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Abstract

Bounded-exhaustive testing is an automated testing methodology that checks the code under

test for all inputs within given bounds: first the user describes a set of test inputs and

provides test oracles that can check test outputs; then a tool generates all the test inputs,

executes them on the code under test, and checks the test outputs; finally the user inspects

the failing tests to submit bug reports. The costs of bounded-exhaustive testing include

machine time for test generation and execution (which translates into human time waiting

for these results) and human time for inspection of results. We propose and evaluate three

orthogonal techniques that reduce these costs. Sparse Test Generation skips the generation

of some test inputs to reduce the time taken to reach the first failing test. Structural Test

Merging generates a smaller number of larger test inputs (rather than a larger number

of smaller test inputs) to reduce test generation and execution time. Oracle-based Test

Clustering groups failing tests to reduce the inspection time. Results obtained from the

bounded-exhaustive testing of the Eclipse refactoring engine show that these three techniques

can substantially reduce the costs without significantly sacrificing fault-detection capability.
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Chapter 1

Introduction

Testing is an important but expensive part of software development, estimated to take more

than half of the total development cost [6]. One approach to reducing the cost is to automate

testing. The increasing popularity of modern software development methodologies, such as

Extreme Programming [5], has increased the use of automated testing, especially automated

test execution, which involves automatically checking manually written tests. Automated

test generation is also becoming more popular; it involves programmatic generation of test

inputs for the code under test and programmatic validation of test outputs (namely test

oracles).

Bounded-exhaustive testing is an automated test generation approach that checks the

code under test for all inputs within given bounds [7, 8, 20, 26, 36]. The rationale is based

on the small scope hypothesis, which argues that many faults can be revealed within small

bounds [17, 24], and exhaustively testing within the bounds ensures that no “corner case”

is missed. Bounded-exhaustive testing has been used in both academia and industry to test

several real-world applications, with some recent examples including testing of refactoring

engines [8, 15], compilers [15] and web-traversal code [26].

Bounded-exhaustive testing consists of three activities. First, the user describes a set of

test inputs (this description is often called a generator) and also provides test oracles that can

check test outputs. Second, the tool generates all the inputs described by the user, executes

them on the code under test, and checks the outputs using the oracles. Third, the user

inspects failing tests to submit bug reports or debug the code; typically, bounded-exhaustive

testing produces a large number of failures for each fault found. Previous experience shows
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that bounded-exhaustive testing can reveal important faults [8, 20, 35, 36] but can also have

high costs. Two key costs in this context are machine time for test generation and execution

(which also translates into human time for waiting for these results [10,33]) and human time

for inspection of failures.

We propose, and evaluate on a case study, three novel techniques [18] that reduce these

costs of bounded-exhaustive testing. The three techniques can be used individually or syn-

ergistically to reduce the key costs of bounded-exhaustive testing. Specifically, we make the

following contributions:

Sparse Test Generation (STG) We present a new technique that reduces the time to

first failure (abbreviated TTFF ), i.e., the time that the user has to wait after starting

a tool for bounded-exhaustive testing until the tool finds a failing test. Note that in this

context there could be a large number of failing tests (say, hundreds or even thousands)

or no failing tests (if the code under test has no faults for any generated tests). TTFF

measures only the time to the first failure (not all failures). It is an important practical

metric that captures the user idle time. Previous research has shown, in a related

context of regression testing, that reducing the time to failure can significantly help in

development [10, 33]. STG works by making two passes through test generation. The

first, sparse pass, skips some tests in an attempt to reduce TTFF. While this pass

is related to test suite minimization/reduction/prioritization [12, 21, 31, 34, 37, 39], the

main challenge is to skip tests while they are being generated and not to select some

tests only after all have been generated. The second, exhaustive pass, generates all the

tests to ensure exhaustive checking within the given bounds (because sampling some

tests and failures could lead to missing some faults and because having more failures

per fault can help in debugging [9, 19]). Effectively, STG trades off (substantially)

decreasing TTFF for (slightly) increasing the total time required for test generation

and execution.
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Structural Test Merging (STM) We present a new technique that reduces the total

time for test generation and execution. In bounded-exhaustive testing, users typically

describe a test set with a large number of small tests, while we advocate also considering

test sets with a smaller number of larger tests. Our technique is inspired by the

work on test granularity [28, 29] which studied the cost-benefit trade-offs in using a

larger number of smaller tests versus a smaller number of larger tests. That work

mostly considered manually written tests for regression testing, while we focus on

automatically generated tests. Furthermore, that work considered cases where larger

tests can be automatically built from smaller tests by simply appending (e.g., if each

test is a sequence of commands, a longer test sequence can be obtained by simply

appending a number of shorter test sequences), while we consider cases where it is

harder to build larger tests from smaller tests (e.g., simply appending two test input

programs together while testing a compiler or a refactoring engine would likely result in

a compilation error as these programs could have program entities with the same name;

moreover, renaming would reduce the opportunity for speeding up test execution).

Instead of simply appending tests, our technique merges them based on their structure,

hence the name STM.

Oracle-based Test Clustering (OTC) We present a new technique that reduces the hu-

man time for inspection of failing tests. Bounded-exhaustive testing can produce a

large number of failing tests, and a tester/developer has to map these failures to dis-

tinct faults to submit bug reports or debug the code under test. Our technique builds

on the ideas from test clustering [9, 19, 22, 23, 27, 32] where the goal is to group failing

tests such that all tests in the same group are likely due to the same underlying fault.

Previous work mostly considered manually written tests or actual program runs, and

clustering was based on execution profiles obtained from monitoring test execution.

