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ABSTRACT

This thesis presents a new approach to single-image super-resolution (SR), based

on sparse signal recovery. Research on image statistics suggests that image patches

can be well represented as a sparse linear combination of elements from an appro-

priately chosen over-complete dictionary. Inspired by this observation, we seek a

sparse representation for each patch of the low-resolution input, and then use the

coefficients of this representation to generate the high-resolution output. Theo-

retical results from compressed sensing suggest that under mild conditions, the

sparse representation can be correctly recovered from the downsampled signals.

By jointly training two dictionaries for the low- and high-resolution image patches,

we can enforce the similarity of sparse representations between the low- and high-

resolution image patch pairs with respect to their own dictionaries. Therefore,

the sparse representation of a low-resolution image patch can be applied with the

dictionary of high-resolution image patches to generate a high-resolution image

patch. Compared to previous approaches, which simply sample a large amount of

raw image patch pairs, the learned dictionary pair is a more compact representa-

tion of the patch pairs, and, therefore, reduces the computation cost substantially.

The effectiveness of such a sparsity prior is demonstrated on both general image

super-resolution and the special case of face hallucination. In both cases, our

algorithm can generate high-resolution images that are competitive or superior in

quality to images produced by other similar SR methods, but with much faster

processing speed.
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CHAPTER 1

INTRODUCTION

1.1 What Is Super-resolution?

In most digital imaging applications, high-resolution images or videos are usually

desired for image processing and analysis. Image resolution describes the details

contained in an image; the higher the resolution, the more details can be captured.

The image resolution is limited by the imaging system, such as image sensors (e.g.

CCD) and optics. Constructing imaging chips and optical components to capture

very high-resolution images is prohibitively expensive and not practical in most

real applications. On the other hand, it is always desirable to enhance the images

or video captured already as the legacy from the development of digital imaging.

Another way to address the resolution problem is to use signal processing or

machine learning techniques to post-process the captured images. These tech-

niques are specifically referred as super-resolution (SR) reconstruction. Super-

resolution image reconstruction has been an active research area since it was orig-

inally proposed, because it offers the promise of overcoming some of the inherent

resolution limitations of the imaging system and improving the performance of

many image processing applications. It is especially helpful in many practical

applications:

• Medical imaging: several images limited in resolution quality are captured,

and SR techniques can be applied to enhance the resolution.
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• Remote sensing: several images of the same area are provided, and an im-

proved resolution image can be sought.

• Surveillance video: frame freeze and zoom regions of interest in videos for

human perception and machine recognition.

• Video standard conversion: e.g. from NTSC video to HDTV signals.

1.2 Super-resolution Techniques

Conventional approaches to generating a super-resolution (SR) image require mul-

tiple low-resolution images of the same scene, which are aligned with sub-pixel

accuracy. The SR task is cast as the inverse problem of recovering the origi-

nal high-resolution image by fusing the low-resolution images, on the basis of

reasonable assumptions or prior knowledge about the observation or generation

model from the high-resolution image to the low-resolution images. The funda-

mental reconstruction constraint for SR is that applying the image generation

model to the recovered image should produce the same low-resolution images as

observed. However, the SR image reconstruction approach is generally a severely

ill-posed problem because of the insufficient number of low-resolution images,

ill-conditioned registration, and unknown blurring operators, and because the

solution from the reconstruction constraint is not unique. Various regulariza-

tion methods were proposed to further stabilize the inversion of such an ill-posed

problem, such as [1–3]. However, the performance of these reconstruction-based

super-resolution algorithms degrades rapidly when the desired magnification fac-

tor is large or the available input images are limited. In these cases, the results

may be overly smooth, lacking important high-frequency details [4]. Another

class of SR approach is based on interpolation [5–7]. While simple interpolation
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methods such as bilinear or bicubic interpolation tend to generate overly smooth

images with ringing and jagged artifacts, interpolation by exploiting the natural

image priors will generally produce more favorable results. Dai et al. [6] repre-

sented the local image patches using the background/foreground descriptors and

reconstructed the sharp discontinuity between the two. Sun et al. [7] explored the

gradient profile prior for local image structures and applied it to super-resolution.

Such approaches are effective in preserving the edges in the zoomed image. How-

ever, they are limited in modeling the visual complexity of the real images. For

natural images with fine textures or smooth shading, these approaches tend to

produce watercolor-like artifacts.

A third category of SR approach is based on machine learning techniques,

which attempt to capture the co-occurrence prior between low-resolution and

high-resolution image patches. Freeman et al. [8] proposed an example-based

learning strategy that applies to generic images where the low-resolution to high-

resolution prediction is learned via a Markov random field (MRF) solved by belief

propagation. Sun et al. [9] extends this approach by using the primal sketch

priors to enhance blurred edges, ridges, and corners. Nevertheless, the above

methods typically require enormous databases of millions of high-resolution and

low-resolution patch pairs to make the databases expressive enough, and are,

therefore, computationally intensive. Chang et al. [10] adopt the philosophy of

LLE [11] from manifold learning, assuming similarity between the two manifolds in

the high-resolution patch space and the low-resolution patch space. The algorithm

in [10] maps the local geometry of the low-resolution patch space to the high-

resolution patch space, generating high-resolution patch as a linear combination

of neighbors. Using this strategy, more patch patterns can be represented using

a smaller training database. However, using a fixed number of K neighbors for

reconstruction often results in blurring effects, due to over- or under-fitting.
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While the approaches mentioned above were proposed for generic image super-

resolution, specific image priors can be incorporated when tailed to SR applica-

tions for specific domains such as human faces. Baker and Kanade [12] started

the pioneering work on face hallucination. However, the gradient pyramid-based

prediction does not model the face prior, and the pixels are predicted individu-

ally, causing discontinuity and artifacts. C. Liu et al. [13] proposed a two-step

statistical approach integrating the global PCA model and a local patch model.

Although the algorithm yields good results, it uses the holistic PCA model, which

tends to render results similar to the mean face, and the probabilistic local patch

model is also complicated and computationally demanding. W. Liu et al. [14] pro-

posed a new approach based on tensor patch and residue compensation. While

this algorithm adds more details to the face, it also introduces more artifacts.

