantity 
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CHAPTER 2 

REVIEW OF CURRENT PRACTICE 

2.1 Introduction 

In this chapter, a review of response spectrum concepts and 

the guidelines currently used to construct seismic design spectra are 

presented. An important aspect associated with the development of 

earthquake design spectra is the selection of the maximum ground motions 

expected at the site under consideration. The techniques· and considera­

tions employed in estimating these ground motions are briefly described. 

2.2 Response Spectrum·Concepts 

The single-degree-of-freedom system shown in Fig. 2.1 consists of 

a concentrated mass connected' to the ground by a weightless spring and 

damper. The absolute displacement of the mass is x and that of the 

ground is d. Hence, the relative displacement of the mass with respect 

to the ground is 

u = x - d (2.1) 

The mass of the system is denoted by m, the damping constant is c, and 

the resistance is designated as R(u), since the restoring force is a 

function of the relative displacement u. The resistance function may 

be linearly elastic, for which 

R(u) = ku (2.2) 

where k is the stiffness of the spring element. Many systems, however, 

behave nonlinearly during moderately intense earthquake excitation. 

These nonlinear systems may behave elastically, but the majority of 
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structures of practical importance are hysteretic. That is, significant 

energy dissipation occurs in the regions of plastic deformation. 

Hysteretic behavior may be approximated for analytical purposes by a 

variety of resistance functions, several of which are described in 

Chapter 3. 

The sing1e-degree-of-freedom system is characterized by its circular 

natural frequency, -defined as 

w = IkTID. (2 .. 3) 

This parameter corresponds to the frequency of small amplitude oscillations 

for the undamped system in free vibration. The circular natural frequency 

is related to the frequency f and period T as follows: 

w = 27ff = 
27f 
T 

(2 .. 4) 

For the inelastic system, the natural frequency and period are defined as 

those computed using the initial elastic stiffness. 

Energy dissipation within the linear range of response is modeled by 

viscous damping in which the restoring force is assumed to be proportional 

to the relative velocity u. The damping constant is most often expressed 

as a fraction or percentage of critical, the smallest damping for which 

no oscillations occur in free vibration (10). The critical damping is 

c = 2wm cr 
(2 .. 5) 

Hence, the damping constant may be expressed as 

c = 2Swm (2 .. 6) 

where S is the fraction of critical damping. 
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With the foregoing definitions, the equation of motion for the 

single-degree-of-freedom system is 

u + 28~ + R(u) = -.a(t) 
m 

(2.7) 

where a(t) is the ground acceleration. For the linear elastic system, 

i.e. for R(u) = ku, the relative displacement u(t), the relative velocity 

~(t), and the absolute acceleration x(t) may be expressed as (48): 

u(t) 
t 

1 J () -8W(t-T) -- aTe sinWn(t-T)dT 
~ 0 . 

t 

~(t) = - f 
-8W(t-T) a(T)e coswn(t-T)dT - 8wu(t) 

o 
(2.8) 

where T is a dummy variable of integration and w
D 

is the damped circular 

natural frequency given by 

(2.9) 

The maximum response quantities, I u I, I ~ I, and I x I are of max max max 

particular interest. These maximum values may be summarized in the form 

of response spectra in which a particular maximum response quantity is 

plotted versus frequency, for a given damping value. Accordingly, three 

types of spectra may be constructed -- relative displacement spectra, 

relative velocity spectra, and absolute acceleration spectra. However, 

by defining the pseudovelocity and pseudoacceleration, all three spectral 

quantities may be conveniently displayed on a four-way logarithmic plot. 

These response values are 
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Sd = /umaxl 

S = WS
d (2.10) v 

s wS 
2 = = W Sd a v 

where Sd denotes the spectral displacement, and Sv and Sa are the pseudo­

velocity and pseudoacceleration, respectively. With these definitions 

the tripartite spectrum features the pseudovelocity ordinates plotted 

versus frequency~ The displacement and pseudoacceleration axes intersect 

the frequency axis at angles of 45 degrees. 

The spectral displacement Sd is the true maximum relative displace­

ment for the single-degree-of-freedom system. A comparison of Eqs. 2.10 

and 2.8 reveals that the pseudovelocity Sand pseudoacceleration S are 
v a 

not true spectral quantities; hence, the prefix "pseudo" is used. However, 

the pseudovelocity is approximately equal to the maximum relative velocity 

for systems with intermediate frequencies. The pseudovelocity differs 

substantially from the true spectral velocity for low and high frequency 

systems. For example, Fig. 2.2 compares these velocity quantities for 

elastic systems with 5 percent damping subjected to the S16E component of 

the Pacoima Dam record of Feb. 9, 1971. It is clear from this figure that 

within a region of frequencies extending from about 0.5 to about 5 cps or 

higher, the pseudovelocity closely approximates the true spectral velocity. 

The pseudovelocity is of practical importance since it provides an estimate 

of the maximum energy absorbed by the linear elastic system, 

E = ! kS2 = ! mewS )2 = 1 mS2. 
max 2 d 2 d 2 v 

(2.11) 
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The pseudoacceleration for undamped systems is precisely equal to 

the true spectral acceleration. For damped systems, the true spectral 

acceleration is closely approximated by the pseudoacceleration, except 

for very low frequencies. This conclusion is clear from Fig. 2.3 in 

which the acceleration quantities are compared for elastic systems with 

5 percent damping. As in Fig. 2.2, the spectra in Fig. 2.3 were computed 

from the Pacoima Dam record. The pseudoacceleration, when multiplied by 

the mass of the single-degree-of-freedom system, gives, precisely, the 

maximum force in the spring, 

R max 
mS 

a 
(2.12) 

For elastic systems, then, a complete representation of the important 

response quantities is portrayed in the form of tripartite spectra. 

Henceforth, these spectra are referred to simply as "response spectra" 

or as "pseudovelocity spectra." 

The design of inelastic systems involves the estimation of the yield 

resistance or yield deformation so that the maximum inelastic displacement 

is limited to a prescribed level. Therefore, it is advantageous to define 

the response spectra for inelastic systems so that this information can 

be readily determined. Accordingly, the yield level u required to limit 
y 

the maximum displacement to a specified multiple of the yield level itself 

is plotted on the displacement axis of the tripartite grid. Spectra of 

this type are referred to as inelastic yield spectra, which are developed 

for various levels of displacement ductility, defined as 

jJ = IU:xl 
y 

(2.13) 
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For consistency with the elastic spectrum, the pseudovelocity and 

pseudoacceleration are, respectively, 

S = wu 
Vll Y 

s = wS 
all vll 

2 = .W U 
Y 

) (2.14) 

where the subscript 11 has been added to distinguish the inelastic 

quantities from the corresponding elastic values. Note that if the 

yield deformation for the elastic system is considered to be equal to 

its maximum displacement, the elastic spectrum corresponds to the yield 

spectrum for a ductility of unity. 

Two other types of spectra, derived from the yield spectra, may be 

constructed for the inelastic system. These are the inelastic accelera-

tion and total deformation spectra. From the inelastic yield spectrum, 

the yield resistance required to limit the maximum displacement to a 

given ductility is 

R 
Y 

2 =mwu 
y 

= mS 
all 

(2.15) 

For the elastoplastic system, the yield resistance is equal to the maximum 

force in the spring. However, for the bilinear system, or for others with 

strain-hardening, the maximum resistance is 

R max mS [l+a.(ll-l)] 
all 

(2.16) 

where a is the ratio of the strain-hardening stiffness to the initial 

elastic stiffness. Hence, to estimate these maximum forces directly, the 

inelastic acceleration spectrum may be constructed, in which the value of 
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R 1m is plotted on the acceleration axis. For this type of spectrum, max 

the displacement and velocity axes are meaningless. However, for the 

e1astop1astic system, the inelastic yield and acceleration spectra are 

identical. If one is interested in total displacements, the total 

deformation spectrum features the values of ~u plotted on the disp1ace­
y 

ment axis. For these spectra, the velocity and acceleration axes are 

of no significance. Since the information contained in the inelastic 

acceleration and total deformation spectra is derivable from the yield 

spectrum, there is no reason to explicitly consider these spectra in 

this study. However, for the e1astoplastic system, it is often convenient 

to show both the yield (or acce1eration)'spectrum and the total deforma-

tion spectrum on the same grid. 

2.3 Construction of Design Spectra 

Analytical tools are available for evaluating the response of a 

system to a specified earthquake ground motion. However, because of the 

uncertainties and variabilities associated with the expected ground 

motions, several time-history analyses employing a family of representa-

tive ground motions may be required to assure structural integrity and 

overall seismic adequacy. In addition, the high cost of time-history 

computations, particularly for complex multi-degree-of-freedom systems, 

requires that simpler methods be employed to specify the seismic design 

loading. Accordingly, the spectrum approach has evolved, in which the 

earthquake environment is characterized in the form of a smoothed design 

response spectrum. The design spectrum does not represent the response 

to be expected from any single earthquake event. Instead, the spectrum 
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represents a smoothed statistical summary of the response obtained from 

a large family of motions. 

The development of seismic design spectra consists of the following 

basic steps: 

1. Definition of the earthquake hazard in terms of the expected 

maximum ground motions affecting the site under consideration. 

2. Amplification of the maximum ground motions to obtain the 

elastic design spectrum. 

3. Deamplification of the elastic spectrum to determine the 

inelastic yield spectrum. 

The present discussion deals with the mechanics of constructing the 

design spectra, i.e. steps 2 and 3 above. The specification of the 

earthquake hazard in step 1 is treated separately, in the next section. 

Guidelines for constructing earthquake design spectra were developed 

by Blume (5) and Newmark (51). These studies were unified to form the 

approach summarized in Refs. 13 and 52. The procedure developed in the 

foregoing studies was refined in a later investigation by Hall, Mohraz, 

and Newmark (20), in which a larger sample of earthquake motions was 

considered. These requirements, summarized by Newmark and Hall (59), 

form the basis for the guidelines presented herein. 

The general procedure for constructing elastic and inelastic design 

spectra is illustrated in Fig. 2.4. To develop the elastic spectrum, the 

three design ground motions are plotted as straight lines, parallel to 

the corresponding axes on the tripartite grid. In Fig. 2.4 the design 

displacement, velocity, and acceleration are denoted by D, V, and A, 

respectively. The spectral bounds are then determined by multiplying 



21 

the maximum ground motions by appropriate amplification factors which 

depend upon the damping and the cumulative probability level. The 

probability function which best describes the range of values is the 

logarithmic normal distribution (59). Equations for the amplification 

factors for the median (50 percentile cumulative probability) and the 

median plus one standard deviation (84.1 percentile cumulative proba­

bility) are shown in Table 2.1. Listed in Table 2.2 are numerical values 

for the amplification factors for a range of damping values from 0.5 to 

20 percent of critical. Generally, the 84.1 percentile amplification 

values are adopted for design use. 

The amplified ground motions define the elastic spectrum between 

0.1 and 8 cps. For frequencies above 33 cps, the design spectrum is 

obtained by multiplying the maximum ground acceleration by unity. That 

is, for rigid systems, the spectral acceleration is identical to the 

maximum ground acceleration. Between 8 and 33 cps, the design spectrum 

is obtained by drawing a straight line between the spectral values at 

these two frequencies. For flexible systems, i.e. those with frequencies 

less than about 0.03 cps, the spectral ordinates correspond to the peak 

ground displacement. For these very flexible systems, the mass remains 

motionless during excitation; therefore, the maximum relative displacement 

corresponds to the peak ground displacement. The spectrum between 0.03 

and 0.1 cps is obtained by drawing a straight line between the spectral 

values at these frequencies. Thus, the elastic design spectrum consists 

of amplified displacement, velocity, and acceleration regions between 

0.1 and 8 CpSo Below 001 cps and above 8 cps, the spectrum begins its 

respective transition to the maximum ground displacement and maximum 
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ground acceleration. At frequencies below 0.03 cps the spectrum 

corresponds to the peak ground displacement; above 33 cps, the spectrum 

is defined by the maximum ground acceleration. 

The inelastic yield spectrum is constructed by reducing or deampli-

fying the elastic spectr~, as shown in the lower sketch of Fig. 2.4. 

For frequencies below 0.03 cps, the elastic spectrum is deamplified by 

l/~, where ~ is the design ductility. Similarly, in the amplified 

displacement and velocity regions, the elastic spectrum is reduced by 

the factor, 

1 
11 

This reduction factor results from the observation that for low and 

(2.17) 

intermediate frequencies, the maximum displacements for the elastic and 

inelastic systems are approximately equal. In the acceleration-amplified 

region, the deamplification factor corresponds to that which is obtained 

from equating the energy absorbed by the inelastic system to that for an 

elastic system of the same frequency (50). This reduction factor is 

1 (2.18) 

Above 33 cps, spectral reductions are small; hence, for conservatism, 

the inelastic design spectrum is assumed to correspond to the elastic 

design spectrum without deamplification. The design spectrum constructed 

by deamplifying the elastic spectrum in accordance with the foregoing 

rules corresponds to the yield or acceleration spectrum for the elasto-

plastic system. The total deformation spectrum is readily obtained by 
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multiplying all ordinates of the yield spectrum by the displacement 

ductility~. In the displacement and velocity regions, of course, the 

total deformation spectrum corresponds to the elastic spectrum. 

The procedure outlined above for the construction of inelastic 

spectra applies strictly to cases where the resistance function may be 

approximated as .elastoplastic (59). Note, however, that the spectral 

reduction factors are independent of damping, which implies that damping 

has the same effect on both elastic and inelastic response. In a recent 

.study by Riddell and Newmark (67), the simplified procedures for construc­

ting inelastic yield spectra were investigated. In that study, reduction 

or deamplification factors for elastoplastic systems with 2, 5, and 10 

percent damping were derived. These results are shown in Fig. 2.5. From 

this figure it is clear that in the displacement region, the reduction 

factor l/~ is conservative for all damping and ductility. In the velocity 

and acceleration regions, however, the adequacy of the simplified rules 

depends upon both the damping and ductility. Generally, the greater the 

damping, the smaller the ductility must be for the simplified rules to 

provide conservative results. In the velocity region, the deamplification 

l/~ is conservative for systems with 2, 5, and 10 percent damping if the 

design ductility is less than 6, 3, and 2, respectively. In the accelera­

tion region, the old rule corresponds closely to the computed reduction 

factors for systems with 5 percent damping; for 2 percent damping the 

factor 1/12~-1 is conservative for all ductilities. However, for 10 

percent damping, the old rule is unconservative for all ductilities, 

although for ~ less than about 2, the differences are small. Finally, 

it is worthy of note that the deamplification factors increase with 
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damping in all three spectral regions. This result indicates that damping 

is less effective in limiting inelastic response, compared with its 

influence on elastic systems. 

Riddell and Newmark (67) also develop spectral deamplification factors 

for bilinear and stiffne~s degrading systems. These results, together with 

those shown in Fig. 2.5, permit the designer to explicitly account for 

damping and the type of material nonlinearity when constructing inelastic 

design spectra. 

2.4 Selection of the Earthquake Hazard 

Earthquake-resistant design requires the evaluation of the earthquake 

hazard and the selection of structural resistances. These determinations 

require the consideration of the consequences of structural failure in 

terms of loss of life and the economics associated with repair or replace­

ment. Furthermore, the various design parameters must be evaluated in a 

consistent manner; otherwise, the design may become uneconomical or even 

unsafe. If extreme conditions are assumed throughout the design process, 

unreasonably severe and costly design requirements may result. More impor­

tantly, such excessive requirements may alter the behavior of the system 

in such a way that the structure has a reduced capacity for other design 

conditions. In other words, earthquake design requirements are but one 

of possibly several criteria upon which the design must be based. Over­

attention to earthquake loading may result in unsatisfactory performance 

under other design conditions. 

The earthquake hazard is generally established in the form of the 

expected peak ground motions at the site under consideration. In the 
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following paragraphs, a brief account of the procedures currently used to 

estimate these motions is presented. It must be realized that the process 

of establishing the design motions requires consideration of a large body 

of geological, seismological, and geotechnical information. Accordingly, 

the discussion here is not intended to be comprehensive; only the essential 

features associated with the selection of the design ground motions are 

presented. State-of-the-art reviews of the procedures and considerations 

required to determine appropriate design motions are available, as for 

example in Ref. 22. 

Two methods are generally employed to determine the design ground 

motions (53). First, in cases where an extensive history of earthquake 

activity exists and geological investigations are practical, estimates 

can be made of the possible magnitude and location of future earthquakes. 

In many instances, such earthquakes may occur along well-defined faults. 

Estimates of the ground motion intensities at the site may then be 

obtained. These estimates are generally made from attenuation formulas, 

developed from available observational data. Many such formulas have 

been proposed over the years, and they may take a variety of forms 

involving the numerous parameters affecting the attenuation character­

istics of ground motion. Idriss (34) provides a comprehensive summary 

of the important empirically derived attenuation relationships. Most 

of these relationships provide estimates of the peak ground motions 

from earthquake magnitude and source-to-site distance. 

The second procedure for developing the design ground motion is 

used when the occurrence of earthquakes in the particular region is not 

associated with well-defined geological features or when insufficient 
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seismic data is available. For these cases, relationships have been 

developed in which the ground motions, generally acceleration or velocity, 

are expressed in terms of a qualitative measure of the intensity of the 

motion, e.g. the Modified Mercalli Intensity (MMI). However, the MMI is 

a subjective measure of ?bserved damage caused by an earthquake and as 

such, is not readily subject to mathematical manipulation. In addition, 

the MMI depends upon the type and age of the structure, properties of 

the building materials, methods of construction, and the like. Therefore, 

one might expect some change in damage assessment over the ,years, as the 

quality of materials and design and construction practices improved. 

Despite these shortcomings, in many cases, particularly in the central 

and eastern sections of the United States, Modified Mercalli Intensity 

data is all that is available. 

In many instances, only the peak ground acceleration at the site 

is estimated. In these cases, statistically derived relationships between 

the peak ground motions are used. For example, Newmark and Hall (59) 

recommend that, lacking other specific information, a VIA ratio of 48 

in./sec/g be used for competent soil conditions; for rock sites, a VIA 

ratio of 36 in./sec/g is suggested. In addition, to ensure that the 

2 
spectrum contains an adequately broad frequency content, AD/V should 

be equal to about 6. 

The peak ground motions estimated from the foregoing procedures 

require further consideration. First, it has been documented that 

structures located near the earthquake source may experience large 

amplitude, high frequency components of acceleration. However, the 

levels of damage observed within many of these structures are not as 
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great as would have been expected from the recorded ground motions. 

Notable examples of such occurrences are summarized by Newmark (56). 

Reports of damage caused by the Parkfield earthquake of June 27, 1966, 

the Bear Valley earthquake of Sept. 4, 1972, and the Ancona, Italy 

events of June 1972 are generally inconsistent with the severity of 

the recorded motions as characterized by the peak acceleration levels. 

The instrumental peak acceleration recorded on the abutment of the 

Pacoima Dam during the San Fernando earthquake of Feb. 9, 1971 was 

nearly 1.2 g. Yet, very minor damage to the dam or to nearby struc­

tures was observed. 

The observation that structural damage need not be consistent 

with maximum instrumental readings has led to the use of effective 

ground accelerations in the construction of design spectra (54, 56, 

59). The specification of a ground acceleration for design which is 

less than the expected maximum value is based, in part, upon the 

reasoning that a single peak of intense, short duration motion may 

contribute less to the cumulative damage of a structure than several 

or many cycles of somewhat less severe ground shaking (62). In fact, 

Newmark (54) has suggested that the effective ground acceleration may 

be only one-third to one-half of the expected instrumental reading for 

structures located in the near vicinity of the surface expression of 

a fault or at the epicenter. 

Selection of appropriate effective ground accelerations is 

especially important when dealing with structures whose fundamental 

natural frequency falls in the acceleration-amplified region of the 

response spectrum. In this frequency region, about 2 to 8 cps, the 
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spectral amplitude is directly proportional to the maximum ground 

acceleration. If the ground motion contains a significant level of 

high frequency energy, the spectral amplitudes may be overestimated. 

Accordingly, Page et ale (62) employed filtering techniques to remove 

high frequency component~ from near-field records to arrive at effective 

ground acceleration levels for use in design for some segments of the 

trans-Alaska pipeline. At the present time, however, the procedures for 

estimating the effective ground motions, including the use of filtering 

techniques, are not based on definitive methods; judgment and experience 

regarding structural response are required. 

A consideration related to the effective acceleration concept 

applies to structures with relatively large foundations. It has been 

observed from actual measurements that these structures respond with 

less intensity than smaller structures, or than would be implied from 

free-field motions. This observation is particularly evident in the 

near-field, where the motions may include significant high frequency 

components. The high frequency accelerations appear to be filtered by 

the structure, thereby reducing the large amplitudes. Newmark, Hall, 

and Morgan (57) suggest that the accelerations imparted to a structure 

approach an average of the free-field excitation over some wave passage 

or transit time. The transit time is related to the longest plan 

dimension of the building, or the mean or geometric mean of the dimen­

sion, and the shear wave velocity. At greater distances from the earth­

quake source, the high frequency ground motions attenuate; hence, 

structural filtering effects diminish. 
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From the preceding discussion it is apparent that the estimation 

of appropriate design ground motions requires the consideration of 

many factors, some of which are, at the present time, poorly understood. 

For example, while the rationale for basing the design spectrum on 

effective motions is clear, the methods involved in the evaluation of 

these quantities are vague. As additional recorded and observational 

data accumulate, new and improved methods for specifying the earthquake 

hazard and the corresponding design spectra will undoubtedly evolve. 

A goal of this study is to provide some insight into these same areas, 

via an examination of the correlation between response spectra and 

various measures of earthquake strength. 
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CHAPTER 3 

RESPONSE OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS 
TO EARTHQUAKE MOTIONS 

3.1 Introduction 

This chapter contains a description of the properties of the single-

degree-of-freedom sys'tems and the earthquake ground motions used in the 

statistical evaluation of alternative scaling methods. Also included in 

this chapter is a discussion of the numerical procedure employed in the 

computation of response spectra. Although many numerical techniques are 

available, the method described herein is particularly advantageous for 

its simplicity and accuracy, but above all, for its efficiency. Several 

details regarding spectral calculations, for example, the treatment of 

records with nonzero initial motions and the development of inelastic 

spectra for specified levels of displacement ductility, are set forth. 

The chapter closes with the presentation of the spectra computed from 

the selected ensemble of strong-motion earthquake records. Comparison 

of these spectra permits some insight into the influence of damping and 

material nonlinearity on the response to specific ground motions. 

3.2 Systems under Study 

Two structure-related quantities for the single-degree-of-freedom 

systems under study require definition. These parameters, damping and 

the load-deformation model, are described in this section. 

Energy dissipation within the linear elastic range of response 

arises primarily from various sources of damping. For analytical 

convenience, damping is generally approximated as velocity-dependent 
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or viscous. Damping values are most commonly specified as percentages 

of critical damping which is defined as the smallest value for which no 

oscillations about the equilibrium position occur in free response (10). 

Values of damping vary over a wide range and depend upon a number of 

important factors such as the structural material, the types of connec­

tions between structural elements, the amplitude of the response, and 

for most structures, the degree of deterioration accumulated through 

previous loadings. For example, the damping associated with a cracked 

concrete beam may be several times that for a similar, uncracked beam. 

It is evident that the selection of appropriate damping values requires 

a great deal of judgment. Even in cases where measurements of damping 

are made, the damping varies with the method employed for its calculation, 

e.g., from free-vibration tests and the logarithmic decrement approach or 

from steady-state, power bandwidth methods. Furthermore, tests conducted 

to experimentally verify damping values are most commonly conducted at 

low amplitudes. Although generally conservative, the levels of damping 

determined from such tests may not be representative of the higher values 

expected during excitation of greater intensity. 

Newmark (58) has summarized from a variety of sources the levels of 

damping shown in Table 3.1. Newmark points out that for each entry, the 

lower value in the pair is essentially a lower bound and is therefore 

conservative for design use. The upper value is approximately the average 

and may thus be more appropriate for design purposes. Other recommended 

damping values may be found in the literature and in current design codes 

and regulations, as for example, in Ref. 12. Damping values corresponding 

to 2, 5, and 10 percent of critical, representative of those shown in 



32 

Table 3.1, are selected for use in this study. 