In contrast, we consider automatically generated test inputs, and our technique ex-
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ploits information from test oracles. Typically, an oracle only states whether a test

passed or failed, i.e., the output from an oracle is a boolean. However, in some do-

mains oracles also state how the result is incorrect, i.e., the output from an oracle

is an error message. This is the case with some of the oracles that we use, like the

Compilation Failure Oracle (described in Chapter 3) which provides detailed compiler

errors when there is a failure. OTC groups failing tests based on oracle messages, and

our results suggest that it is beneficial to build such oracles whenever possible. The

key to our technique is abstracting messages and not comparing them directly since

that could lead to excessive clustering, i.e., multiple groups representing a single fault.

For example, instead of comparing compiler errors verbatim, we were able to obtain

better clustering of failures by abstracting away unnecessary details such as the line

and column numbers.

Case Study We evaluated our three new techniques in the context of bounded-exhaustive

testing of the Eclipse [2] refactoring engine using the ASTGen framework for bounded-

exhaustive testing of refactoring engines [1, 8]. We chose ASTGen for three reasons:

(1) It enabled finding actual faults in real large software (it had previously been used

to find a few dozen new faults in the refactoring engines of Eclipse and NetBeans [3],

two popular IDEs for Java [8]); (2) We were familiar with the framework; and (3)

We personally experienced the costs of using ASTGen. We implemented the three

techniques within ASTGen and evaluated the cost savings achieved by the techniques

while testing 6 refactorings with 9 generators (more details in Chapter 5). The results

showed that (1) STG can reduce TTFF almost 10x (an order of magnitude) when

there is a failure, while increasing the total test generation and execution time only

10% when there is no failure; (2) STM can reduce the total time 2x-6x (in one instance

from over 6 hours to 70 minutes) and even more (but with some reduction of the

fault-detection capability); (3) OTC can reduce the number of tests to be inspected
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by clustering hundreds of failing tests into a few groups (up to 11) such that almost

all tests within the group are due to the same fault. In summary, the results show

that the techniques can substantially reduce both the machine and the human costs

of bounded-exhaustive testing without reducing the fault-detection capability.

The rest of this thesis is organized as follows: Chapter 2 introduces the driving example

used throughout this thesis and presents the techniques in the context of the example.

Chapter 3 presents the background necessary to introduce the details of the three techniques.

Chapter 4 presents the implementation details of the three techniques introduced in this

thesis. Chapter 5 details the experiments that we performed to evaluate the techniques.

Chapter 6 discusses other work that is related to the techniques presented in this thesis.

Finally, Chapter 7 concludes the thesis and discusses avenues for future work.

Note that the work presented in this thesis has already been published in the form of

a conference paper at the 12th International Conference on Fundamental Approaches to

Software Engineering (FASE 2009) [18]. The author of this thesis presented this work at the

FASE 2009 conference. We would like to thank the audience of the talk, including Dimitra

Giannakopoulou who chaired the session, for their comments and questions which have been

incorporated in this thesis to improve the presentation and provide additional details where

required. We would also like to thank the anonymous reviewers who reviewed our paper for

FASE 2009 for their useful comments.
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Chapter 2

Example

To illustrate how our techniques reduce the costs of bounded-exhaustive testing, we discuss

testing the PullUpMethod refactoring in the Eclipse refactoring engine using the ASTGen

framework. We first describe what PullUpMethod is. We then describe how to use ASTGen

for bounded-exhaustive testing of this refactoring. Finally we discuss how our new techniques

improve ASTGen.

A refactoring is a program transformation that changes the program code but not its

external behavior [14]. Programmers undertake refactorings to improve design of their pro-

grams. For example, PullUpMethod is a refactoring that moves a method from a class into

one of its superclasses (usually because the same method can be used by other subclasses

of that superclass). Figure 2.1 shows a simple application of the PullUpMethod refactor-

ing. Note that moving the method also requires properly updating the references within the

method body, i.e., replacing super.f with this.f.

Performing refactorings manually is tedious and error-prone. Hence, most modern IDEs

such as Eclipse, contain refactoring engines, which are development tools that automate

applications of refactorings. To apply PullUpMethod, the developer informs the engine

// Before refactoring

class A {

int f;

}

class B extends A {

void m() {

super.f = 0;

}

}

// After refactoring

class A {

int f;

void m() {

this.f = 0;

}

}

class B extends A {

}

Figure 2.1: Successful application of the PullUpMethod refactoring
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// Before refactoring

class A {

}

class B extends A {

int f;

void m() {

this.f = 0;

}

}

// Refactoring engine

// warning:

// Cannot pull up:

// method ‘m’

// without pulling up:

// field ‘f’

Figure 2.2: Application of the PullUpMethod refactoring resulting in a warning

about the method to move and the superclass to move it to in the input program. The

engine first checks whether the move is permitted (e.g., PullUpMethod should not move a

method to a superclass if the superclass already has a method with the same signature). If

it is, the engine appropriately transforms the program. The output is either a transformed

program, as illustrated in Figure 2.1 or a set of warning messages that indicate why the

move is not permitted, as illustrated in Figure 2.2.

Testing the implementation of PullUpMethod requires generating a number of input pro-

grams, invoking the refactoring engine on them, and checking whether it gives the appropri-

ate output (either a correctly transformed program or an expected set of warning messages).

Testers can have good intuition about which input programs could reveal a fault in the

engine. For instance, PullUpMethod may have faults if the subclass and superclass have

some additional relationship, e.g., being an inner or a local class or being related through

a third class. Also, there may be faults for some expressions and statements that include

field and method references from the body of the method being pulled up or to the method

being pulled up. However, it is time-consuming and error-prone to manually generate a large

number of such input programs.