1.3 Signal Recovery Based on Sparse Representation

This thesis focuses on the problem of recovering the super-resolution version of a

given low-resolution image. Similarly to the aforementioned learning-based meth-

ods, we will rely on patches from the input image. However, instead of work-

ing directly with the image patch pairs sampled from high- and low-resolution

images [15], we learn a compact representation of these patch pairs to capture

the co-occurrence prior, significantly improving the speed of the algorithm. Our

approach is motivated by recent results in sparse signal representation, which

suggest that the linear relationships among high-resolution signals can be ac-

curately recovered from their low-dimensional projections [16, 17]. Although the

super-resolution problem is very ill-posed, making precise recovery impossible, the

image patch sparse representation demonstrates both effectiveness and robustness

in regularizing the inverse problem.
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To be more precise, let D ∈ Rn×K be an over-complete dictionary of K bases,

and suppose a signal x ∈ Rn can be represented as a sparse linear combination

with respect to D. That is, the signal x can be written as x = Dα0 where

α0 ∈ RK is a vector with very few (¿ K) nonzero entries. In practice, we might

only observe a small set of measurements y of x:

y
.
= Lx = LDα0, (1.1)

where L ∈ Rk×n with k < n is a projection matrix. In our super-resolution con-

text, x is a high-resolution image (patch), while y is its low-resolution counter

part (or features extracted from it). If the dictionary D is overcomplete, the equa-

tion x = Dα is underdetermined for the unknown coefficients α. The equation

y = LDα is even more dramatically underdetermined. Nevertheless, under mild

conditions, the sparsest solution α0 to this equation will be unique. Furthermore,

if D satisfies an appropriate near-isometry condition, then for a wide variety

of matrices L, any sufficiently sparse linear representation of a high-resolution

image patch x in terms of the D can be recovered (almost) perfectly from the

low-resolution image patch [17, 18]. Figure 1.1 shows an example that demon-

strates the capabilities of our method derived from this principle. The image of

the feline face is blurred and downsampled to half of the original size. And then

we zoom the image to the original size using our method. Even for such a compli-

cated texture, sparse representation recovers a visually appealing reconstruction

of the original signal.

Recently, sparse representation has been successfully applied to many other

related inverse problems in image processing, such as denoising [19] and restora-

tion [20], often improving on the state-of-the-art. For example, in [19], the authors

use the K-SVD algorithm [21] to learn an overcomplete dictionary from natural
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Figure 1.1: Reconstruction of a feline face with magnification factor 2. Left: result
by our method. Right: the original image. There is little noticeable difference.

image patches and successfully apply it to the image denoising problem. In our set-

ting, we do not directly compute the sparse representation of the high-resolution

patch. Instead, we will work with two coupled dictionaries, D~ for high-resolution

patches, and D` for low-resolution patches. The sparse representation of a low-

resolution patch in terms of D` will be directly used to recover the corresponding

high-resolution patch from D~. We obtain a locally consistent solution by al-

lowing patches to overlap and demanding that the reconstructed high-resolution

patches agree on the overlapped areas. Unlike the K-SVD algorithm, we try to

learn the two overcomplete dictionaries in a probabilistic model similar to [22].

To enforce that the image patch pairs have the same sparse representations with

respect to D~ and D`, we learn the two dictionaries simultaneously by concate-

nating them with normalization. The learned compact dictionaries will be applied

to both generic image super-resolution and face hallucination to demonstrate its

effectiveness.

Compared to the aforementioned patch-based methods, our algorithm requires

only two compact learned dictionaries, instead of a large training patch database.

The computation, mainly based on linear programming or convex optimization, is

much more efficient and scalable, compared with [8–10]. The online recovery of the
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sparse representation uses the low-resolution dictionary, and the high-resolution

dictionary is used only to calculate the final high-resolution image. The com-

puted sparse representation adaptively selects the most relevant patch bases in

the dictionary to best represent each patch of the given low-resolution image. This

leads to superior performance, both qualitatively and quantitatively, and gener-

ates sharper edges and clearer textures, compared to methods [10] that use a fixed

number of nearest neighbors. In addition, the sparse representation is robust to

noise as suggested in [19]; and, thus, our algorithm is more robust to noise in the

test image, while other methods cannot perform denoising and super-resolution

simultaneously.

1.4 Organization of This Thesis

The remainder of this thesis is organized as follows. Chapter 2 details our for-

mulation and solution to the image super-resolution problem based on sparse

representation. Specifically, we study how to apply sparse representation for both

generic image super-resolution and face hallucination. In Chapter 3, we discuss

how to learn the two dictionaries for the high-resolution and low-resolution image

patches. Various experimental results in Chapter 4 demonstrate the efficacy of

sparsity as a prior for regularizing image super-resolution.

1.5 Notations

Specifically, X and Y denote the high- and low-resolution image, respectively,

and x and y denote the high- and low-resolution image patch, respectively. We

use bold uppercase D to denote the dictionary for sparse coding; especially, we

use D~ and D` to denote the dictionaries for high- and low-resolution image

7



patches, respectively. Bold lowercase letters denote vectors. Unbold uppercase

letters denote regular matrices; i.e., D is used as a downsampling operation in

matrix form. Unbold lowercase letters are used as scalars.
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CHAPTER 2

SUPER-RESOLUTION VIA SPARSE
REPRESENTATION

2.1 Super-resolution Constraints

The single-image super-resolution problem asks: Given a low-resolution image

Y , recover a higher-resolution image X of the same scene. Two constraints are

modeled in this work to solve this ill-posed problem: 1) reconstruction constraint,

which requires that the recovered X should be consistent with the input Y with

respect to the image observation model; and 2) sparsity prior, which assumes that

the high-resolution patches can be sparsely represented in an appropriately chosen

overcomplete dictionary, and that their sparse representations can be recovered

from the low-resolution observation.

2.1.1 Reconstruction constraint

The observed low-resolution image Y is a blurred and downsampled version of

the high-resolution image X:

Y = SHX. (2.1)

Here, H represents a blurring filter, and S represents the downsampling operator.

Super-resolution remains extremely ill-posed, since for a given low-resolution

input Y , infinitely many high-resolution images X satisfy the above reconstruc-

tion constraint. We further regularize the problem via the following prior on small

patches x of X.
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2.1.2 Sparsity prior

The patches x of the high-resolution image X can be represented as a sparse linear

combination in a dictionary Dh trained from high-resolution patches sampled from

training images1:

x ≈ Dhα for some α ∈ RK with ‖α‖0 ¿ K. (2.2)

The sparse representation α will be recovered by representing patches y of the

input image Y , with respect to a low-resolution dictionary Dl co-trained with

Dh. The dictionary training process will be discussed in Chapter 3.