Most structures behave inelastically, at least to some degree, when 

subjected to earthquakes of moderate and higher intensities. Many inves­

tigators have evaluated these inelastic effects for the most common 

structural elements and ~ssemblages fabricated of steel, reinforced and 

prestressed concrete, and masonry. Riddell and Newmark (67) present a 

comprehensive review of the important experimental findings and discuss 

the various analytical load-deformation models which have been proposed 

to predict the hysteretic response of structures. On the basis of this 

review, Riddell and Newmark employed three load-deformation models in 

their statistical study of inelastic response spectra. These models, 

the elastoplastic, bilinear, and stiffness degrading resistance functions, 

are shown in Fig. 3.1. The stiffness degrading model is composed of an 

initial bilinear spine; loading progresses either on a strain-hardening 

branch or towards the farthest point attained in the previous inelastic 

cycle. It should also be mentioned that the rules governing the stiffness 

degrading model employed by Newmark and Riddell were developed to avoid 

inconsistencies associated with small amplitude and incomplete hysteresis 

loops (68). A strain-hardening stiffness of 3 percent of the initial 

stiffness, as shown in Fig. 3.1, was selected as a representativ~ value 

for the bilineaI.° and degrading models. 

Mean inelastic yield spectra, taken from the study by Riddell and 

Newmark (67), are shown in Figs. 3.2 through 3.4. These spectra, computed 

from a group of 10 strong-motion earthquake records, provide an indication 

of the influence of the load-deformation model on mean response. As 

concluded by Riddell and Newmark (67) and Riddell (69), the ordinates 
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of the mean spectra are not significantly different for the various 

nonlinear models. In Figs. 3.2 and 3.3, differences in mean response 

primarily occur in the intermediate range of frequencies for large 

displacement ductilities. Minor differences are evident in the low 

and high ranges of frequency, corresponding to those regions below 

about D.l cps and above lD cps. Perhaps most important are the results 

in Fig. 3.4 which indicate surprisingly little difference in the mean 

spectra, for all frequencies and ductilities, for the bilinear and 

stiffness degrading models. Considering the apparent gross differences 

in the simple bilinear and the more complex stiffness degrading model, 

one might have expected, a priori, greater differences in mean response. 

Other investigators have reached similar conclusions regarding the 

effect of the nonlinear model 'on mean response. Iwan and Gates (35) and 

Iwan (36), for example, performed a statistical study employing the broad 

range of hysteretic models shown in Fig. 3.5. TPe systems in Fig. 3.5 

are shown for the case of cyclic loading with monotonically increasing 

amplitude. The six digit code for five of the systems contains the 

values for the parameters which control the ratio of the various slopes 

and the locations of points of slope change. Also included is the simple 

bilinear hysteretic model (BLH). The purpose of the studies by Iwan and 

Gates was to determine linear values of damping and period to enable the 

estimation of inelastic response from the linear elastic response spectrum. 

Optimal parameters which minimize the error between the true inelastic 

response and that approximated from the elastic spectrum are developed. 

The differences in the optimum linear parameters, even for moderate to 

large ductilities, are small, despite the widely varying characteristics 
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of hysteretic behavior. Iwan and Gates (35) conclude therefrom that it 

may not be necessary to know the precise details of the load-deformation 

relationship in order to make reasonably accurate estimates of response. 

The preceding discussion does not, and should not, imply that there 

are no systematic differences in the time-histories of response for 

individual cases. Insofar as peak response estimates are concerned, 

however, the evidence does indicate that the type and details of the 

hysteretic models are of secondary importance. Accordingly, the elasto­

plastic and bilinear hysteretic load-deformation models are selected to 

approximate inelastic behavior for the single-degree-of-freedom systems 

considered in this study. Note that the elastoplastic system is actually 

a special form of bilinear hysteresis in which the strain-hardening 

stiffness is zero. 

Two additional reasons for the selection of the bilinear model are 

noteworthy. First, the bilinear system is the simplest which can be used 

to approximate inelastic behavior. Since nonlinear action is known and 

in fact is expected to occur in structures subjected to moderately severe 

earthquakes, any study of response spectra should at least include a crude 

model for hysteretic effects. Secondly, the objective of this study is 

not to evaluate the influence of a wide variety of hysteretic models. 

Rather, the purpose is to employ a class of spectra, representative of 

conditions encountered in practice, in a study devoted to the evaluation 

of methods used to derive design response spectra. 

For the bilinear system, three values for the strain-hardening 

stiffness, 2, 5, and 10 percent of the initial elastic stiffness, are 

chosen for use in this study. These levels of strain-hardening cover 
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the realistically broad range which might be encountered in practice 

and enable the evaluation of the sensitivity of response to one common 

variable of hysteretic behavior. An intermediate, constant value of 

damping, 5 percent of critical, is used in all bilinear systems. For 

the elastoplastic model, damping values corresponding to 2, 5, and 10 

percent of critical are employed. Thus, six different combinations of 

damping and inelasticity are considered. For each of these cases, the 

levels of displacement ductility for which response spectra are computed 

encompass the range of values recommended for design by Newmark (58): 

the ductilities generally appropriate are on the order of 1 to 1.5 for 

light equipment; from 1.2 to 2 for massive equipment; from 1.5 to 3 for 

piping systems; from 1.5 to 2.5 for reinforced concrete structures loaded 

largely in shear or compression; from 2 to 5 for concrete in flexure; 

from 2.5 to 10 for steel loaded primarily in tension or flexure; and 

from 1.5 to 3 for steel members in compression, with the lower value 

corresponding to those elements which buckle at or below the yield 

levels of axial stress. On this basis, ductilities corresponding to 1, 

i.e., the linearly elastic case, 1.5, 2, 3, 5, and 10 are chosen. 

3.3 Ground Motions 

An ensemble of twelve earthquake accelerograms, recorded from actual 

past events, are chosen for use in this study. Pertinent earthquake data 

and recording site information are given in Tables 3.2 and 3.3. As the 

data in these tables reveals, the records encompass a broad range of the 

various parameters, including the geographical location, magnitude, 

maximum intensity, focal depth, epicentral distance, and recording site 
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soil conditions. There are several common features, however. All records 

are taken from instruments housed in instrument shelters at ground level 

or in basements of relatively small buildings. Accordingly, approximately 

free-field conditions prevail. In addition, each record contains a peak 

ground acceleration exceeding 0.15 g. Beyond these similarities, no 

additional attempts have been made to categorize the records selected for 

this study. In fact, the rather broad range of characteristics was desired 

to cover those which might be expected in practice. The results of this 

investigation are intended to be generally applicable and not restricted 

to a particular class of earthquake events or records from those events. 

However, it must be pointed out that seven of the twelve records are from 

California earthquakes. Hence, the results of this study will be biased, 

at least to some degree, inasmuch as the faulting and other tectonic 

processes are necessarily related for those events. 

The ground motions used in this study are shown in Figs. 3.6 through 

3.17. A casual examination of these records reveals their widely varying 

characteristics. Compare, for example, the impulsive-type motions of 

Cholame-Shandon, Gilroy, and Bucarest ~o those of El Centro, Taft, and 

Santiago. The differences in duration of strong shaking are readily 

apparent, as are the relative amplitudes of the acceleration peaks com­

prising the records. Other specific record data, including initial and 

maximum ground motions, are listed in Table 3.4. 

The records selected for this study were obtained in digitized form, 

for a uniform time interval, from magnetic tapes available from the 

National Geophysical and Solar-Terrestrial Data Center in Boulder, Colorado. 

All records have been "corrected" using the procedure developed at the 
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California Institute of Technology, the details of which are summarized 

in Refs. 32, 75, and 81. The adjustments involve baseline corrections 

of long period errors (79) and instrument corrections of high frequency 

errors (80). One feature of this procedure is that it provides estimates 

of the initial ground displacement, velocity, and acceleration. Physically, 

the ground must be in motion when recording begins, since a small level 

of excitation is required to trigger the recording instrument. The initial 

ground motions for the records used in this study are summarized in Table 

3.4. A difficulty arises when response spectra are computed from records 

with nonzero initial motions. The details of this problem and one method 

of treatment are described later in this chapter. It is sufficient to 

note here that the remedy involves the short, low-amplitude acceleration 

pulse added at the beginning of each record shown in Figs. 3.6 through 

3.17.' 

Another characteristic of the Caltech processing methods is that the 

ground velocities and displacements differ slightly from those derived 

from direct integration of the corrected accelerogram. The velocities 

and displacements shown in Figs. 3.6 through 3.17 are determined directly 

from the corrected accelerograms assuming that the acceleration varies 

linearly between successive digitized points. That is, 

!::.a. 
aCt) = a. + A 1 (t-t.) 

lot. l. 
(3.1) 

1 

where 

!::.a. a i +l - a. 

) 
1 1 

(3.2) 

!::.t. = t i +l - t. 
1 1 
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In these expressions a i and a i +1 correspond to the ground accelerations 

at times ti and t i +1 , respectively. Successive integrations of Eq. 3.1 

give the ground velocity and displacement, 

vet) 

d(t) 

+ 1. l1a i (t-t.)2 v. + a.(t~t.) 2 A 
1 1 1 ute 1 

1 

(3.3) 

(3.4) 

where v. and d. are the ground velocity and displacement, respectively, 
1 1 

at time tie Evaluating Eqs. 3.3 and 3.4 at t = t i +1 gives the recursion 

equations for the velocity and displacement, 

(I1t. )2 
1 

d. + v.l1t. + --6~-
111. 

(3.5) 

(3.6) 

The velocity and displacement time-histories shown in Figs. 3.6 through 

3.17 were evaluated by repeated application of Eqs. 3.5 and 3.6. The 

velocities published by Ca1tech are in very close agreement with those 

computed from Eq. 3.5. In fact, to the scale used in Figs. 3.6 through 

3.17, negligible differences can be detected in these velocities. How-

ever, greater differences are evident in the displacement time-histories. 

For example, the published Ca1tech displacements for the Adak, Alaska 

record and those computed directly from the corrected acce1erogram by 

means of Eqs. 3.5 and 3.6 are compared in Fig. 3.18. Also, the ground 

displacement maxima and the times of these maxima are compared in Table 

3.5; for the Adak, Alaska record, the difference in the peak ground 

displacement is nearly 40 percent. 
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The reason for the discrepancies shown in Fig. 3.18 and Table 3.5 is 

that the Cal tech correction procedures introduce long period components 

(longer than about 16 sec) in the integrated velocity and displacement 

time-histories. These long period "errors" arise entirely from the 

acce1erogram data processing methodOs (75). Hence, to arrive at the 

"corrected" velocities, i.e. those published by Ca1tech, the acce1erogram 

is integrated and high-pass filtered to remove the low frequency compo-

nents. Actually, the high-pass filtering is accomplished by subtracting 

the low-pass filtered signal from the original signal (32). Similarly, 

the "corrected" velocities are integrated and high-pass filtered to arrive 

at the "corrected" displacements. Since in this study the velocities are 

not filtered prior to integration, the "errors" are integrated resulting 

in greater observed differences in the displacement time-histories. 

It must be pointed out that for the purposes of this study, the 

foregoing differences in the ground displacements are unimportant. 

It is true, however, that the low frequency asymptote for the elastic 

pseudovelocity spectrum is the peak ground displacement computed directly 

from the corrected record via Eqs. 3.5 and 3.6. 

3.4 Method for Response Computation 

As described in Chapter 2, inelastic response spectra are commonly 

presented in the form of inelastic yield spectra and are displayed on 

tripartite grids. In these spectra, the initial yield level u required 
y 

to limit the maximum relative displacement u to a specified multiple 
max 

of the yield level is plotted on the displacement axis. In other words, 

inelastic yield spectra are generally plotted for specific levels of 
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displacement ductility, ~ = lu lu I. Accordingly, the process of 
max y 

developing inelastic spectra from strong-motion earthquake records is 

iterative: the initial yield level is adjusted, and the response computa-

tions are repeated, until the target ductility is obtained to within some 

prescribed accuracy. It is apparent, therefore, that a large number of 

computations may be required to develop the desired spectra, and in the 

interest of economy, the numerical integration technique must be efficient. 

A number of efficient methods are available for the computation of 

earthquake response spectra. An exact technique for linearly elastic 

systems has been reported by Nigam and Jennings (60, 61). In this method, 

the equation of motion is solved analytically within each successive time 

step assuming the ground acceleration varies linearly between digitized 

points. Gates (17) and Iwan and Gates (35) have extended this approach 

to a class of bilinear and stiffness degrading systems; however, few 

details regarding the application of the method are presented. Accordingly, 

the purposes of this section are to 1) review the exact method for linearly 

elastic systems; 2) extend this method to the bilinear hysteretic and 

elastoplastic systems used in this study; and 3) examine the accuracy and 

efficiency of the extended method by comparison with Newmark's algorithm 

(45). 

3.4.1 Linearly Elastic Systems 

The analytical method described in this section has been reported by 

Nigam and Jennings (60, 61). However, the technique was originally 

developed by W. D. Iwan in an unpublished study at the California Insti-

tute of Technology. 



41 

The equation of motion for the response of the linearly elastic 

single-degree-of-freedom system subjected to base excitation is 

~a. l. 
= -a. - ~ (t-t.) , t. < t ~ tl.0 +l 1. ut. l. l. -l. 

(3.7) 

where the ground acceleration, a(t), has been replaced by its piecewise-

linear approximation given in Eq. 3.1. In Eq. 3.7, u, u, and u are the 

relative displacement, velocity, and acceleration, respectively; S, the 

fraction of critical damping; and w, the undamped circular natural 

frequency. The solutions for the relative displacement, u, and velocity, 

u, are 

u(t) 

and 

In these expressions wD is the damped circular natural frequency, 

W = w/l-Q2 and C and Cz are constants. These constants are D j..J, 1 

evaluated by defining 

u(t=t.) = u. 

I l. l. 

~(t=t.) = u. l. l. 

(3.8) 

(3.9) 

(3.10) 
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Thus, C
l 

and C
2 

are 

(3.11) 

1 [" 8 1-28
2 

D.ai 1 C2 = w u. + Swu. + - a. + -;;---
D 

l. l. W l. 2 ut. 
W l. 

The relative displacement and velocity at the end of the time step, 

" u
i
+

l 
and ui +1 ' may be determined by substituting Eq. 3.11 into Eqs. 3.8 

and 3.9 and setting t = ti+lG The resulting recursion formulas for ui +l 

and u
i
+l may be conveniently expressed in matrix form as, 

J 
ui +l I 1 

u. I 1 
a. I l. .1. 

= [A(8,(;J,D.t.) ] + [B(S,W,D.t.)] (3.12) 

l 
l. l. 

ui +l u. a i +l l. 

where 

[ all aI21 [A(S,w,D.t.)] = 
l. a

21 
a22 

and (3.13) 

[ b
ll 

b
I2 

] [B(8,W,D.t.)] 
1. b21 b22 

The elements of matrices [A] and [B] are functions of 8, W, and b.t. and 
1. 

are given by Nigam and Jennings (60, 61). After simplifying elements 

b2l and b22 , the coefficients of [A] and [B] are: 



and 

- -Sw~ti [[ 26
2
-1 6 J sinwD~ti [26 1 J J 26 bll - e 2 + w w + 3 + 2 COSWD~t. - 3 

W ~t. D W ~t. W 1. W ~t. 
1. 1. 1. 

1 
b 2l = - -2--

W ~t. 
1. 

(3.l4b) 

Note that if the record is digitized at equal time intervals, the coeffi-

cients of [A] and [B] are constant for a given frequency. Hence, given 

the initial conditions for the single-degree-of-freedom system, usually 

u(O) = ~(O) = 0, response computations proceed rapidly by applying the 

recursion relationships defined by Eq. 3.12. Monitoring the response 

quantities as computation proceeds enables the determination of the 
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maximum relative displacement, i.e. the spectral displacement. The 

calculations are repeated for a family of frequencies for each selected 

damping value. Thereby, an entire set of elastic response spectra is 

developed for the given earthquake record. 

The procedure described above can, of course, be applied to accelero-

grams digitized at unequal time intervals. However, the evaluation of 

matrices [A] and [B] at each step of integration, i.e. for each ~t., 
1 

increases the computation time considerably. Experience has shown that 

this increase in computation time may be 100 percent or more. To maintain 

computational efficiency for records digitized at unequal time intervals, 

Nigam and Jennings (60, 61) recommend an approximate method involving 

time coordinate rounding. However, with the development of uniform 

processing and correction procedures, records are routinely digitized 

at equal time steps of 0.01 or 0.02 sec. Hence, it is unnecessary, 

insofar as the discussion here is concerned, to consider the treatment 

of records digitized at unequal time intervals. 

The time step used in the response computations is selected as the 

smaller of the digitized interval of the earthquake accelerogram or some 

fraction of the period of free vibration, for example T/lO. For systems 

whose natural period governs the selection of ~t., i.e. for high frequen-
1 

cies, ~t. must be chosen so that an integral number of time steps compris~s 
1 

the digitized interval of the accelerogram. This restriction on ~t. 
1 

preserves uniform time intervals and guarantees that response quantities 

will be computed at times corresponding to those of the given earthquake 

record. For example, suppose that the response of a system with T= 0.12 

sec is to be determined. In addition, assume that the earthquake 
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accelerogram is digitized at intervals of 0.02 sec. If the time step 

is not to exceed, say, TIIO or the digitized interval, ~t. must be 
1 

selected as 0.01 sec, providing two time steps between successive 

digitized values of acceleration. 

Aside from the uncertainties associated with the recording and 

processing of th~ accelerogram itself, errors in spectral calculations 

result from approximations employed in the numerical integration tech-

nique used for response computation. In this sense, the method described 

herein is exact. However, error is introduced by discretization. That 

is, the true maximum displacement or velocity, i.e. the spectral quanti-

ties, will not, in general, occur at one of the discrete times at which 

computations are made. The maximum error results when the true maximum 

falls midway between two consecutive time points, as depicted in Fig. 

3.19. If the response within the time step is approximated by a sinusoid 

of frequency equal to the natural frequency of the single-degree-of-

freedom system (60, 61), the maximum error is 

maximum error, % - [ 1 - cos 
TI~til 

x 100 (3.15) o - -T-) 

Note that the true spectral quantities are greater than those computed at 

the discrete time points. By appropriately selecting the time step, 

however, the maximum error in the spectral ordinates may be controlled. 

For example, the expression above gives 4.9 percent error for ~t. = T/lO, 
1 

1.2 percent for T/2D, and D.3 percent for T/40. Thus, a time step corre-

sponding to ~t. = T/20 is generally adequate and is used in this study 
1 

for the computation of elastic spectra. 
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3.4.2 Bilinear Hysteretic Systems 

The bilinear hysteretic load-deformation model is shown in Fi~. 3.20. 

In this figure, u represents the initial yield level; u and u are the 
y ~ ~ 

current positive and negative yield levels; s, the current set remaining 

after an excursion of yielding; k, -the initial elastic and unloading 

stiffness; and a, the ratio of the strain-hardening stiffness to the 

elastic stiffness. Initially, of course, s = 0, u = u , and u -u • yp y yn y 

Note that kinematic hardening for the bilinear system is shown, in which 

the current positive and negative yield levels are separated by a region 

of linearly elastic deformation of magnitude 2u . 
y 

Consider first the linear elastic response which follows unloading. 

For this case, the equation of motion for t. < t < t'+1 is 
1. - - 1. 

.. 2 
u + 28UJu + w (u-s) -a. 

1. 

/;:,a. 
1. (t-t.) 

/;:,t. 1. 
(3.16) 

1. 

where all symbols are as previously defined. This equation may be more 

conveniently expressed as 

2 /;:,8.. .. 
2Sw{; 1. (t-t. ) u + + w u -a. - /;:,t. 1. 1. 

(3.17) 
1. 

where 

2 a. = a. - w s 
1. 1. 

(3.18) 
2 

a i +l = a i +l - w s 

The notation /;:,a. in Eq. 3.17 is used for convenience since /;:,8.. = /;:,a. 
1. 1. 1. 

from Eq. 3.2. The solution for Eq. 3.17 is given by Eq. 3.12 with the 
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substitution of a. and a i +l 
for a i and a i +l , 

1 

1 ) 1 ) 1 
... 

) 
Ui +l u. a

i 1 

[A«(3,w,D.t.)] + [B«(3,w,D.t.)] (3.19) .. 1 1 

Ui +l u. a i +l 1 

in which the coefficients of matrices [A] and [B] are defined by Eqs. 3.14. 

The set s required in Eq. 3.18 is computed at the instant of unloading. 

Following an excursion of positive yielding, the set is given by s = (I-a) x 

(u l-u); fo"llowing an excursion of negative yielding, s = (I-a.) (u l+u). 
~ y ~ y 

In these equations, u 1 is the relative displacement computed at the 
un 

instant of unloading. At the same time, the current yield levels are 

updated. For example, following a positive yield excursion, u = u 1 
yp un 

and u 
yn u 1 - 2u . un y 

Now consider excursions of loading beyond the current yield levels 

for the bilinear system. With reference to Fig. 3.20, the equation of 

motion for relative displacements greater than the current positive yield 

level 

.. .. 2 2 
u + 2Bwu + w (u -s) + aw (u-u ) = -a yp yp i 

D.a. 
1 - - (t ... t ) 

D.t. i 
1 

(3.20) 

This differential equation applies for u > u until unloading is detected, yp 

when the product u
i 

x u
i
+l < O. Simplifying Eq. 3.20 gives 

in which 

Sa. 
1 -a .... - (t-t ) 

1 D.t. i 
1 

w = wl(i 
2 

(3.21) 

(3.22) 
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and 
2 . 

) 
a. = a. + W u (I-a) 

1. 1. Y 
(3.23) 

2 
a i +l a i +l 

+ W u (I-a) y 

Note that 82 and w
2

, equivalent properties associated with the strain­

hardening branch of t,he force-deformation model, are defined only for 

a >0. For an excursion of negative yielding, for u < Uyn' Eq. 3.21 applies 

with the modification, 

2 
(I-a) a. = a. W u 

1. 1. y 
(3.24) 

2 
a i +l = a i +l - w u (I-a) 

y 

The character of the solution of Eq. 3.21 may be underdamped (82 < 1), 

critically damped (82 = 1), or overdamped (82 > 1). However, for the 

majority of bilinear systems of practical interest, the response is 

underdamped. For example, for the bilinear systems considered in this 

study, in which 8 = 0.05 and a = 0.02, 0.05, and 0.10, the largest value 

of 8
2 

is 0.05/10.02 or 0.35. Thus, the solution as expressed by Eq. 3.19 

holds with the substitution of 82 and w2 for Band w in the elements of 

[A] and [B] given in Eqs. 3.14. 

3.4.3 Elastoplastic Systems 

The discussion regarding the linearly elastic portions of the 

response for the bilinear system also applies to the elastoplastic system. 

For yield excursions, however, the equation of motion for the e1asto-

plastic system is 
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u + 2Sw-Zt = -a. 
~ 

~a. 
1 - - (t-t ) 

~t. i 
1 

(3 .. 25) 

where a
i 

and ai +l are computed, with ex. = 0, in accordance with either 

Eq .. 3 .. 23 for positive yielding or ~q. 3.24 for negative yielding. The 

solution for Eq. 3.25 may also be expressed by Eq. 3.19 in which the 

elements of matrices [A] and [B] are: 

= 1 

(3.26a) 

= 0 

-2Sw~t. e ]. 

bil 
1 [ (l-e -2Swt.ti J ( 1+ 1 ) - Sw~t. - IJ = 28wLlt. 4S2w2 1 

~ 

bl2 
1 ~ 1 [1 -2Swt.t.) Sw~t. + IJ 4S2w2 2Sw~t . 

-e 1-
1. 

1. 