Our research group previously developed the ASTGen framework for bounded-exhaustive

testing of refactoring engines [8]. ASTGen allows the tester to write generators that can

automatically produce a (large) number of (small) input programs for testing refactorings.

ASTGen generates all these inputs, executes the refactoring engine on them, runs several

oracles to validate the outputs, and reports failures. Using ASTGen, several dozen new bugs

were found in the refactoring engines of Eclipse and NetBeans, two popular IDEs for Java.
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However, ASTGen required a lot of machine time to generate and execute the test inputs

and a lot of human time to inspect the results (to filter true failures from false positives and

to map true failures to distinct faults).

For instance, to test PullUpMethod, we can use a generator that produces programs with

three classes in various relationships. For this specific case, ASTGen generates 1,152 input

programs, of which 160 result in failing oracles. A detailed inspection of these failures shows

that they reveal 2 distinct faults. While finding these faults is clearly positive, there are

costs. Test generation and execution (including oracles) take about 27 minutes (on a typical

desktop), and the time to find the first failure is about 9 minutes (in test run 389 of 1,152).

Also, identifying the 2 distinct faults among 160 failing tests is labor-intensive and tedious.

This thesis proposes three techniques that reduce all these costs:

STG addresses the time to first failure (TTFF) by first sampling some inputs rather than

exhaustively generating all inputs from the beginning. For our specific example, TTFF

is reduced almost an order to magnitude, from about 9 minutes to 1 minute.

STM addresses the total time for test generation and execution. Instead of testing Pull-

UpMethod for 1,152 (small) programs that exercise various features in isolation, STM

builds larger programs that combine some of the features, e.g., combine several expres-

sions or statements that include field and method references to/from the method being

pulled up. The tester can choose how many features to combine. In this example, the

least aggressive combination reduces the total time from 27 minutes to about 4 min-

utes, and the most aggressive combination reduces the total time further to under 1

minute.

OTC addresses the cost of failure inspection. It clusters the failing tests into groups that

are likely to be due to the same fault, and thus the tester can inspect only one or a

few tests from these “equivalence classes”. Our clustering is based on oracle messages

and can consider more or fewer details of the messages. The basic clustering splits 160
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failing tests into 127 clusters, but our best clustering splits them into just 3 clusters

that reliably find the 2 faults. In contrast, random sampling could miss faults, e.g.,

one of our experiments shows that it finds on average 1.77 out of 2 faults in this case.

Chapter 5 presents the details of our experimental evaluation. In brief, the three tech-

niques significantly reduce the costs of bounded-exhaustive testing while preserving its fault-

finding capabilities.
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Chapter 3

Background

This chapter provides the background necessary to present the three techniques introduced

in this thesis. We present the ASTGen framework for testing refactoring engines. The three

techniques presented in this thesis build upon ASTGen to significantly reduce its costs.

3.1 ASTGen

We now describe in more detail two parts of the ASTGen framework —generators and

oracles— that are relevant to present the three techniques introduced in this thesis. The

current practice for testing refactoring engines, as seen in the Eclipse and NetBeans test

suites, is that developers manually write all the unit tests for their refactorings, including

input programs. In contrast, ASTGen allows the testers to write generators—pieces of code

that implement a specific interface—which ASTGen runs to automatically generate input

programs. ASTGen then applies refactorings on these inputs and runs the oracles on the

outputs to check whether the refactoring was applied correctly.

3.1.1 Generators

Each generator is a piece of Java code that produces elements of Java abstract syntax trees

(ASTs), which can be pretty-printed as Java source. Conceptually, generators are close to

grammar-based generation [11, 25] where inputs are generated based on the grammar for

the input. However, while using grammars, it is difficult to express semantic constraints

that span across various parts of the program (for example, constraints that ensure that the
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Figure 3.1: Triple Class Method Child Generator structure and a generated test input

generated program is suitable for the application of a specific refactoring). Therefore AST-

Gen uses Java code rather than a grammar formalism as explained elsewhere [8]. ASTGen

provides (1) a large library of basic generators, (2) several mechanisms to compose and link

simpler generators into more complex generators, and (3) customization of generators using

Java code. Some of the generators that ASTGen provides include:

Field Declaration Generator produces many different field declarations that vary in

terms of type (int, byte, boolean, array or non array, etc.), visibility (private, public,

etc.), and name of the declared field.

Field Reference Expression Generator is linked to the Field Declaration Generator

and produces different expressions that reference the declared field in various ways,

including field accesses and operations (this.f, new A().f, super.f, f++, !f, etc.).

Single Class Field Reference Generator is composed on top of the Method Declaration

Generator and produces classes with one field (obtained from the Field Declaration

Generator) and one method that references the field in various ways.

Dual Class Relationship Generator is composed upon generators that produce classes

(e.g., Single Class Field Reference Generator) and produces two classes with various
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relationships between them (inheritance, inner class, local class, etc.).

While the main purpose of generators is to actually produce the required test inputs,

they also encode the space of all inputs to be produced. Consider testing PullUpMethod in

the following scenario:

Inputs: Programs with three classes A, B, and C.

• B extends C; B has a method m and a method mPrime that invokes m.

• C and A each have a field f that may be referenced by m.

• B or C is related to A in some way.

Test: Pull up method m from class B to class C.

The user can generate all these inputs by writing a generator that composes and links

several library generators. Figure 3.1 shows the overall structure of a generator, called

Triple Class Method Child Generator, that encodes this input space. The figure also shows

a sample test input produced by this generator and how the input sub-parts match the

sub-generators responsible for producing them. By iterating through all the variations of

the sub-generators, the Triple Class Method Child Generator produces 1,152 test inputs.