We apply our approach to both generic images and face images. For generic

image super-resolution, we divide the problem into two steps. First, as suggested

by the sparsity prior Eq. (2.2), we find the sparse representation for each local

patch, respecting spatial compatibility between neighbors. Next, using the result

from this local sparse representation, we further regularize and refine the entire

image using the reconstruction constraint Eq. (2.1). In this strategy, a local model

from the sparsity prior is used to recover lost high-frequency for local details. The

global model from the reconstruction constraint is then applied to remove possible

artifacts from the first step and make the image more consistent and natural.

The face images differ from the generic images in that the face images have more

regular structure and thus reconstruction constraints in the face subspace can be

more effective. For face image super-resolution, we reverse the above two steps

to make better use of the global face structure as a regularizer. We first find a

suitable subspace for human faces, and apply the reconstruction constraints to

recover a medium-resolution image. We then recover the local details using the

sparsity prior for image patches.

1Similar mechanisms – sparse coding with an overcomplete dictionary – are also believed to
be employed by the human visual system [23].
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The remainder of this section is organized as follows: in Section 2.2, we discuss

super-resolution for generic images. We will introduce the local model based

on sparse representation and global model based on reconstruction constraints.

In Section 2.3 we discuss how to introduce the global face structure into this

framework to achieve more accurate and visually appealing super-resolution for

face images.

2.2 Generic Image Super-resolution from Sparsity

2.2.1 Local model from sparse representation

Similarly to the patch-based methods mentioned previously, our algorithm tries

to infer the high-resolution image patch for each low-resolution image patch from

the input. For this local model, we have two dictionaries Dh and Dl, which are

trained to have the same sparse representations for each high-resolution and low-

resolution image patch pair. We subtract the mean pixel value for each patch, so

that the dictionary represents image textures rather than absolute intensities. In

the recovery process, the mean value for each high-resolution image patch is then

predicted by its low-resolution version.

For each input low-resolution patch y, we find a sparse representation with

respect to Dl. The corresponding high-resolution patch bases Dh will be combined

according to these coefficients to generate the output high-resolution patch x. The

problem of finding the sparsest representation of y can be formulated as

min ‖α‖0 s.t. ‖FDlα− Fy‖2
2 ≤ ε, (2.3)

where F is a (linear) feature extraction operator. The main role of F in Eq. (2.3)
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is to provide a perceptually meaningful constraint2 on how closely the coefficients

α must approximate y. We will discuss the choice of F in Section 3.3.

Although the optimization problem Eq. (2.3) is NP-hard in general, recent

results [24, 25] suggest that as long as the desired coefficients α are sufficiently

sparse, they can be efficiently recovered by instead minimizing the `1-norm,3 as

follows:

min ‖α‖1 s.t. ‖FDlα− Fy‖2
2 ≤ ε. (2.4)

Lagrange multipliers offer an equivalent formulation,

min
α

‖FDlα− Fy‖2
2 + λ‖α‖1, (2.5)

where the parameter λ balances sparsity of the solution and fidelity of the ap-

proximation to y. Notice that this is essentially a linear regression regularized

with `1-norm on the coefficients, known in statistical literature as the Lasso [28].

Solving Eq. (2.5) individually for each local patch does not guarantee the

compatibility between adjacent patches. We enforce compatibility between ad-

jacent patches using a one-pass algorithm similar to that of [29].4 The patches

are processed in raster-scan order in the image, from left to right and top to

bottom. We modify Eq. (2.4) so that the super-resolution reconstruction Dhα

of patch y is constrained to closely agree with the previously computed adjacent

2Traditionally, one would seek the sparsest α s.t. ‖Dlα−y‖2 ≤ ε. For super-resolution, it is
more appropriate to replace this 2-norm with a quadratic norm ‖ · ‖F T F that penalizes visually
salient high-frequency errors.

3There are also some recent works showing certain non-convex optimization problems can
produce superior sparse solutions to the `1 convex problem, e.g., [26] and [27].

4There are different ways to enforce compatibility. In [10], the values in the overlapped regions
are simply averaged, which will result in blurring effects. The greedy one-pass algorithm [29] is
shown to work almost as well as the use of a full MRF model [8]. Our algorithm, not based on the
MRF model, is essentially the same by trusting partially the previously recovered high-resolution
image patches in the overlapped regions.
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high-resolution patches. The resulting optimization problem is

min ‖α‖1 s.t. ‖FDlα− Fy‖2
2 ≤ ε1,

‖PDhα−w‖2
2 ≤ ε2,

(2.6)

where the matrix P extracts the region of overlap between the current target

patch and previously reconstructed high-resolution image, and w contains the

values of the previously reconstructed high-resolution image on the overlap. The

constrained optimization Eq. (2.6) can be similarly reformulated as

min
α

‖D̃α− ỹ‖2
2 + λ‖α‖1, (2.7)

where D̃ =




FDl

βPDh


 and ỹ =




Fy

βw


. The parameter β controls the trade-off

between matching the low-resolution input and finding a high-resolution patch

that is compatible with its neighbors. In all our experiments, we simply set

β = 1. Given the optimal solution α∗ to Eq. (2.7), the high-resolution patch can

be reconstructed as x = Dhα
∗.

2.2.2 Enforcing global reconstruction constraint

Notice that Eq. (2.4) and Eq. (2.6) do not demand exact equality between the

low-resolution patch y and its reconstruction Dlα. Because of this, and also

because of noise, the high-resolution image X0 produced by the sparse repre-

sentation approach of the previous section may not satisfy the reconstruction

constraint Eq. (2.1) exactly. We eliminate this discrepancy by projecting X0 onto

the solution space of SHX = Y , computing

X∗ = arg min
X
‖SHX − Y ‖2

2 + c‖X −X0‖2
2. (2.8)
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Algorithm 1 (Super-Resolution via Sparse Representation).

1: Input: training dictionaries Dh and Dl, a low-resolution image Y .
2: For each 3× 3 patch y of Y , taken starting from the upper-left corner with

1 pixel overlap in each direction,

• Compute the mean pixel value m of patch y.