(3.26b) 

b21 = 1 [e-2SWt.ti [1+2Swt.t J- ~ 4S2w2~t. i 
1. 

b22 
1 t-e -2f3w.l1

t
i - 2Swt.tJ 2 2 

4S w ~t. 
]. 

For the special case of no viscous damping (S 0), the coefficients of 

[A] and [B] are: 
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all I 

a l2 
= L1t. 

1 

(3.27a) 

a 21 0 

a 22 
= I 

bll 
I (L1t

i
)2 = 3 

I 2 bl2 = - "6 (~ti) 
(3.27b) 

b21 
I (L1t.) - - 2 1 

b22 
I (L1t.) 
2 1 

The coefficients in Eqs. 3.27 may be obtained from those in Eqs. 3.26 

by taking the limit as S approaches zero. 

3.4.4 Notes for a Computational Algorithm 

To maintain satisfactory accuracy in the response computations for 

the bilinear hysteretic and elastoplastic systems, the points at which 

the character of the solution changes - at yielding and unloading - must 

be detected reasonably precisely. This may be accomplished conveniently 

as follows. Before response computations begin, matrices [A] and [B] 

are evaluated and stored for the time interval ~t. and for one or several 
1 

fractional time steps. The fractional time steps may be selected, for 

example, as ~t./IO, L1t./IOO, and L1t./IOOO. Note that two sets of matrices 
1 1 1 
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fA] and [B] corresponding to the linear elastic and strain-hardening 

branches of the load-deformation model are required. When yielding or 

unloading is detected within a time step ~ti' the first (largest) frac­

tional time step and corresponding [A] and [B] are used to locate the 

time subinterval during which yielding or unloading occurs. Once this 

subinterval is determined, the second fractional time step is employed 

to further refine the subinterval during which yielding or unloading 

takes place. The foregoing scheme is repeated until the smallest 

fractional time step is used or until the response quantities at yielding 

or unloading are determined to within some prescribed accuracy. It is 

important to note that the fractional time intervals are used progres-

sively, as described above, to refine the previously determined time 

subinterval during which a change in response behavior is detected. 

Because the computations in Eq. 3.19 are solely arithmetic and the 

required matrices [A] and [B] have been computed beforehand and stored, 

the method of fractional time stepping to detect yielding and unloading 

is efficient. 

For the computation of inelastic spectra in this study, the basic 

time step ~t. = T/lO and three fractional time steps, ~t./IO, ~t./IOO, 
1. 1. 1. 

and ~t./lOOO, are used. Experience with undamped elastoplastic systems, 
1. 

however, has shown that satisfactory accuracy is generally obtained using 

~to = T/IO and one fractional time step, ~t./IO. For this choice, response 
1 1. 

maxima differed from those using the three fractional time step scheme by 

about 0.2 percent. The computation times using three fractional time 

steps ranged from 3 to 8 percent greater than those using one fractional 

time step; hence, economy is not significantly compromised when several 
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fractional time steps are used. 

One additional point should be mentioned regarding the calculation 

of the coefficients of matrices [A] and [B]. That is, caution must be 

exercised in the evaluation of Eqs. 3.14 and 3.26 to avoid roundoff or 

truncation errors. For sufficiently small W~to, loss of accuracy may 
]. 

result when differences are taken between two values which are very 

1 1 for 1 1 d -2SW~ti On d f near y equa , as examp e an e . e reme y, 0 course, 

is to use double· (or higher) precision computer arithmetic to compute 

those coefficients prone to roundoff error. How small w~ti must be 

before roundoff becomes troublesome depends, of course, on the number 

of significant digits available for computation. However, no matter 

how many digits are used, a value of ~ti may be chosen so that roundoff 

errors result. 

Perhaps a better method of eliminating the truncation errors is to 

evaluate the coefficients by first expanding the analytical expressions 

in power series form. In this manner, lower order terms vanish identi-

cally. Hence, roundoff is avoided since the first remaining terms are 

of like order. The coefficients in which difficulties arise are those 

given in Eqs. 3.l4b a~d 3.26b, and coefficient a12 in Eqs. 3.26a. 

Experience has shown that those in Eqs. 3.26 are particularly trouble-

some for small values of Sw~to. On the CDC Cyber 175, in which 14 
]. 

significant figures are available in the single precision mode, roundoff 

errors are evident in Eqs. 3.26b for Sw~to less than about 0.06. Expand­
]. 

ing coefficient a12 in Eqs. 3.26a and those in Eqs. 3.26b gives 

00 

= (~t.) 
]. 

L 
n=l 

(2Sw~t.)nl 
( -1) n --,-_...,...--.&._ 

(n+1)! (3.28a) 
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It+ n l 00 (2Swllt. ) 
2 E (_l)n (n+3) (~1) ! _ bll 

- (~t.) 
1 n=l 

[i+ 
n 

] 00 (2Swllt. ) 
2 L (_l)n 1 

b12 = -(llt.) (n+3)! 1 n=l 

(3.28b) 

[t+ 
n 

] 00 (2 Swllt . ) 
-(llt. ) L (_l)n 1 

b21 (n+2)n! 1 n=l 

[t+ 
n 

] 00 (2Swllt. ) 
-(~t.) L (_l)n 1 

b22 (n+2)! 1 n=l 

Thus, when Swllt. is less than 0.06, the expressions in Eqs. 3.28 are used 
1 

to evaluate the e1astop1astic coefficient a12 and those for matrix [B]. 

Including terms in each series up to eighth order provides results 

accurate to about 12 significant figures. 

3.4.5 Efficiency and Accuracy 

It is appropriate to compare the efficiency and accuracy of the 

exact method described in this chapter with other numerical procedures 

for the computation of inelastic response. One procedure in common use 

is Newmark's beta method (45) in which the relative acceleration U is 

assumed to vary linearly within a time step. Computation times for 

e1astop1astic systems with 5% damping subjected to 18.2 sec of the 

Pacoima Dam record shown in Fig. 3.6 are compared in Table 3.6. The 

calculations were performed on the CDC Cyber 175 computing system at 

the University of Illinois at Urbana-Champaign. As shown in Table 3.6, 

response computations were made for 40 frequencies, from 0.035 to 35 cps, 

with 13 frequencies in each logarithmic cycle. In the exact method, 
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the basic time step was ~ti = T/IO. Three fractional time steps, ~ti/IO, 

~ti/IOO, and ~ti/IOOO, were used to detect yielding and unloading. For 

Newmark's method, two sets of computations were made, one using a time 

step of T/IO; the other, T/20. Fractional time stepping to detect 

yielding and unloading was not employed in Newmark's method. Note that 

for T/IO, the time step used in the calculations for frequencies less 

than 5 cps corresponds to the digitized interval of the accelerogram, 

or 0.02 sec. For T/20, the digitized interval governs for frequencies 

less than 2.5 cps. Accordingly, for Newmark's method the computation 

times for the two low frequency regions are the same, to two significant 

figures, as shown in Table 3.6. Note, however, that the computation 

time for the exact method for each of these low frequency regions is 

about I sec, or 40 percent less than that for Newmark's method. For 

high frequencies, the exact method provides significantly greater 

savings, and a comparison of total computation times shows a two- to 

threefold savings for the exact method. 

To compare the accuracies of the methods, consider the selected 

relative displacement maxima summarized in Table 3.7. Newmark's method 

gives maximum displacements to within about 7 percent for a time step 

of T/IO, and 2 percent for T/20, compared with those obtained from the 

exact method. 

3.5 Records with Nonzero Initial Motions 

As mentioned in Section 3.3, the Caltech accelerogram processing 

procedures provide estimates of the ground motions at the instant at 

which the instrument is triggered and recording begins. These initial 



55 

motions may be expressed as a(O) = a , v(O) = v , and d(O) = d , where 
o 0 0 

aCt), vet), and d(t) are, respectively, the ground acceleration, velocity, 

and displacement. The time coordinate t, of course, is measured from the 

instant at which recording commences. A difficulty arises when response 

computations are made for systems -subjected to base excitation with 

nonzero initial conditions. Namely, the initial conditions for the 

single-degree-of-freedom oscillator are not known. To clarify this 

point, consider the initial conditions for the relative displacement 

and velocity given by 

u(O) x(O) - d 
o 

~(O) = ~(O) v 
o 

(3.29) 

where x(t) and ~(t) are the absolute displacement and velocity of the 

mass, respectively. It is apparent that the absolute motions, x(O) and 

iCO), depend upon the ground motions not recorded, i.e. those before the 

instrument is triggered. Hence, with x(O) and ~(O) unknown, uCO) and 

~(O) are unknown. 

In spite of the foregoing problem, at-rest initial conditions are 

commonly assumed. However, an inconsistency arises when considering very 

flexible systems, i.e. for w ~ O. With u(O) = ~(O) = 0, Eqs. 3.29 give 

x(O) = d and iCO) = v. For the infinitely flexible system, these 
o 0 

initial conditions are obviously incorrect since the mass of the system 

must remain motionless for all time. Hence, the proper initial condi-

tions for the very low frequency systems result from xCt) = i(t) = 0, 

from which uCO) = -d and ~(O) = -v. However, for very high frequency 
o 0 
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systems, i.e. for w + 00 there is no relative motion between the mass 

and the ground, and the initial conditions are precisely u(O) = ~(O) =0. 

In view of these limiting cases, it is clear that one set of initial 

conditions does not apply for all frequencies. Accordingly, one early 

approach for treating records with nonzero initial motions was to change 

initial conditions for the oscillator at some intermediate frequency. 

Pecknold and Riddell (64) and Nelson (44) briefly considered this 

approach; the results, however, were unsatisfactory. In addition, 

Nelson (44) points out the arbitrariness of the selection of the inter-

mediate frequency at which the initial conditions are altered. 

Pecknold and Riddell (63, 64) were the first investigators to propose 

a successful method of treating the problems encountered in response 

computations from records with nonzero initial motions. In this method, 

a short acceleration pulse is added at the beginning of the earthquake 

record. For this prefixed pulse, let a, v, and d denote, respectively, 

the pulse acceleration, velocity, and displacement. Also, assume that 

the pulse acts from 0 < T ~ H, or - H < t < O. The prefixed acceleration 

pulse consists of the superposition of three influence functions which 

J
H ;:.2 

were derived by minimizing a dT subject to the constraints 

H H 0 

fa a:(T)dT v 0 and fa v(T)dT = do· The prefixed pulse is piecewise 

linear so that conventional integration methods, as described in Section 

3.3, yield the velocity v and displacement d at the end of the pulse. 
o 0 

The ordinates of the prefixed acceleration pulse are given by 

A a. 
1. 

v d 

aogl(i) + : g2(i) + H~ g3(i) (3.30) 
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where a. = a(i~T). The pulse is divided into N (N ~ 3) intervals such 
1. 

that ~T = RING The influence functions gl(i), g2(i), and g3(i) are cubic 

polynomials in the discrete variable i and are given by 

g. (i) 
J 

(3.31) 

in which j = 1,2,3 and i = 1,2, •.. , N. The coefficients b. , c. , and d. 
J J J 

depend upon the number of intervals N and are given by 

b = (N2 +1) (3N
2 
+4) -12N

2
(N2+l) d

l 
lON4 

cl 
= =--

1 C C C 

b2 
-24N2 (N

2
+l) l2N

2
(7N2+2) d2 

-60N4 
(3.32) 

C 
c

2 C C 

b
3 

60N4 .-180N4 
d

3 
l20N4 

=-- c
3 

= 
C C C 

To show the influence of at-rest initial conditions on the elastic 

response spectra computed from records with nonzero initial motions, 

consider the following example. Undamped elastic spectra were computed, 

assuming at-rest initial conditions, for the two accelerograms of the 

Melendy Ranch record shown in Figs. 3.21 and 3.22. In Fig. 3.21 the 

Melendy Ranch record is shown without a prefixed pulse; the initial g~ound 

velocity and displacement are clearly evident in this record. In Fig. 

3.22, the record has been shifted in time to accommodate a 2-second 

prefixed pulse. Note that Fig. 3.22 is identical to Fig. 3.8 and is 

repeated here for ease of reference. The undamped spectra computed from 

these records are shown in Fig. 3.23. It is clear from this figure that 
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the correct asymptotic behavior at low frequencies is achieved only for 

the spectrum computed from the record with the prefixed pulse. That is, 

at low frequencies, the spectral displacement approaches the peak ground 

displacement, d , in this case 1.28 in. In fact, it can be shown (63) 
p 

that the low frequency asymptote for spectra computed from records with 

nonzero initial motions corresponds to a constant pseudovelocity equal 

in magnitude to the initial ground velocity, v. This behavior is clearly 
o 

evident in Fig. 3.23 for the spectrum computed from the Melendy Ranch 

record with no prefixed pulse, for which Iv I = 1.17 in./sec. In addition, 
o 

note in Fig. 3.23 that the significant differences between the spe.ctra 

extend up to a frequency of about 0.5 cps. Above about 2 cps, the spectra 

are identical, consistent with the previous discussion regarding the 

initial conditions for high frequency systems. Pecknold and Riddell (63) 

estimate that the frequency below which spectral ordinates may be in error 

is fn = v /(2nd ), which for the Melendy Ranch record is 0.15 cps. It is 
N 0 P 

evident from Fig. 3.23 that the spectral errors may extend to a frequency 

several times the value given by the expression above. 

In this study, a prefixed acceleration pulse was added to each record, 

as shown in Figs. 3.6 through 3.17. The ordinates of each pulse were 

computed in accordance with Eq. 3.30, where the initial ground motions 

are as given in Table 3.4. For each record, a pulse duration of 2 seconds 

was selected so that the amplitude of the pulse is small. The number of 

intervals was chosen, for convenience, so that the time'step for the 

pulse matched the digitized interval of the remainder of the record. 
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3.6 Yield Spectra for Specified Levels of Displacement Ductility 

Inelastic yield spectra are generally presented for selected levels 

of displacement ductility. That is, the initial yield level which limits 

the maximum relative displacement to a specified multiple of the yield 

level itself is plotted on the displacement axis. To construct yield 

spectra, computations are made for several trial yield levels, for each 

frequency and damping value. The yield level corresponding to a given 

target ductility is then estimated by interpolation. Response computa-

tions are repeated using the latest estimate for the yield level, until 

the target ductility is attained to within some prescribed accuracy. 

In this study, the interpolation is performed assuming a locally linear 
@ 

variation between log(u ) and log(~). Convergence is achieved when the y 

computed ductility is within about I percent of the target value. 

The variation of ductility with yield level for several cases is 

shown in Figs. 3.24 and 3.25 for the Pacoima Dam record. In these 

figures, u is the maximum relative displacement for an elastic system 
e 

with the indicated frequency and damping value. Hence, the ordinates 

are the values by which the elastic spectral displacements must be 

reduced to provide the corresponding ductilities. Although the results 

presented in Figs. 3.24 and 3.25 apply only to the specific earthquake 

record, several features of the data are generally applicable to all 

records used in this study. 

First, note that for very low frequencies, i.e. f = 0.03 cps, the 

ductility increases uniformly with decreasing yield level. Note also 

that for all ductilities, the reduction factor, u lu , is independent y e 

of damping and strain-hardening, and corresponds very closely to l/~. 
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For high frequencies, for example 7 cps, the ductility again increases 

uniformly, although more rapidly than for the very low frequencies, as 

the yield level decreases. For ductilities less than about 2, the 

reduction factor is roughly 1112~-1 for all levels of damping and strain-

hardening. It is clear, however, that for high frequency systems with 

moderate to large ductility, damping and strain-hardening influence the 

reduction factor. Specifically, for a given reduction factor, the 

ductility increases with damping, indicating that the effectiveness of 

damping in reducing response amplitude diminishes as the level of the 

inelastic response increases. On the other hand, the effect of strain-

hardening on high frequency systems follows the logical trend: increasing 

the level of strain-hardening decreases the ductility for the same 

spectral reduction factor. 

The smooth variation of ductility with yield level for the high 

frequency systems is indeed advantageous. For these systems, response 

computations are relatively more costly since a small time step is 

required. However, economy is generally maintained because the smooth 

variation of ~ with u enables rapid convergence for each target ductility. 
y 

For the intermediate frequencies, the variation of ductility with 

yield level may be very irregular. Note, in addition, that the ductility 

need not be a single-valued function of the yield level. For example, 

for elastoplastic systems with f = 4 cps, a ductility of 10 is obtained 

for three different yield levels. Also, for a frequency of 0.65 cps, 

a range of yield levels will result in a ductility of 2 for elastoplastic 

systems with 5 percent damping 0 It should be noted that for such cases, 

the yield level used in the inelastic spectrum corresponds to that which 
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the trial and interpolation procedure (described earlier) finds first. 

For some frequencies, strain-hardening tends to diminish the irregulari­

ties, as for example f = 2.6 cps and f = 4 cps. However, for f = 0.15 cps 

and f = 0.65 cps, strain-hardening has little effect. 

3.7 Frequencies and Durations for Spectral Calculations 

Important savings in spectral computations may be achieved by 

limiting both the number of frequencies and the duration of the excitation. 

However, the shape and other features of the spectra should not be masked 

by considering too few frequencies or insufficient duration. The general 

effects of frequency density on earthquake spectra are shown in Figs. 3.26 

through 3.29. In these figures, elastic spectra computed from the Pacoima 

Dam record for increasing damping values are presented. A total of 79 

frequencies between 0.035 and 35 cps were used, with 26 frequencies in 

each logarithmic cycle. In each figure, the solid curve connects each of 

the 79 spectral ordinates; the dashed curve joins every other point. 

Hence, the dashed spectra correspond to those in which 13 frequencies are 

used in each logarithmic cycle, providing a total of 40 spectral values. 

It is clear that for the undamped case, several significant spectral 

ordinates are missed if coarse frequency intervals are used; however, 

when 2 percent damping is introduced, the essential spectral features 

are satisfactorily maintained. As the damping increases, the differences 

in the spectra diminish. These results are expected, of course, since 

damping has a general smoothing effect on earthquake response spectra. 

In this study, in which spectra for 2, 5, and 10 percent damping 

are considered, spectral computations are made for 40 frequencies between 

0.035 and 35 cps, with 13 in each logarithmic cycle. These frequencies 
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f x 10(i/13), i 
s 

1,2, .•. ,13 (3.33) 

where f is the starting frequency for each logarithmic cycle, namely 
s 

f = 0.035, 0.35, and 3.5 cps. For convenience, this same set of 40 
s 

frequencies is used tor all records. 

Since response spectra contain the peak response values, the duration 

of the ground motion must be sufficient to enable the evaluation of these 

true maxima. Too short a duration will generally result in unconservative 

estimates of maximum response. The earthquake durations used for the 

response computations performed in this study are summarized in Table 3 .. 8. 

To determine these durations, elastic spectra were first computed using 

the total duration for each record, as shown in Figs. 3.6 through 3.17. 

For each frequency, the time of maximum relative displacement was noted. 

It was observed, as expected, that for each frequency, the latest time 

of maximum response occurred for the least damping, 2 percent of critical. 

It was also noted that the latest time for maximum response decreased as 

the frequency increased. That is, for higher frequencies, the maximum 

relative displacement occurred earlier than for low frequency systems. 

Again, this result is anticipated since for low frequency (long period) 

systems, the ground motion behaves essentially as an impulse; therefore, 

peak response occurs in free vibration after the strong ground motion 

ceases. For high frequency systems, however, the maximum relative 

displacement generally occurs closely after the peak ground acceleration. 

The foregoing observations enabled the selection of the frequency 

ranges and corresponding durations, as summarized in Table 3.8. Where 
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possible, the chosen duration corresponds to a time roughly 50 percent 

greater than that at which the latest response maximum was observed for 

elastic systems with 2 percent damping. Calculations for elastoplastic 

systems for several cases revealed that this criterion for selecting 

the duration for inelastic response computations is generally satisfac­

tory. Exceptions arise, of course, in those cases where peak response 

occurs very late or during free vibration as, for example, in the Taft 

and Adak, Alaska records. For these situations, and for the others 

noted in Table 3.8, the entire record is employed. In all cases, 

however, response computations are continued for one full period of 

free vibration following the ground motion. 

Finally, it should be noted that the durations shown in Table 3.8 

are not rounded values; this is because the durations correspond to 

times at which the ground velocities are zero. These points were 

selected so that the ground was at rest at the end of the earthquake. 

3.8 Presentation and Discussion of Results 

Response spectra computed from the group of twelve earthquake 

accelerograms are presented in Figs. 3.30 through 3.89. Elastic spectra 

for 0, 2, 5, 10, and 20 percent damping are shown in Figs. 3.30 through 

3.41. Note that those for zero and 20 percent damping are shown for 

comparative purposes only and are not used in subsequent statistical 

processing. Figures 3.42 through 3.53 contain elastoplastic yield spectra 

for 5 percent damping; Figs. 3.54 through 3.65 show bilinear yield spectra 

for 5 percent damping and 5 percent strain-hardening. In the interest 

of brevity, the yield spectra for elastoplastic systems with 2 and 10 
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percent damping and those for bilinear systems with 2 and 10 percent 

strain-hardening are not shown. The yield spectra presented, however, 

are representative of those computed for the broad range of conditions 

considered in this study. 

In the paragraphs which follow, features of the various spectra are 

described. Several observations, for example, are made concerning the 

in!luence of damping and strain-hardening on inelastic yield spectra. 

These effects are shown for each record in the spectra of Figs. 3.66 

through 3.89. Figures 3.66 through 3.77 contain elastoplastic spectra for 

2, 5, and 10 percent damping for ductilites of 1 (elastic), 3 and 10. 

Figures 'l 7Q 
...J. I U 3.89 compare elastoplastic and bilinear yield 

spectra for 10 percent strain-hardening for these same ductilities. 

While qualitative trends may be noted by considering the spectra for 

individual records, specific conclusions may only be reliably obtained 

by examining mean spectra. The presentation of mean spectra, however, 

and the quantitative assessment of the factors affecting mean response 

are deferred to Chapter 5. 

The elastic spectra in Figs. 3.30 through 3.41 exemplify the charac-

teristics of the records used in this study. The spectra for the El 

Centro, Taft, and Santiago records, for example, are broad in terms of 

their frequency content. In contrast are those spectra for the short 

duration, impulsive-type motions of the Gilrqy and Bucarest records. 

These latter spectra are characterized by large spectral amplitudes 

over narrow frequency ranges. Note also that damping has relatively 

greater effect in decreasing response for the broadband spectra. For 

example, the separation between the elastic spectra for El Centro, 

Taft, or Santiago is clearly greater than that for Gilroy or Bucarest. 
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Riddell and Newmark (67) and Riddell (69) have previously commented 

on the effects of damping when combined with inelastic action. The results 

of this study are in general agreement with those of Riddell and Newmark 

and may be summarized as follows: 

1. For low frequencies (less than about 0.07 cps for most records), 

spectral ordinates are independent of damping for all ductilities. 

2. For high frequencies (greater than about 20 cps), the effective-

ness of damping increases as the ductility increases. 

3. For the intermediate range of frequencies, the influence of 

damping in reducing response amplitudes diminishes as the level 

of inelastic response increases. 

The foregoing trends are generally evident from an examination of the 

elastoplastic spectra shown in Figs. 3.66 through 3.77. However, there 

are noteworthy exceptions. For example, for intermediate frequencies, 

the spectra for several records indicate that damping may be least 

effective in reducing response for moderate ductility. The differences 

between the three spectra for ~ = 3 for Pacoima, El Centro, Taft, and 

Kilauea appear to be, on the average, less than those for ~ = 10. These 

differences are perhaps most noticeable in the Kilauea, Hawaii spectra 

for frequencies between about 0.5 and 5 cps. On the other hand, several 

spectra reveal that damping has approximately the same effect for all 

ductilities. The Gilroy and Bucarest spectra, for example, show that 

response is reduced essentially by the same amount, for ~ = 1, 3, and 

10, as damping increases. 