Note that the ASTGen generators are imperative style generators. They specify how the

test inputs are to be generated. Hence, they can be directly executed to obtain the inputs.

3.1.2 Oracles

While generators are the core of ASTGen and help testers to produce a large number of

input programs for testing refactorings, it would be impractical for the testers to manually

check the result of each refactoring application. Oracles automate checking of the results

so that the testers only have to inspect a smaller number of tests that fail the oracles (and

likely detect faults). ASTGen provides two generic oracles and allows the users to write

refactoring-specific oracles:
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Compilation Failure Oracle flags tests where the refactored program has a compilation

error: if the input program compiles, then the output program should also compile.

Erroneous Warning Oracle flags tests where the refactoring engine raised a warning

about a refactoring application, but ignoring that warning results in a refactored pro-

gram with no compilation errors (or custom failures). Previous work used an oracle

that flagged any test that raised a warning [1,8], but we discovered that such an oracle

has a large number of false positives.

Custom Oracles are specific to the refactoring being applied. For example, a custom

oracle for the RenameMethod refactoring could check that renaming a method, say m

to p, and then renaming back, p to m, results in the same program.

It is important to note that the output of traditional oracles are only booleans (pass or fail),

but the ASTGen oracles can provide additional information about the failure, e.g., messages

from the compiler or warnings from the refactoring engine.
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Chapter 4

Implementation

This chapter provides further details about the implementation of the three techniques pre-

sented in this thesis. As mentioned previously, the three techniques were implemented within

the ASTGen framework which was introduced in Chapter 3.

4.1 Sparse Test Generation (STG)

Generators encode and produce all the test inputs within defined bounds, and bounded-

exhaustive testing checks the code under test for all these inputs. This usually consumes

a large amount of machine time since the number of inputs generated is fairly large. For

example, ASTGen generators can generate thousands of test inputs, and it can take hours

of machine time to execute the refactorings on all those inputs. Additionally, this time

translates into human time required by the developer to wait for the generation and execution

of the tests to complete. Note that as soon as a tool reports a failure, the developer can start

inspecting it to file a bug report or to debug the fault that caused the failure. In theory, the

time the tool takes for generation and testing after the first failure is not important since

the developer does not have to idle. For this reason, we consider the Time to First Failure

(TTFF) as the key metric in interactive bounded-exhaustive testing. If no generated test

input results in a failure, the developer in theory has to wait for the entire generation and

testing process to complete.

STG is our technique that aims to reduce the TTFF in cases where failures exist. Fig-

ure 4.1 provides the simplified pseudo-code for STG. The stgMain method is the entry point.
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void stgMain ( Generator gen , int maxJumpLength ) {
// Sparse genera t ion phase
while ( gen . canGenerateMoreInputs ( ) ) {

int jumpLength = randomBetween (0 , maxJumpLength ) ;
gen . sk ip ( jumpLength ) ;
i f ( gen . canGenerateMoreInputs ( ) ) {

generateAndTestOneInput ( gen ) ;
}

}
gen . r e s e t ( ) ;
// Exhaus t ive genera t ion phase
while ( gen . canGenerateMoreInputs ( ) ) {

generateAndTestOneInput ( gen ) ;
}

}

void generateAndTestOneInput ( Generator gen ) {
Input in = gen . generateNextInput ( ) ;
Output out = per fo rmRefactor ing ( in ) ;
Resu l t r e s = checkOutputWithOracles ( out ) ;
logAndDisplayResult ( r e s ) ;

}

Figure 4.1: Simplified pseudo-code for STG

It accepts two parameters: the generator to be used and the maxJumpLength that is described

later. The stgMain method contains two loops, both of which invoke the helper method

generateAndTestOneInput that performs the generation and testing of a single input. The

two loops contain the pseudo-code for the two phases of STG which are described below:

Sparse Generation is motivated by our observation that failing test inputs are often lo-

cated close together in the sequence of inputs produced by a generator, and thus, to

find a failure, it is often not necessary to exhaustively generate all the inputs, it is suf-

ficient to generate only one input from a closely located group. Therefore, this phase

makes “jumps” through the generation sequence. The jump length is not constant

(since the failing tests may be in a stride that a constant jump would miss) but each

jump is (uniformly) random within some length limit. Figure 4.1 shows the simplified

pseudo-code for this phase in the first loop of the stgMain method.

The key challenge is to determine an appropriate maximum limit for the jump length
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(the maxJumpLength parameter of the stgMain method in Figure 4.1 ). A lower maxi-

mum jump length reduces the number of inputs that are skipped and conversely results

in the generation of a greater number of inputs during the Sparse Generation phase.

This increases the overhead of STG compared to the basic, dense bounded-exhaustive

testing which does not include the Sparse Generation phase. However, a higher max-

imum jump length increases the number of inputs that are skipped and reduces the

number of inputs that are generated during the Sparse Generation phase. This de-

creases the chances of a failure being found during this phase and thus potentially

increases the TTFF. In our experiments, we used a maximum jump length of 20 as it

provides a good trade-off: the expected jump is of length (1+20)/2, which increases

the total time by less than 10% when there is no failure. If Sparse Generation finds

a failing test, it usually does so quickly as it significantly reduces the number of tests

generated and executed; the results from Section 5 show that STG reduces the TTFF

by an order of magnitude in most cases compared to the dense generation. However,

STG is a heuristic and, in general, could keep missing failures until the very end while

dense generation would have found those failures at the very beginning. So, in theory

STG could result in a significantly larger TTFF than the dense bounded-exhaustive

testing. For example, consider a fault that can be found only by the second input gen-

erated by the dense bounded-exhaustive testing. If the sparse generation phase skips

over that second input, the fault wont be found until the second exhaustive phase.