• Solve the optimization problem with D̃ and ỹ defined in Eq. (2.7):
minα ‖D̃α− ỹ‖2

2 + λ‖α‖1.

• Generate the high-resolution patch x = Dhα
∗. Put the patch x + m

into a high-resolution image X0.

3: End
4: Using gradient descent, find the closest image to X0 which satisfies the recon-

struction constraint:

X∗ = arg min
X
‖SHX − Y ‖2

2 + c‖X −X0‖2
2.

5: Output: super-resolution image X∗.

The solution to this optimization problem can be efficiently computed using gra-

dient descent. The update equation for this iterative method is

Xt+1 = Xt + ν[HT ST (Y − SHXt) + c(X −X0)], (2.9)

where Xt is the estimate of the high-resolution image after the t-th iteration, and

ν is the step size of the gradient descent.

We take result X∗ from the above optimization as our final estimate of the

high-resolution image. This image is as close as possible to the initial super-

resolution X0 given by sparsity, while respecting the reconstruction constraint.

The entire super-resolution process is summarized as Algorithm 1.
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2.2.3 Global optimization interpretation

The simple SR algorithm outlined in the previous two subsections can be viewed

as a special case of a more general sparse representation framework for inverse

problems in image processing. Related ideas have been profitably applied in image

compression, denoising [19], and restoration [20]. In addition to placing our work

in a larger context, these connections suggest means of further improving the

performance, at the cost of increased computational complexity.

Given sufficient computational resources, one could in principle solve for the

coefficients associated with all patches simultaneously. Moreover, the entire high-

resolution image X itself can be treated as a variable. Rather than demanding

that X be perfectly reproduced by the sparse coefficients α, we can penalize the

difference between X and the high-resolution image given by these coefficients,

allowing solutions that are not perfectly sparse but that better satisfy the recon-

struction constraints. This leads to a large optimization problem:

X∗ = arg min
X,{αij}

{
‖SHX − Y ‖2

2 + λ
∑
i,j

‖αij‖0

+ γ
∑
i,j

‖Dhαij − PijX‖2
2 + τρ(X)

}
.

(2.10)

Here, αij denotes the representation coefficients for the (i, j)th patch of X, and Pij

is a projection matrix that selects the (i, j)th patch from X. A penalty function

ρ(X) encodes additional prior knowledge about the high-resolution image. This

function may depend on the image category or may take the form of a generic

regularization term (e.g., Huber MRF, total variation, bilateral total variation).

Algorithm 1 can be interpreted as a computationally efficient approximation

to Eq. (2.10). The sparse representation step recovers the coefficients α by ap-

proximately minimizing the sum of the second and third terms of Eq. (2.10). The
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sparsity term ‖αij‖0 is relaxed to ‖αij‖1, while the high-resolution fidelity term

‖Dhαij−PijX‖2 is approximated by its low-resolution version ‖FDlαij−Fyij‖2.

Notice, that if the sparse coefficients α are fixed, the third term of Eq. (2.10)

essentially penalizes the difference between the super-resolution image X and

the reconstruction given by the coefficients:
∑

i,j ‖Dhαij − PijX‖2
2 ≈ ‖X0 −

X‖2
2. Hence, for small γ, the back-projection step of Algorithm 1 approximately

minimizes the sum of the first and third terms of Eq. (2.10).

Algorithm 1 does not, however, incorporate any prior besides sparsity of the

representation coefficients, i.e., the term ρ(X) is absent in our approximation. In

Chapter 4 we will see that sparsity in a relevant dictionary is a strong enough

prior that we can already achieve good super-resolution performance. Never-

theless, in settings where further assumptions on the high-resolution signal are

available, these priors can be incorperated into the global reconstruction step of

our algorithm.

2.3 Face Super-resolution from Sparsity

Face image resolution enhancement is usually desirable in many surveillance sce-

narios, where there is always a large distance between the camera and the objects

(people) of interest. Unlike the generic image super-resolution discussed earlier,

face images are more regular in structure and thus should be easier to handle.

Indeed, for face super-resolution, we can deal with even lower-resolution input

images. The basic idea is first to use the face prior to zoom the input to a rea-

sonable medium-resolution, and then to employ the local sparsity prior model to

recover details. To be precise, the solution is also approached in two steps: 1)

global model: use reconstruction constraint to recover a medium high-resolution

face image, but the solution is searched only in the face subspace; and 2) local
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model: use the local sparse model to recover the image details.

2.3.1 Nonnegative matrix factorization modeling

In face super-resolution, the most frequently used subspace method for modeling

the human face is principal component analysis (PCA), which chooses a low-

dimensional subspace that captures as much of the variance as possible. However,

the PCA bases are holistic, and tend to generate smooth faces similar to the

mean. Moreover, because principal component representations allow negative

coefficients, the PCA reconstruction is often hard to interpret.

Even though faces are objects with lots of variance, they are made up of several

relatively independent parts, such as eyes, eyebrows, noses, mouths, checks, and

chins. Nonnegative matrix factorization (NMF) [30] seeks a representation of

the given signals as an additive combination of local features. To find such a

part-based subspace, NMF is formulated as the following optimization problem:

arg min
U,V

‖X − UV ‖2
2

s.t. U ≥ 0, V ≥ 0,

(2.11)

where X ∈ Rn×m is the data matrix, U ∈ Rn×r is the basis matrix, and V ∈ Rr×m

is the coefficient matrix. In our context here, X simply consists of a set of pre-

aligned high-resolution training face images as its column vectors. The number of

the bases r can be chosen as n ∗m/(n + m), which is smaller than n and m, and

means a more compact representation. It can be shown that a locally minimum

of Eq. (2.11) can be obtained via the following update rules:

Vij ←− Vij
(UT X)ij

(UT UV )ij

Uki ←− Uki
(XV T )ki

(UV V T )ki

,

(2.12)
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where 1 ≤ i ≤ r, 1 ≤ j ≤ m and 1 ≤ k ≤ n. The obtained basis matrix U is often

sparse and localized.