The general influence of strain-hardening on yield spectra may be 

assessed from Figs. 3.78 through 3.89. It is reasonable to expect that 
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a system with strain-hardening would require a lower yield level to attain 

the same ductility as that for the same system in which yielding is 

perfectly plastic. With minor exceptions, this trend is apparent in all 

spectra. Note, however, for low frequency systems, the yield level is 

insensitive to the amount of strain-hardening; the only exception arises 

in the Taft spectra for ~ = 10. For most spectra, strain-hardening has 

relatively little effect for moderate ductility, i.e. ~ = 3. This obser­

vation is particularly evident in the spectra computed from the Cholame­

Shandon, Melendy Ranch, Gilroy, and Bucarest records. In cases where 

strain-hardening does influence the spectra for moderate ductility, the 

differences occur primarily for intermediate frequencies. As the level 

of inelastic response increases, the effects of strain-hardening, of 

course, become more pronounced. Finally, it is worth noting that strain­

hardening tends to smooth yield spectra, especially for large~. This 

effect is shown, for example, in the Bonds Corner, El Centro, and Kilauea 

spectra where strain-hardening depresses the local peaks in the elasto­

plastic spectra for ~ = 10. 
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CHAPTER 4 

SPECTRAL SCALING FACTORS 

In this chapter, the parameters which are evaluated as normalizing 

factors for earthquake response spectra are described. These scaling 

parameters are used to normalize both elastic and inelastic spectra, 

since in current practice inelastic design spectra are derived directly 

from elastic spectra. Proposed by various investigators as potential 

descriptors of earthquake intensity, the normalizing factors considered 

in this study comprise two major groups. The first group contains those 

quantities determined from the recorded ground motions. Within this 

group are the peak values of .ground acceleration, velocity, and displace­

ment which presently serve as spectral scaling factors. The other factors 

within this category are derived from the integrals of the squared ground 

motions and include the root-square, mean-square, and root-mean-square 

acceleration, velocity, and displacement. The second group of scaling 

factors is based directly on response-rel~ted quantities and includes 

Housner's spectrum intensity and the mean Fourier amplitude. The chapter 

closes with a brief summary of the statistical procedure used to evaluate 

the dispersion characteristics of the normalized spectra. 

4.2 Scaling Factors Based on Ground Motion Quantities 

The peak ground acceleration, velocity, and displacement are 

currently used as spectral scaling factors. Although not descriptive 

of the intensity of the entire ground motion time-histories, the peak 

displacement and acceleration are indicators of structural response for 
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low and high frequency elastic systems. As described in Chapter 2, the 

maximum response of an elastic single-degree-of-freedom system may be 

characterized as displacement-amplified for low frequencies and accelera-

tion-amplified for high frequencies. The peak ground velocity, when 

plotted as a constant pseudovelocity on the elastic spectrum, indicates 

an intermediate frequency region of velocity amplification. Hence, the 

peak ground motions do, in fact, possess physical appeal. They may be 

thought of as "static" response quantities; the dynamic response may be 

interpreted as some magnified "static" response. This concept, of course, 

is analogous to that employed in elementary dynamics in which the amplitude 

of the response to harmonic excitation is expressed in a convenient nondi-

mensional form. 

Recognizing that instrumental peak values do not portray the overall 

intensity of the ground motion, Arias (2) and Housner and Jennings (31) 

proposed a measure of earthquake strength based upon the energy available 

for damage. It is possible to draw some general conclusions about the 

energy input to structures by first considering the linearly elastic 

oscillator. For this .system, the vibrational energy is dissipated by 

viscous damping. Arias (2) defined the intensity of the ground motion 

as the sum of the energies dissipated, per unit mass, by a population of 

structures of all natural frequencies, 

= J.oo E dw 
o m 

(4.1) 

In this expression, E is the energy dissipated per unit mass for an 
m 

elastic system with frequency W. Hausner and Jennings (31) termed the 
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intensity given by Eq. 4.1 as the "frequency ensemble work." 

To evaluate the energy dissipated by viscous damping, consider the 

equation of motion for the elastic single-degree-of-freedom system, 

2 
u + 2(3wu + w u -aCt) (4.2) 

This equation indicates that the system subjected to base acceleration 

aCt) is equivalent to the same system with a fixed base and an applied 

force per unit mass of -aCt). Multiplying each term of Eq. 4.2 by an 

.. 
increment of displacement, u dt, and integrating from t = 0 to t = 00 

gives the work done, per unit mass, by each of the constituent forces. 

The result is 

1 "2 
"i u f

oo 
"2 1 2 2 

2(3w 0 u dt 4- "2 W u 
1

00

0 
- fooo aCt)':; dt (4.3) 

Since the oscillator is initially at rest, u(O) = li(O) = O. If S > 0, 

the motions eventually damp .out; hence, u(oo) = u(oo) = O. Thus, the 

energy dissipated per unit mass is 

E 
m J

OO .. 2 
2(3w u dt 

o fOO aCt)':; dt 

o 
(4.4) 

Note that the energy dissipated by viscous damping is equivalent to the 

work done by the applied forces, i.e. the inertia forces, during the 

excitation. Of course, for the undamped oscillator energy is not dissi-

pated; the work done by the applied forces is retained within the system 

in the form of kinetic and potential energies. At any time, t, for the 

undamped system, 
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E (t) 
m 

1 -2 1 2 2 = 2 u (t) + 2 w u (t) = - It - a(T)~ dT 

o 
(4.5) 

where T is a dummy variable of integration. 

In view of the foregoing discussion, the Arias intensity or the 

frequency ensemble work may be interpreted as the work done by the applied 

forces, per unit mass, for structures of all natural frequencies; there-

fore, 

(4.6) 

Employing the solution for ~(t) in the form of a Duhamel integral, Arias 

(2) and Hausner and Jennings (31) show that the intensity may be simpli-· 

fied to yield 

cos-IS = ----'- I tf 2 
a (t)dt 

o 
(4.7) 

where t f is the total duration of the earthquake. For the undamped 

system, the Arias intensity or the frequency ensemble work is 

r
tf 2 

1T a (t)dt 
2 

(4.8) 
"0 

The coefficient C
s 

= cos-lSI Il-s2 in Eq. 4.7 decreases, and hence W
F 

e 

decreases, as B increases. This results from the fact that u is smaller 

for the damped system; consequently, the power input is less (31). How-

ever, for the range of damping values of practical importance, the decrease 

in C
s 

is small. For example, for B = 10%, cB = 1.48, only 6 percent less 
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than for the undamped case for which Cs = TI/2 = 1.57. Hence, the 

intensity parameter WF may be considered constant for the range of damping 

values used in this study, i.e. for 2 to 10 percent of critical. If the 

work per unit mass given by Eq. 4.4 is integrated with respect to the 

undamped period T, rather than the frequency ~, the "period ensemble work" 

(31) results which, for the undamped oscillator is 

t 
2 J f 2 WT = 'IT v {t)dt 

o 
(4.9) 

The frequency and period ensemble works, defined by Eqs. 4.8 and 4.9, 

describe the energy input capabilities of the ground motion and were 

derived strictly for the linearly elastic system. Arias (2), however, 

points out that for simple elastoplastic systems, the intensity computed 

by integrating the energy dissipated by hysteresis correlates well with 

that obtained from viscously damped linear models. Similarly, Housner 

and Jennings (31) postulate that the frequency ensemble work is insensi-

tive to the mechanism by which energy is dissipated and hence may apply 

to hysteretic structures. This reasoning, in part, is reflected by the 

insensitivity of WF to large changes in damping for the linear system. 

Therefore, for this study the integrals of the squared ground motions 

(as well as the other scaling parameters described herein) are employed 

as normalizing factors for inelastic and elastic spectra. These scaling 

factors are given by 

I
tf 2 

E a (t) dt 
a o 

E = 
v J:f v

2 
(t) dt (4.10) 

rf 2 Ed = d (t) dt 
0 
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where, as before, t f is the total duration of the earthquake. Although 

the integral of the squared ground displacement apparently has no physical 

meaning in terms of the energy dissipating characteristics of the single-

degree-of-freedom system, this scaling factor is included because several 

other displacement-related quantities are derived therefrom. The para-

meters E and E are proportional to the frequency and period ensemble 
a v . 

works of Eqs. 4.8 and 4.9. Note, however, that the constants have been 

eliminated. These constants are immaterial since dispersion is charac-

terized by the dimensionless coefficient of variation (see Section 4.4). 

The remaining scale factors comprising the group based upon ground 

motion quantities are related to those given in Eqs. 4.10 and may be 

summarized as follows: 

1. The root-square ground motions, 

a IE rs a 

v = IE rs v 

d ~ rs 

2. The mean-square ground motions, 

p 
a 

p 
v 

1 
t 95-t5 

1 
t 95-t5 

t95 

L a2 (t)dt 

5 

t95 

It 
2 ( -v t)dt 

5 

(4.11) 

(4.12) 
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where t 9S-tS denotes the significant or strong-motion 

duration, defined later. 

3. The root-mean-square (rms) ground motions, 

a :::; IF 
rms a 

v rms IF v 

d = IP::"d rms 

The root-square ground motions given by Eqs. 4.11 were mentioned by 

(4.13) 

Housner (27) as "measures of overall effectiveness." The mean-square 

and root-mean-square motions defined in Eqs. 4.12 and 4.13 are often 

encountered in random vibrati?n theory (78). However, some physical 

reasoning may be offered for their use as earthquake intensity or 

strength parameters. Housner (30) proposed that a measure of seismic 

destructiveness might be given by the rate of energy input to structures. 

Since the integral of the squared ground acceleration is proportional to 

the total input energy (per unit mass), Housner argues that the average 

rate of buildup of this integral should provide an indication of earth-

quake severity. This quantity corresponds, then, to the mean-square 

acceleration, termed by Housner (30) as the "earthquake power." 

The root-mean-square ground motions have been offered as potential 

measures of earthquake strength (26, 27, 28, 33). In their development 

of artificial accelerograms, Housner and Jennings (26) proposed scaling 

the pseudoearthquakes by rms acc.eleration to provide records typifying 

those of P?st events. Studies have also indicated that structural 
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response may be related to the ground motion intensity as measured by 

the rms acceleration. Housner (28), for example, points out that failure, 

i.e. collapse, of simple yielding structures depends upon the duration 

and the rms acceleration. These findings, originally obtained by Husid 

(33), were based upon the response of one-story elastoplastic frames 

with gravity effects. 

The duration used to compute the mean-square and rms ground motions 

requires consideration. First, it should be pointed out that the duration 

used to compute these quantities need not be related to that employed in 

the spectral calculations. As described in Chapter "3, the durations for 

spectral computations were selected by observing the times of peak response 

displacement. These times of response maxima need not be indicative of 

the duration of strong shaking, since, for example, many low and inter­

mediate frequency systems attain their maximum response in free vibration, 

after the strong ground motion ceases. 

No single interpretation of strong-motion duration is widely 

accepted for use in engineering practice. Bolt (6), for example, 

proposes the "bracketed duration" as the time between the first and 

last acceleration values exceeding an arbitrary level, say 0.05 or 

0.10 g. The definition of significant duration adopted in this study, 

however, is that offered by Trifunac and Brady (83) and by Dobry, et ale 

(15). Donovan (16) proposed a similar definition somewhat earlier. 

In this definition, the duration is based upon the buildup of available 

seismic energy, i.e. the integral of the squared ground acceleration. 

The significant duration is taken as the interval between the times 

at which 5 percent and 95 percent of the seismic energy is attained. 
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In Eqs. 4.12 these times are denoted as ts and t 9S ' respectively. The 

same duration, t 9S-tS' is used to compute the mean-square and rms ground 

velocity and displacement. 

To visualize the basis for the foregoing definition of significant 

duration, consider the example shown in Fig. 4.1. In this figure, the 

recorded ground ~cceleration and computed rms acceleration are presented 

for the El Centro record without the Pecknold-Riddell prefixed pulse. 

The rms acceleration at time tis, 

(4.14) 

The center plot in Fig. 4.1 is a nondimensional representation of the 

accumulation of the integral of the squared ground acceleration, given 

by 

h(t) 

Itf 2 
a (t)dt 

o 

(4.15 ) 

That is, the value of the integral at time t has been normalized by the 

final value, at t = tfo Hence, h(t) is the fraction of the total value 

of the integral attained up to time t. Plots of this type were first 

proposed by Husid, as described by Idriss (34), to study the growth in 

the level of shaking with time. Several important features, generally 

applicable to all accelerograms, are observed in the Husid plot of Fig. 

4.1. First, note that h(t) initially builds slowly because of the weak 
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motion contained in the very early phase of ground shaking. After this 

period of weak motion, h(t) builds rapidly; as the acceleration levels 

decrease following the peak value, the seismic energy accumulates more 

slowly. After a sufficiently long time, very little additional seismic 

energy is developed. For the El Centro record shown in Fig. 4.1, for 

example, very little energy is contained in the record after about 26 

seconds. Hence, an intermediate portion of the record comprises the 

significant or strong-motion contribution. For definitiveness, but 

arbitrarily (83), the first S percent and the last S percent are deleted 

from the Husid plot. The remaining 90 percent is defined as the signifi­

cant or strong-motion portion as depicted in Fig. 4.1. 

Removal of the initial S percent of the motion is desirable since 

the artificial prefixed pulse has been added to each accelerogram, as 

described in Chapter 3. However, the addition of the prefixed pulse 

has a negligible effect on the mean-square and rms ground motions 

computed from Eqs. 4.12 and 4.13. For example, the ground acceleration, 

Husid plot, and rms acceleration for the El Centro record with the 

prefixed pulse are shown in Fig. 4.2. The record in Fig. 4.2 has been 

shifted by 2 seconds to accommodate the prefixed pulse, the amplitudes 

of which are small compared with the accelerations of the actual ground 

motion. At any time, then, the integral of the squared acceleration for 

the record with the pulse corresponds to that which was developed 2 

seconds earlier in the record without the pulse. Thus, the rms accelera­

tion is less, at each time point, for the record with the prefixed pulse. 

However, note that ts and t9S shown in Fig. 4.2 are simply shifted by 

2 seconds. Therefore, the significant duration, t
9S

-t
S

' is the same as 
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that for the record with no prefixed pulse. Since the contributions of 

of the squared pulse motions are quite small, the mean-square and rms 

quantities computed from Eqs. 4.12 and 4.13 are the same as those 

computed for the record without the prefixed pulse. 

The integrals of the squared ground motion required in Eqs. 4.10 

through 4.13 may be determined by squaring Eqs. 3.1, 3.3, and 3.4 and 

integrating from t = ti to t = t i +l - The value of the integrals at time 

t i +l may be expressed as, 

ito 2 Jt i +l 2 
= 0 1- z (t)dt + t. z (t)dt 

]. 

where z denotes the ground acceleration, velocity, or displacement. 

The recursion formulas are, 

llt. 
1 f

t1;O+l 2 
a (t)dt = --

to 
1 

rt.J' ," .., 
J J.T..!. v"'(t)dt = 

t. 
J.. 

3 

(~t.) 3 
+ __ 1_ 

60 

v 0 (2a .+a 0+1) + ]. ]. 1; 

2 2 
llt.d. + (~to) d.v. + 

1 ]. ].]. 1 

(llt. )3 
1 

+ --1-2-
2 

[4v. + d.(3a.+a.+l )] + 
1 1 ]. ]. 

(4.16) 

(4.17) 
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The values of the ground motion parameters described in this section are 

listed in Tables 4.1 through 4.5 for the records used in this study. 

4.3 Scaling Factors Based on Response Quantities 

In this study, two parameters derived directly from the response of 

elastic single-degree-of-freedom systems are used as scaling factors for 

earthquake spectra. These quantities are the spectrum intensity proposed 

by Housner (23) and the mean Fourier amplitude, previously used by Cornell 

et ale (11) as a normalizing factor for elastic spectra. 

Since the maximum spring force for the linearly elastic system is 

directly proportional to the pseudovelocity, S , Housner (23) argues that v 

the spectrum itself is a measure of the severity of the earthquake. 

Housner proceeds to define the spectrum intensity (23, p. 24): 

In using the spectrum as a measure of the intensity of an 
earthquake, that is, as a measure of the capability of the earth­
quake to produce stresses, allowances must be made for the fact 
that in a city the periods of vibration of the structures will 
cover a wide range. If the significant range of periods is taken 
to be from 0.1 seconds to 2.5 seconds, the average value of Sv 
over this range is a measure of the intensity of the earthquake. 
It is a measure of the intensity in the sense that if a city 
contained a large number of structures having a uniform distribu­
tion of periods ranging from 0.1 to 2.5 seconds, and the city 
were subjected to different earthquakes, then on the average the 
ratios of the maximum stresses produced would be proportional to 
the average values of Sv for the different earthquakes. It is 
thus seen that this measure of the intensity is an average measure 
for a range of periods. 

Since measures of earthquake intensities are useful only for 
comparing different earthquakes, it makes no difference whether 
the average value of Sv is used or whether the area under the 
curve is used. Accordingly the spectrum intensity of an earthquake 
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is defined to be the area under the spectrum curve between the 
periods 0.1 and 2.5 seconds. 

Since the stresses in a structure produced by an earthquake 
depend upon the amount of damping present, it is informative to 
measure the spectrum intensities of earthquakes for various 
amounts of damping. The undamped intensity is the area under 
the spectrum curve computed for zero damping (S=O%); the 0.2 
damped intensity is the area under the spectrum curve computed 
for 0.2 critical damping (S=20%), etc. 

Hence, the spectrum intensity is defined as 

where Tl = 0.1 sec and T2 = 2.5 sec. Alternatively, the spectrum 

intensity may be expressed as 

S (6,f) 
-v---df 

f2 

(4.18) 

(4.19) 

where f1 = 0.4 cps and f2 = 10 cps. This latter form is used to compute 

the spectrum intensities in this study. For these calculations, the 

pseudovelocity is assumed to vary linearly, in the log-log domain, 

between spectral points. That is, within the jth interval, 

a. 
S (6,f) = b.f J 
v - J 

(4.20) 

where a. and b. are computed within each frequency interval from 
J J 

a. 

log(S /S) 
v.+l v. 

J J 
J 

(4.21) 
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The spectrum intensity is the sum of the areas within each frequency 

interval; hence, 

I ~ [ .(aj-l) - (aj-l) Jj 
1 f'+l f. a.- J J 

J 
(4.22) 

where jf and jf correspond to the indices of the frequency limits over 
1 2 

which the spectrum intensity is computed. The spectrum intensities 

between 0.4 and 10 cps for the earthquake records used in this study 

are shown in Table 4.6. 

Housner (24) indicates that the undamped spectrum intensity is a 

measure of both the magnitude of the accelerations and the duration of 

the ground motion. On the other hand, in Ref. 23 Housner notes that to 

associate the spectrum intensity with observed damage, it must be recog-

nized that buildings have appreciable amounts of damping. Therefore, 

it may be more reliable to take the 20 percent damped, rather than the 

undamped, spectrum intensities as indicators of damage. The ability of 

the spectrum intensity to adequately describe earthquake damage potential 

was questioned, however, by Housner himself following the Parkfield earth-

quake of June 27, 1966. In Ref. 29, Housner notes that the ordinates of 

the pseudovelocity spectra, and hence the spectrum intensities, are about 

50 percent greater for the Cholame-Shandon No. 2 record of the Parkfield 

earthquake than those for the El Centro shock of May 18, 1940. (Compare 

the spectra of Figs. 3.31 and 3.35 and the spectrum intensities in Table 

4.6). However, the damage caused by the Parkfield earthquake was minor 
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compared with that which resulted from the El Centro shock. Housner 

concludes from these observations that as indicators of earthquake damage 

potential, neither the elastic pseudovelocity nor the spectrum intensities 

are as reliable as originally thought. Despite this apparent negative 

evidence, the spectrum intensity is· indeed a measure of intensity of 

ground shaking; it need not, however, relate directly to damage (29). 

In this study, the spectrum intensities for all levels of damping 

are evaluated as potential spectral scaling factors. In addition, it 

should be noted that the frequency region over which the spectrum intensity 

is computed, i.e. 0.4 to 10 cps, is rather arbitrarily selected. As will 

be described in Chapter 5, spectrum intensities computed from other 

frequency regions are investigated as normalizing factors for response 

spectra. 

Cornell et al. (11) have used the amplitudes of the Fourier spectrum 

of the ground acceleration as scaling factors for elastic spectra. In 

Cornell's study, normalizing factors were determined by averaging the 

Fourier amplitudes within three frequency regions corresponding to the 

low frequency "displacement" region, the intermediate "velocity" region, 

and the high frequency "acceleration" region. The dispersion in the 

elastic spectra normalized by these mean Fourier amplitudes was compared 

with that observed in the spectra normalized by the peak ground motions. 

The detailed findings of Cornell's study are deferred to Chapter 5 so 

that they may be compared with those obtained in this investigation. 

However, it is noted here that significant reductions in scatter, espe­

cially for small damping, resulted when the spectra were normalized by 

the mean Fourier amplitudes. 
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It is instructive to investigate the physical interpretation of the 

Fourier spectrum of the ground acceleration and to determine its relation-

ship to the pseudovelocity spectrum. The Fourier spectrum of the ground 

acceleration is given in Ref. 10 as, 

+00 

F(w) = I a(T)e-
iWT 

dT (4.23) 
_00 

where T is a dummy variable of integration. -iWT Note that e = COSWT -

isinWT and that aCT) ~ 0 only for 0 ~ T ~ t
f

; hence, the Fourier spectrum 

becomes 

(f t f 
F(w) a(T)cosWTdT - i I a(T)sinWTdT (4.24) 

0 0 

for which the amplitude is 

J [ t
f 2 r t - 2 ... 

IF(w) I a(T)COSWTd~ + [t f a(T)sinwTdT J l fa J 
(4.25) 

Now, for an undamped single-degree-of-freedom oscillator, consider the 

work done by the inertia forces developed by the ground acceleration from 

t = 0 to t = tfo This work is obtained by evaluating Eq. 4.5 at t = t f 

and is 

(4026 ) 

where Em is the work per unit mass. The solutions for u(t f ) and ~(tf) 

may be expressed by the Duhamel integral and its time derivative. 
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The square root of twice the energy per unit mass at t = t
f 

is 

(4.27) 

which upon simplification yields 

(4.28) 

Note that Eq. 4.25 is identical to Eq. 4.28. That is, 

(4.29) 

Thus, the Fourier amplitude may be interpreted as a measure of the total 

energy, at the end of the earthquake, within an undamped singl~-degree-of-

freedom system. Furthermore, the Fourier amplitude has the dimensions of 

velocity and is, in fact, the maximum velocity attained by the undamped 

single-degree-of-freedom oscillator during free vibration, for t ~ t f • 

Because the spectral velocity, namely the maximum velocity, may occur at 

time t < t f , it is apparent that Sv(W) ~ \F(W) \ for each frequency w. 

In other words, the Fourier amplitude spectrum is bounded by the pseudo-

velocity spectrum. 

" In the spectral calculations, u(t f ) and u(t
f

) are evaluated; hence, 

the Fourier amplitude for each frequency may be computed from 

IF(W)\ (4.30) 
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This expression for the Fourier amplitude results from the substitution 

of Eq. 4.26 into Eq. 4.29. The Fourier amplitude spectra and for 

comparison, the undamped pseudovelocity spectra, are shown in Figs. 4.3 

through 4.14 for the records used in this study. Note in these figures 

that the velocity axis is linear rather than logarithmic so that the 

differences between the spectra are more apparent. It should also be 

mentioned, as indicated in Chapter 3, that the frequency intervals used 

to compute the undamped spectra are rather large. Nevertheless, these 

spectra are used to compute mean Fourier amplitudes within selected 

frequency regions, 

(4.31) 

As for the pseudovelocity, the Fourier amplitude is assumed to vary 

linearly, in the log-log domain, between spectral values. The frequency 

regions used to compute mean Fourier amplitudes are identified in Chapter 

5; however, it is noted here that these frequency regions are appropriately 

selected to provide the least dispersion in the normalized spectra. 

4.4 Procedure for Statistical Analysis 

The parameters described previously in this chapter are evaluated as 

normalizing factors for earthquake response spectra. This evaluation is 

accomplished by comparing the variations in the sets of normalized spectra. 