Exhaustive Generation follows Sparse Generation and does basic bounded-exhaustive

testing (1) to ensure that a failing test input will be found if one exists and (2) to

find all the failing tests that Sparse Generation missed (which can help in clustering

failures or debugging [9, 19, 23]). Figure 4.1 shows the simplified pseudo-code for this

phase in the second loop of the stgMain method.
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Figure 4.2: Unmerged test inputs

4.2 Structural Test Merging (STM)

While TTFF is an important metric in bounded-exhaustive testing, another important met-

ric is the total time for test generation and execution. This time can be very long when

generators produce a large number of inputs, which is the case for typical top-level ASTGen

generators. For example, consider the number of inputs for the Triple Class Method Child

Generator shown in Figure 3.1. Each of its sub-generators has a small number of variations

by itself —G2 has 2 (inner, outer); G3 has 3 (inner, method inner, outer); G4, G5, and

G6 have 1; G7 has 2 (public, private); G8 has 6 (this.f, new A().f, super.f, etc.); G9 has

4 (public, private, same/different signature); and G10 has 4 (m(), new B().m(), this.m(),

B.this.m())— but the top-level generator produces all combinations of those variations

which is 2× 3× 1× 1× 1× 2× 6× 4× 4 = 1152 combinations.

STM reduces the number of test inputs while still aiming to preserve their exhaustiveness:

instead of producing a large number of small input programs, STM produces a smaller

number of larger input programs by merging appropriate program elements. For example,

the Triple Class Method Child Generator produces the three inputs shown in Figure 4.2. The

only difference between the three inputs are the highlighted statements, generated by the

Field Reference sub-generator (G8). Figure 4.3 shows an input that contains all these three

statements. This single, merged input encodes the same input space as the three unmerged
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Figure 4.3: Merged generator structure and a generated merged test input

inputs. This structural merging transformation is the crux of our STM technique.

STM exploits the compositional structure of the sub-generators to produce merged test

inputs. Figure 4.3 shows an alternative structure for the Triple Class Method Child Gen-

erator: a new Field Reference Merging Single Class Generator (G8M) merges together all

the program elements produced by the original Field Reference Generator (G8). While fig-

ures 3.1 and 4.3 show a generator before and after a single application of the structural

merging transformation, it is possible to apply the transformation multiple times within the

hierarchical structure of a generator. Each application leads to a multiplicative reduction

in the number of generated inputs. For example, the original Method Reference Genera-

tor (G10) can also be modified to a generator G10M that merges together all the different

method invocation statements. Together, G8M and G10M produce inputs that merge both

field references and method references. We refer to the number of transformation appli-

cations as merging level : for the Triple Class Method Child Generator, merging level M1

has only G8M, and merging level M2 has both G8M and G10M. The unmerged generator

produces 1,152 inputs, and levels M1 and M2 reduce the number of inputs to 192 and 48, re-

spectively. The total testing time reduces from 27:02 to 3:57 and 0:47 minutes, respectively;

and the TTFF reduces from 9:09 to 1:25 and 0:17 minutes, respectively.
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While STM achieves significant time savings, it is important to note its two potential

drawbacks. One potential drawback is that larger inputs, through the interference of program

elements, can mask some test failures [28, 29]. Consider, for example, merging together all

the different field references (as in Figure 4.3). There may be a failure triggered by one of

the field reference statements which gets masked by the presence of the other field reference

statements. However, this interference can also go the other way: larger inputs may trigger

new failures that smaller inputs do not trigger. The other drawback is the effect of larger

inputs on debugging. STM produces fewer larger inputs rather than more smaller inputs,

but smaller (failing) inputs typically make it easier to perform fault localization. We could

take two approaches to address this. One approach is to reduce inputs by applying Delta

Debugging [40] on the larger failing input to try to isolate the part of the input that triggers

the failure. Another approach, enabled by the fact that larger inputs are produced by

merging generators, is to regenerate the individual small inputs that represent the larger

failing input by using the generator with no merging (i.e., merging level M0).

4.3 Oracle-based Test Clustering (OTC)

Prior experience with bounded-exhaustive testing in academia and industry shows that it can

find faults in real code [8,20,35,36] but also produces a large number of failures. Identifying

a few faults out of many failures is a challenging task. OTC is a new technique that helps

in this task by splitting failing tests into groups such that all tests in the same group are

likely due to the same fault.

OTC exploits information from oracles to group failing tests. Recall that ASTGen oracles

provide messages about the failures, e.g., if a refactored program does not compile, ASTGen

reports the compilation error provided by the compiler. Initially, we used these messages to

cluster the failing tests by grouping together those tests that have exactly the same messages.