2.3.2 Two step face super-resolution

Let X and Y denote the high- and low-resolution faces respectively. We obtain

Y from X by smoothing and downsampling as in Eq. (2.1). We want to recover

X from the observation Y . In this context, we assume Y has been pre-aligned to

the training database by either manually labeling the feature points or with some

automatic face alignment algorithm such as the method used in [13]. We can

achieve the optimal solution for X based on the maximum a posteriori (MAP)

criteria:

X∗ = arg max
X

p(Y |X)p(X). (2.13)

Here, p(Y |X) models the image observation process, usually with Gaussian noise

assumption on the observation Y , p(Y |X) = 1/Z exp(−‖SHUc− Y ‖2
2/(2 ∗ σ2))

with Z being a normalization factor, and p(X) is a prior on the underlying high-

resolution image X, typically in the exponential form p(X) = exp(−cρ(X)).

Using the rules in Eq. (2.12), we can obtain the basis matrix U , which is composed

of sparse bases. Let Ω denote the face subspace spanned by U . Then in the

subspace Ω, the super-resolution problem in Eq. (2.13) can be formulated using

the reconstruction constraints as

c∗ = arg min
c
‖SHUc− Y ‖2

2 + ηρ(Uc) s.t. c ≥ 0, (2.14)

where ρ(Uc) is a prior term regularizing the high-resolution solution, c ∈ Rr×1 is

the coefficient vector in the subspace Ω for estimated the high-resolution face, and

η is a parameter used to balance the reconstruction fidelity and the penalty of the
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Algorithm 2 (Face Hallucination via Sparse Representation).

1: Input: sparse basis matrix U , training dictionaries Dh and Dl, a low-
resolution aligned face image Y .

2: Find a smooth high-resolution face X̂ from the subspace spanned by U
through:

• Solve the optimization problem in Eq. (2.15):
arg minc ‖SHUc− Y ‖2

2 + η‖ΓUc‖2 s.t. c ≥ 0.

• X̂ = Uc∗.

3: For each patch y of X̂, taken starting from the upper-left corner with 1 pixel
overlap in each direction,

• Compute and record the mean pixel value of y as m.

• Solve the optimization problem with D̃ and ỹ defined in Eq. (2.7):
minα ‖D̃α− ỹ‖2

2 + λ‖α‖1.

• Generate the high-resolution patch x = Dhα
∗ + m. Put the patch x

into a high-resolution image X∗.

4: Output: super-resolution face X∗.

prior term. In this thesis, we simply use a generic image prior requiring that the

solution be smooth. Let Γ denote a matrix performing high-pass filtering. The

final formulation for Eq. (2.14) is

c∗ = arg min
c
‖SHUc− Y ‖2

2 + η‖ΓUc‖2 s.t. c ≥ 0. (2.15)

The medium high-resolution image X̂ is approximated by Uc∗. The prior term in

Eq. (2.15) suppresses the high-frequency components, resulting in over-smoothness

in the solution image. We rectify this using the local patch model based on sparse

representation mentioned earlier in Section 2.2.1. The complete framework of our

algorithm is summarized as Algorithm 2.
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CHAPTER 3

LEARNING THE DICTIONARY PAIR

In the previous chapter, we discussed regularizing the super-resolution problem

using the sparse prior that each pair of high- and low-resolution image patches has

the same sparse representations with respect to the two dictionaries Dh and Dl. A

straightforward way to obtain two such dictionaries is to sample image patch pairs

directly, which preserves the correspondence between the high- and low-resolution

patch items [15]. However, such a strategy will result in large dictionaries and,

hence, expensive computation. This chapter will focus on learning a more compact

dictionary pair for speeding up the computation.

3.1 Single Dictionary Training

Sparse coding is the problem of finding sparse representations of the signals with

respect to an over-complete dictionary D. The dictionary is usually learned from

a set of training examples X = {x1, x2, ..., xt}. Generally, it is hard to learn a

compact dictionary that guarantees that sparse representation of Eq. (2.3) can

be recovered from `1 minimization in Eq. (2.4). Fortunately, many sparse coding

algorithms proposed previously suffice for practical applications. In this thesis,

we focus on the following formulation:

D = arg min
D,Z

‖X −DZ‖2
2 + λ‖Z‖1

s.t.‖Di‖2
2 ≤ 1, i = 1, 2, ..., K,

(3.1)
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where the `1 norm ‖Z‖1 is to enforce sparsity, and the `2 norm constraints on

the columns of D remove the scaling ambiguity.1 This particular formulation has

been studied extensively [22,23,31]. Equation (3.1) is not convex in both D and

Z, but is convex in one of them with the other fixed. The optimization performs

in an alternative manner over Z and D:

1. Initialize D with a Gaussian random matrix, with each column unit nor-

malized.

2. Fix D, update Z by

Z = arg min
Z
‖X −DZ‖2

2 + λ‖Z‖1, (3.2)

which can be solved efficiently through linear programming.

3. Fix Z, update D by

D = arg min
D
‖X −DZ‖2

2

s.t.‖Di‖2
2 ≤ 1, i = 1, 2, ..., K,

(3.3)

which is a quadratically constrained quadratic programming that is ready

to be solved in many optimization packages.

4. Iterate between 2) and 3) until they converge. In our implementation, we

used a Matlab package developed in [22].

1Note that without the norm constraints, the cost can always be reduced by dividing Z by
c > 1 and multiplying D by c > 1.
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3.2 Joint Dictionary Training

Given the sampled training image patch pairs P = {Xh, Y l}, where Xh =

{x1, x2, ..., xn} are the set of sampled high-resolution image patches and Y l =

{y1, y2, ..., yn} are the corresponding low-resolution image patches (or features),

our goal is to learn dictionaries for high- and low-resolution image patches, so that

the sparse representation of the high-resolution patch is the same as the sparse

representation of the corresponding low-resolution patch. This is a difficult prob-

lem, due to the ill-posed nature of super-resolution. The individual sparse coding

problems in the high-resolution and low-resolution patch spaces are

Dh = arg min
{Dh,Z}

‖Xh −DhZ‖2
2 + λ‖Z‖1 (3.4)

and

Dl = arg min
{Dl,Z}

‖Y l −DlZ‖2
2 + λ‖Z‖1 (3.5)

respectively. We combine these objectives, forcing the high-resolution and low-

resolution representations to share the same codes, instead writing

min
{Dh,Dl,Z}

1

N
‖Xh −DhZ‖2

2 +
1

M
‖Y l −DlZ‖2

2

+ λ(
1

N
+

1

M
)‖Z‖1,

(3.6)

where N and M are the dimensions of the high- and low-resolution image patches

in vector form. Here, 1/N and 1/M balance the two cost terms of Eq. (3.4) and

Eq. (3.5). Equation (3.6) can be rewritten as

min
{Dh,Dl,Z}

‖Xc −DcZ‖2
2 + λ(

1

N
+

1

M
)‖Z‖1, (3.7)
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or equivalently

min
{Dh,Dl,Z}

‖Xc −DcZ‖2
2 + λ̂‖Z‖1, (3.8)

where

Xc =




1√
N

Xh

1√
M

Y l


 , Dc =




1√
N

Dh

1√
M

Dl


 . (3.9)