The goal, of course, is to identify those factors which produce the least 

scatter or dispersion in the normalized spectra. In the following para-

graphs, the measure of dispersion and the details associated with its 
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calculation are summarized. 

At each spectral frequency, the mean normalized pseudovelocity is 

computed,from 

s 
v 

S 
1 n v. 

=- I ~ 
n i=l lPi 

(4.32) 

where IP. is the normalizing factor for the ith record and n is the number 
1 

of earthquake records. The variance 'isthe average squared deviation from 

the mean, defined by 

2 1 n [~~ii - Sv 12. a = n-l . I 'Y 
1=1 

(4.33) 

The standard deviation is the' square root of the variance, 

(4.34) 

The standard deviation is more effectively computed by expanding Eq. 4.34, 

(4.35) 

This latter expression for the standard deviation gives improved accuracy 

since the number of subtractions is reduced (to only one) and is postponed 

until the final step in the calculation (41). 

Note that Eqs. 4.33 and 4.34 define the so-called unbiased variance 

and standard deviation. These unbiased values result when the divisor 
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(n-l) is used instead of n. Of course, for a large number of observations, 

the differences between the biased and unbiased quantities diminish. In 

any case, it should be recognized that only (n-l) of the deviations from 

the mean.are independent (41). That is, (n-l) of the deviations determine 

the nth, since their sum is zero. It should be noted, however, that for 

the purposes of this comparative study, whether the biased or unbiased 

values are used is immaterial. 

The variance and standard deviation are measures of absolute 

variation. Namely, they provide the actual variation present in a set 

of data, and therefore depend upon the scale of measurement. To compare 

the variation or dispersion in several sets of data, i.e. for the various 

sets of normalized spectra considered in this study, it is desirable to 

use a measure of relative variation. For this purpose, the coefficient 

of variation is employed, which is defined as 

COV = 
cr 

S 
v 

(4.36) 

Note that the dimensionless COV gives the standard deviation as a fraction 

of the mean, and hence is independent of the scale of measurement. For 

example, if each observation in a set of data is multiplied by a constant 

k, the sample mean and standard deviation are, respectively, kx and kcr. 

The COV, however, is unaffected. It is clear then, that constants, for 

example those in Eqs. 4.8 and 4.9, may be eliminated from spectral 

normalizing factors. 
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CHAPTER 5 

STATISTICAL EVALUATION OF SCALING METHODS 

5.1 Introduction 

This chapter begins with a brief description of the characteristics of 

the mean inelastic yield spectra computed in this study. The statistics 

associated with the spectra normalized by the peak ground acceleration, 

velocity, and displacement are presented and compared with those of. 

previous studies. In Chapter 3, the effects of damping and strain­

hardening on spectra obtained from individual ground motions were 

examined. A comparison of average spectra, however, permits a more 

general assessment of the influence of these two structure-related 

parameters. 

The'major objective of this chapter is to evaluate the spectral 

scaling parameters described in Chapter 4. The goal is to determine 

which of the scaling factors provide less dispersion than that obtained 

when the spectra are normalized by the peak ground motions. The results 

show that the most promising alternative scaling procedure is a three­

parameter system of spectrum intensities. Namely, three spectrum 

intensities, the areas under the elastic pseudovelocity spectrum within 

three ranges of frequency, constitute a set of normalizing factors which 

reduces the scatter compared with that encountered in current spectral 

scaling practice. These spectrum intensities significantly reduce the 

scatter for linearly elastic systems. When the same intensities are 

used to normalize inelastic spectra, reductions in dispersion are 

realized for low to moderate ductilities. 
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5.2 Characteristics of Mean Normalized Inelastic Spectra 

The inelastic yield spectra considered in this study are normalized 

by the peak ground motions, averaged, and compared. The purpose is to 

quantify the effects of damping for the elastoplastic system and to assess 

the influence of the level of strain-hardening for the bilinear hysteretic 

sy·stem. The details of the procedure used for comparison and the results 

of the evaluation are outlined in the following sections. 

5.2.1 Computation of Mean Spectral Ordinates 

The mean spectral ordinates are computed from the average of the 

spectra normalized by the corresponding peak ground motion. For example, 

the mean spectral displacement is determined from the average of the 

spectra normalized by the peak ground displacement. The mean spectral 

ordinates are associated with the frequency regions of constant ground 

motion amplification and are evaluated in a manner illustrated in Figs. 

5.1 through 5.3. In these figures, the dashed lines represent those of 

best fit. Note from Figs. 5.1 through 5.3 that the amplified spectral 

region is taken from 0.071 cps to 8.5 cps. Below 0.071 cps and above 

8.5 cps, the spectra begin their respective transitions to the peak 

ground displacement, 1 inch in Fig. 5.1, and the peak ground acceleration, 

1 g in Fig. 5.3. 

In the mean spectra shown in Figs. 5.1 through 5.3, the displacement, 

velocity, and acceleration regions are, respectively, 0.071-0.54 cps, 

0.51-3.7 cps, and 2.2-8.5 cps. Note that the frequencies separating 

these regions do not coincide; namely, the ~requency intervals, espe­

cially the velocity and acceleration regions, overlap. This results 
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from the fact that a particular frequency region is determined from the 

mean of the spectra normalized by the corresponding peak ground motion. 

Since the ratio of the maximum ground motions for each record are 

different, the shapes of the mean spectra are not identical. Accordingly, 

the frequency limits determined from the mean of the spectra normalized 

by the various ground motions need not agree. 

The lines of best fit for the mean spectra are computed in an 

iterative fashion. First, estimates of the frequencies defining the mid-

frequency region, f2 and f3 in Fig. 5.4, are made. The average spectral 

ordinates within the three frequency regions are 

f2 . 
J S (f)df 
f v - 1 

Sd = 2 2 TI(f2-f
l

) 

f3 1 S (f)df 
f v 

S 2 = v f3 - f2 

f4 
2TI I S (f)df 

f v 
S 3 

a 

h[~] 

where S is the mean normalized pseudovelocity, at each frequency, 
v 

computed in accordance with Eq. 4.32. To perform the required 

(5.1) 

(5.3) 

integrations, it is assumed that log (8 ) varies linearly with log (f). 
v 

The frequencies f2 and f3 may now be determined from 
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and 
S 

a 

21TS 
v 

(5.4) 

If the computed frequencies f2 and f3 do not agree with those assumed, 

the calculations are repeated using the computed values. This iterative 

procedure is repeated until the assumed and computed frequencies agree 

to within some prescribed accuracy, taken in this study as 0.1 percent. 

For this tolerance, generally no more than six cycles are required for 

convergence. 

The method outlined above was employed to determine the mean spectral 

ordinates illustrated in Figs. 5.1 through 5.3 and summarized in Table 5.1. 

The coefficient of variation is determined in an analogous fashion from 

the mean + 10 spectra. For comparison, the corresponding statistics 

evaluated in two previous studies are also shown in Table 5.1. It should 

be noted that the differences between the various quantities listed in 

Table 5.1 result from the limited number and choice of records used in 

the cited statistical studies. In this study 12 earthquake components 

are used; Riddell and Newmark (67) employed 10 components of ground motion. 

In Ref. 51, both horizontal components of 14 records were used. Hence, 

in this latter study, the sample size was 28. The variabilities in the 

data of Table 5.1 primarily reflect the characteristics of the chosen 

groups of accelerograms. Nevertheless, the maximum difference between 

any two corresponding mean spectral ordinates is about 15 percent. 

5.2.2 Effect of Damping on Mean Spectra 

The mean elastoplastic yield spectra normalized by peak ground 

displacement, velocity, and acceleration are shown in Figs. 5.5 through 
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5.10. An examination of these figures provides an assessment of the 

influence of damping when combined with hysteretic behavior. These 

effects may be summarized as follows: 

1. For very flexible systems, the mean response is independent 

of damping for all levels of displacement ductility. 

2. For high frequency systems, damping is somewhat effective in 

reducing response, particularly for large displacement 

ductilities. 

3. For a broad intermediate range of frequencies, the influence of 

damping decreases as the level of inelastic response increases. 

This characteristic is apparent from Figs. 5.5 through 5.10 by 

observing that the differences between the spectra within each 

group decrease as the displacement ductility increases. However, 

note from Figs. 5.6 and 5.8 that the influence of damping for 

~ = 10 is slightly greater than that for ~ = 3. Specifically, 

from Fig. 5.6 an increase in damping from 2 to 10 percent 

decreases the mean displacement ordinate by 16 percent for 

~ = 3. For ~ 10, however, the mean displacement ordinate 

decreases by 19 percent when damping is increased from 2 to 10 

percent. Similar observations are apparent in Fig. 5.8 for 

the mean velocity ordinate for ductilities of 3 and 10. 

The spectral reduction factors, the ratios of the mean inelastic 

ordinates to the corresponding mean elastic values, are shown in Table 

5.2. For comparison, the results of Riddell and Newmark (67) are also 

shown in Table 5.2. Note that within all three spectral regions, the 

reduction factors increase, for a given ductility, as the damping 
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increases. This observation indicates that damping becomes less 

important, compared with its influence on elastic systems, as the level 

of inelastic response increases. It is also noteworthy that the spectral 

reduction factors increase relatively more rapidly with damping in the 

acceleration and velocity regions than in the displacement region. This 

result shows that damping has greater effect in reducing response for 

systems of intermediate and high frequency. For example, for a ductility 

of 3, the reductions in the mean displacement, velocity, and acceleration 

ordinates are, respectively, 16, 21, and 24 percent, for an increase in 

damping from 2 to 10 percent. Thus, in an average sense, the effective­

ness of damping in reducing response increases as the frequency of the 

system increases. 

5.2.3 Effect of Strain-Hardening on Mean Spectra 

The effects of varying levels of strain-hardening on average 

response are exemplified by the mean normalized spectra shown in Figs. 

5.11 through 5.19 and by the spectral reduction factors presented in 

Table 5.3. From the mean spectra, the general influence of strain­

hardening is as expected: strain-hardening decreases the yield level 

required for the system to attain a given displacement ductility. 

Note, however, that the influence of strain-hardening is small for 

low levels of inelastic response. As the displacement ductility 

increases, of course, strain-hardening has proportionately greater 

effect in reducing response. 

The influence of strain-hardening also varies with the frequency 

of the system. For very flexible systems, i.e. for frequencies less 

than about 0.07 cps, mean spectral values are independent of the level 
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of strain-hardening. As the frequency of the single-degree-of-freedom 

system increases, the effect of strain-hardening increases. However, 

strain-hardening has relatively little effect, even for large ductili­

ties, in the low frequency region of the spectrum, extending from about 

0.1 to 0.5 cps. This observation-{s readily apparent from Figs. 5.11 

through 5.13 and from the data in Table 5.3. For each ductility, the 

spectral reduction factor ¢n decreases only slightly as the level of 

strain-hardening increases. Only for large ductilities, i.e. for ~ 5 

and 10 is any important change in ¢n observed. In the velocity and 

acceleration regions, i.e. for systems of intermediate and high frequency, 

strain-hardening has a more pronounced influence on mean response. For 

example, for a ductility of 10, ¢v and ¢A decreases by 21 and 23 percent, 

respectively, as the strain-hardening increases from 0 to 0.10. In the 

displacement region, the largest decrease in ¢n is 12 percent for ~ = 5. 

The foregoing observations provide useful information for design. 

In particular, mean response, especially for low to moderate ductilities, 

is relatively insensitive to rather large changes in strain-hardening. 

Of course, this conclusion does not imply that there are no differences 

in the response of individual systems subjected to specific earthquake 

motions. However, for reasonably accurate estimates of response, it may 

not be necessary to know the precise details, e.g. the level of straill­

hardening, associated with the hysteretic material model. This conclu­

sion, of course, coincides with that reached by previous investigators 

(35, 36, 40, 67). 
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5.3 Dispersion Characteristics of Spectra Normalized by Peak Ground 
Motions 

As described in Chapter 4, normalizing response spectra by the peak 

ground motions has physical appeal. Namely, the maximum dynamic response 

to earthquake excitation may generally be perceived as an amplified peak 

ground motion. However, an examination of the dispersion characteristics 

of response spectra provides an additional motivation for current scaling 

practice. When normalized by the peak ground motions, three distinct 

frequency regions arise in which the coefficient of variation is a minimum. 

These frequency regions are clearly identified in Figs. 5.20 through 5.23, 

in which the coefficients of variation are plotted versus frequency for 

elastoplastic yield spectra with 5 percent damping. Normalization by the 

peak ground displacement, d , provides the least coefficient of variation 
p 

for low frequencies. Below the transition frequency of 0.071 cps, the 

coefficient of variation decreases rapidly. This results from the fact 

that for very flexible systems, the response is directly related to the 

peak ground displacement -- for elastic and inelastic systems, Sd = dp ' 

Hence, for systems of infinite flexibility, the COV = 0 for spectra 

normalized by d. For spectra normalized by the peak ground velocity, 
p 

v , the coefficient of variation is a minimum within an intermediate 
p 

range of frequencies, as illustrated in Figs. 5.20 through 5.23. The 

least coefficient of variation for high frequencies results for spectra 

normalized by the peak ground acceleration, a. A rapid decrease in the 
p 

coefficient of variation for spectra normalized by a is observed for 
p 

frequencies greater than the spectral transition frequency of 8.5 cps. 

For elastic spectra normalized by a , the coefficient of variation 
p 
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approaches zero for rigid systems, since for these systems, S = a • 
a p 

The frequency regions defined by the minimum coefficients of varia-

tion are shown in Tables 5.4 and 5.5 for the entire set of inelastic 

spectra considered in this study. Several features of these frequency 

regions are noteworthy. First, the frequecy regions defined by the 

minimum coefficients of variation do not precisely correspond to those 

of constant spectral amplification. For example, as shown in Figs. 5.1 

through 5.3, the regions of constant displacement, velocity, and accelera-

tion amplification for elastic spectra with 5 percent damping are, 

respectively, 0.071-0.54 cps, 0.51-3.7 cps, and 2.2-8.5 cps. From Table 

5.4 the corresponding frequency regions in which the coefficients of 

variation are a minimum are 0.071-0.20 cps, 0.20-2.0 cps, and 2.0-8.5 

cps. For the comparative evaluation of the alternative normalizing 

parameters, the frequency regions defined by the minimum coefficients of 

variation are used. In all subsequent references to the displacement, 

velocity, and acceleration regions, the frequency ranges summarized in 

Tables 5.4 and 5.5 are implied. The second feature of these frequency 

regions is that they are not substantially affected by viscous damping 

and the level of strain-hardening. Note, however, that the magnitude 

of the maximum inelastic response does influence the frequency regions. 

As the displacement ductility increases, the displacement and velocity 

regions broaden at the expense of the acceleration region. 

It is apparent from the data plotted in Figs. 5.20 through 5.23 

that within each frequency region, the coefficient of variation fluc-

tuates. For example, in Fig. 5.20, the coefficient of variation in 

the displacement region varies between about 0.35 and 0.50. So that 
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the effects of damping and strain-hardening on the dispersion charac­

teristics of normalized spectra may be quantified, the coefficients of 

variation are averaged within each frequency region. These results are 

summarized in Tables 5.6 and 5.7. The data in Table 5.6 indicates that 

within any spectral region, the average coefficient of variation decreases 

with damping, for a given ductility. The only exception is in the accel­

eration region for a ductility of 10, where the average coefficient of 

variation increases slightly from 0.26 for 5 percent damping to 0.28 for 

10 percent damping. It is also clear that, for any damping value, the 

average coefficient of variation decreases as the level of the inelastic 

response increases. Again, an exception is noted in the acceleration 

region where the average coefficient of variation increases for ductili­

ties of 5 and 10. Generally, then, both damping and inelastic action 

tend to decrease the average coefficients of variation, i.e. the scatter, 

for spectra normalized by the peak ground motions. This conclusion 

arises from the fact that both of these energy dissipative mechanisms 

have a smoothing effect on response spectra. Local spectral irregulari­

ties diminish as damping and hysteretic energy losses increase; accord­

ingly, the dispersion in normalized response ordinates decreases. 

The same general influence, but to a somewhat lesser extent, is 

apparent as the level of strain-hardening increases for the bilinear 

hysteretic system. Of course, for small levels of inelastic response, 

i.e. for low ductilities, the effects of strain-hardening on the average 

coefficients of variation are small. However, the average coefficients 

of variation in Table 5.7 indicate that for most cases, increases in 

strain-hardening decrease the dispersion. This effect is most pronounced 
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for large ductilities in the displacement region. In the velocity and 

acceleration regions, the decreases in the average coefficients of 

variation are generally smaller. In the acceleration region, however, 

for a ductility of 5, the average coefficient of variation decreases by 

25 percent for an increase in strain-hardening of 10 percent. On the 

other hand, note that in the velocity region, the average coefficient 

of variation increases slightly for a ductility of 10, as strain-

hardening increases. 

5.4 Evaluation of Scale Factors Based on Ground Motion Quantities 

The dispersion characteristics of elastoplastic yield spectra 

normalized by the factors computed from the ground motions are shown in 

Figs. 5.24 through 5.35. These results, for elastoplastic systems with 

5 percent damping and ductilities of 1 (elastic), 2, 5, and 10, are 

typical of those for the entire set of spectra considered in this study. 

The graphical presentation of the results provides a convenient visual 

means for evaluating those scaling parameters derived from ground motion 

data. 

For the displacement-related factors, note that for all ductilities, 

Ed' the integral of the squared ground displac'ement, and Pd , the mean­

square ground displacement, are particularly poor normalizing parameters. 

However, for elastic systems, i.e. for ~ = 1, the root-square displacement 

d provides some reduction in scatter within the displacement region. 
rs 

It is interesting to note that within the displacement region, normalizing 

by peak displacement d produces a local maximum coefficient of variation 
p 

of about 0.50 between 0.8 and 0.9 cps. Within this same range of frequen-

cies, normalizing by d produces a minimum coefficient of variation of rs 
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about 0.25. Hence, for elastic spectra, normalizing by the root-square 

displacement decreases the scatter or dispersion compared with that 

observed in spectra normalized by peak displacement. As the level of 

inelastic response increases, however, the improvement afforded by the 

root-square displacement diminishes. This trend is readily discernible 

from Fig. 5.25 in which the coefficients of variation for a ductility of 

2 are shown. For ductilities greater than about 3 to 5 the peak ground 

displacement provides the least dispersion within the entire displacement 

region. It is also worthy to note that the root-mean-square displacement 

d does not improve the dispersion characteristics. However, normalizing rms 

by d results in coefficients of variation comparable to, for the most rms 

part, those obtained from scaling by d and d . 
rs p 

The normalizing factors based on ground velocity are compared in 

Figs. 5.28 through 5.31. Again, it is apparent that E and P are poor 
v v 

spectral normalizing factors, as evidenced by their large coefficients 

of variation. As was the case for the displacements, the coefficients 

of variation for v ,v ,and v are comparable within the velocity 
p rs rms 

region. However, with only minor exceptions, none of the velocity-

related scaling factors provide less scatter. than that obtained by 

normalizing by the peak ground velocity. This conclusion applies for 

both elastic and inelastic systems for all ductilities. The same results 

are noted for the acceleration-related factors compared in Figs. 5.32 

through 5.35. Of these parameters, the root-square acceleration a rs 

provides only minor reductions in scatter within limited ranges of 

frequency. 
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On the basis of the foregoing evaluation, it is concluded that, at 

least for the ensemble of earthquake accelerograms considered in this 

study, the normalizing factors based upon ground motion data do not 

constitute promising alternatives to the peak motions. As previously 

noted, however, the root-square displacement does potentially provide 

some improvement as a normalizing parameter for elastic spectra in the 

low frequency region. 

5.5 Evaluation of Scale Factors Based on Response Quantities 

The response-related normalizing factors which are investigated 

in this study include Housner's spectrum intensity and the mean Fourier 

amplitude. Since the spectrum intensity and Fourier amplitude are 

closely related to the pseudovelocity spectrum, it is likely that these 

parameters may provide the most promising alternative spectral scaling 

factors. The evaluation of these normalizing factors begins by consider-

ing elastic spectra. 

5.5.1 Elastic Spectra Normalized by Spectrum Intensity and Mean 
Fourier Amplitude 

The spectrum intensity, described in detail in Chapter 4, is defined 

as the area beneath the elastic pseudovelocity spectrum between two 

frequencies. In Housner's original definition, the frequency limits are 

0.4 and 10 cps, which encompass those of most buildings and facilities 

located within a typical municipality. When elastic spectra are normal-

ized by the spectrum intensities (summarized in Table 4.6), the dispersion 

characteristics shown in Fig. 5.36 are obtained. The coefficients of 

variation for elastic spectra with 5 percent damping are shown in Fig. 

5.36 and are typical of those for the range of damping values considered 
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in this study. The solid curve in Fig. 5.36 represents the coefficients 

of variation which result from normalization by undamped spectrum inten­

sity. The remaining curves display the coefficients of variation obtained 

by normalizing the spectra by 2, 5, and 10 percent damped spectrum inten­

sities. The velocity region denoted in 'Fig. 5.36 corresponds to that 

obtained from normalization by the peak ground velocity. This frequency 

region, as shown in, Table 5.4, extends from 0.2 to 2 cps. 

Two features of the results presented in Fig. 5.36 are important. 

First, the trends of the curves are identical to those obtained from 

normalization by the peak ground velocity. That is, the coefficients 

of variation are a minimum within an intermediate region of frequencies; 

for low and high frequencies, the coefficients of variation increase 

sharply. This similarity in the behavior of the coefficients of variation 

for the spectrum intensity and peak velocity provides a clue that a three­

parameter definition of spectrum intensity may exist as a potential alter­

native normalizing scheme. The second feature of the data shown in Fig. 

5.36 is that as long as the spectra are normalized by damped spectrum 

intensities, the coefficients of variation within the velocity region 

are insensitive to the level of damping. 

To investigate the effects of the frequency limits within which the 

spectrum intensity is computed, consider the results shown in Fig. 5.37. 

In this figure, the coefficients of variation for elastic spectra with 

5 percent damping normalized by spectrum intensity between 0.2 and 2 cps 

are presented. Note from Fig. 5.37 that again, the coefficients of 

variation are a minimum within a central region of frequency. The least 

coefficients of variation occur in the range extending from about 0.2 to 
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0.7 cps. Also, as previously observed in Fig. 5.36, the coefficients of 

variation in the velocity region are insensitive to damping provided that 

damped spectrum intensities are used. Based on this observation, 2 per-

cent damped spectrum intensities are employed for further study. 

A comparison of the coefficients of variation for elastic spectra 

with 5 percent damping normalized by the peak ground velocity and the 2 

percent spectr.um intensities is shown in Fig. 5.38. It is clear from 

this figure that varying the frequency limits within which the spectrum 

intensity is computed affects the coefficient of variatiop. Furthermore, 

note that SI(2%, 0.2-2 cps) provides less scatter than v for frequencies 
p 

up to about 0.7 cps, while SI(2%, 0.4-10 cps) results in smaller coeffi-

cients of variation for frequencies greater than 0.7 cps. Note that the 

improvement afforded by SI(2%., 0.4-10 cps) extends beyond 2 cps, up to 

about 3 cps. 