(A test can produce multiple messages, which our experiments compare as lists, not bags
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or sets.) However, directly using concrete messages provided by the compiler resulted in a

large number of small clusters, e.g., two compilation errors may differ only in line or column

numbers, say, “3:8:field f not visible” and “2:6:field f not visible”. So we experimented with

abstract messages that ignore some details such as line and column numbers. Going further

in that direction, one can even consider ignoring the messages and clustering based on which

oracle failed, not how it failed. The trade-off is that creating too many clusters increases

inspection effort, while creating too few clusters increases the chances of missing a fault. Our

evaluation compares four clustering options: Concrete Message, Abstract Message, Oracle

Name, and Random Selection (which is the base case with no clustering); the results show

that Abstract Message provides the best trade-off.
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Chapter 5

Evaluation

We evaluated our three new techniques with the ASTGen framework for bounded-exhaustive

testing of refactorings engines. More specifically, we evaluated the three techniques by

applying them to test 6 refactorings in the Eclipse refactoring engine using the 9 generators

listed in Table 5.1. For each generator and several merging levels, we tabulate the number of

inputs generated, various times and APFD metric (described below), the number of failing

inputs, and the number of distinct faults. Previous work tested these refactorings with these

generators and found a number of faults [8]. The goal of this study was to evaluate whether

the new techniques reduce the testing costs, and not to find new faults. However, due to

our use of OTC, we also found a new fault in the PushDownMethod refactoring, previously

missed [8] due to random sampling of failures that were inspected.

5.1 Sparse Test Generation (STG)

Table 5.1 shows the time results for ASTGen with and without STG. The ‘Dense’ subcolumns

show the total time and time to first failure (TTFF) for bounded-exhaustive testing without

STG. If no failure exists, TTFF shows ‘n/a’. The ‘Sparse’ column shows average values for

TTFF if a failure exists (roughly the top half of the table) and the total time if no failure

exists (the bottom half of the table). These times are averaged over 20 random seeds, with

the jump limit of 20 as discussed in Section 4.1. The main questions about STG are how it

affects TTFF and the total time.

STG reduces TTFF in all cases where the dense TTFF was significant (a minute or
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Refactoring Generator ML Inputs
Dense

Sparse
APFD [%]

Failures Faults
Time TTFF Dense Sparse

M0 7416 133:32 7:33 0:47 74.98 98.16 1074 2
PushDown- DualClass- M1 1236 22:43 0:01 0:02 99.23 88.62 179 1
Field FieldReference M2 12 0:21 0:00 0:01 95.83 74.17 4 1

M3 3 0:13 0:00 0:00 83.33 63.33 1 1
M0 23760 427:09 73:34 7:14 58.03 97.59 486 3

DualClass- M1 3960 71:50 12:03 1:11 69.82 97.77 354 3
FieldReference M2 72 1:19 0:13 0:03 74.31 80.56 31 2

Encapsulate- M3 18 0:26 0:06 0:03 58.33 73.15 8 2
Field M0 8576 155:15 0:22 0:03 75.37 97.61 836 4

SingleClass- M1 2144 39:04 0:21 0:03 66.86 97.59 242 4
FieldReference M2 1072 19:35 0:09 0:02 84.25 93.04 144 3

M3 268 4:55 0:02 0:02 72.70 88.11 62 3
M4 16 0:17 0:00 0:01 96.88 84.06 1 1
M0 960 22:19 11:28 1:05 43.91 93.59 180 3

PushDown- DualClass- M1 192 4:07 2:07 0:14 41.75 91.89 38 3
Method MethodParent M2 48 0:45 0:28 0:21 40.63 87.85 2 1

M0 1152 27:02 9:09 1:01 13.19 95.77 160 2
PullUp- TripleClass- M1 192 3:57 1:25 0:09 48.18 95.36 96 2
Method MethodChild M2 48 0:47 0:17 0:02 56.25 89.58 24 2

M0 576 13:22 n/a 14:14 n/a n/a 0 0
PullUp- DualClass- M1 96 1:49 n/a 1:55 n/a n/a 0 0
Method MethodChild M2 24 0:21 n/a 0:22 n/a n/a 0 0

M0 23760 629:01 n/a 689:17 n/a n/a 0 0
DualClass- M1 3960 107:26 n/a 117:48 n/a n/a 0 0
FieldReference M2 72 1:56 n/a 2:04 n/a n/a 0 0

Rename- M3 18 0:34 n/a 0:34 n/a n/a 0 0
Field M0 8576 229:00 n/a 250:59 n/a n/a 0 0

SingleClass- M1 2144 57:28 n/a 62:56 n/a n/a 0 0
FieldReference M2 1072 28:44 n/a 31:28 n/a n/a 0 0

M3 268 7:15 n/a 7:57 n/a n/a 0 0
M0 9540 173:32 n/a 190:11 n/a n/a 0 0

Rename- SingleClass- M1 4900 89:26 n/a 98:05 n/a n/a 0 0
Method MethodReference M2 140 2:37 n/a 2:50 n/a n/a 0 0

M3 80 1:31 n/a 1:37 n/a n/a 0 0

Table 5.1: Sparse Test Generation and Structural Test Merging Results
Legend: ML = Merging Level, TTFF = Time to First Failure, All times in minutes:seconds

more): the speedup ranges from 9.00x (for the PullUpMethod refactoring and the Triple-

ClassMethodChild generator with merging level M0) to 10.58x (for the PushDownMethod

refactoring and the DualClassMethodParent generator with merging level M0). The average

speed up was an order of magnitude (10x). In a few cases with very small dense TTFF, STG

had a slowdown of at most 1 second. Recall the two phases of STG described in Section 4.1;

the reduction in TTFF implies that in these cases the first, sparse generation phase found a

failure before the second, exhaustive phase.