Thus, we can use the same learning strategy in the single dictionary case for

training the two dictionaries for our super-resolution purpose. Note that since

we are using features from the low-resolution image patches, Dh and Dl are

not simply connected by a linear transform; otherwise, the training process of

Eq. (3.8) will depend on the high-resolution image patches only (for details, refer

to Section 3.3). Figure 3.1 shows the dictionary learned by Eq. (3.8) for generic

images.2 The learned dictionary demonstrates basic patterns of the image patches,

such as orientated edges, instead of raw patch prototypes, due to its compactness.

3.3 Feature Representation for Low-resolution Image

Patches

In Eq. (2.3), we use a feature transformation F to ensure that the computed co-

efficients fit the most relevant part of the low-resolution signal and, hence, have

a more accurate prediction for the high-resolution image patch reconstruction.

Typically, F is chosen as some kind of high-pass filter. This is reasonable from a

perceptual viewpoint, since people are more sensitive to the high-frequency con-

tent of the image. The high-frequency components of the low-resolution image are

also arguably the most important for predicting the lost high-frequency content

2We omit the dictionary for the low-resolution image patches because we are training on
features instead the patches themselves.
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Figure 3.1: The high-resolution image patch dictionary trained by Eq. (3.8) using
100,000 high- and low-resolution image patch pairs sampled from the generic
training images. A total of 512 dictionary atoms are learned with each atom of
size 9× 9.

in the target high-resolution image.

In the literature, researchers have suggested extracting different features for

the low-resolution image patch in order to boost the prediction accuracy. Freeman

et al. [8] used a high-pass filter to extract the edge information from the low-

resolution input patches as the feature. Sun et al. [9] used a set of Gaussian

derivative filters to extract the contours in the low-resolution patches. Chang et al.

[10] used the first- and second-order gradients of the patches as the representation.

Here, we also use the first- and second-order derivatives as the feature for the low-

resolution patch due to their simplicity and effectiveness. The four 1-D filters

used to extract the derivatives are

f1 = [−1, 0, 1], f2 = fT
1 ,

f3 = [1, 0,−2, 0, 1], f4 = fT
3 ,

(3.10)

where the superscript T means transpose. Applying these four filters yields four
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feature vectors for each patch, which are concatenated into one vector as the final

representation of the low-resolution patch. In our implementation, the four filters

are not applied directly to the sampled low-resolution image patches; instead, we

apply the four filters to the training images. Thus, for each low-resolution training

image, we get four gradient maps; and we extract fours patches from these gra-

dient maps at each location and concatenate them to become the feature vector.

Therefore, the feature representation for each low-resolution image patch also en-

codes its neighboring information, which is beneficial for promoting compatibility

among adjacent patches in the final super-resolution image.

In practice, we find that it works better to extract the features from the

upsampled version of the low-resolution image instead of the original one. That

is, we first upsample the low-resolution image by a factor of two3 using bicubic

interpolation, and then extract gradient features from it. Since we know all the

zoom ratios, it is easy to track the correspondence between high-resolution image

patches and the upsampled low-resolution image patches both for training and

testing. Because of the way of extracting features from the low-resolution image

patches, the two dictionaries Dh and Dl are not simply linearly connected, making

the joint learning process in Eq. (3.8) more reasonable.

3We choose two mainly for dimension considerations. For example, if we work on 3 × 3
patches in the low-resolution image, by upsampling the image by ratio of two, the final feature
for the nine-dimensional low-resolution patch will be 6× 6× 4 = 144.
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CHAPTER 4

EXPERIMENT EVALUATION AND
ANALYSIS

In this chapter, we first demonstrate the super-resolution results obtained by

applying the above methods on both generic and face images. We then move

on to discuss various influential factors for the proposed algorithm, including

dictionary size, noise with inputs, and the global reconstruction constraints.

In our experiments, we magnify the input low-resolution image by a factor of

three for generic images and four for face images, which is commonplace in the

literature of single frame super-resolution. In generic image super-resolution, for

the low-resolution images, we always use 3× 3 low-resolution patches (upsampled

to 6×6), with overlap of 1 pixel between adjacent patches, corresponding to 9×9

patches with overlap of 3 pixels for the high-resolution patches. In face super-

resolution, we choose the patch size as 5×5 pixels for both low- and high-resolution

face images. For color images, we apply our algorithm to the illuminance channel

only, since humans are more sensitive to illuminance changes. We therefore in-

terpolate the color layers (Cb, Cr) using plain bicubic interpolation. We evaluate

the results of various methods both visually and qualitatively in root mean square

error (RMSE). Even though RMSE is a common criterion in image processing for

recovery, it is not quite reliable for rating visual image quality [32], as we will

see in the following sections. Note that since we only work on the illuminance

channel, the RMSE reported is carried out only on the illuminance channel.
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4.1 Single Image Super-resolution

4.1.1 Generic image super-resolution

We apply our methods to generic images such as flowers, human faces, and build-

ings. The two dictionaries for high- and low-resolution image patches are trained

from 100,000 patch pairs sampled from natural images collected from the Inter-

net. We fix the dictionary size as 1024 in all our experiments, which is a balance

between computation and image quality. In Section 4.2 we will examine the ef-

fects of different dictionary sizes. In the super-resolution algorithm Eq. (2.7), the

choice of λ depends on the level of noise in the input image, which we will discuss

further in Section 4.3. For generic low-noise images, we always set λ = 0.01 in all

our experiments, which generally yields satisfactory results.