The potential of low frequency and high frequency-based spectrum 

intensities are shown in Figs. 5.39 through 5.42. In Fig. 5.39, the 

coefficients of variation for elastic spectra normalized by spectrum 

intensities computed between 0.071 and 0.20 cps are shown. Note that 

these frequency limits correspond to those defining the displacement 

region for elastic spectra with 5 percent damping. The coefficients of 

variation for the spectra normalized by peak ground displacement and 

SI(2%, 0.071-0.20 cps) are compared in Fig. 5.40. Figures 5.41 and 5.42 

contain similar data for elastic spectra normalized by peak ground acce1-

eration and spectrum intensity between 2 and 8.5 cps. An examination of 

Figs. 5.38, 5.40, and 5.42 shows that a three-parameter set of 2 percent 

damped spectrum intensities may indeed provide a better means for 
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normalizing elastic earthquake response spectra. However, the three 

ranges of frequency over which the spectrum intensities are computed 

must be determined. To address this question, consider the results 

shown in Figs. 5.43 through 5.45. These figures contain contours of 

average coefficient of variation for elastic spectra with 5 percent 

damping normalized by 2 percent spectrum intensity between the frequency 

limits fl and f 2 . Note that within each spectral region, a well-defined 

minimum average coefficient of variation exists. For example, in the 

displacement reglon (0.071-0.20 cps), normalizing elastic spectra with 

5 percent damping by 2 percent damped spectrum intensity computed between 

0.080 and 0.24 cps provides the least average coefficient of variation 

of 0.25. In the velocity (0.20-2.0 cps) and the acceleration (2.0-8.5 

cps) regions, the minimum average coefficients of variation result when 

the spectrum intensities are computed, respectively, in the frequency 

ranges of 0.50 to 3.5 cps and 5.4 to 35 cps. It is also important to 

observe that the contours shown in Figs. 5.43 through 5.45 are relatively 

flat. That is, the average coefficients of variation do not vary signifi­

cantly for rather wide ranges of the frequency limits surrounding the 

optimum. 

The frequency limits for the 2 percent damped spectrum intensities 

which minimize the average coefficients of variation for elastic spectra 

are shown in Table 5.8. Note that within each spectral region, the 

frequency limits are insensitive to the level of damping. This observa­

tion permits the selection of three of the nine different spectrum 

intensities, i.e. one for each level of damping within each spectral 

region, for use as a normalizing system. The average coefficients of 
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variation shown in parentheses for 2 and 10 percent damping are those 

which result from normalizing these spectra by the spectrum intensities 

computed from the frequency limits for 5 percent damping. For example, 

the average coefficient of variation in the displacement region for 

elastic spectra with 2 percent damping is minimized when the spectrum 

intensity is evaluated between 0.080 and 0.20 cps. This average coeffi-

cient of variation is 0.27. If the frequency limits of 0.08 and 0.24 

cps, e.g. those from the 5 percent spectra, are used instead, an ayerage 

coefficient of variation of 0.28 results. These findings simply reflect 

the behavior previously noted from the contours of Figs. 5.43 through 

5.45: the average coefficients of variation are insensitive, in the 

neighborhood of the minimum, to the frequency limits over which the 

spectrum intensities are computed. Therefore, the following set of 2 

percent damped spectrum intensities is chosen as candidate spectral 

normalizing factors: 

SId SI(2%, 0.080-0.24 cps) 

SI = SI(2%, 0.50-3.5 cps) 
v 

SI SI(2%, 5.4-35 cps) 
a 

(5.5) 

The values of these spectrum intensities for the ensemble of earthquake 

records considered in this study are shown in Table 5.9. 

When the elastic spectra are normalized by the spectrum intensities 

summarized in Table 5.9, the average coefficients of variation shown in 

Table 5.10 are obtained. Also listed in this table are the average 

coefficients of variation which result from normalization by the peak 

ground motions. For the spectra normalized by the spectrum intensities, 
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the average coefficients of variation decrease with damping within the 

displacement and velocity regions. In the acceleration region, a 

constant average coefficient of variation of 0.24 results. However, 

when the spectra are normalized by the peak ground motions, the average 

coefficients of variation decrease markedly. with increased damping. 

Hence, the reductions in the average coefficients of variation, shown 

in the right-hand column of Table 5.10, decrease with damping. Neverthe­

less, the results reveal that, on the average, normalization by the 2 

percent damped spectrum intensities does, in fact, decrease the dispersion 

in elastic spectra. The improvement in the velocity region, however, is 

roughly half of that observed in the displacement and acceleration regions. 

The dispersion characteristics of elastic spectra with 5 percent 

damping normalized by the three-parameter system of spectrum intensities 

are depicted graphically in Figs. 5.46 through 5.49. In Fig. 5.46, the 

three frequency regions arise in which the corresponding coefficients of 

variation are a minimum. Note, however, that the frequency separating 

the velocity and acceleration regions has shifted from 2 cps (Fig. 5.20) 

to about 3 cps. The coefficients of variation obtained from normalization 

by the spectrum intensities and by the peak ground motions are compared 

directly in Figs. 5.47 through 5.49. The displacement, velocity, and 

acceleration regions denoted in these figures correspond to those obtained 

from normalizing by the peak ground motions. The reduction in the coeffi­

cients of variation over the entire displacement region is clearly evident 

in Fig. 5.47. However, in Fig. 5.48 the coefficients of variation for 

normalization by the spectrum intensity are greater than those for v 
p 

between about 0.2 and 0.5 cps. For frequencies extending from 0.5 to 
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about 3 cps, normalizing by 81(2%, 0.50-3.5 cps) results in smaller 

coefficients of variation. On the average, the coefficient of variation 

is reduced by 18 percent in the region from 0.2 to 2 cps. Similar results 

are apparent in the acceleration region where, for frequencies greater 

than 3 cps, normalizing by SI(2%; 5.4-35 cps) provides significant reduc­

tions in the coefficient of variation. For frequencies between 2 and 3 

cps, the peak ground acceleration affords smaller dispersion. 

Because the frequency separating the velocity and acceleration 

regions shifts when the spectra are normalized by the spectrum intensi­

ties, it is perhaps more appropriate to compare the results in the manner 

shown in Fig. 5.50. In this figure, the lower bounds for the coefficients 

of variation obtained from both normalizing schemes are plotted. In each 

plot, the solid line represents the least coefficients of variation 

obtained from normalization by the peak ground motions. Likewise, the 

dashed line represents the least coefficients of variation arising from 

normalization by the three spectrum intensities. The center plot in Fig. 

5.50, for example, contains the lowermost coefficients of variation 

obtained from Figs. 5.20 and 5.46. It is discernible from Fig. 5.50 

that scaling elastic spectra by the three spectrum intensities defined 

by Eq. 5.S and summarized in Table 5.9 provides, on the whole, less 

dispersion in normalized spectral ordinates. As the damping increases, 

the reduction in dispersion decreases, as previously mentioned in the 

discussion regarding the average coefficients of variation in Table 5.10. 

The second scaling factor based. on the response of single-degree-of­

freedom systems is the Fourier amplitude. In a manner analogous to that 

for the spectrum intensities, a three-parameter system of mean Fourier 



106 

amplitudes is evaluated as an alternative normalizing procedure. The 

frequency limits for computing the mean Fourier amplitudes which minimize 

the average coefficients of variation in the three spectral regions are 

shown in Table 5.11. It is clear that, as for the spectrum intensities, 

the frequency limits for the mean Fourier amplitudes are insensitive to 

damping. Accordingly, the mean Fourier amplitudes which minimize the 

average coefficients of variation for elastic spectra with 5 percent 

damping are selected: 

FSd 
FS(0.035 - 0.31 cps) 

FS FS(0.28 
v 

- 1.3 cps) (5.6) 

FS FS(1.4 - 19 cps) 
a 

These mean Fourier amplitudes are listed in Table 5.12 for the earthquake 

ground motions considered in this study. In Table 5.13 the average coeffi­

cients of variation for elastic spectra normalized by the mean Fourier 

amplitudes and the peak ground motions are compared. For spectra with 2 

percent damping, the mean Fourier amplitudes produce moderate reductions 

in the average dispersion. However, as the damping increases, the mean 

Fourier amplitudes generate larger scatter than that arising from normali­

zation by the peak ground motions. This trend is particularly evident in 

the acceleration region, where the average coefficients of variation for 

spectra normalized by the mean Fourier amplitude increase with damping. 

A graphical comparison of the coefficients of variation versus 

frequency for elastic spectra normalized by the peak ground motions and 

the mean Fourier amplitudes is shown in Fig. 5.51. It is clear that 

as the damping increases, the reductions in dispersion obtained from 

normalization by the mean Fourier amplitudes decrease. Tnis decrease 



107 

is most noticeable for frequencies greater than about 2 cps. However, 

for small damping, the mean Fourier amplitudes provide, on the average, 

somewhat less dispersion. 

Similar results were previously obtained by Cornell, Banon, and 

Shakal (11). In their study of response prediction alternatives, mean 

Fourier amplitudes were used to scale elastic spectra for 0, 2, and 10 

percent damping. Both horizontal components of 70 sets of records from 

Western u.S. strong-motion earthquakes were used. Hence, the total 

sample size was 140. No more than 7 records from a single earthquake 

were included to avoid biasing the results. All motions were recorded 

in the basements of buildings or in free-field locations. 

The results of Cornell's study for 2 and 10 percent damping are· 

shown in Fig. 5.52. In this ·figure, FS(0.3), FS(l.O) and FS(4.0) denote 

average Fourier amplitudes within three frequency regions corresponding 

to 0.2-0.4 cps, 0.4-2 cps, and 2-6 cps, respectively. It is interesting 

to note that the coefficients of variation in Fig. 5.52 do not fluctuate 

with frequency as irregularly as those determined in this study, presented 

in Figs. 5.20 and 5.Sl. It should also be noted that the frequency 

regions of minimum coefficient of variation identifiable in Fig. 5.52 

do not preCisely correspond to those determined from this study. For 

example, Fig. 5.52 indicates that the frequency separating the displace­

ment and velocity regions is between 0.4 and 0.5 cps, compared with 0.2 

cps from Fig. 5.20. Of course, one possible explanation for these obser­

vations is that the number of ground motions used in this study is small. 

In addition, it is likely that the results presented by Cornell et ale 

(11) have been smoothed. 
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Despite the foregoing differences, the trends of the results shown 

in Fig. 5.52 parallel those obtained from this study. Specifically, the 

largest reductions in the coefficients of variation are observed in the 

low frequency displacement region. As the frequency and damping increase, 

the reductions in dispersion which-result from normalization by the mean 

Fourier amplitudes decrease. These trends correspond to those discernible 

in Fig. 5.51 and those noted in the average coefficients of variation 

summarized in Table 5.13. However, a comparison of the data in Tables 

5.10 and 5.13 and an examination of the coefficients of variation versus 

frequency plotted in Figs. 5.50 and 5.51 show that the 2 percent damped 

spectrum intensities outperform the mean Fourier amplitudes as normalizing 

parameters for elastic spectra. 

5.5.2 Inelastic Yield Spectra Normalized by Spectrum Intensity 
and Mean Fourier Amplitude 

In current practice, inelastic seismic design spectra are derived 

directly from elastic spectra. Accordingly, the 2 percent damped spectrum 

intensities and the mean Fourier amplitudes used to normalize elastic 

spectra are evaluated as alternative scaling factors for the inelastic 

spectra considered in this study. Typical results of this evaluation are 

summarized in Figs. 5.53 through 5.56, which show the coefficients of 

variation for elastoplastic systems with 5 percent damping. In Figs. 

5.53 and 5.54 the coefficients of variation obtained from normalizing 

the elastoplastic yield spectra by the peak ground motions and the 

spectrum intensities defined by Eq. 5.5 are compared. A similar compar-

ison for spectra normalized by the mean Fourier amplitudes given by 

Eq. 5.6 is shown in Figs. 5.55 and 5.56. These results indicate that 
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as the level of inelastic response increases, both scaling methods 

produce progressively larger coefficients of variation compared with 

those obtained from normalization by the peak ground motions. This trend 

is particularly evident for high frequencies, between about 3 and 10 cps. 

It is clear, however, that on the average, normalizing inelastic spectra 

by 2 percent damped spectrum intensities provides smaller coefficients of 

variation than those which result from normalization by the mean Fourier 

amplitudes. This conclusion, noted previously for elastic systems, holds 

for all displacement ductilities, for all inelastic spectra considered 

in this study. 

The results obtained from normalizing the elastoplastic and bilinear 

yield spectra by the 2 percent damped spectrum intensities are summarized 

in Figs. 5.57 through 5.59. In these figures, the percent reductions in the 

average coefficients of variation for spectra normalized by the spectrum 

intensities, compared with those obtained from normalization by the peak 

ground motions, are plotted versus displacement ductility. The displace­

ment, velocity, and acceleration regions denoted in Figs. 5.57 through 

5.59 correspond to those listed in Tables 5.4 and 5.5. 

Several of the trends observed in Figs. 5.57 through 5.59 have 

previously been noted. Specifically, the reductions in the average 

coefficients of variation in each spectral region decrease with damping 

and ductility for elastoplastic systems. A similar trend is noted as 

the level of strain-hardening increases for the bilinear system. How­

ever, in the displacement region, reductions in dispersion are evident 

for ductilities up to about 3 for all damping and strain-hardening. 

Although the decreases in the average coefficients of variation are 
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smaller in the velocity region, reductions are apparent for ductilities 

up to about 4 to 5. In the acceleration region, the improvement afforded 

by the 2 percent spectrum intensity decays rapidly as the magnitude of 

the inelastic response increases. These observations indicate that the 

spectral scaling factors which provide an improved method of normalization 

for elastic systems need not afford the same improvement for hysteretic 

systems. This conclusion lends support to those previous investigators 

(3, 4) who question the validity of predicing inelastic response from 

elastic response. 

5.6 Concluding Remarks 

In this chapter, alternative spectral normalizing factors proposed 

by several previous investigators have been evaluated. The goal was to 

determine which, if any, of the normalizing parameters reduce the disper­

sion observed in elastic and inelastic spectra normalized by the peak 

ground motions. With the exception of the root-square displacement, 

none of the parameters based upon ground motion data reduce the scatter. 

The root-square displacement provides moderate reductions in the coeffi­

cients of variation for low frequency elastic systems. Those parameters 

based more directly on the response quantities, the spectrum intensity 

and the Fourier amplitude, are effective in reducing the dispersion in 

normalized elastic spectra and in inelastic spectra for low ductility. 

A three-parameter system of spectrum intensities, computed within appro­

priately selected frequency regions from the 2 percent damped elastic 

pseudovelocity spectrum, offers the most promising alternative scaling 

method. This result is not surprising since the spectrum intensity is 
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determined directly from the pseudovelocity spectrum itself. Hence, 

the spectrum intensity bears a closer relationship, than does the mean 

Fourier amplitude, to the data being normalized. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1 Summary 

The primary objective of this study was to evaluate the current 

practice of normalizing earthquake response spectra by the peak ground 

motions. In this evaluation, alternative normalizing factors were 

investigated to determine which, if any, of the various parameters 

provide less dispersion than that which results from normalization by 

the maximum ground displacement, velocity, and acceleration. The goal 

was not to develop a new or radically different procedure for establishing 

design spectra. Rather, the purpose was to formulate a basis, within the 

general framework of present methods, upon which further research can lead 

to improved procedures for specifying the earthquake hazard and the 

corresponding design response spectra. 

The normalizing factors considered in this study were categorized 

into two groups, one based on ground motion data and the other, on 

response-related quantities. The parameters within the group based on 

recorded ground motions were the integrals of the squared ground motions, 

and the root-square, mean-square, and root-mean-square motions. Those 

in the response-related category included the spectrum intensity and the 

amplitudes of the Fourier spectrum of the ground acceleration. A three­

parameter system of spectrum intensities, computed from the 2 percent 

damped elastic pseudovelocity spectrum, was developed. The spectrum 

intensities were determined within low, intermediate, and high ranges 

of frequency, appropriately selected to provide the least average 
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dispersion in the corresponding frequency regions of the elastic spectra. 

A similar set of three mean Fourier amplitudes was derived. 

In the statistical analysis, spectra for elastic and inelastic 

systems, computed from an ensemble of 12 earthquake accelerograms, were 

considered. The group of ground motions was selected to encompass a 

wide variety of conditions such as geographical location, earthquake 

magnitude, epicentral distance, and amplitude and duration of strong 

shaking. The response spectra, computed for displacement ductilities 

.of 1 (elastic), 1.5, 2, 3, 5, and 10, included those for elastoplastic 

systems with 2, 5, and 10 percent damping. Bilinear systems with 5 

percent damping and 2, 5, and 10 percent strain-hardening were also 

considered. 

In current practice, inelastic design spectra are developed by 

reducing the elastic spectra by factors which are independent of damping. 

Thus, it is tacitly assumed that damping has an equal influence on 

elastic and inelastic response. Previous studies, however, have shown 

that the simplified rules for constructing inelastic spectra may 

overestimate the effects of damping for intermediate and high frequency 

systems. In addition, the simplified rules were developed specifically 

for cases where the load-deformation characteristics may be modeled as 

elastic-perfectly plastic. Hence, another objective of this study was 

to compare the inelastic spectra to evaluate the influence of damping 

when combined with hysteretic behavior and to determine the sensitivity 

of response to varying levels of strain-hardening for the bilinear 

system. The purpose was to provide additional data so that the designer 
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may explicitly account for these structure-related parameters in deriving 

inelastic design spectra. 

In an early, independent phase of this study, an algorithm for the 

computation of response spectra for elastoplastic and bilinear hysteretic 

systems was formulated. The method, an extension of that proposed by 

previous investigators for elastic systems, takes advantage of the 

piecewise-linear character of the earthquake accelerogram and the load­

deformation law for the single-degree-of-freedom system. Accordingly, 

the equation of motion may be solved exactly within each successive 

time step. To assess its performance, this exact method of computation 

was compared with Newmark's beta method. 

6.2 Conclusions 

The significant conclusions obtained from this study may be 

summarized for each of the stated objectives: 

1. Alternative Scaling Methods 

a) For elastic spectra, the root-square displacement offers 

moderate reductions in scatter compared with that which results 

from normalization by the peak ground displacement. In the low 

frequency region, between 0.07 and 0.2 cps, the root-square 

displacement provides, on the average, about a 30 percent 

decrease in the coefficient of variation for the normalized 

spectra. Unlike the displacement region, in the velocity and 

acceleration regions none of the alternative ground motion 

parameters provide less dispersion than that which results 

from normalization by the corresponding peak ground motion. 
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b) For all inelastic spectra, none of the normalizing factors 

based on ground motion data provide noteworthy reductions in 

scatter compared with that obtained from normalization by the 

peak ground motions. 

c) The spectrum intensities and mean Fourier amplitudes provide, 

on the average, less dispersion in normalized elastic spectra 

than that which results from normalization by the peak ground 

motions. For elastic spectra with 2 percent damping, the spectrum 

intensities provide about 40 percent less scatter in the displace­

ment and acceleration regions. In the intermediate frequency or 

velocity region, normalizing by the corresponding spectrum inten­

sity reduces the dispersion by 20 percent. These reductions in 

average dispersion decrease with damping, particularly in the 

displacement and acceleration regions. For 10 percent damped 

spectra, the reductions are about 20 percent in each spectral 

region. 

The mean Fourier amplitudes decrease the average dispersion 

in elastic spectra with small damping. For elastic spectra with 

2 percent damping, the mean Fourier amplitudes provide 15 to 20 

percent less scatter in the normalized spectra. The improvement 

afforded by the mean Fourier amplitudes diminishes rapidly with 

damping, especially in the high frequency or acceleration region 

of the spectra. For 5 and 10 percent damped spectra, normaliza­

tion by the associated mean Fourier amplitude actually increases 

the dispersion compared with that obtained from the peak 

acceleration. 
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d) The spectrum intensities outperform the mean Fourier 

amplitudes as normalizing factors for the inelastic spectra. 

The reductions in average scatter produced by the spectrum 

intensities decrease with damping, strain-hardening, and level 

of inelastic response. However, in the displacement region, 

reductions in average dispersion are apparent for all damping 

and strain-hardening for ductilities up to about 3. Although 

the reductions are smaller in the velocity region, the corre­

sponding spectrum intensity decreases the scatter for systems 

with ductilities less than about 4. The improvement afforded 

by the spectrum intensity in the acceleration region decays 

rapidly with damping and ductility. For damping less than 5 

percent of critical and for ductilities less than about 1.7, 

the spectrum intensity reduces the scatter in the normalized 

spectral ordinates. 

2. Effects of Damping and Strain-Hardening on Mean Response 

a) Damping 

For flexible systems, i.e. those with frequencies less than 

about 0.07 cps, mean response is independent of damping for all 

ductilities. For high frequency systems, damping is somewhat 

effective in decreasing response amplitudes for inelastic 

systems; this influence is most appreciable for large displace-

ment ductilities. For a broad intermediate range of frequencies, 

between about 0.1 and 10 cps, the effectiveness of damping, with 

only minor exception, decreases as the level of inelastic 
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response increases. Spectral reduction factors for elasto­

plastic systems with 2, 5, and 10 percent damping were derived 

to permit explicit consideration of damping when combined with 

hysteretic behavior. 

b) Strain-Hardening 

An examination of average bilinear yield spectra indicates 

that strain-hardening decreases the yield level or the yield 

resistance required for a system to attain a given ductility •. 

However, for low to moderate ductilities, i.e. for those less 

than about 2 or 3, mean response is relatively insensitive, 

for all frequencies, to increases in strain-hardening of up to 

10 percent. In addition, for flexible systems, mean response 

is independent of the level of strain-hardening, for all ductili­

ties. For intermediate and high frequency systems, the effect 

of strain-hardening becomes more pronounced, particularly as the 

displacement ductility increases. 

Since strain-hardening decreases the required yield resistance 

for a given ductility, the use of elastoplastic design spectra 

is generally conservative. For the same frequency, any level of 

strain-hardening tends to decrease the ductility demand. Hence, 

if elastoplastic design spectra are used for systems with unrecog­

nized strain-hardening, the actual ductility will be less than 

expected. Nevertheless, spectral reduction factors which 

explicitly reflect the effects of varying levels of strain­

hardening have been derived in this study. 
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3. Computation of Inelastic Response Spectra 

The analytical method developed in this study permits the 

computation of dynamic response in an efficient, arithmetical 

manner. Compared with Newmark's beta method, the exact technique 

results in a two- to threefold savings in computation time. 

Although developed in this study for the computation of elasto­

plastic and bilinear response, the procedure may readily be 

extended for other load-deformation models, provided the 

restoring force is piecewise-linear. 

6.3 Critical Overview and Recommendations for Further Study 

One obvious shortcoming of this study is that a relatively small 

sample of earthquake ground motions was considered. Furthermore, seven 

of the twelve accelerograms were from California events. Because of the 

limited number and choice of records, the results of this study are 

necessarily biased. However, the accelerograms employed do cover a wide 

variety of conditions such as earthquak~ magnitude, focal depth, epicen­

tral distance, recording site geology, and amplitude and duration of the 

recorded motions. Therefore, it is believed that this study lays the 

foundation upon which further research may provide additional insight 

into the characterization of the earthquake hazard, wherefrom seismic 

design spectra may be derived. 

Several specific areas of further research are recommended. First, 

comprehensive studies involving larger samples of motions, perhaps appro­

priately categorized, are required before alternative spectral scaling 

parameters may be proposed for general design use. Twelve earthquake 
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records are too few to enable the formulation of an improved design 

method. However, the results of this study indicate that several 

spectral normalizing factors may be eliminated as viable response 

prediction alternatives. These parameters include, with the possible 

exception of the root-square displacement, all of those alternative 

normalizing factors computed from ground motion data. Hence, further 

investigations may concentrate on those normalizing factors determined 

from response-related quantities, i.e. the spectrum intensities and 

the mean Fourier amplitudes. 

The successful implementation of a spectrum intensity or Fourier 

amplitude-based design approach requires additional research. Studies 

must be made to provide the designer with a method for predicting the 

spectrum intensities or mean-Fourier amplitudes. Such investigations 

might involve the regression of the alternative spectral scaling 

factors on earthquake magnitude and source-to-site distance. In this 

study of attenuation characteristics, an evaluation of the uncertain­

ties associated with the prediction scheme should be made. Before 

the peak ground motions are replaced as descriptors of the earthquake 

hazard, it must be verified that the alternative parameters -- the 

spectrum intensities, mean Fourier amplitudes, or any others -- can 

be predicted as reliably. 
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Table 2.1 Equations for Elastic Spectrum Amplification 
Factors for Horizontal Motion. 
After Newmark and Hall (59) 

Cumulative 
Quantity Probability, Percent 

Acceleration 4.38 - 1.04lnS 

Velocity 84.1 (One Sigma) 3.38 - 0.67lnS 

Displacement 2.73 - 0.45lnS 

Acceleration 3.21 - 0.68lnS 

Velocity 50 (Median) 2.31 - 0.4llnS 

Displacement 1.82 - 0.27lnS 
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Table 2.2 Elastic Spectrum Amplification 
Factors for Horizontal Motion. 
After Newmark and Hall (59) 

Cumulative Probability, Percent 

84.1 (One Sigma) 50 (Median) 
Damping, 

Percent of Critical Accel. Vel. Displ. Accel .. Vel. Displ. 