STG increases the total time, as expected. With the jump limit of 20, the overhead of

the additional sparse phase is expected to be slightly under 10% of the total time for dense

generation. Our experiments confirm that this is indeed the case: the slowdown ranges from
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Refactoring Generator ML
Random Oracle Abstract Concrete
FD NC FD NC FD NC FD NC

PushDownField DualClassFieldReference

M0 1.99 1 2 2 2 5 2 68
M1 1 1 1 1 1 3 1 59
M2 1 1 1 1 1 2 1 4
M3 1 1 1 1 1 1 1 1

EncapsulateField

DualClassFieldReference

M0 2.24 1 2.24 2 3 4 3 51
M1 2.05 1 2.31 2 3 4 3 112
M2 1.73 1 2 2 2 4 2 8
M3 1.75 1 2 2 2 3 2 3

SingleClassFieldReference

M0 2.84 1 3.11 2 4 4 4 71
M1 2.48 1 2.46 2 4 4 4 73
M2 2.26 1 2.26 1 3 4 3 58
M3 2.30 1 2.30 1 3 5 3 24
M4 1 1 1 1 1 1 1 1

PullUpMethod TripleClassMethodChild
M0 1.77 1 1.77 1 2 3 2 127
M1 1.56 1 1.56 1 2 2 2 84
M2 1.62 1 1.62 1 2 2 2 24

PushDownMethod DualClassMethodParent
M0 2.19 1 3 2 3 11 3 20
M1 2.56 1 2.54 2 3 10 3 16
M2 1 1 1 1 1 1 1 2

Table 5.2: Oracle-based Test Clustering Results
Legend: ML = Merging Level, FD = Faults Detected, NC = Number of Clusters

5.50% (for the PullUpMethod refactoring and the DualClassMethodChild generator with

merging level M1), to 9.67% (for the RenameMethod refactoring and the SingleClassMetho-

dReference generator with merging level M1). In summary, STG achieves a 10x speedup in

TTFF for only a 10% slowdown in the total time.

We further evaluated STG using the Average Percentage Fault Detected (APFD) metric

introduced by Rothermel et al. [31] to compare techniques for test prioritization and extended

by Walcott et al. [37] for test selection. APFD measures the number of faults detected in

terms of the number of tests executed, whereas TTFF is based on the first failure (not all

faults) and actual time (not number of tests) as TTFF aims to capture the waiting time

for testers in interactive bounded-exhaustive testing, similar to more recent extensions of

APFD [10]. APFD ranges between 0 and 100%, with higher values being better. Table 5.1

shows APFD, with ‘Sparse’ averaged over 20 random seeds. The results show that STG

improves APFD in all cases where the dense TTFF was significant.
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5.2 Structural Test Merging (STM)

Table 5.1 shows the results for STM for several merging levels of each of the generators.

The merging level number (e.g., 3 in M3) represents the number of structural merging

transformations applied to the unmerged generator (labeled M0) to obtain the corresponding

merged generator, as discussed in Section 4.2. The main questions about STM are how it

affects times (total and TTFF) and the number of failures/faults detected.

Each merging level reduced both the total time and TTFF compared to its previous

level and thus to M0. Level M1 achieved total time speedup ranging from 1.94x (for the

RenameMethod refactoring and the SingleClassMethodReference generator), to 7.36x (for

the PullUpMethod refactoring and the DualClassMethodChild generator). The average to-

tal time speedup for level M1 was 5x. Compared to level M0, level M2 achieved total time

speedup ranging from 7.93x (for the EncapsulateField refactoring and the SingleClassField-

Reference generator), to 381.52x (for the PushDownField refactoring and the DualClassFiel-

dReference generator). The average total time speedup for level M2 was 130x. The merged

generators also substantially reduced the TTFF. Level M1 achieved TTFF speedup ranging

from 1.05x (for the EncapsulateField refactoring and the SingleClassFieldReference genera-

tor), to 453x (for the PushDownField refactoring and the DualClassFieldReference genera-

tor). On average, level M1 achieved 80x TTFF speedup. Level M2 achieved TTFF speedup

ranging from 2.44x (for the EncapsulateField refactoring and the SingleClassFieldReference

generator), to 453x (for the PushDownField refactoring and the DualClassFieldReference

generator). On average, level M2 generators achieved 150x TTFF speedup.

Merging did not expose any new faults, but aggressive merging did mask some faults.

In particular, level M1 masks only one fault (in PushDownField), but levels M2 and higher

mask a much larger number of faults. However, even the highest level of merging finds at

least one fault (when there is a fault at M0). Additionally, if one considers TTFF as the

most important metric, masking faults at the higher merging levels is not detrimental but
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actually beneficial: the user can start the exploration from a high level, quickly find failures,

and start inspecting them, while the tool continues the exploration at a lower level. In

summary, STM can substantially improve total time and TTFF while somewhat reducing

the fault-detection capability of bounded-exhaustive testing.

5.3 Oracle-based Test Clustering (OTC)

Table 5.2 shows the results for the four clustering options discussed in Section 4.3. For each

option, we present the number of clusters formed and distinct faults detected by inspecting

a number of randomly selected tests from each cluster. The results are averaged over 1000

random seeds. For this experiment, we needed to choose a sampling strategy [9], which

determines how many tests to select and from which clusters. The basic strategy, one-per-

cluster, selects one test for each cluster; we used this strategy for Abstract Message and

Concrete Message. For Random Selection and Oracle Name, which have fewer clusters, we

used a strategy that selects more tests per cluster, specifically selects at least as many tests

as Abstract Message selects (i.e., the number of clusters that Abstract Message has) and at

most 1% of all failing tests. The main questions about OTC are how it affects the number

of failures that need to be inspected and the number of faults detected.

To measure the number of faults detected by a set of selected tests, we had to map

failing tests to the fault(s) they detect and also had to determine which faults are distinct.