Figure 4.1 compares the outputs of our method with those of the neighbor-

hood embedding method [10]. The neighborhood embedding method is similar to

ours in the sense that both methods use the linear combination weights derived

from the low-resolution image patch to generate the underlying high-resolution

image patch. Unlike our method, the neighborhood embedding method uses fixed

k nearest neighbors to find the reconstruction supports and does not include a

dictionary training phase. To make fair comparison, we use the 100,000 patch

pairs for the neighborhood embedding and try different k’s to get the most vi-

sually appealing results. Using a compact dictionary pair, our method is much

faster and yet can generate sharper results. As the reconstructed images show in

Figure 4.1, there are noticeable differences in the texture of the leaves, the fuzz

on the leafstalk, and also the freckles on the face of the girl by comparing the two

methods.

In Figure 4.2, we compare our method with several more state-of-the-art meth-

ods on an image of the Parthenon used in [6], including back projection [33],
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Figure 4.1: The flower and girl image magnified by a factor of three. Left to right:
input, bicubic interpolation, neighbor embedding, our method, and the original.

Figure 4.2: Results on an image of the Parthenon with magnification factor three.
Top row: low-resolution input, bicubic interpolation, back projection. Bottom
row: neighbor embedding, soft edge prior, and our method.

neighbor embedding [10], and the recently proposed method based on a learned

soft edge prior [6]. The result from back projection has many jagged effects along

the edges. Neighbor embedding generates sharp edges in places, but blurs the

texture on the temple’s facade. The soft edge prior method gives a decent recon-

struction, but introduces undesired smoothing that is not present in our result.
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4.1.2 Face super-resolution

In this part, we evaluate our proposed super-resolution algorithm on frontal view

human faces. The experiments are conducted on the face database FRGC Ver

1.0 [34]. All these face images were aligned by an automatic alignment algorithm

using the eye positions, and then cropped to the size of 100 × 100 pixels. To

obtain the face subspace Ω spanned by W , we select 540 face images as training,

including both genders, different races, various ages, and different facial expres-

sions (Figure 4.3). To prepare the coupled dictionaries needed for our sparse

representation algorithm, we also sample 100,000 patch pairs from the training

images and train the dictionary pair of size 1024. Thirty new face images (from

people not in the training set) are chosen as our testing cases, which are blurred

and downsampled to the size of 25× 25 pixels.

Figure 4.3: Example training faces for the face super-resolution algorithm. The
training images include faces of both genders, different ages, different races, and
various facial expressions.

As earlier mentioned, face image super-resolution can handle more challeng-

ing tasks than generic image super-resolution due to the regular face structure.

Indeed, it is not an easy job to zoom the 25 × 25 low-resolution face image by 4

times using the method for generic image super-resolution. First, the downsam-

pling process loses so much information that it is difficult to predict well a 12×12

high-resolution patch given only a 3 × 3 image patch. Second, the resolution of

the face image is so low that the structures of the face that are useful for super-

resolution inference (such as corners and edges) collapses into only several pixels.

The two-step approach for face super-resolution, on the other hand, can compen-
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Figure 4.4: The comparison between the two-step face hallucination algorithm
with the generic image super-resolution algorithm applied to low-resolution face
images. From left to right: input image, super-resolution result using the two-step
approach, and super-resolution result using the generic approach.

sate for the lost information in the first step using the redundancy of the face

structure by searching the solution in the face subspace regarding the reconstruc-

tion constraints. The local model from sparse representation then can be further

employed to enhance the edges and textures to achieve sharper results. We also

apply the method for generic image directly to the face images, and compare the

results with the proposed two-step approach, as shown in Figure 4.4. Since the

resolution of the input face image is so low, directly applying the generic approach

does not seem to generate a satisfying image.

In our experiments with face images, we also set λ = 0.01 for sparsity reg-

ularization. We compare our algorithm with bicubic interpolation [5] and back-

projection [33]. The results are shown in Figure 4.5, which indicate that our

method can generate much higher resolution faces. From columns four and five,

we can also see that the local patch method based on sparse representation further

enhances the edges and textures.
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Figure 4.5: Results of our algorithm compared to other methods. From left
to right columns: (a) low-resolution input; (b) bicubic interpolation; (c) back-
projection; (c) global model via NMF followed by bilateral filtering; (d) global
model combined with local model via sparse representation; (f) original.

4.2 Effects of Dictionary Size

The above experimental results show that the sparsity prior for image patches is

very effective in regularizing the otherwise ill-posed super-resolution problem. In

those results, we fix the dictionary size to be 1024. Intuitively, larger dictionaries

should possess more representation power (in the extreme, we can use the sampled

patches as the dictionary directly, as in [15]), and thus may yield more accurate

approximation, while increasing the computation cost. In this section, we evaluate

the effect of dictionary size on generic image super-resolution. From the sampled

100,000 image patch pairs, we train four dictionaries of size 256, 512, 1024, and

2048, and apply them to the same input image. We also use the 100,000 image

patches directly as the dictionary for comparison. The results are evaluated both

visually and quantitatively in RMSE.
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Table 4.1: The RMSEs of the reconstructed images using dictionaries of different
sizes, and using the raw image patches directly from which the dictionaries are
trained.

Images bicubic D256 D512 D1024 D2048 Raw Patches

Girl 5.912 5.606 5.603 5.491 5.473 5.483
Flower 3.530 3.266 3.271 3.212 3.164 3.139
Lena 7.360 6.587 6.572 6.359 6.232 6.029

Statue 9.873 8.826 8.777 8.342 8.237 8.255

Figure 4.6: The effects of dictionary size on the super-resolution reconstruction of
Lena. From left to right: dictionary size 256, 512, 1024, and 2048 and the whole
sampled patch set.

Figure 4.6 shows the reconstructed results for the Lena image using dictionaries

of different sizes. While there are not many visual differences between the results

using different dictionary sizes from 256 to 2048 and the whole sampled patch

set, we indeed observe the reconstruction artifacts will gradually diminish with

larger dictionaries. The visual observation is also supported by the RMSEs of the

recovered images. In Table 4.1, we list the RMSEs of the reconstructed images for

dictionaries of different sizes. As shown in the table, using larger dictionaries will

yield smaller RMSEs, and all of them have smaller RMSEs than those generated

by bicubic interpolation. However, the computation is approximately linear to

the size of the dictionary; larger dictionaries will result in heavier computation.