0.5 5.10 3.84 3.04 3.68 2.59 2.01 

1 4.38 3.38 2.73 3.21 2.31 1.82 

2 3.66 2.92 2.42 2.74 2.03 1.63 

3 3.24 2.64 2.24 2.46 1.86 1.52 

5 2.71 2.30 2 .. 01 2.12 1.65 1.39 

7 2.36 2.08 1.85 1.89 1.51 1.29 

10 1.99 1.84 1.69 1.64 1.37 1.20 

20 1.26 1.37 1.38 1.17 1.08 1.01 
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Table 3.1 Recommended Damping Values. 
After Newmark (58) 

Stress Level 

'-lorking stress, 
no more than about 
1/2 yield point 

At or just below 
yield point 

Type and Condition 
of Structure 

a. Vital piping 

b. Welded steel, 
prestressed concrete, 
well reinforced concrete 
(only slight cracking) 

c. Reinforced concrete with 
considerable cracking 

d. Bolted and/or riveted steel, 
wood structures with nailed 
or bolted joints 

a. Vital piping 

b. Welded steel, 
prestressed concrete 
(without complete loss 
in prestress) 

c. Prestressed concrete 
with no prestress left 

d. Reinforced concrete 

e. Bolted and/or riveted steel, 
wood structures with 
bolted joints 

f. Wood structures 
with nailed joints 

Percentage 
Critical Damping 

1 to 2 

2 to 3 

3 to 5 

5 to 7 

2 to 3 

5 to 7 

7 to 10 

7 to 10 

10 to 15 

15 to 20 



Table 3.2 Earthquake Data 

Date and Epicenter Magnitude Maximum Focal Record and Component 
Earthquake Time Coordinates f\* MHI Depth (lem) Used in this Study 

San Fernando. Calif. Feb. 9. 1971 34.40oN 6.4 (76) XI (43) 8 (43) Pacoima Dam, S16E 0600 PST 118.40ow 
(76) (43) 

Parkfield, Calif. June 27, 1966 3S.9SoN 
5.6 (76) VII (43) 8.6 (9) Cholame-Shandon No.2, N65E 2026 PST l20.S0oW 

(76) (43) 

Bear Valley, Calif. Sept. 4. 1972 36.64°N 4.7 (8) VI (8) 2 (8) Melendy Ranch. N29W 1104 PDT 121. 29°W 
(8) (8) 

Coyote Lake. Calif. Aug. 6. 1979 37.lOoN 5.9 (38) VII (38) 9.6 (38) Gilroy Array No.6. 230 Deg. 1005 PDT 121.50oW 
(38) (72) 

Imperial Valley, Calif. Oct. IS, 1979 32.64°N 6.6 (39) IX (65) 12 (65) Bonds Corner. 230 Deg. 1616 PDT 115.33°W 
(39) (39) 

Imperial Valley, Calif. May 18, 1940 32.73°N 6.7 (76) X (43) 16 (9) El Centro, SOOE I-' 
2037 PST l1S.50oW N 

(76) (43) ~ 

Kern County, Calif. July 21. 1952 3S.00oN 7.7 (76) XI (43) 16 (9) Taft-Lincoln School Tunnel, 0453 PST 119.0l oW 
(76) (43) S69E 

Andreanof Island, May 1. 1971 51.4 ON 7.0 (70) VI (70) 43 (70) Adak. Alaska 2008 AST 177.2°W Alaska (70) (70) U.S. Naval Station, West 

Kilauea. Hawaii Apr. 26, 1973 19.93°N 6.3 (37) VIII (37) 50 (37) Hawaii National Park, 2026 GMT lSS.lOoW 
(37) (37) Namakani Paio Camp., S30W 

Managua, Nicaragua Dec. 23, 1972 12.4°N 6.2 (8) IX (8Y S (14) ESSO Refinery. South 
0629 GMT 86.l oW 

(8) (8) 

Bucarest, Rumania Mar. 4. 1977 4S.87°N 7.1"'* (71) IX (7) 110 (71) Building Research Institute. 
1922 GMT 26.75°E 

(7) (71) 
S-N 

Off Central Chile Coast 
July 8, 1971 32.5°S 7.5 (70) X (70) 58 (70) Univ. of Chile. Santiago 

2303 local 71.2°W 
(70) (70) 

Engineering Bldg. NlOW 

Notes: 11 Richter or Local Magnitude, f\ 

11'" Body-wave Magnitude. ~ 

Numbers in parentheses identify entries 
1n the List of References. 



Table 3 .. 3 

U.S.G.S. Station 
Record, Component No. and Coord:lnates 

Pacoima Dam, S16E 11279 34.334°N 
118.396'~w (87) 

Cho1ame-Shandon No.2, 
111013 

35.731<DN 
N65E 120. 286'~W (87) 

Melendy Ranch, N29W 111211 
36.59°N (87) 121. 19°1il 

Gilroy Array No.6, 
111413 

37.026,oN 
230 Deg. 121.484'oW (87) 

Bonds Corner, 230 Deg. 115054 
32.693,oN 

115.338'ow (87) 

E1 Centro, SOOE 11117 
32.794,oN 

115.549'oW (87) 

Taft, S69E 111095 35.15°N (87) 119.46°W 

Adak, Alaska, West 112701 
51.88°N (87) 176. 58°1il 

Kilauea, Hawaii, S30W 112801 
19.43°1~ (87) 155.30 0 ytl 

Managua, South 113501 
12.14°N (87) 86.32°W 

Bucarest, S-N -Ie 
44.44D]N 

(43) 26.15°:E 

Santiago, N10W 114400 33.47 DS (87) 70.67°1101 

Notes: -Ie Not aU. S. Geological Survey St,!ltion. 

Numbers in parentheses identify entries 
in the List of References. 

Recording Site Data 

Epicentra1 Recording Site Instrument Location, 
Dist. (km) Geology Structure 

9.1 (9) highly jointed abutment of concrete 
diorite gneiss (82) dam, instr. sh1tr. (87) 

31.9 (9) alluvium, 45 m; ground level, 
sandstone (87) instr. sh1tr. (87) 

8 (43) 30 ft alluvium; ground level, 
weathered siltstone 1-story bldg. (87) 
to 200 ft (18) 

10 (66) rock (87) ground level, 
1-story bldg. (87) 

6 (38) alluvium (87) ground level, 
1-story bldg. (87) I-' 

N 

9.3 (9) alluvium, more ground level, V1 

than 300 m (87) 2-story bldg. (87) 

43 (9) alluvium (87) tunnel, 
l~story bldg. (87) 

70 (70) basalt (87) ground level, 
instr. sh1tr. (87) 

59 (43) (not available) ground level, 
1-story bldg. (87) 

6 (14) alluvium, about ground level, 
1000 m (84) l-story bldg. (87) 

166 (71) 10 m loess; sandy basement, 
deposits to 44 m (7) 1-story bldg. (71) 

120 (70) alluvium, about basement, 
250 m (67) 3-story bldg. (87) 



Table 3.4 Ground Motion Data 

Initial Ground Motions 

AccE~1. , Vel. , 
Record, Component in./sec2 in./sec 

Pacoima Dam, S16E 3.05 -0.484 

Cho1ame-Shandon -5. en 0.830 No.2, N65E 

Melendy Ranch, N29W 5.19 -1.17 

Gilroy Array No.6, 2.26 0.209 
230 Deg. 

Bonds Corner, 230 Deg. 0.287 -1.74 

E1 Centro, SOOE 0.548 1.84 

Taft, S69E 2. ~f5 0.0655 

Adak, Alaska, West 3.18 0.595 

Kilauea, Hawaii, S30W -0. Lf41 0.114 

Managua, South -1.93 0.179 

Bucarest, S-N -2.22 0.586 

Santiago, N10W -l.i'l -1.31 

Note: Times of maxima are for records with 
a 2-second prefixed pulse. 

Disp1. , 
in. 

-0.167 

0.620 

-0.0935 

-0.187 

0.514 

-0.850 

0.0245 

0.576 

-0.0370 

0.201 

-0.439 

0.658 

Acce1. , Time, 
g sec 

1.17 9.74 

0.489 5.74 

-0.516 3.76 

-0.417 4.88 

0.786 8.79 

-0.348 4.12 

-0.179 5.70 

-0.186 8.14 

0.159 9.24 

0.324 8.08 

0.206 5.26 

-0.159 19.06 

Ground Motion Maxima 

Vel. , Time, Disp1. , Time, 
in./sec sec in. sec 

44.6 5.04 "-16.5 9.78 

30.7 6.46 -10.3 6.18 

5.41 3.72 1.28 3.78 

17.3 4.73 -3.85 4.51 

17.4 9.60 -5.72 9.37 
1-1 

-13.2 4.18 -4.87 10.58 N 
"0\ 

6.98 5.56 -4.09 51.14 

3.15 8.32 2.88 12.92 

-2.65 8.56 -0.466 8.72 

-11.9 7.96 2.60 7.50 

29.6 5.70 -7.85 5.24 

9.13 19.70 4.79 23.76 
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Table 3.5 Comparison of Ground Displacement Maxima 

This 

Disp1. , 
Record, Component in. 

Pacoima Dam, S16E -16.5 

Cho1ame-Shandon No. 2, N65E -10.3 

Melendy Ranch, N29W 1.28 

Gilroy Array No. 6, 230 Deg. -3.85 

Bonds Corner, 230 Deg. -5.72 

El Centro, SOOE -4.87 

Taft, S69E -4.09 

Adak, Alaska, West 2.88 

Kilauea, Hawaii, S30W -0.466 

Managua, South 2.60 

Bucarest, S-N -7.85 

Santiago, N10W 4.79 

Note: Times of maxima are for records 
with a 2-second prefixed pulse. 

Study Cal tech 

Time, Disp1. , 
sec in. 

9.78 -14.8 

6.18 -10.4 

3.78 1.06 

4.51 -3.68 

9.37 -5.76 

10.58 -4.29 

51.14 3.60 

12.92 -2.09 

8.72 -0.449 

7.50 -2.49 

5.24 7.90 

23.76 -4.05 

Time, 
sec 

9.78 

6.18 

3.78 

4.51 

9.37 

10.58 

46.12 

7.16 

8.72 

8.44 

6.20 

17.30 



Table 3.6 

Case 

13 freqs., 
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Comparison of Computation Times on the CDC Cyber 175 
for the Exact Method and Newmark's Method: E1asto­
plastic Systems with 5% Damping Subjected to the 
Pacoima Dam Record of Feb. 9, 1971, Component S16E 

Computation Times, in seconds 

Exact, ~t. 
1 

TI10 

Newmark's Method 

6t. = TIIO 
1 

6t. 
1 

T/20 

0.035 - 0.293 cps 1.0 1.6 1.6 

13 freqs., 
0.35 - 2.93 cps 

14 freqs., 
3.5 - 35 cps 

Total 

1.1 

2.0 

4.1 

1.6 1.6 

5.8 9.2 

9.0 12.4 
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Table 3.7 Comparison of Response Maxima for the Exact Method 
and Newmark's Method: E1astop1astic Systems with 
5% Damping Subjected to the Pacoima Dam Record 

Frequency, 
in cps 

0.03500 

0.05954 

0 .. 1013 

0.1723 

0.2932 

0.4988 

0.8486 

1.444 

2.456 

2.932 

3.500 

4.178 

4.988 

5.954 

8.486 

10 .. 13 

14.44 

20.57 

35.00 

of Feb. 9, 1971, Component S16E 

Maximum Relative Displacement, in inches 
Initial Yield 

Level u , y 
in inches 

3.134 

2.838 

2.948 

4.246 

5.593 

3.705 

2.518 

1.412 

0.6952 

0 .. 4824 

0.5494 

0.4026 

0.3178 

0.2360 

0.1256 

0.08622 

0.03713 

0.02027 

0.007109 

Exact, 

~t. = T/10 
]. 

15.66 

14.17 

-14.74 

-21.31 

-27.83 

-18.54 

-12.64 

-7.126 

3.474 

2.400 

-2.744 

-2.015 

-1·.594 

-1.181 

-0.6303 

-0.4313 

-0.1847 

-0.1022 

-0.03555 

Newmark's Method 

~t. = T/10 ~t. = T/20 
]. ]. 

15.65 

14.16 

-14.74 

-21.31 

-27.81 

-18.53 

-12.63 

-7.112 

3.444 

2.468 

-2.671 

-1.941 

-1.573 ------
-1.197 

-0.6757 

-0.4495 

-0.1962 

-0.1058 

-0.03488 

15.65 

14.16 

-14.74 

-21.31 

-27.81 

-18.53 

-12.63 

-7.112 

3.444 

2.414 

-2.736 

-2.001 

-1.579 

-1.194 

-0.6433 

-0.4386 

-0.1871 

-0.1034 

-0.03541 

Note: For frequencies above the dashed lines, the time step 
used in the computations corresponds to the digitized 
interval of the input acce1erogram, 0.02 sec. 
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Table 3.8 Ground Motion Durations for Computing 
Inelastic Response Spectra 

Record, 
Component 

Pacoima Dam, S16E 

Cho1ame-Shandon No.2, N65E 

Melendy Ranch, N29W 

Gilroy Array No.6, 230 Deg. 

Bonds Corner, 230 Deg. 

E1 Centro, SOOE 

Taft, S69E 

Adak, Alaska, West 

Kilauea, Hawaii, S30W 

Managua, South 

Bucarest, S-N 

Santiago, N10W 

Frequencies, 
cps 

all' 

f < 2.06 

f > 2.06 

all 

all 

f < 2.06 

f > 2.06 

f < 0.246 

0.246 < f < 2.06 

f > 2.06 

f < 0.246 

f > 0.246 

all 

all 

all 

all 

f < 2.06 

f > 2.06 

Latest time 
of 1 

max. disp1., 
sec 

13.08 

21.94 

6.87 

9.82 

6.80 

21.00 

9.41 

42.54 

16.66 

7.00 

57.05 

13.20 

27.01 

22.86 

14.74 

11.70 

49.08 

19.86 

D . 2 uratl.on, 
sec 

18.20 

29.92 

16.74 

14.98 

10.46 

29.75 

18.48 

29.60 

15.87 

39.20 

~ 
25.83 .... 

24.95 

37.79 

Notes: 1. For frequencies within the indicated range, the latest 
time of maximum relative displacement for elastic systems 
with 2% damping. 

2. All durations are for records with a 2-second prefixed pulse. 

3. Corresponds to the duration of entire record. 
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Table 4.1 Peak Ground Motions 

Record, Component 

Pacoima Dam, S16E 

Cho1ame-Shandon No.2, N65E 

Melendy Ranch, N29W 

Gilroy Array No.6, 230 Deg. 

Bonds Corner, 230 Deg. 

E1 Centro, SOOE 

Taft, S69E 

Adak, Alaska, West 

Kilauea, Hawaii, S30W 

Managua, South 

Bucarest, S-N 

Santiago, N10W 

Peak Ground Motions 

Accel. (g) Vel. (in./sec) Disp1. (in.) 

1.17 

0.489 

0.516 

0.417 

0.786 

0.348 

0 .. 179 

0.186 

0.159 

0.324 

0.206 

0.159 

44.6 

30.7 

5 .. 41 

17.3 

17.4 

13.2 

6.98 

3.15 

2.65 

11.9 

29.6 

9.13 

16.5 

10.3 

1.28 

3.85 

5.72 

4.87 

4.09 

2.88 

0.466 

2.60 

7.85 

4.79 
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Table 4.2 Integrals of Squared Ground Motion 

Integrals of Squared Ground Motion 

Accel., Vel. , Displ. , 

Record, Component (in?/sec3/lOOO) (in.2/ sec/lOO) (in? - sec/lOO) 

Pacoima Dam, S16E 76.9 14.7 8.80 

Cholame-Shandon No. 2, N65E 17.3 5.31 1.25 

Melendy Ranch, N29W 5.55 0.140 0.0163 

Gilroy Array No. 6, 230 Deg. 7.46 1.16 0.0614 

Bonds Corner, 230 Deg. 57.4 5.11 0.585 

El Centro, SOOE 16.8 3.35 2.19 

Taft, S69E 5.54 1.37 1.35 

Adak, Alaska, West 2.81 0.181 0.453 

Kilauea, Hawaii, S30W 2.58 0.0811 0.00290 

Managua, South 18.7 1.36 0.209 

Bucarest, S-N 7.87 6.29 0.838 

Santiago, NIOW 3.55 0.906 2.25 
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Table 4.3 Root-Square Ground Motions 

Root-Square Ground Motions 

Acce1. , Vel. , Disp1., 

Record, Component (in./sec3/ 2) (. / 1/2) lon. sec (. 1/2) lon.-sec 

Pacoima Dam, S16E 277 38.4 29.7 

Cho1ame-Shandon No. 2, N65E 132 23.0 11.2 

Melendy Ranch, N29W 74 .. 5 3.75 1.28 

Gilroy Array No. 6, 230 Deg. 86.4 10.8 2.48 

Bonds Corner, 230 Deg. 240 22.6 7.65 

E1 Centro, SOOE 130 18.3 14.8 

Taft, S69E 74.4 11.7 11.6 

Adak, Alaska, l~est 53.0 4.25 6.73 

Kilauea, Hawaii, S30W 50.8 2.85 0.539 

Managua, South 137 11.7 4.57 

Bucarest, S-N 88.7 25.1 9.16 

Santiago, N10W 59.6 9.52 15.0 



Table 4.4 Mean-Square Ground Motions 

Mean-Square Ground Motions 

t5 t95 Acce1. , Vel. , Disp1. , 

Record, Component (sec) (sec) (in. 2/sec4/1000) (in. 2/sec2/10) (in. 2/10) 

Pacoima Darn, S16E 4.71 11.75 9.84 19.2 7.54 

Cho1ame-Shandon No.2, N65E 5.28 12.24 2.24 6.76 1.46 

Melendy Ranch, N29W 3.49 5.98 2.01 0.320 0.0272 

Gilroy Array No.6, 230 Deg. 4.02 7.23 2.09 3.42 0.155 

Bonds Corner, 230 Deg. 4.98 14.77 5.28 4.06 0.432 J-I 
VJ 
+:'-

E1 Centro, SOOE 3.67 28.15 0.618 1.08 0.586 

Taft, S69E 5.65 34.68 0.172 0.215 0.108 

Adak, Alaska, West 5.37 16.10 0.236 0.124 0.325 

Kilauea, Hawaii, S30W 8.25 19.13 0.213 0.0604 0.00174 

Managua, South 4.39 12.69 2.03 1.46 0.158 

Bucarest, S-N 5.02 12.47 0.951 7.29 0.991 

Santiago, N10W 11.08 39.52 0.112 0.262 0.646 
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Table" 4.5 Root-Mean-Square Ground Motions 

Root-Mean-Square Ground Motions 

Record, Component Accel. (g) Vel. (in./sec) Disp1. (in.) 

Pacoima Dam, S16E 0.257 13.8 8.69 

Cho1ame-Shandon No. 2, N65E 0.123 8.22 3.82 

Melendy Ranch, N29W 0.116 1.79 0.521 

Gilroy Array No. 6, 230 Deg. 0.118 5.85 1.24 

Bonds Corner, 230 Deg. 0.188 6.37 2.08 

E1 Centro, SOOE 0.0644 3.28 2.42 

Taft, S69E 0.0339 1.47 1.04 

Adak, Alaska, West 0.0398 1.12 1.80 

Kilauea, Hawaii, S30W 0.0378 0.777 0.132 

Managua, South 0.117 3.82 1.26 

Bucarest, S-N 0.0799 8.54 3.15 

Santiago, N10W 0.0274 1.62 2.54 
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Table 4.6 Spectrum 'Intensities 

Spectrum Intensity, 0.4-10 cps, in. 

Record, Component 6=0% 6=2% 6=5% 6=10% 6=20% 

Pacoima Dam, S16E 203 164 137 116 91.1 

Cho1ame-Shandon No. 2, N65E 140 110 93.9 79.3 61.7 

Melendy Ranch, N29W 21.1 16.3 13.9 11.9 9.63 

Gilroy Array No. 6, 230 Deg. 72.4 60.2 53.9 47.4 39.4 

Bonds Corner, 230 Deg. 136 94.4 71.7 55.9 42.0 

E1 Centro, SOOE 111 68.2 53.0 42.4 31.8 

Taft, S69E 51.3 33.0 26.0 19.5 14.9 

Adak, Alaska, West 17.8 11.2 9.04 7.21 5.45 

Kilauea, Hawaii, S30W 17.8 10.9 8.63 6.71 5 .. 07 

Managua, South 70.6 52.1 42.9 34.0 24.7 

Bucarest, S-N 139 113 96.9 81.2 62.5 

Santi~go, N10W 40.7 24.3 18 .. 3 14.7 11.0 
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Table 5.1 Statistics for Mean Elastic Spectra 

Damping, Spectral This Study Ref. 67 Ref. 51 

percent R~gion Mean COV Mean COV Mean COV 

Displ. 1.56 0.38 1.69 0.49 1.68 0.49 

2 Vel. 1.83 0.54 2.03 0.42 2.06 0.45 

Acce1. 2.73 0.38 3.08 0.24 2.76 0.32 

Disp1. 1.37 0.33 1.47 0.43 1.40 0.46 

5 Vel. 1.46 0.49 1.55 0.39 1.66 0.40 

Acce1. 2.12 0.35 2.28 0.22 2.11 0.23 

Disp1. 1.19 0.35 1.23 0.39 1.15 0.41 

10 Vel. 1.15 0.43 1.20 0.36 1.34 0.35 

Acce1. 1.65 0.29 1.78 0.18 1.65 0.22 
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Table 5.2 Spectral Reduction Factors for E1astop1astic Systems 

Displacement Region, ¢D 
S = 2% S = 5% S = 10% 

Ductility This Study Ref. 67 This Study Ref. 67 This Study Ref. 67 

1 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 0.60 0.59 0.61 0.60 0.62 0.63 

2 0.42 0.43 0.42 0.45 0.44 0.47 

3 0.27 0.28 0.28 0.30 0.30 0.31 

5 0.16 0.16 0.17 0.17 0.17 0.18 

10 0.073 0.076 0.076 0.080 0.078 0.084 

Velocity Region, ¢V 
S = 2% S = 5% S = 10% 

Ductility This Study Ref. 67 This Study Ref. 67 This Study Ref. 67 

1 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 0.60 0.56 0.62 0.62 0.67 0.65 

2 0 .. 42 0.40 0.47 0.46 0.51 0.51 

3 0.29 0.28 0.33 0.33 0.36 0.37 

5 0.19 0.19 0.22 0.23 0.24 0.26 

10 0.12 0.12 0.14 0.14 0.15 0.17 

Acceleration Region, ¢A 
S = 2% B = 5% B = 10% 

Ductility This Study Ref. 67 This Study Ref .. 67 This Study Ref. 67 

1 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 0.62 0.64 0.66 0.69 0.71 0.72 

2 0.49 0.51 0.54 0.58 0.59 0.61 

3 0.37 0.39 0042 0.46 0.47 0.49 

5 0.28 0.29 0.33 0.34 0.37 0.38 

10 0.22 0.21 0.26 0.26 0 .. 30 0.28 
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Table 5.3 Spectral Reduction Factors for Bilinear 
Systems with 5% Damping 