We performed two steps. First, we manually inspected all tests from each cluster based on

Abstract Message with less than 30 tests and inspected at least 10 tests from each cluster

with more than 30 tests. Since all inspected tests from each cluster detected the same

fault(s), we extrapolated that all tests in a cluster can detect the same fault(s). We also

patched 6 of these faults in Eclipse and confirmed their results from the first step. Second,

we asked a researcher, Danny Dig (unaware of the details of this study but with multiple

years of experience with Eclipse refactorings) to label the faults collected in the first step as
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potential duplicates of each other or non-faults. This resulted in 12 distinct faults that we

used in our experiments.

Abstract Message substantially reduces the number of tests to be inspected to find all the

faults, e.g., PullUpMethod for M0 has 160 failing tests, but Abstract Message splits them

into 3 clusters, and selecting any 3 tests, one from each cluster, always reveals all 2 faults.

The results show that Abstract Message finds all faults that Concrete Message finds but

requires inspection of much fewer tests, up to over an order of magnitude for lower merging

levels. Also, Abstract Message finds more faults than Random Selection and Oracle Name

while the same number or even fewer tests are inspected. In summary, Abstract Message

was the most effective OTC option among the four we compared.
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Chapter 6

Related Work

There is a large body of work on automated testing. Our focus is on bounded-exhaustive

testing [7, 8, 20, 26, 35, 36] that tests the code for all inputs within given bounds. Bounded-

exhaustive testing has been successfully used to reveal faults in several real applications [8,

20,35,36], but it has substantial costs in machine time for test generation and execution and

human for inspection of failures. This thesis presents three new techniques that reduce the

costs of such testing.

Sparse Test Generation (STG) is related to work on test selection/reduction/prioritiza-

tion [12, 13, 16, 21, 30, 31, 34, 37–39] whose goal is to reduce the testing cost or to find faults

faster by selecting a subset of tests from a test suite and/or ordering these tests. The previ-

ous techniques mostly consider regression testing where a test suite exists a priori, and the

simplest techniques can randomly select or order these tests. In contrast, STG selects tests

while they are being generated, and generation proceeds in a particular order (e.g., in AST-

Gen depending on the state of generators), so arbitrary random sampling is not possible.

Finally, STG does not compromise the fault-finding ability [16].

Structural Test Merging (STM) is related to work on test granularity [28, 29] which

studied the cost-benefit trade-offs in testing with a larger number of smaller tests versus a

smaller number of larger tests. The key difference is that previous work considered tests

that can be easily appended while we consider tests that need to be merged. Note that

appending tests only saves setup and teardown costs [29], while merging can also reduce test

execution cost (e.g., merging 1,152 input programs into 192 input programs requires only

192 applications of the PullUpMethod refactoring). However, the results are similar in both
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contexts: larger tests reduce the testing time, but too large tests may miss faults.

Oracle-based Test Clustering (OTC) is related to work on test clustering/filtering/in-

dexing [9, 19, 22, 23, 27, 32]. Previous work performed clustering based on execution profiles,

obtained from monitoring test execution. The main novelty of our technique is to exploit

information-rich oracles, rather than execution profiles, to cluster failing tests. Our goal

is to cluster failing tests to help in identifying the underlying faults. Dickinson et al. [9]

present an empirical study that evaluates somewhat different techniques whose goal is to

find failures among executions by using cluster analysis of execution profiles. Effectively,

those techniques use cluster analysis as approximate oracles. Their results show that cluster

filtering of executions can find failures more effectively than random sampling, and that

clustering of executions can distinguish failing executions from passing ones.

Finally, note that the work presented in this thesis has already been published in the

form of a conference paper at the 12th International Conference on Fundamental Approaches

to Software Engineering [18].
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Chapter 7

Conclusions and Future Work

Bounded-exhaustive testing checks the code under test for all inputs within given bounds.

It can find faults but at potentially high costs, including machine time to generate and run

tests, and human time to wait for the test results and to inspect failures to identify distinct

faults. We presented three new techniques that reduce these costs: Sparse Test Generation

skips some tests to reduce the time to first failure by an order of magnitude; Structural Test

Merging generates larger tests to reduce test generation and execution time by order(s) of

magnitude; and Oracle-based Test Clustering groups failing tests to reduce the inspection

time by order(s) of magnitude.

While the techniques presented in this thesis reduce the major costs of bounded-exhaustive

testing, one cost that is harder to quantify has been ignored in this thesis. This cost is the

human time required to implement the generators that exhaustively produce the test inputs.

The ASTGen generators discussed in this thesis are implemented in an imperative/gener-

ating style where the user directly writes how to generate the inputs. In contrast, other

bounded-exhaustive testing frameworks, such as Korat [7], enable the implementation of

generators in a declarative/filtering style where the user writes what properties the gener-

ated inputs should satisfy. Experience has shown that certain properties of inputs are easier

to express using an imperative/generating style while other properties of inputs are easier to

express using a declarative/filtering style. Our research group has since worked on allowing

users to combine both these styles to enable more compact and efficient implementation of

generators through the UDITA [4, 15] language for test generation. The three techniques

presented in this thesis have not been evaluated using UDITA; however, we expect the re-
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sults to be similar to what we have observed using ASTGen. We leave this evaluation as

future work.

The techniques presented in this thesis were evaluated by applying them on the bounded-

exhaustive testing of the Eclipse refactoring engine. However, previous work [8] had applied

bounded-exhaustive testing on both the Eclipse and NetBeans refactoring engines. There-

fore, it would be interesting to expand the evaluation of the techniques by also applying

them on the bounded-exhaustive testing of the NetBeans refactoring engine. It would also

be interesting to apply bounded-exhaustive testing along with the techniques presented in

this thesis in other domains like compilers and type checking systems.
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