Figure 4.7 shows the computation time in seconds with “Girl” as the test image.

The algorithm is written in Matlab without optimization for speed, and run on
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Figure 4.7: The computation time on “Girl” image with dictionaries of different
sizes (in seconds).

a laptop of Core duo @ 1.83G with 2G memory. To compare with [15], the

computation time is almost an hour, much slower than our current solution with

trained compact dictionaries. In practice, one chooses the appropriate dictionary

size as a trade-off between reconstruction quality and computation. We find that a

dictionary size of 1024 can yield decent outputs, while allowing fast computation.

4.3 Robustness to Noise

Most single-input super-resolution algorithms assume that the input images are

clean and free of noise, an assumption that is likely to be violated in real appli-

cations. To deal with noisy data, previous algorithms usually divide the recovery

process into two disjoint steps: first denoising and then super-resolution. How-

ever, the results of such a strategy depend on the specific denoising technique, and

any artifacts created during denoising on the low-resolution image will be kept or

even magnified in the latter super-resolution process. Here, we demonstrate that

by formulating the problem into our sparse representation model, our method is

much more robust to noise with input and, thus, can handle super-resolution and

denoising simultaneously. Note that in Eq. (2.5) the parameter λ depends on
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Table 4.2: The RMSEs of the reconstructed images from different levels of noisy
inputs.

Noise Levels / Gaussian σ 0 4 6 8

bicubic 9.873 10.423 11.037 11.772
Neighbor Embedding 9.534 10.734 11.856 13.064
Our method 8.359 9.240 10.454 11.448

the noise level of the input data; the noisier the data, the larger the value of λ

should be. Figure 4.8 shows how λ influences the reconstructed results given the

same noiseless input image. The larger λ, the smoother the result image texture

becomes. This is obvious by formulating Eq. (2.7) into a maximum a posterior

(MAP) problem:

α∗ = arg max P (α) · P (ỹ|α, D̃), (4.1)

where

P (α) =
1

2b
exp(−‖α‖1

b
)

P (ỹ|α, D̃) =
1

2σ2
exp(− 1

2σ2
‖D̃α− ỹ‖2

2),

(4.2)

where b is the variance of the Laplacian prior on α, and σ2 is the variance of

the noise assumed on the data ỹ. Taking the negative log likelihood in Eq. (4.1),

we get the exact optimization problem in Eq. (2.7), with λ = σ2/b. Suppose

the Laplacian variance b is fixed; then if the data becomes noisier (larger σ2), λ

becomes larger. On the other hand, given the input image, the larger the value

of λ we set, the more noisy the model will assume the data to be, and thus the

model tends to generate smoother results.

To test the robustness of our algorithm to noise, we add different levels of

Gaussian noise to the low-resolution input image. The standard deviation of the

Gaussian noise ranges from 4 to 10. The regularization parameter λ is empiri-
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Figure 4.8: The effects of λ on the recovered image given the input. From left to
right, λ = 0.01, 0.05, 0.1, 0.2, 0.3. The larger λ is, the smoother the result image
gets. Note that the results are generated from the local model only.

cally set to be one-tenth of the standard deviation. In Figure 4.9, we show the

results of our algorithm applying to the Liberty statue image with different lev-

els of Gaussian noise. For comparison, we also show the results of using bicubic

and NE [10]. As expected, the results of bicubic is both noisy and blurred. The

number of neighbors chosen decreases as the noise becomes heavier for NE to get

better results. As shown, the NE method is good at preserving edges, but fails to

distinguish the signal from noise, and therefore generates unwanted noisy results.

Our algorithm is capable of performing denoising and super-resolution simulta-

neously more elegantly. Table 4.2 shows the RMSEs of the reconstructed images

from different levels of noisy data. In terms of RMSE, our method outperforms

both bicubic interpolation and NE in all cases.

4.4 Effects of Global Constraints

The global reconstruction constraint enforced by Eq. (2.8) is employed to refine

the local image patch sparse model, ensuring the recovered high-resolution image

is consistent with its low-resolution observation. In our experiments, we observe

that the sparsity prior is very effective and contributes the most, while the global

constraint in the second step reduces RMSE by removing some minor artifacts,

which are hardly seen from the first step. Table 4.3 shows the RMSEs of the results
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Figure 4.9: Performance evaluation of our proposed algorithm on noisy data.
Noise level (standard deviation of Gaussian noise) from left to right columns: 0, 4,
6 and 8. Top row: input images. Middle row: recovered images using NE (k = 13,
12, 9, 7). Bottom row: recovered images using our method (λ = 0.1, 0.4, 0.6, 0.8).
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Table 4.3: The global constraint in the second step further refines the results from
local sparse model in the first step and reduces RMSEs.

Methods Flower Girl Parthenon Lena Statue

bicubic 3.530 5.912 12.724 7.360 9.873
Local Model 3.365 5.669 12.247 6.775 8.902
Plus Global 3.212 5.491 11.875 6.359 8.237

from the local sparse model only and local model combined with the global model.

The RMSEs of bicubic interpolation are again given as references. As shown, the

local sparse model can achieve better RMSEs than bicubic interpolation, and

the global constraint further reduces the RMSEs of the recovered images. These

experiments are carried out with a dictionary size of 1024.
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CHAPTER 5

CONCLUSION

In this thesis, we have discussed a new single-image super-resolution algorithm

based on image patches with the sparse prior learned from natural image patches

as a regularization. The approach is derived from the compressed sensing princi-

ple, which states that high-resolution sparse signals can be recovered from their

downsampled version by finding the sparsest solution with respect to a properly

chosen dictionary. Specifically, the sparse property of image patches is modeled

as the sparse prior so as to recover the high-resolution image patches from the

low-resolution image patches of the input image. Such a local sparse model is

further combined with a global reconstruction model in order to obtain a global

optimum. The proposed approach is applied to both generic images and face

images. Experimental results demonstrate the effectiveness of using sparsity as

a prior for the patch-based super-resolution. In addition, the proposed sparsity

regularization is robust to noise compared to the patch-based methods previously

proposed.

However, one of the most important questions for future investigation is to

determine, in terms of the within-category variation, the size of the dictionary

satisfying the sparse representation prior. Tighter connections to the theory of

compressed sensing may also yield conditions on the appropriate patch size or

feature dimension.
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