Displacement Region, <PD 

Ductility a. = 0 a. = 0.02 Ci. = 0 .. 05 a. = 0.10 

1 1.00 1.00 1.00 1.00 

1.5 0.61 0.61 0.61 0.61 

2 0.42 0 .. 42 0 .. 42 0.42 

3 0.28 0.28 0.27 0.27 

5 0.17 0.16 0.16 0.15 

10 0.076 0.071 0.070 0.072 

Velocity Region, <PV 

Ductility a. = 0 Ci. = 0.02 Ci. = 0.05 Ci. = 0.10 

1 1.00 1.00 1.00 1.00 

1.5 0.62 0.62 0.61 0.61 

2 0.47 0.46 0.46 0.44 

3 0.33 0.31 0.30 0.29 

5 0.22 0.21 0.20 0.19 

10 0.14 0.12 0.11 0.11 

Acceleration Region, <PA 

Ductility a. = 0 Ci. = 0.02 Ci. = 0.05 a. = 0.10 

1 1.00 1.00 1.00 1.00 

1.5 0.66 0.66 0.65 0.64 

2 0.54 0 .. 53 0.52 0.50 

3 0.42 0.41 0.39 0.37 

5 0.33 0.31 0 .. 29 0.28 

10 0.26 0.23 0.22 0.20 
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Table 5 .. 4 Frequency Regions in which the Coefficient of Variation 
is a Minimum: E1astop1astic Spectra Normalized by 
Peak Ground Motions 

Damping, percent Ductility Displacement Velocity Acceleration 

1 0.071-0.20 0.20-2.0 2.0-8.5 

1.5 0.071-0.23 0.23-2.0 2.0-8.5 

2 0.071-0.24 0.24-2.5 2.5-8.5 
2 

3 0.071-0.29 0.29-2.6 2.6-8.5 

5 0.071-0.34 0.34-3.4 3.4-8.5-

10 0.071-0.41 0.41-4.5 4.5-8.5 

1 0.071-0.20 0.20-2 .. 0 2.0-8.5 

1.5 0.071-0.22 0 .. 22-2.0 2.0-8.5 

2 0.071-0.24 0.24-2.5 2.5-8.5 
5 

3 0.071-0.29 0 .. 29-2.6 2.6-8.5 

5 0.071-0.34 0.34-3.6 3.6-8.5 

10 0.071-0.43 0.43-4.6 4.6-8.5 

1 0.071-0.20 0.20-2.0 2.0-8.5 

1.5 0.071-0.21 0.21-2.3 2.3-8.5 

2 0.071-0.24 0.24-2.6 2.6-8.5 
10 

3 0.071-0.29 0.29-2.6 2.6-8.5 

5 0.071-0.34 0.34-3.9 3.9-8.5 

10 0.071-0.43 0.43-4.7 4.7-8.5 
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Table 5.5 Frequency Regions in which the Coefficient of Variation 
is a Minimum: Bilinear Spectra with 5% Damping 
Normalized by Peak Ground Motions 

Strain-Hardening, 
percent 

o 

2 

5 

10 

Ductility 

1 

1.5 

2 

3 

5 

10 

1 

1.5 

2 

3 

5 

10 

1 

1.5 

2 

3 

5 

10 

1 

1.5 

2 

3 

5 

10 

Displacement 

0.071-0.20 

0.071-0.22 

0.071-0.24 

0.071-0.29 

0.071-0 .. 34 

0.071-0.43 

0.071-0.20 

0.071-0.22 

0.071-0.24 

0.071-0.30 

0.071-0.34 

0.071-0.43 

0.071-0.20 

0.071-0.22 

0.071-0.24 

0.071-0.30 
n n"'7"1 r\ '1'1 
V.V/.L-V • .J.J 

0.071-0.38 

0.071-0.20 

0.071-0.22 

0.071-0.24 

0.071-0.24 

0.071-0.29 

0.071-0.35 

Velocity 

0.20-2.0 

0.22-2.0 

0.24-2.5 

0.29-2.6 

0.34-3.6 

0.43-4.6 

0.20-2.0 

0.22-2.0 

0.24-2.6 

0.30-2.6 

0.34-3.8 

0.43-5.5 

0.20-2.0 

0.22-2.1 

0.24-2 .. 7 

0.30-3.1 

0.38-5.4 

0.20-2.0 

0.22-2.1 

0.24-2.7 

0.24-3.1 

0.29-3.6 

0.35-5.0 

Acceleration 

2.0-8.5 

2.0-8.5 

2.5-8.5 

2.6-8.5 

3.6-8.5 

4.6-8.5 

2.0-8.5 

2.0-8.5 

2.6-8.5 

2.6-8.5 

3.8-8.5 

5.5-8.5 

2.0-8.5 

2.1-8.5 

2.7-8.5 

3.1-8.5 
') "'7 0 c: 
J. I-O • .J 

5.4-8.5 

2.0-8.5 

2.1-8.5 

2.7-8.5 

3 .. 1-8.5 

3.6-8 .. 5 

5.0-8.5 
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Table 5.6 Average Coefficients of Variation for Elastoplastic 
Spectra Normalized by Peak Ground Motions 

Ductility 

1 

1.5 

2 

3 

5 

10 

Ductility 

1 

1.5 

2 

3 

5 

10 

Ductility 

1 
, c;; 
..1..."'" 

2 

3 

5 

10 

Average COV, Displacement Region 

S = 2% S = 5% S = 10% 

0.48 0 .. 41 0.34 

0.41 0.37 0 .. 32 

0.37 0 .. 35 0.32 

0.36 0.34 0.31 

0.35 0.34 0.34 

0.33 0 .. 33 0.29 

Average COV, Velocity Region 

S = 2% S = 5% S = 10% 

0.45 0.40 0.36 

0.43 0.39 0.36 

0.39 0.37 0.35 

0.36 0 .. 35 0.33 

0.34 0.33 0.31 

0.30 0.28 0.26 

Average COV, Acceleration Region 

S = 2% S = 5% S = 10% 

0.41 0 .. 37 0.31 

0.35 0 .. 31 0 .. 24 

0 .. 30 0.25 0.20 

0 .. 25 0.22 0 .. 20 

0 .. 25 0.24 0.22 

0.26 0.26 0.28 
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Table 5.7 Average Coefficients of Variation for Bilinear 
Spectra with 5% Damping Normalized by 
Peak Ground Motions 

Average COV, Displacement Region 

Ductility a = 0 a = 0.02 a = 0.05 a = 0.10 

1 0.41 0.41 0.41 0.41 

1.5 0.37 0.37 0.37 0.37 

2 0.35 0.35 0.34 0.33 

3 0.34 0.33 0.32 0.30 

5 0.34 0.33 0.29 0.24 

10 0.33 0.27 0.21 0.20 

Average COV, Velocity Region 

Ductility a = 0 a = 0.02 a = 0.05 a = 0.10 

1 0.40 0.40 0.40 0.40 

1.5 0.39 0.39 0.39 0.39 

2 0.37 0.36 0.35 0.36 

3 0.35 0.34 0.33 0.33 

5 0.33 0.32 0.31 0.32 

10 0.28 0.28 0.29 0.31 

Average COV, Acceleration Region 

Ductility a = 0 a = 0.02 a = 0.05 a = 0.10 

1 0.37 0.37 0.37 0.37 

1.5 0.31 0.30 0.29 0.29 

2 0.25 0.25 0.24 0.24 

3 0.22 0.21 0.19 0.18 

5 0.24 0.22 0.19 0.18 

10 0.26 0.25 0.25 0.25 
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Table 5.8 Minimization of Average Coefficient of Variation for 
Elastic Spectra Normalized by 2% Spectrum Intensity 

Displacement Region, 0.071-0.20 cps 

Damping, 
percent 

2 

5 

10 

Freq. Limits for 
2% SI, cps 

0.080-0.20 

0.080-0.24 

0.085-0.28 

Average 
COV 

0.27(0.28) 

0 .. 25 

0.24(0.25) 

Velocity Region, 0.20-2.0 cps 

Damping, Freq. Limits for 
percent 2% 81, cps 

2 0.58-2.9 

5 0.50-3.5 

10 0.46-3.5 

Acceleration Region, 

Damping, Freq. Limits for 
percent 2% SI, cps 

2 3.8-35 

5 5.4-35 

10 6.0-35 

( ) = Average COV for frequency limits 
from 5% spectra .. 

Average 
COV 

0.36(0.36) 

0.33 

0.30(0.30) 

2.0-8.5 cps 

Average 
COV 

0 .. 23(0.24) 

0.24 

0.24(0.24) 
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Table 5.9 Spectrum Intensities 

Record, Component 

Pacoima Dam, Sl6E 

Cho1ame-Shandon No.2, N65E 

Melendy Ranch, N29W 

Gilroy Array No.6, 230 Deg. 

Bonds Corner, 230 Deg. 

E1 Centro, SOOE 

Taft, S69E 

Adak, Alaska, West 

Kilauea, Hawaii, S30W 

Managua, South 

Bucarest, S-N 

Santiago, N10W 

Spectrum Intensities for 2% Damping, in. 

0.080-0 .. 24 cps 

224 

90.0 

8.00 

30.0 

71.3 

90 .. 2 

77.9 

31.1 

4.09 

33.0 

73.1 

64.5 

0.50-3.5 cps 

131 

85.1 

9.17 

50.3 

76.9 

51.4 

26.3 

8.85 

8.69 

42.5 

77.5 

18.5 

5.4-35 cps 

2.44 

0.688 

1.38 

0.637 

2.17 

0.842 

0.374 

0.527 

0.681 

0.892 

0.269 

0.427 



Table 5.10 

Damping, 
percent 

2 

5 

10 

Damping, 
percent 

2 

5 

10 

Damping, 
percent 

2 

5 

10 
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Comparison of Average Coefficients of Variation 
for Elastic Spectra Normalized by 2% Spectrum 
Intensity and Peak Ground Motions 

Displacement Region, 0.071-0.20 cps 

Avg. COV for Spectra Scaled By: 

2% SI(0.08-0.24) Peak Displ. 

0.28 0.48 

0.25 0.41 

0.25 0.34 

Velocity Region, 0.20-2.0 cps 

Avg. COV for Spectra Scaled By: 

2% SI(0.50-3.5) Peak Vel. 

0.36 0.45 

0.33 0.40 

0.30 0.36 

Acceleration Region, 2.0-8.5 cps 

Avg. COV for Spectra Scaled By: 

2% SI(5.4-35) Peak Accel. 

0.24 0.41 

0.24 0.37 

0.24 0.31 

Reduction, 
percent 

+42 

+39 

+26 

Reduction, 
percent 

+20 

+18 

+17 

Reduction, 
percent 

+41 

+35 

+23 
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Table 5.11 Minimization of Average Coefficient of Variation for 
Elastic Spectra Normalized by Mean Fourier Amplitude 

Displacement Region, 0.071-0.20 cps 

Damping, 
percent 

2 

5 

10 

Damping, 
percent 

2 

5 

10 

Freq. Limits for 
FS, cps 

0.035-0.30 

0.035-0.31 

0.035-0.33 

Velocity Region, 

Freq. Limits for 
FS, cps 

0.28-1.3 

0.28-1.3 

0.25-1.3 

Average 
COV 

0.37(0.38) 

0.35 

0.34(0.35) 

0 .. 20-2.0 cps 

Average 
COV 

0.39(0.39) 

0.37 

0.34(0.34) 

Acceleration Region, 2.0-8 .. 5 cps 

Damping, 
percent 

2 

5 

10 

Freq. Limits for 
FS, cps 

1.6-19 

1.4-19 

1.3-18 

( ) = Average COV for frequency limits 
from 5% spectra .. 

Average 
COV 

0.35(0.35) 

0.39 

0.42(0.42) 
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Table 5.12 Mean Fourier Amplitudes 

Mean Fourier Amplitude, in./sec 

0.035-0 .. 31 cps 0.28-1.3 cps 1.4-19 cps 

Pacoima Dam, S16E 27.4 77.1 21 .. 6 

Cho1ame-Shandon No. 2,' N65E 16.0 43.7 7 .. 05 

Melendy Ranch, N29W 1 .. 59 5.68 8.07 

Gilroy Array No. 6·, 230 Deg. 2.70 32 .. 7 6 .. 68 

Bonds Corner, 230 Deg. 9.08 45.B 20 .. 4 

El Centro, SOOE 11 .. 2 41.B 10.9 

Taft, S69E 8.53 IB.2 5.B6 

Adak, Alaska, West 2 .. 88 5.25 6.74 

Kilauea, Hawaii, S30W 0 .. 479 5 .. 15 6.85 

Managua, South 5.50 IB.7 13.1 

Bucarest, S-N 8.43 44 .. 3 3.17 

Santiago, N10W 7.64 12.6 6.51 
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Table 5.13 Comparison of Average Coefficients of Variation 
for Elastic Spectra Normalized by Mean Fourier 
Amplitudes and Peak Ground Motions 

Displacement Region, 0 .. 071-0.20 cps 

Damping, 
Avg. COV for Spectra Scaled By: Reduction, 

percent FS (0 .. 035-0 .•. 31) Peak Displ. percent 

2 0.38 0.48 +21 

5 0.35 0.41 +15 

10 0.35 0.34 -3 

Velocity Region, 0.20-2.0 cps 

Damping, Avg. COV for Spectra Scaled By:. Reduction, 
percent FS(0.28-1.3) Peak Vel. percent 

2 0.39 0.45 +13 

5 0.37 0.40 +8 

10 0.34 0.36 +6 

Acceleration Region, 2 .. 0-8.5 cps 

Damping, 
Avg .. COV for Spectra Scaled By: Reduction, 

percent FS(1.4-l9) Peak Accel. percent 

2 0.35 0.41 +15 

5 0.39 0.37 -5 

10 0 .. 42 0.31 -35 
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U :: x-d 

R :: R (u) 

c :: 2wmfJ 

x 

m 

Fig. 2.1 Single-Degree-of-Freedom System 
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Fig. 3.27 Effect of Frequency Density on Elastic Spectra for the Pacoima Dam 
Record of Feb. 9, 1971, Component S16E: 2% Damping 
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Fig. 3.28 Effect of Frequency Density on Elastic Spectra for the Pacoima Dam 
Record of Feb. 9, 1971, Component S16E: 5% Damping 
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Fig. 3.29 Effect of Frequency Density on Elastic Spectra for the Pacoima 
Dam Record of Feb. 9, 1971, Component S16E: 10% Damping 
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Fig._ 3.30 Elastic Spectra for the Pacoima Dam Record of Feb. 9,1971, 
Component S16E: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.31 Elastic Spectra for the Cho1ame-Shandon No.2 Record of June 27, 1966, 
Component N65E: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.32 Elastic Spectra for the Melendy Ranch Record of Sept. 4, 1972, 
Component N29W: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.33 Elastic Spectra for the Gilroy Array No.6 Record of Aug. 6, 1979, 
Component 230 Deg: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.34 Elastic Spectra for the Bonds CornE~r Record of Oct. 15, 1979, 
Component 230 Deg: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.35 Elastic Spectra for the El Centro Record of May 18, 1940, 
Component SOOE: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.36 Elastic Spectra for the Taft Record of July 21, 1952, 
Component S69E: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.37 Elastic Spectra for the Adak, Alaska Record of May 1, 1971, 
Component West: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.38 Elastic Spectra for the Kilauea, Hawaii Record of April 26, 1973, 
Component S30W: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.39 Elastic Spectra for the Managua Record of Dec. 23, 1972, 
Component South: 0, 2, 5, 10, and 20% Damping 
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Elastic Spectra for the Bucarest Record of Mar. 4, 1977, 
Component S-N: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.41 Elastic Spectra for the Santiago Record of July 8, 1971, 
Component N10W: 0, 2, 5, 10, and 20% Damping 
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Fig. 3.42 E1astop1astic Yield Spectra for the Pacoima Darn Record 
of Feb. 9, 1971, Component S16E: 5% Damping 
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Fig. 3.43 Elastoplastic Yield Spectra for the Cholame-Shandon No. 2 Record of 
June 27, 1966, Component N65E: 5% Damping 
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Fig. 3.44 Elastoplastic Yield Spectra for the Melendy Ranch Record 
of Sept. 4, 1972, Component N29W: 5% Damping 
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Fig. 3.45 Elastoplastic Yield Spectra for the Gilroy Array No. 6 
Record of Aug. 6, 1979, Component 230 Deg: 5% Damping 
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Fig. 3.46 E1astop1astic Yield Spectra for the Bonds Corner Record 
of Oct. IS, 1979, Component 230 Deg: 5% Damping 
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Fig. 3.47 Elastoplastic Yield Spectra for the El Centro Record 
of May 18, 1940, Component SOOE: 5% Damping 
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Fig. 3.48 E1astop1astic Yield Spectra for the Taft Record 
of July 21, 1952, Component S69E: 5% Damping 
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Fig. 3.49 E1astop1astic Yield Spectra for the Adak, Alaska Record 
of May 1, 1971, Component West: 5% Damping 
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Fig. 3.50 E1astop1astic Yield Spectra for the Kilauea, Hawaii Record 
of April 26, 1973, Component S30W: 5% Damping 
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Fig. 3.51 E1astop1astic Yield Spectra for the Managua Record 
of Dec. 23, 1972, Component South: 5% Damping 
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Fig. 3.52 E1astop1astic Yield Spectra for the Bucarest Record 
of Mar. 4, 1977, Component S-N: 5% Damping 
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Fig. 3.53 Elastoplastic Yield Spectra for the Santiago Record 
of July 8, 1971, Component N10W: 5% Damping 
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Fig. 3.54 Bilinear Yield Spectra for the Pacoima Darn Record of Feb. 9, 1971, 
Component S16E: 5% Strain-Hardening and 5% Damping 
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Fig. 3.55 Bilinear Yield Spectra for the Cholame .... Shandon No.2 Record of June 27, 1966, 
Component N65E: 5% Strain-Hardening and 5% Damping 
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Fig. 3.58 Bilinear Yield Spectra for the Bonds Corner Record of Oct. 15, 1979, 
Component 230 Deg: 5% Strain-Hardening and 5% Damping 
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Fig. 3.57 Bilinear Yield Spectra for the Gilroy Array No. 6 Record of Aug. 6, 1979, 
Component 230 Deg: 5% Strain-Hardening and 5% Damping 
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Fig. 3.60 Bilinear Yield Spectra for the Taft Record of July 21, 1952, 
Component S69E: 5% Strain-Hardening and 5% Damping 
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Fig. 3.59 Bilinear Yield Spectra for the El Centro Record of May 18, 1940, 
Component SOOE: 5% Strain-Hardening and 5% Damping 
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Fig. 3.62 Bilinear Yield Spectra for the Kilauea, Hawaii Record of April 26, 1973, 
Component S30W: 5% Strain-Hardening and 5% Damping 
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Fig. 3.61 Bilinear Yield Spectra for the Adak, Alaska Record of May 1, 1971, 
Component West: 5% Strain-Hardening and 5% Damping 
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Fig. 3.64 Bilinear Yield Spectra for the Bucarest Record of Mar. 4, 1977, 
Component S-N: 5% Strain-Hardening and 5% Damping 
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Fig. 3.63 Bilinear Yield Spectra for the Managua Record of Dec. 23, 1972, 
Component South: 5% Strain-Hardening and 5% Damping 
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Fig. 3.66 Comparison of E1astop1astic Yield Spectra for the 
Pacoima Dam Record of Feb. 9, 1971, Component S16E 
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Fig. 3.65 Bilinear Yield Spectra for the Santiago Record of July 8, 1971, 
Component N10W: 5% Strain-Hardening and 5% Damping 
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Fig. 3.68 Comparison of E1astop1astic Yield Spectra for the Melendy 
Ranch Record of Sept. 4, 1972, Component N29W 
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Fig. 3.67 Comparison of Elastoplastic Yield Spectra for the Cholame-Shandon No.2 
Record of June 27, 1966, Component N65E 
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Fig. 3.70 Comparison of E1astop1astic Yield Spectra for the Bonds Corner 
Record of Oct. 15, 1979, Component 230 Deg 
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Fig. 3.69 Comparison of Elastoplastic Yield Spectra for the Gilroy 
Array No.6 Record of Aug. 6, 1979, Component 230 Deg 
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Fig. 3.72 Comparison of Elastoplastic Yield Spectra for the 
Taft Record of July 21, 1952, Component S69E 
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Fig. 3.71 Comparison of E1astoplastic Yield Spectra for the 
El Centro Record of May 18, 1940, Component SOOE 
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Fig. 3.74 Comparison of E1astop1astic Yield Spectra for the 
Kilauea, Hawaii Record of April 26, 1973, 
Component S30W 
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Fig. 3.73 Comparison of Elastoplastic Yield Spectra for the 
Adak, Alaska Record of May 1, 1971, Component West 
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Fig. 3.76 Comparison of E1astop1astic Yield Spectra for the 
Bucarest Record of Mar. 4, 1977, Component S-N 

A --r-A~--' N 
l.U 
l.U 

/"l )j 

50.0 100.0 



,..... 

~ 
~ v 

t 

50.0 

20.0 

10.0 

5.0 

2.0 

1.0 I ...... / I / ...... JAIl" ...... / J --- I / ...... '-'_ flU- ...... / I ...... / I. / ...... I ...... / I ...... /'-,,: .... , / ...... I ...... / B 

K >rJJ. = I />K Y >Kq~ >K >K ,,>K >K >K' >K )f 
0.5 

0.2 

0.1 

0.05 
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 

FREQUENCY (<P8) 

Fig. 3.75 Comparison of E1astop1astic Yield Spectra for the 
Managua Record of Dec. 23, 1972, Component South 
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Comparison of Elastoplastic and Bilinear Yield Spectra 
for the Pacoima Dam Record of Feb. 9, 1971, 
Component S16E: 5% Damping 
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Ftg. 3.77 Comparison of Elastoplastic Yield Spectra for the 
Santiago Record of July 8, 1971, Component NIOW 
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Fig. 3.79 Comparison of Elastoplastic and Bilinear Yield Spectra 
for the Cholame-Shandon No.2 Record of June 27, 1966, 
Component N65E: 5% Damping 
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Fig. 3.80 Comparison of E1astop1astic and Bilinear Yield Spectra 
for the Melendy Ranch Record of Sept. 4, 1972, 
Component N29W: 5% Damping 
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Fig. 3.81 Comparison of E1astop1astic and Bilinear Yield Spectra 
for the Gilroy Array No.6 Record of Aug. 6, 1979, 
Component 230 Deg: 5% Damping 

50.0 100.0 

N 
lJ.) 

00 



100.0 

50.0 

20.0 

10.0 

,-... 5.0 0 w 
(J) 

:z 
~ 

~ 2.0 

1.0 

0.5 

0.2 

0.1 

I A. I A. A A. I F" I A. ':b~~"V_ I A. I A. I A. I ~ ~'.-~l\..Q..~ I A. 

K A'p.,=I~ 'Lv ffik~ '," .• : ':. ':.{ >K ~ /'k >K ~~/'k f\i'y ":':~., )I 

0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 

FREQl..J8'JCY (<PS) 

Fig. 3.82 Comparison of Elastoplastic and Bilinear Yield Spectra 
for the Bonds Corner Record of Oct. 15, 1979, 
Component 230 Deg: 5% Damping 
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Fig. 3.83 Comparison of E1astoplastic and Bilinear Yield Spectra 
for the E1 Centro Record of May 18, 1940, 
Component SOOE: 5% Damping 
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Fig. 3.84 Comparison of Elastoplastic and Bilinear Yield Spectra 
for the Taft Record of July 21, 1952, 
Component S69E: 5% Damping 
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Fig. 3.85 Comparison of E1astop1astic and Bilinear Yield Spectra 
for the Adak, Alaska Record of May 1, 1971, 
Component West: 5% Damping 
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Fig. 3.86 Comparison of E1astop1astic and Bilinear Yield Spectra 
for the Kilauea, Hawaii Record of April 26, 1973, 
Component S30W: 5% Damping 
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Fig. 3.87 Comparison of E1astoplastic and Bilinear Yield Spectra 
for the Managua Record of Dec. 23, 1972, 
Component South: 5% Damping 
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Fig. 3.88 Comparison of E1astop1astic and Bilinear Yield Spectra 
for the Bucarest Record of Mar. 4, 1977, 
Component S-N: 5% Damping 
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Fig. 3.89 Comparison of Elastoplastic and Bilinear Yield Spectra 
for the Santiago Record of July 8, 1971, 
Component N10W: 5% Damping 
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